

Certification Exhibit

FCC ID: YWZ-HBCLB IC: 3356F-HBCLB

FCC Rule Part: 15.247
IC Radio Standards Specification: RSS-210

ACS Project Number: 13-0211

Manufacturer: Alpha - High Theft Solutions Model: HBCLOK

RF Exposure

Model: HBCLOK FCC ID: YWZ-HBCLB IC: 3356F-HBCLB

General Information:

Applicant: Alpha – High Theft Solutions, A Division of Checkpoint Systems, Inc.

Product Description: The HBCLOK provides article surveillance for retail environments. It attaches to the product by looping the cable through a fixed opening on

the product and securing each end of the cable with a spring at each end

of the cable.

Exposure Conditions: Portable/Mobile. There is potential for the article under surveillance to

be in direct contact with the body (e.g. apparel).

Environment: General Population/Uncontrolled Exposure

Evaluation Result: Compliant

Technical Information:

Band of Operation: 2405 – 2480 MHz

Number of Channels: 16

Modulation Format: O-QPSK

Antenna Type/Gain: Printed circuit board wiggle antenna; 2.15dBi (0dBd)

Operating Voltage: 3V CR2477 Lithium Battery

Maximum Transmitter

Conducted Power: 3.87 dBm, 2.44 mW Maximum System EIRP:6.02 dBm, 3.99 mW

Reference Documents:

447498 D01 General RF Exposure Guidance v05r01

SAR Test Exclusion Justification (Portable Exposure Conditions):

Per KDB 447498 D01 General RF Exposure Guidance v05r01 section 4.3.1 1), the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

Note: The minimum test separation distance used is 5 mm per KDB 447498 D01 General RF Exposure Guidance v05r01 according to 1) of section 4.3.1.

- $= [2.44 / 5]*[\sqrt{2.480}]$
- = 0.488 * 1.575
- = 0.769

Conclusion: Based on the results above, the unit meets both body and extremities SAR test exclusion requirements.

MPE Calculation (Mobile Exposure Conditions):

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

MPE Calculator for Mobile Equipment							
Limits for General Population/Uncontrolled Exposure*							
Transmit	Radio	Power	Radio	Antenna	Antenna	Distance (cm)	Power
Frequency	Power	Density Limit	Power	Gain	Gain		Density
(MHz)	(dBm)	(mW/Cm2)	(mW)	(dBi)	(mW eq.)		(mW/cm^2)
2480	3.87	1.00	2.44	2.15	1.641	20	0.0008

Conclusion: Based on the results above, this device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.