

TEST REPORT

Korea EMC Laboratory Co., Ltd.

390 Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do,
Republic of Korea (446-904)

Tel : 82-31-286-5881 Fax : 82-31-286-2661
www.koreaemc.com

Report Ref. No :

KEL10-F10074

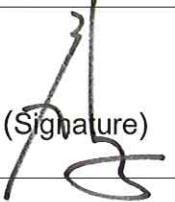
1. Client

- Name : Cydle Corp.
- Address : 12th Floor, Kofomo Tower, 16-3, Sunae-Dong, Bundang-Gu, Sungnam-City, Kyonggi-Do, Korea
- Date of receipt : October 31, 2010

2. Use of report : -

3. Name of product / model : Mobile TV Receiver / i30A
i30B ~ i30Z(Series model name)

4. FCC ID : YXQI30A


5. Manufacturer and country of origin : Cydle Corp. / KOREA

6. Date of test : November 01, 2010 – December 13, 2010

7. Applied standard : FCC Part 15_2010, Subpart C(Section 15.247_DTS)
ANSI C63.4_2003

8. Testing location : In Laboratory In Chamber On Site Test

9. Test results : Pass Fail

Affirmation	Tested by Name : Sang-Hoon Lee (Signature) 	Technical manager Name : Su-Gil Moon (Signature)
-------------	--	--

March 18, 2011

Korea EMC Laboratory Co., Ltd.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by Korea EMC Laboratory Co., Ltd.

0. REPORT REVISION HISTORY

This report shall not be reproduced except in full, without the written approval of Korea EMC Laboratory Co., Ltd. This document may be altered or revised by Korea EMC Laboratory Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by Korea EMC Laboratory Co., Ltd. will constitute fraud and shall nullify the document.

TABLE OF CONTENTS

0. REPORT REVISION HISTORY	2
1. TEST LABORATORY	5
1.1 General	5
1.2 Certificate of designated testing laboratory	5
2. DESCRIPTION OF THE EQUIPMENT UNDER TEST	6
2.1 Characteristic	6
2.2 Applied standard	6
2.3 Submitted documents	6
2.4 Channel chart	7
3. TEST CONDITIONS	8
3.1 Description of test configuration	8
3.2 List of peripherals	8
3.3 Uncertainty	8
3.4 Environment condition	8
4. SUMMARY OF TEST RESULTS	9
5. TEST AND RESULTS	10
5.1 AC Power conducted emission	10
5.1.1 Test procedures	10
5.1.2 Limits of AC power conducted emission	10
5.1.3 Test instruments	10
5.1.4 Test results	11-12
5.2 Out of band emission & Band edge	13
5.2.1 Test procedures	13
5.2.2 Limits of out of band emission	13
5.2.3 Test instruments	14
5.2.4 Test results	14-16
5.3 Minimum 6 dB bandwidth	17
5.3.1 Test procedures	17
5.3.2 Limit of minimum 6 dB bandwidth	17
5.3.3 Test instruments	17
5.3.4 Test results	17-18
5.4 Maximum peak out power	19
5.4.1 Test procedures	19
5.4.2 Limit of maximum peak out power	19
5.4.3 Test instruments	19
5.4.4 Test results	19

5.5 Peak power spectral density	20
5.5.1 Test procedures	20
5.5.2 Limit of peak power spectral density	20
5.5.3 Test instruments	20
5.5.4 Test results	20-21
5.6 Antenna requirement	22
5.6.1 Regulation	22
5.6.2 Antenna connected construction	22
5.7 RF exposure	22

1. TEST LABORATORY

1.1 General

Name of Test Laboratory	Korea EMC Laboratory Co., Ltd.
President	Won-Hyang Oh
Address	390 Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea (446-904)
TEL	+82-31-286-5881
FAX	+82-31-286-2661
e-mail	webmaster@koreaemc.com

1.2 Certificate of designated testing laboratory

Area and Category	Regulation	Registration & Certification No.	Mark.
Radio Research Agency EMI(Radiated & Conducted emission) EMS(Radiated Immunity) Safety Radio Communication Part	No. 2011-12 (2011. 02. 18)	KR0002	 방송통신위원회
Korea Laboratory Accreditation Scheme (KOLAS) EMI(Radiated & Conducted emission) EMS(Radiated Immunity) Safety Road Vehicle component test(EMC) Military EMC(MIL-STD-461E)	KS Q ISO/IEC 17025:2006	No. 154	
FCC Part 15 & 18 EMI(Radiated & Conducted emission)	ANSI 63.4:2003	90751 (KR0002)	
VCCI EMI(Radiated & Conducted emission)	VCCI	C-2314 R-2139 R-2140	
UL Korea Ltd. Safety	Star Alliance Program	-	
European Conformity EMC & Safety	2004/108/EC 2006/95/EC	-	
TUV SUD Certification after Recognition of Agent's Testing EMC	ISO/IEC 17025:2005	ROK1006C	 Product Service

2. DESCRIPTION OF THE EQUIPMENT UNDER TEST

The product specification described herein was obtained from the product data sheet or user's manual

2.1 Characteristics

Product name	Mobile TV Receiver
Model no.	i30A
FCC ID	YXQI30A
Operation frequency	2412 MHz(802.11 b)
RF power	8.55 dBm(9.31 mW)
Spread spectrum method	DSSS(802.11 b)
Modulation type	CCK, DQPSK, DBPSK
Data rate	11.0 / 5.5 / 2.0 / 1.0 Mbps
Number of channel	1 Channel
Antenna type / max. gain	Chip Antenna / 1.99 dBi
Power source	DC 5.0 V(Adapter) DC 3.7 V(Battery)
Size	67 mm X 111 mm X 10 mm
Interface ports	-
Accessory	Adaptor(AC-DC), Car Adaptor, Suction Mount, ROD Antenna(ATSC M/H), External Antenna, Stand, Bracket

2.2 Applied standard

- FCC part 15, subpart C(15.247_DTS)
- ANSI C63.4_2003

Note : It has been verified to comply with requirements of FCC part 15, subpart B, Class B(DoC). The test report has been issued separately

2.3 Submitted documents

- Block diagram
- Schematic diagram
- Antenna specification
- Part list(B.O.M)
- User manual

2.4 Channel chart

802.11 b(1 Channel)

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
1	2412	–	–	–	–	–	–
–	–	–	–	–	–	–	–
–	–	–	–	–	–	–	–

- Measurement Channel : 1 Channel(2412 MHz)
- Test rate : 11 Mbps

3. TEST CONDITIONS

3.1 Description of test configuration

The EUT has been tested as an independent unit with other necessary accessories or support unit. The following support units or accessories were used to form a representative test configuration during the tests.

3.2 List of peripherals

Type	Model no.	Serial no.	Manufacturer
EUT(Multi PAD)	i30A	-	Cydle Corp.
Adaptor	PA-050200SN	-	Perfect Power
iphone	A1241	-	Apple Inc.

3.3 Uncertainty

Measurement	Frequency	Uncertainty
Conducted Emission	150 kHz ~ 30 MHz	1.5
Radiated Emission	30 MHz ~ 1 GHz	4.4
	1 GHz ~ 40 GHz	4.1

3.4 Environment condition

Measurement	Temperature	Humidity	Atmospheric pressure
Conducted emission	25 ± 4 °C	30 – 60 % R.H.	101.4 kPa
Radiated emission	22 ± 4 °C	30 – 60 % R.H.	101.4 kPa

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor if $k=2$.

4. SUMMARY OF TEST RESULTS

Section	Test type	Limit	Remark	Result
15.207	▪ AC Power conducted emission	Table 15.207	Meet the requirement	Pass
15.209, 15.247	▪ Out of band emissions & Band edge	-	Meet the requirement	Pass
15.247(a)(2)	▪ Minimum 6 dB bandwidth	Min. 500 kHz	Meet the requirement	Pass
15.247(b)(1)	▪ Maximum peak out power	WLAN : 1 W	Meet the requirement	Pass
15.247(d)	▪ Peak power spectral density	> 8 dBm	Meet the requirement	Pass
15.203, 15.247(b)(3)	▪ Antenna requirement	-	Meet the requirement	Pass

5. TEST AND RESULTS

5.1 AC Power conducted emission

5.1.1 Test procedures

1. The EUT was place on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5 m away from the side wall of the shielded room.
2. Each current-carrying conductor of the EUT power cord was individually connected through a 50Ω / 50 uH LISN, which is an input transducer to a Spectrum Analyzer or an EMI Test Receiver, to the input power source
3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
4. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 kHz or to quasi-peak and average within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements
5. The measuring level is calculated by adding the Correction Factor, Cable Loss.
The basic equation with a sample calculation is as follow :
Final Test Level = Receiver Reading + Correction Factor + Cable Factor

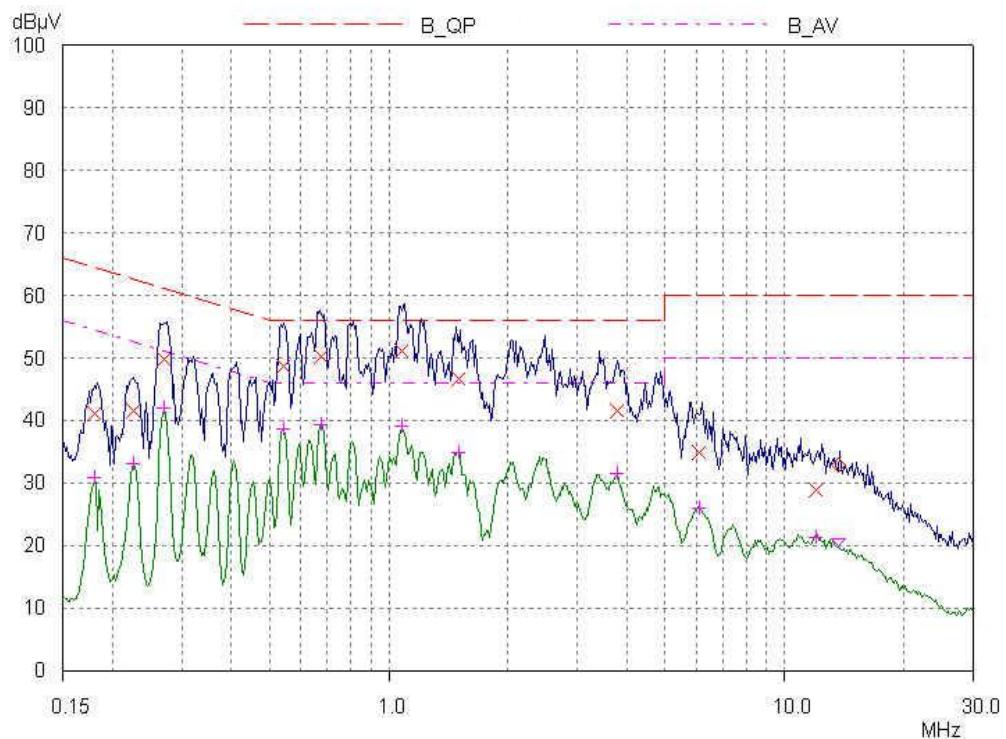
5.1.2 Limits of AC power conducted emission

Frequency of emission(MHz)	Conducted limit(dBuV)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

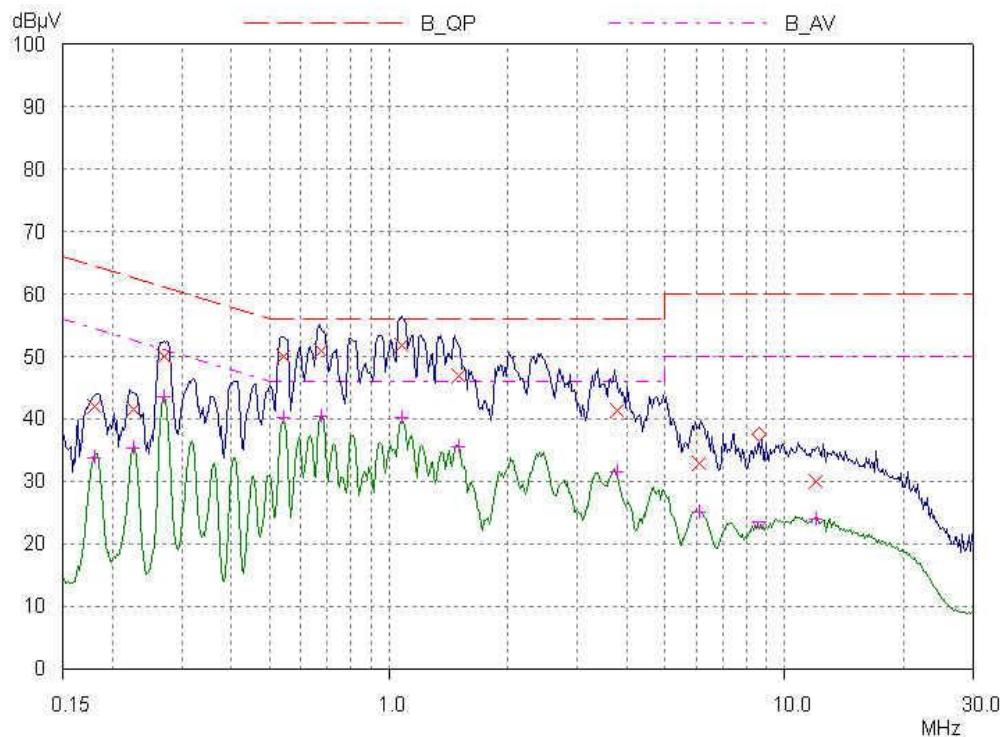
* Decreases with the logarithm of the frequency

5.1.3 Test instruments

Description	Manufacturer	Model no.	Serial no.	Due cal.	Use
Test receiver	Rohde&Schwarz	ESCS30	10054	2011.10.02	<input checked="" type="checkbox"/>
Two line V-Network	Rohde&Schwarz	ESH3-Z5	560685/005	2011.10.02	<input checked="" type="checkbox"/>
LISN (for peripheral)	Kyoritsu	KNW-407	8-883-14	2011.10.02	<input type="checkbox"/>


5.1.4 Test results

1. Data


802.11 b : Frequency – 2412 MHz									
Frequency [MHz]	Correction factor		Line (H/N)	Quasi-peak			Average		
	LISN [dB]	Cable [dB]		Limit (dBuV)	Reading (dBuV)	Result (dBuV)	Limit (dBuV)	Reading (dBuV)	Result (dBuV)
0.180	0.08	0.00	N	64.48	42.00	42.08	54.48	33.76	33.84
0.225	0.08	0.00	N	62.62	41.55	41.63	62.62	35.25	35.33
0.269	0.08	0.00	N	61.13	50.04	50.12	51.13	43.51	43.59
0.540	0.08	0.00	N	56.00	49.97	50.05	46.00	40.28	40.36
0.675	0.08	0.00	N	56.00	50.90	50.98	46.00	40.41	40.49
1.082	0.10	0.00	N	56.00	51.80	51.90	46.00	40.24	40.34
1.501	0.12	0.00	N	56.00	46.94	47.06	46.00	35.51	35.63
3.745	0.25	0.00	H	56.00	41.56	41.81	46.00	31.48	31.73
6.070	0.28	0.30	H	60.00	34.94	35.52	50.00	26.05	26.63
11.919	0.43	0.40	N	60.00	30.08	30.91	50.00	24.05	24.88

2. Graph

802.11 b : Frequency – 2412 MHz(L1)

802.11 b : Frequency – 2412 MHz(L2)

5.2 Out of band emissions & Band edge

5.2.1 Test procedures

1) Spurious RF conducted emissions :

The Out of Band emission was measured with a spectrum analyzer connected to the antenna port. At RBW = 100 kHz, VBW = 300 kHz, spurious emission in the frequency range 30 MHz – 25 GHz which was out fo 2400 – 2483.5 MHz was lower 20 dB than radio frequency power.

2) Spurious Radiated emissions :

1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters.
2. The EUT was placed on the top of the 0.8 m height, 1 x 1.5 m non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 30 to 1000 MHz using the Bi-Log antenna, and from 1000 MHz to 18000 MHz using the horn antenna.
4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 x 4 m at the test Site.
5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
6. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.
7. The field strength is calculated by adding the Antenna Factor, Cable factor, & preamplifier. The basic equation with a sample calculation is as follow :
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

5.2.2 Limits of out of band emission & band edge

According to 15.209(a), for an intentional device, the general requirement of filed strength of radiated emission from intentional radiators at a distance of 3 m shall not exceed the following values :

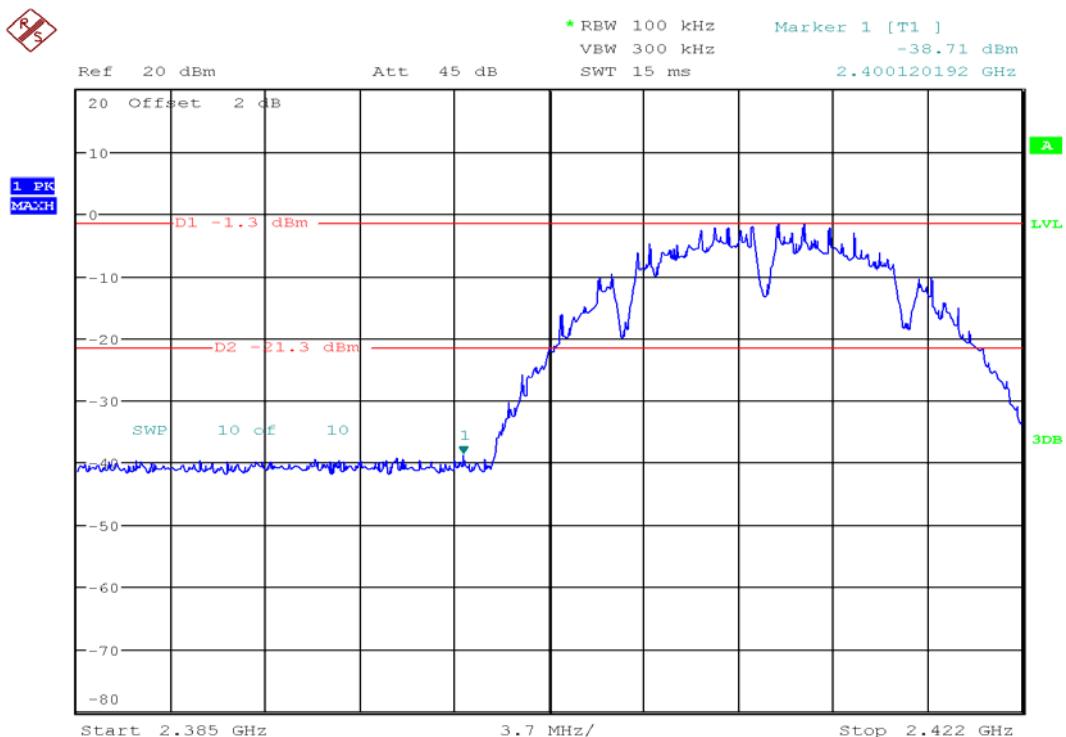
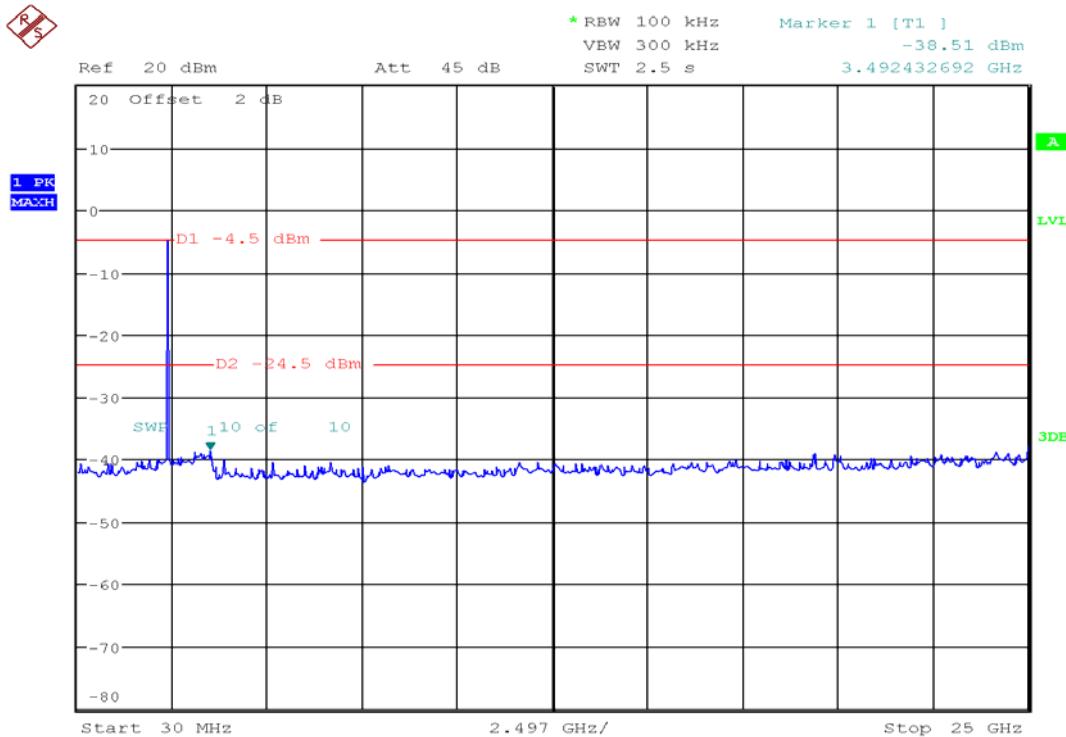
Frequency(MHz)	Field strength(uV/m @ 3 m)	Field strength(dBuV/m @ 3 m)
30 – 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

Note : For frequency above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation

5.2.3 Test instruments

Description	Manufacturer	Model no.	Serial no.	Due cal.	Use
Spectrum Analyzer	Rohde&Schwarz	FSQ40	200062	2011.10.02	<input checked="" type="checkbox"/>
Horn Antenna	AH Systems	SAS-571	500	2013.01.03	<input checked="" type="checkbox"/>
Bi-Log Antenna	VULB9160	Schwarzb eck	3049	2011.12.18	<input checked="" type="checkbox"/>
Pre Amplifier	8447E	HP	2434A02093	2012.01.10	<input checked="" type="checkbox"/>
Pre Amplifier	87405-60021	AGILENT	10004	2012.01.04	<input checked="" type="checkbox"/>
Test Receiver / Spectrum Analyzer	Rohde&Schwarz	ESCI	100561	2011.07.17	<input checked="" type="checkbox"/>
Attenuator	AGILENT	8491A	51517	2011.10.08	<input type="checkbox"/>

5.2.4 Test results



1) Out of band emissions & Band edge(Conducted)

1. Data

802.11 b			
Frequency[MHz]	Result[dBc]	Limit[dBc]	Margin[dB]
2412	34.01	20	14.01

2. Graph

802.11 b : Frequency – 2412 MHz

2) Out of band emissions & Band edge(Radiated)

1. Above 1000 MHz

802.11 b : Frequency – 2412 MHz(above 1000 MHz)								
Frequency [MHz]	Reading [dBuV]	Pol. [H/V]	Height [m]	Correction Factor		Result Value		
				Ant. Factor [dB]	Cable+Amp. [dB]	Limit [dBuV/m]	Result [dBuV/m]	Margin [dB]
Average data, emissions above 1000 MHz(RBW = 1 MHz, VBW = 10 Hz)								
2388.74*	30.5	H	1.3	30.1	25.0	54.0	35.6	18.4
2412	72.1	H	1.3	30.2	25.0	-	77.3	-
4824	28.5	H	1.1	34.5	23.5	54.0	39.5	14.5
Peak data, emissions above 1000 MHz(RBW = 1 MHz, VBW = 3 MHz)								
2388.74*	45.2	H	1.3	30.1	25.0	74.0	50.3	23.7
2412	83.7	H	1.3	30.2	25.0	-	88.9	-
4824	40.6	H	1.1	34.5	23.5	74.0	51.6	22.4

Note : * Restricted band

2. Below 1000 MHz

802.11 b : Frequency – 2412 MHz(below 1000 MHz)								
Frequency [MHz]	Reading [dBuV]	Pol. [H/V]	Height [m]	Correction Factor		Result Value		
				Ant. Factor [dB]	Cable+Amp. [dB]	Limit [dBuV/m]	Result [dBuV/m]	Margin [dB]
36.46	44.2	V	1.0	11.4	23.0	40.0	32.6	7.4
94.67	44.1	V	1.0	8.8	18.9	43.5	34.0	9.5
105.983	40.0	V	1.1	10.1	19.0	43.5	31.1	12.4
298.367	28.1	H	2.1	12.5	17.3	46.0	23.3	22.7

5.3 Minimum 6 dB bandwidth

5.3.1 Test procedures

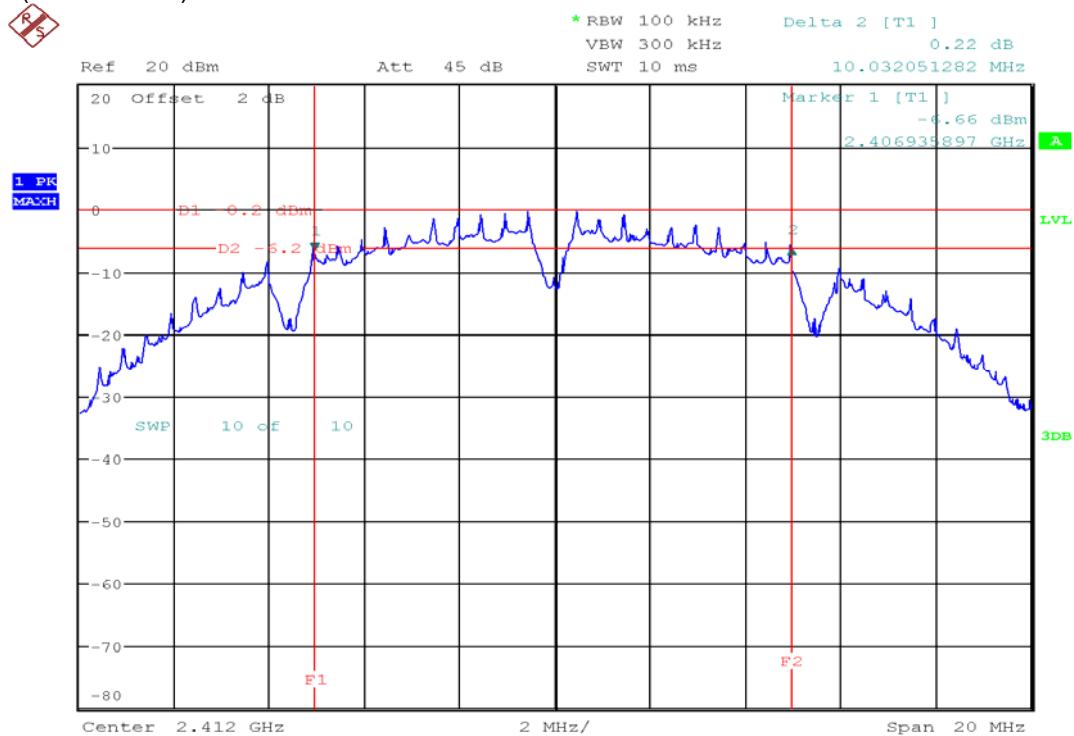
1. The transmitter out was connected to the Spectrum analyzer through a cable.
2. The bandwidth of the fundamental frequency was measured by Spectrum analyzer with RBW=100 kHz, VBW=300 kHz.
3. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB.

5.3.2 Limit of minimum 6 dB bandwidth

The minimum of 6 dB bandwidth measurement is 0.5 MHz.

5.3.3 Test instruments

Description	Manufacturer	Model no.	Serial no.	Due cal.	Use
Spectrum analyzer	Rohde&Schwarz	FSQ40	200062	2011.10.02	<input checked="" type="checkbox"/>


5.3.4 Test Results

1. Data

802.11 b			
Frequency[MHz]	6 dB bandwidth[MHz]	Minimum limit[MHz]	Result
2412	10.03	0.5	Pass

2. Graph

802.11 b(at 2412 MHz)

5.4 Maximum peak out power

5.4.1 Test procedures

1. A power sensor was used on the output port of the EUT.
2. A power meter was used to read the response of the power sensor.
3. Record the power lever

5.4.2 Limit of maximum peak out power

The maximum out peak power = 30 dBm

5.4.3 Test instruments

Description	Manufacturer	Model no.	Serial no.	Due cal.	Use
Spectrum analyzer	Rohde&Schwarz	FSQ40	200062	2011.10.02	<input checked="" type="checkbox"/>
Power sensor	AGILENT	N1921A	MY45200258	2011.10.02	<input checked="" type="checkbox"/>
Power meter	AGILENT	N1911A	MY45101189	2011.10.02	<input checked="" type="checkbox"/>

5.4.4 Test Results

802.11 b				
Frequency [MHz]	Out power [dBm]	Out power [mW]	Out power limit [dBm]	Result
2412	8.55	9.31	30	Pass

5.5 Peak power spectral density(PSD)

5.5.1 Test procedures

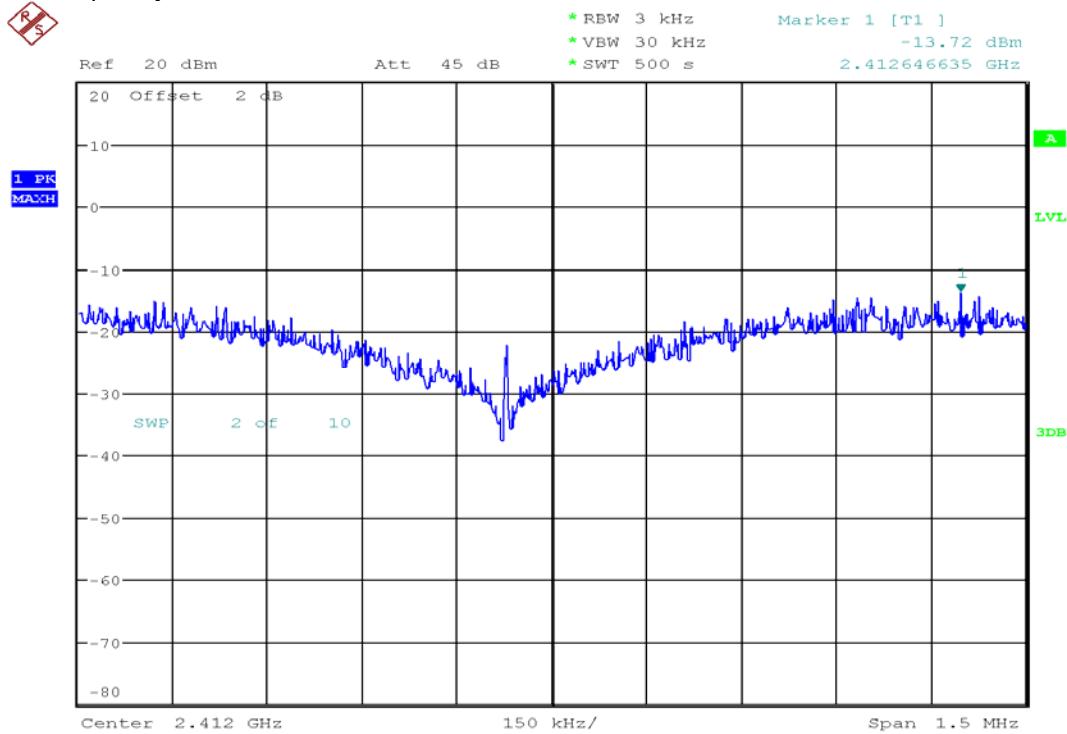
1. The transmitter out was connected to the Spectrum analyzer through a cable.
2. The bandwidth of the fundamental frequency was measured with the Spectrum analyzer using RBW = 3 kHz and VBW = 30 kHz, set sweep time = span / 3 kHz.
3. The power spectral density was measured and recorded.

5.5.2 Limit of maximum peak out power

The maximum of power spectral density measurement is 8 dBm.

5.5.3 Test instruments

Description	Manufacturer	Model no.	Serial no.	Due cal.	Use
Spectrum analyzer	Rohde&Schwarz	FSQ40	200062	2011.10.02	<input checked="" type="checkbox"/>


5.5.4 Test Results

1. Data

802.11 b			
Frequency[MHz]	PSD level[dBm]	Maximum limit[dBm]	Result
2412	-13.72	8	Pass

2. Graph

802.11 b : Frequency - 2412 MHz

5.6 Antenna requirement

5.6.1 Regulation

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.24

5.6.2 Antenna connected construction

The antenna types used in this product are integral antenna.

Chip antenna(gain : 1.99 dBi)

5.7 RF exposure

No SAR Evaluation required if power is below the following threshold : 802.11 b

802.11 b			
Frequency(GHz)		60/f SAR Limitation(mW)	
2.412	-	24.87	

Maximum measured transmitter power :

Pout Conducted (dBm)	Pout Conducted (mW)	Maximum Antenna Gain (dBi)	Pout EIRP(mW)
8.55	9.31	1.99	11.32

Conclusion : No SAR evaluation required since maximum transmitter pout(both conducted and EIRP) is below FCC threshold