CC ID: YWX-SA13AIO2 Report No.: T140416L05-RP1-1

APPENDIX I MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate theen vironment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	1 Average Lime				
(A) Limits for Occupational / Control Exposures								
300-1,500			F/300	6				
1,500-100,000			5	6				
(B) Limits for General Population / Uncontrol Exposures								
300-1,500			F/1500	6				
1,500-100,000			1	30				

CALCULATIONS

Given
$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = *Power density in milliwatts / square centimeter*

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770 d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm2

FCC ID: YWX-SA13AIO2 Report No.: T140416L05-RP1-1

<u>LIMIT</u>

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

Mode	Antenna Gain (dBi)	Minimum separation distance (cm)	Output Power (dBm)	Numeric antenna gain	Power Density Limit (mW/cm²)	Power Density at 20cm (mW/cm ²)
GFSK	2.0	20	4.40	1.58	1.00	0.000868
8-DPSK	2.0	20	6.47	1.58	1.00	0.001399

Remark: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.