FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4:2009 TEST REPORT

For

AIO Panel

Model: DMS-SA1300-A1E

Trade Name: CareFusion

Issued for

CareFusion Inc.

10020 Pacific Mesa Blvd., San Diego, California 92121, United States

Issued by

Compliance Certification Services Inc. Hsinchu Lab.

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

> TEL: +886-3-5921698 FAX: +886-3-5921108

http://www.ccsrf.com E-Mail : service@ccsrf.com

Issued Date: December 26, 2013

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Report No.: T131205L01-RP1

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	12/26/2013	Initial Issue	All Page 97	Gloria Chang

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
3. DESCRIPTION OF TEST MODES	6-7
4. TEST METHODOLOGY	8
5. FACILITIES AND ACCREDITATION	8
5.1 FACILITIES	8
5.2 ACCREDITATIONS	8
5.3 MEASUREMENT UNCERTAINTY	9
6. SETUP OF EQUIPMENT UNDER TEST	10-12
7. FCC PART 15.247 REQUIREMENTS	13
7.1 6dB BANDWIDTH	13-22
7.2 MAXIMUM PEAK OUTPUT POWER	23-25
7.3 AVERAGE POWER	26-28
7.4 POWER SPECTRAL DENSITY	29-39
7.5 CONDUCTED SPURIOUS EMISSION	40-52
7.6 RADIATED EMISSION	53-86
7.7 CONDUCTED EMISSION	87-91
APPENDIX I MAXIMUM PERMISSIBLE EXPOSURE	92-93
ADDENDIY II SETLID DUOTOS	04-07

1. TEST REPORT CERTIFICATION

Applicant : CareFusion Inc.

Address : 10020 Pacific Mesa Blvd., San Diego, California 92121,

United States

Equipment Under Test: AIO Panel

Model : DMS-SA1300-A1E

Trade Name : CareFusion

Tested Date : November 30 ~ December 25, 2013

APPLICABLE STANDARD		
Standard	Test Result	
FCC Part 15 Subpart C AND ANSI C63.4:2009	PASS	

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sb. Lu

Sr. Engineer

Reviewed by:

Gundam Lin Sr. Engineer

2. EUT DESCRIPTION

Product Name	AIO Panel		
Model Number	DMS-SA1300-A1E		
Identify Number	T131205L01		
Received Date	November 30, 2013		
Frequency Range	IEEE 802.11b/g, 802.11n HT20 : 2412MHz ~ 2462MHz IEEE 802.11n HT40 : 2422MHz ~ 2452MHz		
	IEEE 802.11b : 15.86 dBm (0.0386 W)		
Transmit Davier	IEEE 802.11g : 19.32 dBm (0.0855 W)		
Transmit Power	IEEE 802.11n HT20 : 19.05 dBm (0.0804 W)		
	IEEE 802.11n HT40 : 18.59 dBm (0.0722 W)		
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40 : 5MHz		
Channel Number	IEEE 802.11b/g, 802.11n HT20: 11 Channels		
Chamilei Number	IEEE 802.11n HT40 : 7 Channels		
	IEEE 802.11b : 11, 5.5, 2, 1 Mbps		
	IEEE 802.11g : 54, 48, 36, 24, 18, 12, 9, 6 Mbps		
Transmit Data Rate	IEEE 802.11n HT20 : 72.2, 65, 58.5, 57.8, 52, 43.3, 39, 28.9, 26, 21.7, 19.5, 14.4, 13, 7.2, 6.5Mbps		
	IEEE 802.11n HT40 : 150, 135, 121.5, 120, 108, 90, 81, 60, 54, 45, 40.5, 30, 27, 15, 13.5Mbps		
	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)		
Type of Modulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)		
Type of Modulation	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)		
Antenna Type	PIFA Antenna, Antenna 1 (Chain 1), Antenna Gain : 2.0dBi		
Power Rating	12-24Vdc		
Test Voltage	120Vac, 60Hz		
I/O Port	Control Port × 1(For Docking)		

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3 This submittal(s) (test report) is intended for FCC ID: YWX-ES-AIO-02 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. DESCRIPTION OF TEST MODES

The EUT is an 802.11n transceiver in AIO Panel form factor.

For IEEE 802.11b/g/, 802.11n HT20/HT40 mode (1TX / 1RX):

Chain 1 (Antenna 1) transmit/receive.

Conducted Emission / Radiated Emission Test (Below 1 GHz)

1. The following test modes were scanned during the preliminary test:

No.	Pre-Test Mode
1	Normal Operating

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mode		
Emission	Radiated Emission	Normal Operating
LIIIISSIOII	Conducted Emission	Normal Operating

Remark : Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

Conducted / Radiated Emission Test (Above 1 GHz)

IEEE 802.11b, 802.11g, 802.11n HT20 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

Report No.: T131205L01-RP1

IEEE 802.11b mode: 1Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2422
Middle	2437
High	2452

IEEE 802.11n HT40 mode: 13.5Mbps data rate (worst case) were chosen for full testing.

Report No.: T131205L01-RP1

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC CFR 47, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.4:2009 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

> **TAF Taiwan**

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

> **INDUSTRY CANADA** Canada **VCCI Japan Taiwan BSMI USA FCC MRA**

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

Report No.: T131205L01-RP1

.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_A) / Radiated Emission, 30 to 1000 MHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_A) / Radiated Emission, 1 to 18GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_A) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_A) / Radiated Emission, 26 to 40 GHz	+/- 3.82
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 1 to 18GHz	+/- 3.58
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 26 to 40 GHz	+/- 3.81
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 2.48

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	HP	ProBook 4421s	CNF03242PJ	DoC
2	Notebook PC	HP	ProBook 4421s	CNF03242PM	DoC
3	Notebook PC	IBM (Lenovo)	ThinkPad T61 7663-AS6	L3F3864	DoC
4	Notebook PC	DELL	Latitude D610 PP01L	CN-0XD762-486 43-637-1743	DoC
5	Draft 11n Wireless 4-Port Gigabit Broadband Router	SMC	SMCWGBR14S-N	U193600496	
6	Keyboard	View Sonic	VS10230	P80053001326	DoC
7	Mouse	HP	M-UAE96	265986-011	DoC
8	USB2.0 Flash Disk × 6	Kingston	DTSE9H/8GB		DoC
9	USB Flash disk	SanDisk	SDCZ6-1024	BB0706I6B	
10	USB Flash disk	SanDisk	SDSDM-1024	BB07251CTE	
11	Headphones	i-Acon	CW-010M.V		
12	Docking				
13	USB Load × 6				

N	ο.	Product	Manufacturer	Model No.	Power Input	Power Output
•	1	Power Adapter	SINPRO	MPU63-106	100-240Vac, 47-63Hz, 1.62-072A	15Vdc, 4.2A

No.	Signal cable description
1	Non-shielded RJ-45 cable, 10m × 2
2	Shielded USB cable, 2m × 6

Report No.: T131205L01-RP1

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF Mode:

- 1. Setup all Computers like the setup diagram.
- 2. Run wifi RF Tool
- 3. Select the following settings.
- 4. TX Mode:
 - ⇒ **Tx Data Rate:** 1Mbps Bandwidth 20 (IEEE 802.11b mode)

6Mbps Bandwidth 20 (IEEE 802.11g mode)

6.5Mbps Bandwidth 20 (IEEE 802.11n HT20 mode) 13.5Mbps Bandwidth 40 (IEEE 802.11n HT40 mode)

⇒ Power control

IEEE 802.11b Channel Low (2412MHz) TX Power default

IEEE 802.11b Channel Mid (2437MHz) TX Power default

IEEE 802.11b Channel High (2462MHz) TX Power default

IEEE 802.11g Channel Low (2412MHz) TX Power default

IEEE 802.11g Channel Mid (2437MHz) TX Power default

IEEE 802.11g Channel High (2462MHz) TX Power default

IEEE 802.11n HT20 Channel Low (2412MHz) TX Power default

IEEE 802.11n HT20 Channel Mid (2437MHz) TX Power default

IEEE 802.11n HT20 Channel High (2462MHz) TX Power default

IEEE 802.11n HT40 Channel Low (2422MHz) TX Power default

IEEE 802.11n HT40 Channel Mid (2437MHz) TX Power default

IEEE 802.11n HT40 Channel High (2452MHz) TX Power default

- 5. All of the functions are under run.
- 6. Start test.

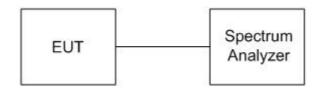
Normal Mode:

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. Power on all equipments.
- 3. EUT link to wireless router.
- 4. Notebook PC ping EUT IP through LAN connected by RJ-45 cable.
- 5. Notebook PC ping EUT IP through LAN connected by RJ-45 cable.
- 6. Notebook PC link EUT through BT.
- 7. Notebook PC link wireless router ping EUT IP through wireless LAN.
- 8. EUT and laptop connection transfer rate appears as 1Gbps.
- 9. USB port link keyboard mouse and USB dongle × 6.
- 10. All of the functions are under run.
- 11. EUT Run 'BurnIN'.
- 12. Start test.

7. FCC PART 15.247 REQUIREMENTS

7.1 6dB BANDWIDTH

LIMITS


§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/10/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. The transmitter output was connected to a spectrum analyzer.
- 2. Set RBW = 100 kHz.
- 3. Set the video bandwidth (VBW) \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

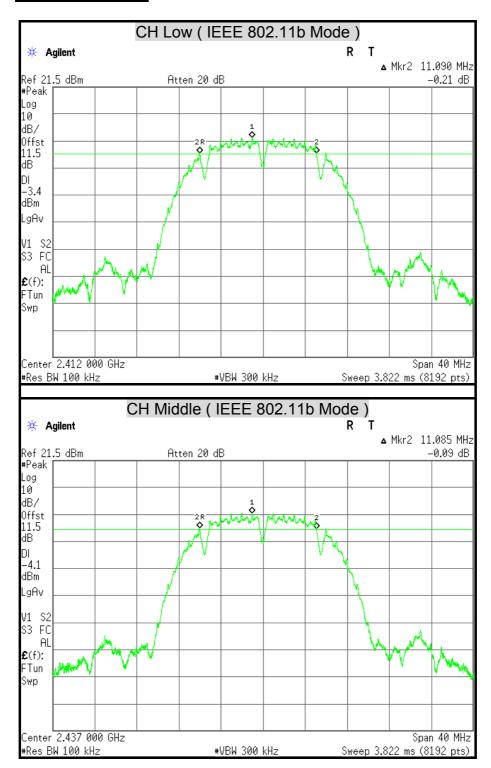
TEST RESULTS

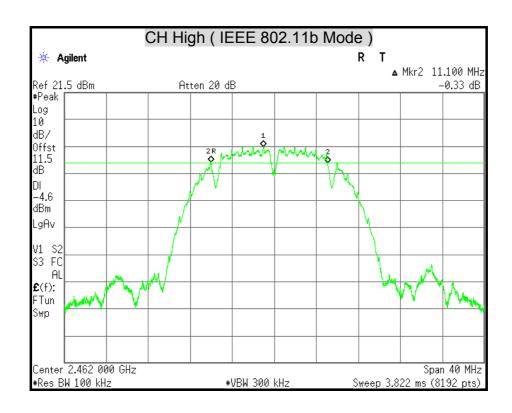
IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	11.090	500	PASS
Middle	2437	11.085	500	PASS
High	2462	11.100	500	PASS

IEEE 802.11g Mode

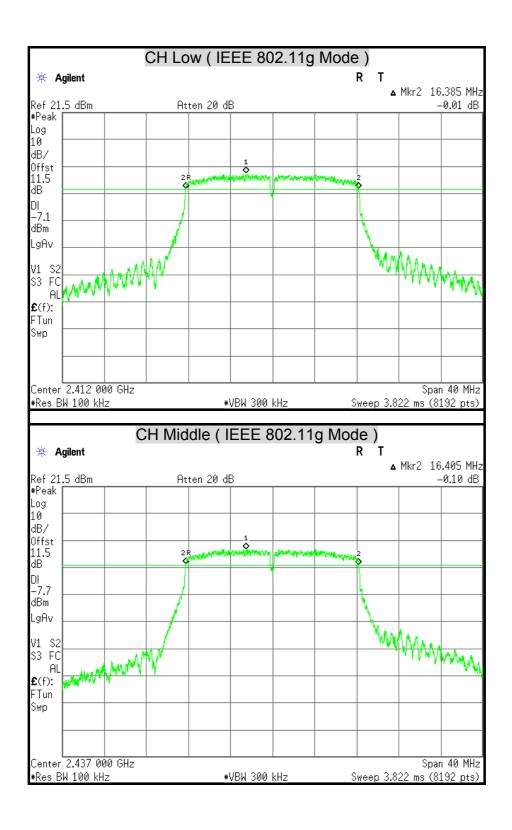
Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16.385	500	PASS
Middle	2437	16.405	500	PASS
High	2462	16.375	500	PASS

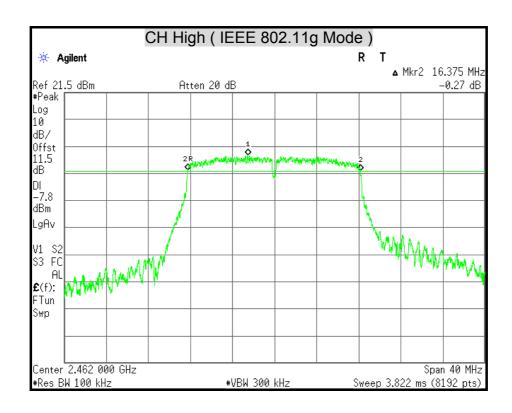

IEEE 802.11n HT20 Mode


Observat	Channel	6dB Bandwidth	Minimum Limit	Dage / Fail
Channel	Frequency (MHz)	(MHz)	(kHz)	Pass / Fail
Low	2412	17.330	500	PASS
Middle	2437	17.155	500	PASS
High	2462	17.070	500	PASS

IEEE 802.11n HT40 Mode

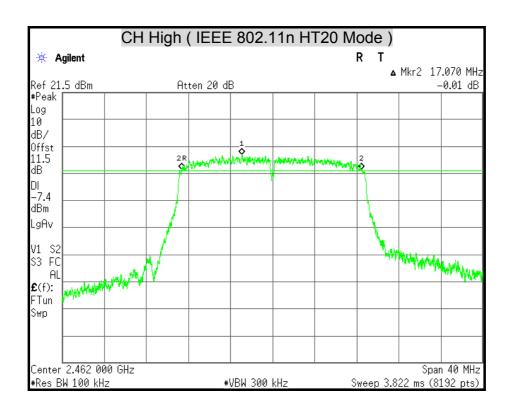
Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2422	35.305	500	PASS
Middle	2437	35.070	500	PASS
High	2452	35.265	500	PASS


6dB BANDWIDTH

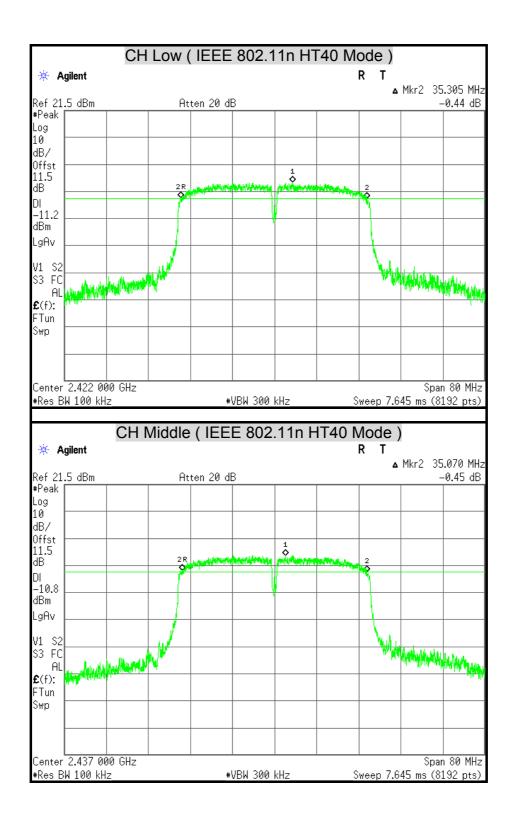


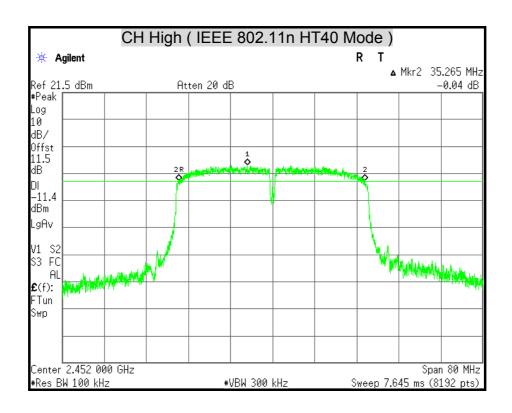
FCC ID: YWX-ES-AIO-02

Report No.: T131205L01-RP1



FCC ID: YWX-ES-AIO-02


Report No.: T131205L01-RP1


CH Low (IEEE 802.11n HT20 Mode) * Agilent ▲ Mkr2 17.330 MHz Ref 21.5 dBm Atten 20 dB -0.11 dB #Peak Log 10 dB/ Offst 11.5 dΒ DI -7**.**3 dBm LgAv Mary had a second and hardel why have the S3 FC ΑL **£**(f): FTun Swp Center 2.412 000 GHz Span 40 MHz #VBW 300 kHz Sweep 3.822 ms (8192 pts) #Res BW 100 kHz CH Middle (IEEE 802.11n HT20 Mode) 🔅 Agilent ▲ Mkr2 17.155 MHz Ref 21.5 dBm Atten 20 dB -0.18 dB #Peak Log 10 dB/ Offst 11.5 dΒ DI _7.7 dBm LgAv HOTO BOTH OF THE PARTY OF THE P S3 FC ΑL £(f): FTun Swp Center 2.437 000 GHz Span 40 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.822 ms (8192 pts)

FCC ID: YWX-ES-AIO-02

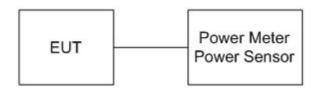
Report No.: T131205L01-RP1

7.2 MAXIMUM PEAK OUTPUT POWER

LIMITS

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.


§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2495A	1149001	12/06/2014
Power Sensor	Anritsu	MA2411B	1126148	12/06/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

IEEE 802.11b Mode

Channel	Channel Frequency	Peak Power		Peak Pov	Pass / Fail	
	(MHz)	(dBm)	(W)	(dBm)	(W)	
Low	2412	15.86	0.0386	30	1	PASS
Middle	2437	15.54	0.0358	30	1	PASS
High	2462	14.99	0.0315	30	1	PASS

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11g Mode

Channel	Channel Frequency	Peak Power		Peak Pov	Pass / Fail	
	(MHz)	(dBm)	(W)	(dBm)	(W)	
Low	2412	19.32	0.0855	30	1	PASS
Middle	2437	19.22	0.0836	30	1	PASS
High	2462	18.91	0.0778	30	1	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11n HT20 Mode

Channel	Channel Frequency	Peak (dE	Power Bm)	Peak Pov	wer Limit	Pass / Fail
	(MHz)	(dBm)	(W)	(dBm)	(W)	
Low	2412	19.05	0.0804	30	1	PASS
Middle	2437	19.00	0.0794	30	1	PASS
High	2462	18.75	0.0750	30	1	PASS

Remark:

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11n HT40 Mode

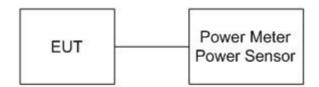
Channel	Channel Frequency	Peak Power (dBm)		Peak Pov	Pass / Fail	
	(MHz)	(dBm)	(W)	(dBm)	(W)	
Low	2422	18.47	0.0704	30	1	PASS
Middle	2437	18.59	0.0722	30	1	PASS
High	2452	18.22	0.0663	30	1	PASS

Remark:

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

7.3 AVERAGE POWER

LIMITS


None; for reporting purposes only.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	ANRITSU	ML2495A	1149001	12/06/2014
Power Sensor	ANRITSU	MA2411B	1126148	12/06/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the average power detection.

D-02 Report No. : T131205L01-RP1

TEST RESULTS

IEEE 802.11b Mode

iele out. Ho mode						
Channel	Channel Frequency (MHz)	Average Power (dBm)				
Low	2412	12.76				
Middle	2437	12.46				
High	2462	11.91				

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11g Mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	12.19
Middle	2437	12.12
High	2462	11.82

Remark:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11n HT20 Mode

Channel	Channel Frequency (MHz)	Average Power Total (dBm)
Low	2412	11.63
Middle	2437	11.62
High	2462	11.36

Remark:

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11n HT40 Mode

Channel	Channel Frequency (MHz)	Average Power Total (dBm)
Low	2422	11.37
Middle	2437	11.48
High	2452	11.10

Remark:

- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

7.4 POWER SPECTRAL DENSITY

LIMITS

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENT

Name of Equipment	nme of Equipment Manufacturer		Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/10/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set analyzer center frequency to DTS channel center frequency.
- 3. Set the span to 1.5 times the DTS channel bandwidth.
- 4. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 5. Set the VBW \geq 3 x RBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Report No.: T131205L01-RP1

TEST RESULTS

IEEE 802.11b Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-16.19	8	PASS
Middle	2437	-16.73	8	PASS
High	2462	-17.24	8	PASS

Remark:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g Mode

ILLE GOLITIG III				
Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-15.57	8	PASS
Middle	2437	-15.27	8	PASS
High	2462	-15.77	8	PASS

Remark:

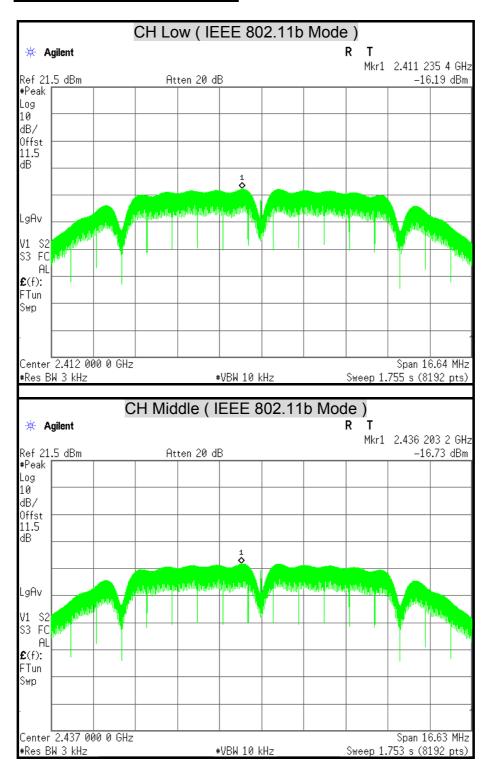
- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 11 .5dB (including 10 dB pad and 1.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

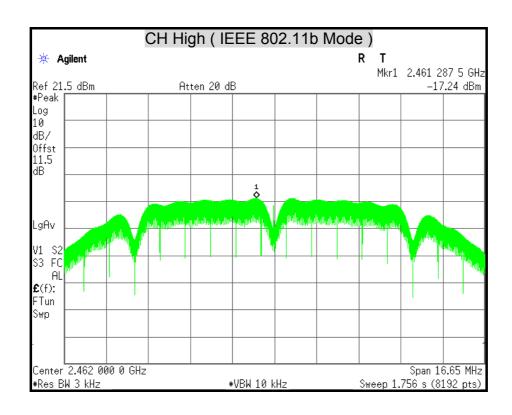
IEEE 802.11n HT20 Mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2412	-15.24	8	PASS
Middle	2437	-15.65	8	PASS
High	2462	-16.24	8	PASS

Remark:

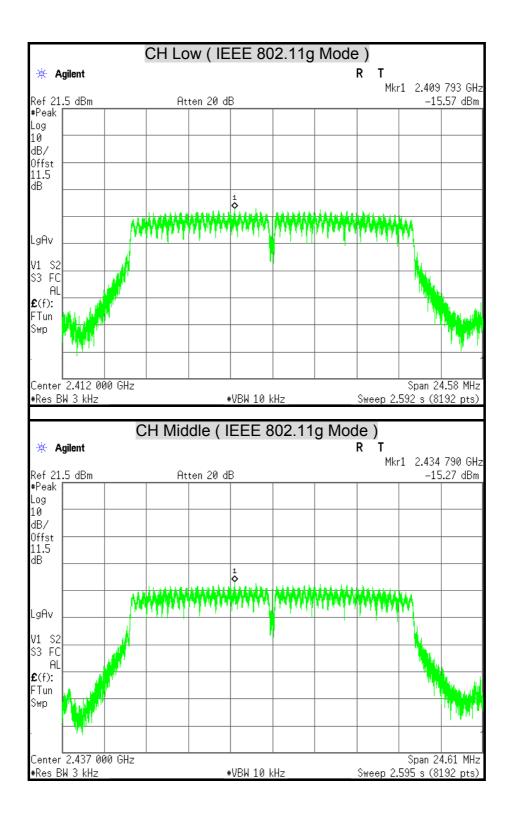
- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

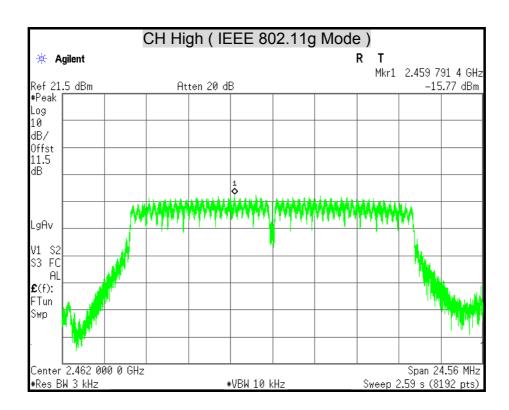

IEEE 802.11n HT40 Mode


Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2422	-18.81	8	PASS
Middle	2437	-18.13	8	PASS
High	2452	-18.87	8	PASS

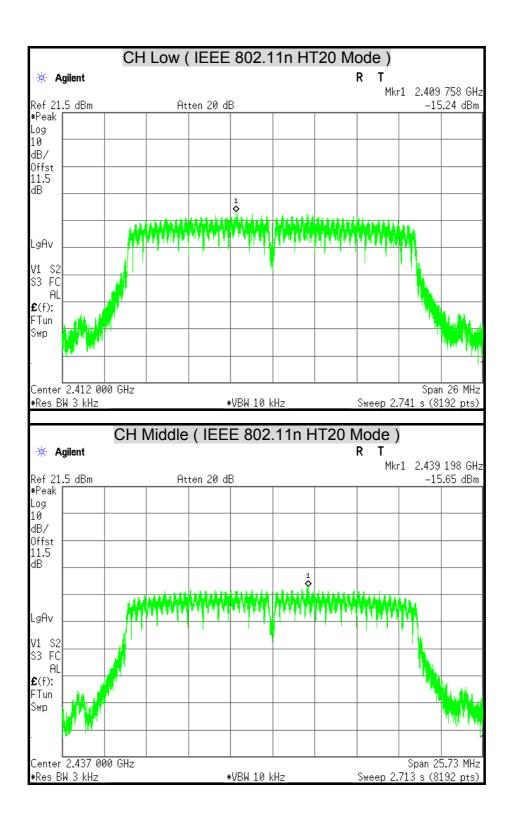
Remark:

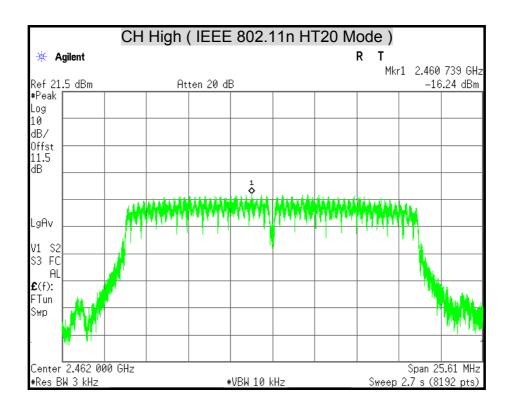
- 1. At finial test to get the worst-case emission at 13.5Mbps.
- 2. The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

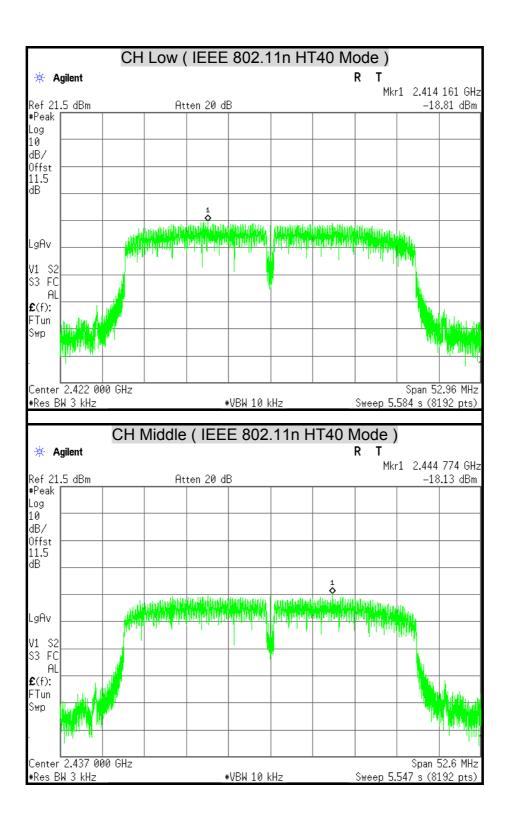

POWER SPECTRAL DENSITY

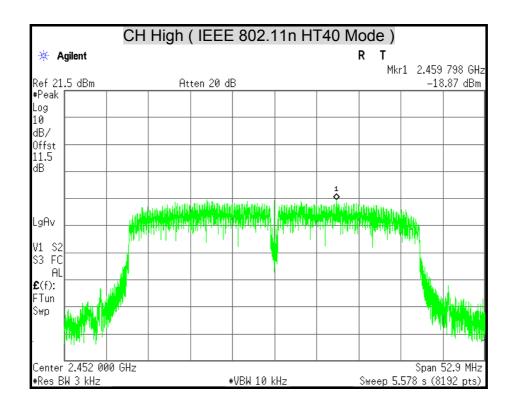


FCC ID: YWX-ES-AIO-02


Report No.: T131205L01-RP1






FCC ID: YWX-ES-AIO-02

Report No.: T131205L01-RP1

Report No.: T131205L01-RP1

7.5 CONDUCTED SPURIOUS EMISSION

LIMITS

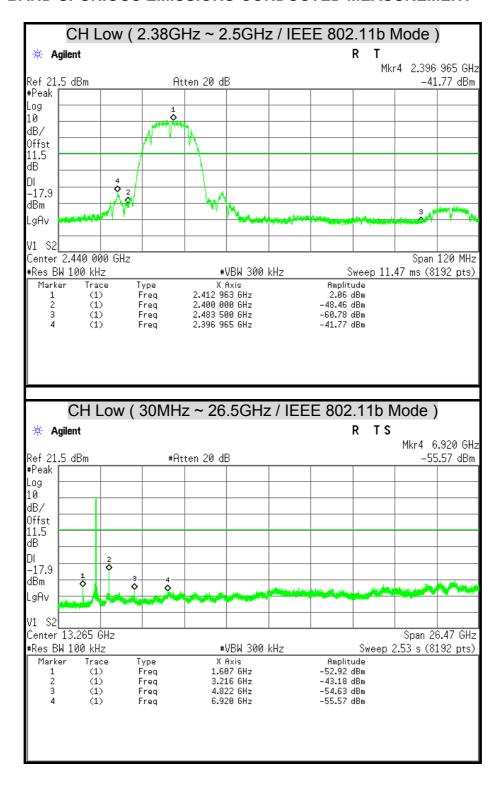
§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/10/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP


TEST PROCEDURE

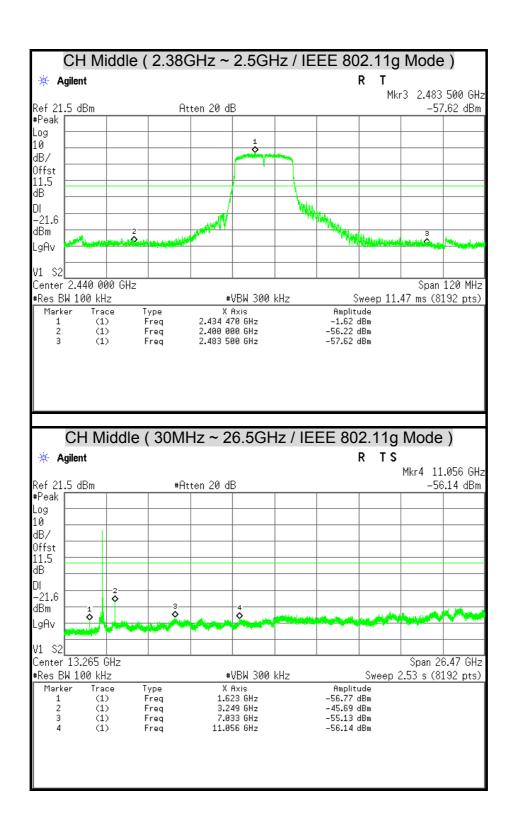
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

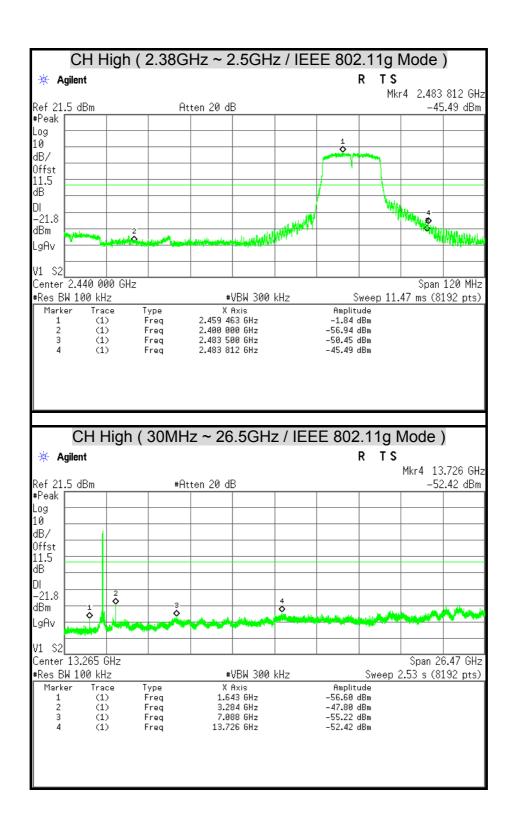
The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

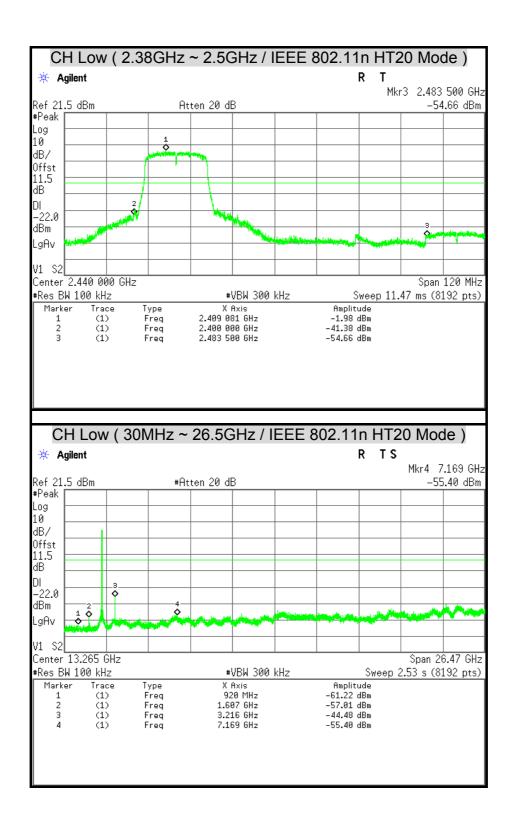
TEST RESULTS

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

Report No.: T131205L01-RP1


CH Middle (2.38GHz ~ 2.5GHz / IEEE 802.11b Mode) * Agilent Mkr3 2.483 500 GHz Ref 21.5 dBm Atten 20 dB -59.07 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -18.3dBm LgAv Center 2.440 000 GHz Span 120 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 11.47 ms (8192 pts) X Axis 2.437 956 GHz Amplitude 1.71 dBm Type Freq Marker Trace (1) -56.86 dBm -59.07 dBm (1) 2.400 000 GHz 2.483 500 GHz (1) Freq CH Middle (30MHz ~ 26.5GHz / IEEE 802.11b Mode) TS 🔆 Agilent Mkr4 13.958 GHz Ref 21.5 dBm #Atten 20 dB -53.31 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -18.3 dBm LgAv V1 S2 Center 13.265 GHz Span 26.47 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.53 s (8192 pts) Marker Trace Туре X Axis Amplitude 1.622 GHz 3.249 GHz 7.130 GHz Freq -53.69 dBm -45.79 dBm (1) Freq (1) -55.38 dBm Freq (1) 13.958 GHz -53.31 dBm

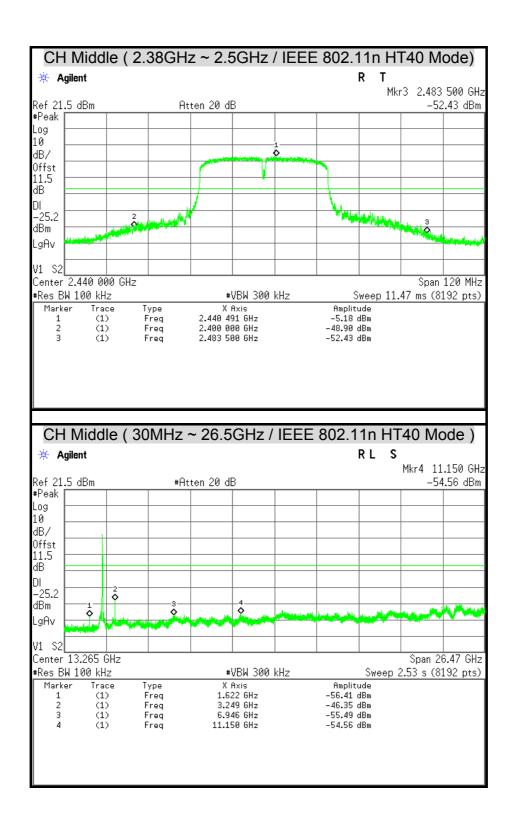

Report No.: T131205L01-RP1

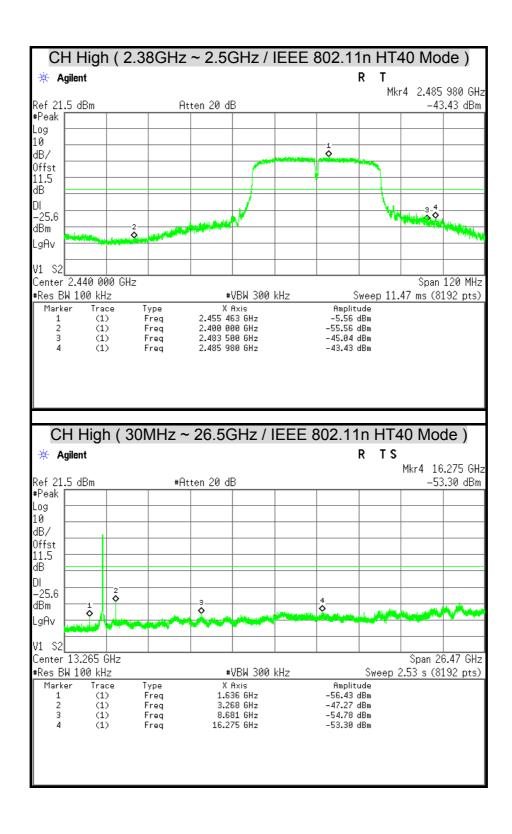

CH High (2.38GHz ~ 2.5GHz / IEEE 802.11b Mode) * Agilent Mkr3 2.483 500 GHz Ref 21.5 dBm Atten 20 dB -57.58 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -18.9dBm LgAv V1 S2 Center 2.440 000 GHz Span 120 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 11.47 ms (8192 pts) X Axis 2.460 972 GHz Type Freq Amplitude Marker Trace (1) (1) 2.400 000 GHz -56.58 dBm 2.483 500 GHz -57.58 dBm (1) Freq CH High (30MHz ~ 26.5GHz / IEEE 802.11b Mode) R TS 🔅 Agilent Mkr4 13.687 GHz Ref 21.5 dBm #Atten 20 dB -52.95 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -18.9 dBm LgAv V1 S2 Center 13.265 GHz Span 26.47 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.53 s (8192 pts) Marker Trace Туре X Axis Amplitude 1.643 GHz Freq -54.50 dBm 3.284 GHz 7.017 GHz 13.687 GHz -47.50 dBm (1) Freq (1) -55.94 dBm Freq (1) -52.95 dBm

Report No.: T131205L01-RP1

CH Low (2.38GHz ~ 2.5GHz / IEEE 802.11g Mode) * Agilent Mkr4 2.399 705 GHz Ref 21.5 dBm Atten 20 dB -34.43 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -21.6 dBm LgAv Center 2.440 000 GHz Span 120 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 11.47 ms (8192 pts) X Axis 2.409 462 GHz Amplitude Marker Trace Туре (1) Freq 2.400 000 GHz 2.483 500 GHz -38.55 dBm -57.82 dBm 2 (1) Freq (1) Freq (1) 2.399 705 GHz -34.43 dBm CH Low (30MHz ~ 26.5GHz / IEEE 802.11g Mode) TS 🔅 Agilent Mkr4 11.286 GHz Ref 21.5 dBm #Atten 20 dB -54.98 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -21.6 dBm Ó LgAv V1 S2 Center 13.265 GHz Span 26.47 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.53 s (8192 pts) Marker Trace X Axis Amplitude Туре 1.607 GHz 3.216 GHz Freq -57.52 dBm -44.82 dBm (1) Freq (1) 6.823 GHz -55.30 dBm Freq (1) 11.286 GHz -54.98 dBm

Report No.: T131205L01-RP1


CH Middle (2.38GHz ~ 2.5GHz / IEEE 802.11n HT20 Mode) 🔆 Agilent Mkr3 2.483 500 GHz Ref 21.5 dBm Atten 20 dB -56.52 dBm #Peak Log 10 0 dB/ Offst 11.5 dΒ DΙ -22.0dBm LgAv Center 2.440 000 GHz Span 120 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 11.47 ms (8192 pts) X Axis 2.431 598 GHz Type Freq Amplitude Marker Trace (1) -57.42 dBm (1) 2.400 000 GHz 2.483 500 GHz -56.52 dBm (1) Freq CH Middle (30MHz ~ 26.5GHz / IEEE 802.11n HT20 Mode) * Agilent R TS Mkr4 8.616 GHz Ref 21.5 dBm #Atten 20 dB -56.07 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -22.0 dBm LgAv V1 S2 Center 13.265 GHz Span 26.47 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.53 s (8192 pts) Marker Trace Туре X Axis Amplitude 1.622 GHz 3.249 GHz 7.043 GHz Freq -57.31 dBm -46.03 dBm (1) Freq (1) -54.13 dBm Freq (1) 8.616 GHz -56.07 dBm


Report No.: T131205L01-RP1

CH High (2.38GHz ~ 2.5GHz / IEEE 802.11n HT20 Mode) 🔆 Agilent Mkr3 2.483 500 GHz Ref 21.5 dBm Atten 20 dB -50.67 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -22.3dBm LgAv Center 2.440 000 GHz Span 120 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 11.47 ms (8192 pts) X Axis 2.459 111 GHz Amplitude Marker Trace Type (1) Freq -54.55 dBm -50.67 dBm (1) 2.400 000 GHz 2.483 500 GHz (1) Freq CH High (30MHz ~ 26.5GHz / IEEE 802.11n HT20 Mode) * Agilent TS Mkr4 10.248 GHz Ref 21.5 dBm #Atten 20 dB -55.25 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -22.3 dBm ø LgAv V1 S2 Center 13.265 GHz Span 26.47 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.53 s (8192 pts) Marker Trace Туре X Axis Amplitude 1.643 GHz Freq -57.19 dBm 3.284 GHz (1) Freq (1) 6.849 GHz -55.23 dBm Freq (1) 10.248 GHz -55.25 dBm

Report No.: T131205L01-RP1

CH Low (2.38GHz ~ 2.5GHz / IEEE 802.11n HT40 Mode) * Agilent Mkr4 2.397 859 GHz Ref 21.5 dBm Atten 20 dB -37.59 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -25.3 dBm LgAv Center 2.440 000 GHz Span 120 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 11.47 ms (8192 pts) X Axis 2.414 106 GHz Amplitude Marker Trace Туре (1) Freq 2.400 000 GHz 2.483 500 GHz -39.42 dBm -56.44 dBm 2 (1) Freq (1) Freq (1) 2.397 859 GHz -37.59 dBm CH Low (30MHz ~ 26.5GHz / IEEE 802.11n HT40 Mode) * Agilent TS Mkr4 13.564 GHz Ref 21.5 dBm #Atten 20 dB -51.90 dBm #Peak Log 10 dB/ Offst 11.5 dΒ DΙ -25.3 dBm LgAv V1 S2 Center 13.265 GHz Span 26.47 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.53 s (8192 pts) Marker Trace X Axis Amplitude Туре 1.613 GHz Freq -57.02 dBm 3.229 GHz 7.036 GHz -45.50 dBm (1) Freq (1) -55.02 dBm Freq (1) 13.564 GHz -51.90 dBm

7.6 RADIATED EMISSION

LIMITS

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

^{1. 1} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

^{2. 2} Above 38.6

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 - 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENT

Radiated Emission / 966Chamber_A

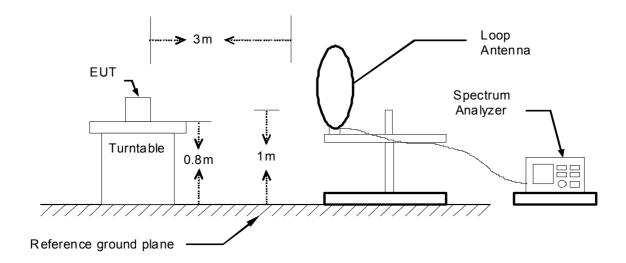
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/10/2014
EMI Test Receiver	ROHDE & SCHWARZ	ESCI	100221	04/29/2014
Bi-log Antenna	SCHWARZBECK	VULB 9168	9168-249	09/12/2014
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-778	09/12/2014
Pre-Amplifier	Agilent	8449B	3008A01471	07/16/2014
Pre-Amplifier	HP	8447F	2944A03748	07/16/2014
Band Reject Notch Filter	Micro-Tronics	BRM05702-01	009	N.C.R

Remark: 1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R = No Calibration Request.

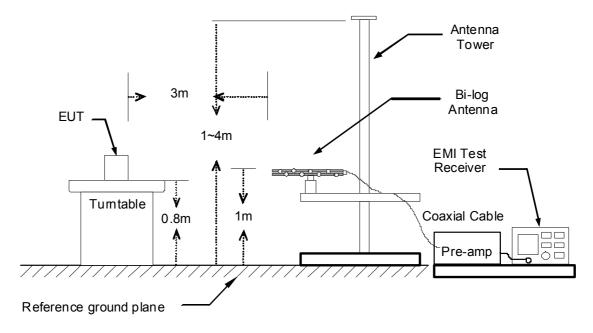
Radiated Emission / 966Chamber B

Name of Equipment	ame of Equipment Manufacture		Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY46180323	04/15/2014
EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101131	01/14/2014
Bi-log Antenna	SCHWARZBECK	VULB 9168	9168-250	09/12/2014
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078733	12/11/2013
Horn Antenna	COM-POWER	AH-840	03077	12/20/2013
Pre-Amplifier	Agilent	8447D	2944A10052	07/16/2014
Pre-Amplifier	Agilent	8449B	3008A01916	07/16/2014
LOOP Antenna	EMCO	6502	8905-2356	08/20/2014
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	026	N.C.R

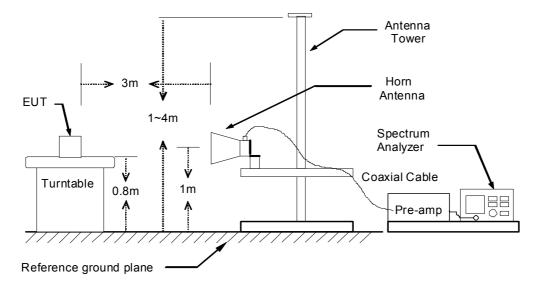

Remark: 1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R = No Calibration Request.

TEST SETUP


The diagram below shows the test setup that is utilized to make the measurements for emission below 1GHz.

9kHz ~ 30MHz



Report No.: T131205L01-RP1

30MHz ~ 1GHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Remark:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	oduct Name AIO Panel		Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/12/23
Test Mode	Normal Operating	Temp. & Humidity	16°C, 53%

	966 Chamber_A at 3Meter / Horizontal											
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (cm)	Remark				
66.86	38.30	-11.66	26.64	40.00	-13.36	74.10	316.70	QP				
315.18	43.49	-8.54	34.95	46.00	-11.05	0.60	100.00	Peak				
344.28	45.01	-7.76	37.25	46.00	-8.75	298.90	100.00	Peak				
480.08	40.71	-4.30	36.42	46.00	-9.58	239.20	200.00	Peak				
532.46	44.70	-3.33	41.37	46.00	-4.63	193.60	177.90	QP				
699.30	39.18	-0.38	38.80	46.00	-7.20	212.70	100.00	Peak				
788.54	40.30	1.34	41.64	46.00	-4.36	141.60	100.00	QP				
961.20	41.86	4.34	46.20	54.00	-7.80	199.20	100.00	Peak				
		966 CI	namber_A	at 3Meter /	Vertical							
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (cm)	Remark				
68.80	39.20	-12.16	27.04	40.00	-12.96	0.30	300.00	QP				
315.18	48.24	-8.54	39.71	46.00	-6.29	336.70	200.00	Peak				
398.60	46.69	-6.39	40.30	46.00	-5.70	6.80	100.00	Peak				
480.08	43.87	-4.30	39.58	46.00	-6.42	189.90	100.00	Peak				
532.46	45.20	-3.33	41.87	46.00	-4.13	14.90	100.00	QP				
610.06	38.70	-1.70	37.00	46.00	-9.00	358.00	100.00	QP				
796.30	36.90	1.37	38.27	46.00	-7.73	51.90	218.30	QP				
961.20	38.21	4.34	42.55	54.00	-11.45	350.70	100.00	Peak				

Remark:

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Above 1 GHz

Product Name AIO Panel		Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11b TX / CH Low	Temp. & Humidity	24°C, 51%

	966 Chamber_B at 3Meter / Horizontal												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)			Limit-AV (dBuV/m)	Margin (dB)	Remark				
1066.00	56.69		-4.32	52.37		74.00	54.00	-1.63	Peak				
1284.00	55.38		-3.81	51.57		74.00	54.00	-2.43	Peak				
1556.00	56.91	41.36	-2.68	54.23	38.68	74.00	54.00	-15.32	AVG				
2988.00	56.61	35.84	4.74	61.35	40.58	74.00	54.00	-13.42	AVG				
3000.00	55.40	34.12	4.78	60.18	38.90	74.00	54.00	-15.10	AVG				
3217.50	44.78		4.96	49.73		74.00	54.00	-4.27	Peak				
4830.00	39.55		8.75	48.30		74.00	54.00	-5.70	Peak				

	966 Chamber_B at 3Meter / Vertical												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
1334.00	55.82		-3.69	52.13		74.00	54.00	-1.87	Peak				
1594.00	53.31		-2.26	51.05		74.00	54.00	-2.95	Peak				
1884.00	50.41		0.94	51.35		74.00	54.00	-2.65	Peak				
2996.00	56.19	35.27	4.77	60.96	40.04	74.00	54.00	-13.96	AVG				
3000.00	54.67	34.69	4.78	59.45	39.47	74.00	54.00	-14.53	AVG				
3210.00	45.28		4.95	50.24		74.00	54.00	-3.76	Peak				
4425.00	40.64		7.65	48.30		74.00	54.00	-5.70	Peak				

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name AIO Panel		Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11b TX / CH Middle	Temp. & Humidity	24°C, 51%

	966 Chamber_B at 3Meter / Horizontal											
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)			Limit-AV (dBuV/m)	Margin (dB)	Remark			
1284.00	55.05		-3.81	51.24		74.00	54.00	-2.76	Peak			
1476.00	55.41		-3.36	52.06		74.00	54.00	-1.94	Peak			
1558.00	54.38		-2.66	51.73		74.00	54.00	-2.27	Peak			
2992.00	56.42	34.95	4.75	61.17	39.70	74.00	54.00	-14.30	AVG			
3000.00	53.79	33.54	4.78	58.57	38.32	74.00	54.00	-15.68	AVG			
3247.50	43.90		4.98	48.88		74.00	54.00	-5.12	Peak			
4410.00	41.41		7.62	49.03		74.00	54.00	-4.97	Peak			

	966 Chamber_B at 3Meter / Vertical									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1336.00	55.41		-3.69	51.72		74.00	54.00	-2.28	Peak	
1574.00	53.82		-2.48	51.34		74.00	54.00	-2.66	Peak	
1732.00	52.21		-0.74	51.47		74.00	54.00	-2.53	Peak	
2990.00	56.17	35.44	4.75	60.92	40.19	74.00	54.00	-13.81	AVG	
3000.00	53.40	33.60	4.78	58.18	38.38	74.00	54.00	-15.62	AVG	
3247.50	46.58		4.98	51.57		74.00	54.00	-2.43	Peak	
4860.00	39.72		8.84	48.56		74.00	54.00	-5.44	Peak	

Remark

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11b TX / CH High	Temp. & Humidity	24°C, 51%

		96	6 Chambe	er_B at 3N	Meter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1064.00	56.09		-4.33	51.76		74.00	54.00	-2.24	Peak
1288.00	55.33		-3.80	51.53		74.00	54.00	-2.47	Peak
1558.00	59.29	42.14	-2.66	56.63	39.48	74.00	54.00	-14.52	AVG
2990.00	56.69	35.82	4.75	61.44	40.57	74.00	54.00	-13.43	AVG
3000.00	52.56	33.72	4.78	57.34	38.50	74.00	54.00	-15.50	AVG
3285.00	45.06		5.01	50.07		74.00	54.00	-3.93	Peak
4957.50	39.55		9.12	48.67		74.00	54.00	-5.33	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1240.00	55.98		-3.91	52.07		74.00	54.00	-1.93	Peak
1396.00	55.85		-3.55	52.30		74.00	54.00	-1.70	Peak
1730.00	57.17	42.89	-0.76	56.41	42.13	74.00	54.00	-11.87	AVG
2990.00	56.09	35.34	4.75	60.84	40.09	74.00	54.00	-13.91	AVG
3000.00	55.29	34.85	4.78	60.07	39.63	74.00	54.00	-14.37	AVG
3285.00	46.02		5.01	51.04		74.00	54.00	-2.96	Peak

Remark:

4920.00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

9.01

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

74.00

54.00

-5.45

Peak

48.55

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

39.54

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11g TX / CH Low	Temp. & Humidity	24°C, 51%

		960	6 Chambe	er_B at 3N	/leter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1064.00	56.61		-4.33	52.28		74.00	54.00	-1.72	Peak
1556.00	57.48	43.00	-2.68	54.80	40.32	74.00	54.00	-13.68	AVG
2494.00	55.01	44.56	3.10	58.11	47.66	74.00	54.00	-6.34	AVG
2998.00	56.84	35.83	4.77	61.61	40.60	74.00	54.00	-13.40	AVG
3000.00	53.13	33.76	4.78	57.91	38.54	74.00	54.00	-15.46	AVG
3217.50	50.66	48.54	4.96	55.62	53.50	74.00	54.00	-0.50	AVG
5130.00	40.01		9.41	49.42		74.00	54.00	-4.58	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1396.00	55.97		-3.55	52.43		74.00	54.00	-1.57	Peak
1726.00	52.26		-0.80	51.46		74.00	54.00	-2.54	Peak
2496.00	51.53	41.58	3.10	54.63	44.68	74.00	54.00	-9.32	AVG
2992.00	56.35	36.55	4.75	61.10	41.30	74.00	54.00	-12.70	AVG
3000.00	56.04	34.14	4.78	60.82	38.92	74.00	54.00	-15.08	AVG
3217.50	51.68	48.50	4.96	56.64	53.46	74.00	54.00	-0.54	AVG

Remark:

5152.50

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

9.44

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

74.00

54.00

-4.50

Peak

49.50

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

40.05

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11g TX / CH Middle	Temp. & Humidity	24°C, 51%

		96	6 Chambe	er_B at 3N	Meter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1272.00	55.67		-3.84	51.84		74.00	54.00	-2.16	Peak
1554.00	55.12		-2.70	52.42		74.00	54.00	-1.58	Peak
2520.00	53.94	43.57	3.18	57.12	46.75	74.00	54.00	-7.25	AVG
2998.00	57.07	35.84	4.77	61.84	40.61	74.00	54.00	-13.39	AVG
3000.00	55.96	34.74	4.78	60.74	39.52	74.00	54.00	-14.48	AVG
3247.50	45.25		4.98	50.23		74.00	54.00	-3.77	Peak
4447.50	40.23		7.70	47.93		74.00	54.00	-6.07	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1334.00	55.64		-3.69	51.95		74.00	54.00	-2.05	Peak
1728.00	58.15	41.51	-0.78	57.37	40.73	74.00	54.00	-13.27	AVG
2518.00	50.97	42.08	3.17	54.14	45.25	74.00	54.00	-8.75	AVG
2992.00	56.22	36.51	4.75	60.97	41.26	74.00	54.00	-12.74	AVG
3000.00	55.52	34.80	4.78	60.30	39.58	74.00	54.00	-14.42	AVG
3247.50	47.33		4.98	52.32		74.00	54.00	-1.68	Peak

Remark:

4395.00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

7.59

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

74.00

54.00

-5.35

Peak

48.65

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

41.06

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11g TX / CH High	Temp. & Humidity	24°C, 51%

		96	6 Chambe	er_B at 3N	Meter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1082.00	58.79	47.89	-4.29	54.50	43.60	74.00	54.00	-10.40	AVG
1398.00	58.12	45.20	-3.54	54.58	41.66	74.00	54.00	-12.34	AVG
1620.00	56.47	44.85	-1.98	54.49	42.87	74.00	54.00	-11.13	AVG
2992.00	57.62	37.11	4.75	62.37	41.86	74.00	54.00	-12.14	AVG
3000.00	55.54	34.09	4.78	60.32	38.87	74.00	54.00	-15.13	AVG
3285.00	45.54		5.01	50.55		74.00	54.00	-3.45	Peak
4470.00	40.00		7.75	47.74		74.00	54.00	-6.26	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1396.00	57.92	47.38	-3.55	54.37	43.83	74.00	54.00	-10.17	AVG
1732.00	58.10	45.77	-0.74	57.36	45.03	74.00	54.00	-8.97	AVG
2380.00	54.87	44.39	2.90	57.77	47.29	74.00	54.00	-6.71	AVG
2988.00	57.33	36.16	4.74	62.07	40.90	74.00	54.00	-13.10	AVG
3000.00	55.15	34.60	4.78	59.93	39.38	74.00	54.00	-14.62	AVG
3285.00	49.40	47.90	5.01	54.41	52.91	74.00	54.00	-1.09	AVG
4950.00	39.67		9.10	48.77		74.00	54.00	-5.23	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	AIO Panel	Test By	Reuyyan Lin
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11n HT20 TX / CH Low	Temp. & Humidity	24°C, 51%

		96	6 Chambe	er_B at 3N	Meter / Ho	rizontal			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1084.00	55.86		-4.28	51.57		74.00	54.00	-2.43	Peak
1728.00	56.23	42.12	-0.78	55.45	41.34	74.00	54.00	-12.66	AVG
2486.00	59.50	49.41	3.09	62.59	52.50	74.00	54.00	-1.50	AVG
2994.00	57.38	37.26	4.76	62.14	42.02	74.00	54.00	-11.98	AVG
3000.00	54.41	34.17	4.78	59.19	38.95	74.00	54.00	-15.05	AVG
3210.00	44.45		4.95	49.40		74.00	54.00	-4.60	Peak
4500.00	40.70		7.81	48.51		74.00	54.00	-5.49	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1720.00	55.77	46.58	-0.87	54.90	45.71	74.00	54.00	-8.29	AVG
1890.00	53.86	42.47	1.01	54.87	43.48	74.00	54.00	-10.52	AVG
2494.00	56.52	47.64	3.10	59.62	50.74	74.00	54.00	-3.26	AVG
2994.00	57.50	37.39	4.76	62.26	42.15	74.00	54.00	-11.85	AVG
3000.00	55.81	35.06	4.78	60.59	39.84	74.00	54.00	-14.16	AVG
3210.00	46.78		4.95	51.73		74.00	54.00	-2.27	Peak
4425.00	40.98		7.65	48.63		74.00	54.00	-5.37	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11n HT20 TX / CH Middle	Temp. & Humidity	24°C, 51%

966 Chamber_B at 3Meter / Horizontal									
Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
55.90		-3.81	52.09		74.00	54.00	-1.91	Peak	
58.41	44.27	-0.65	57.76	43.62	74.00	54.00	-10.38	AVG	
58.26	49.30	3.16	61.42	52.46	74.00	54.00	-1.54	AVG	
57.04	37.10	4.77	61.81	41.87	74.00	54.00	-12.13	AVG	
54.64	34.61	4.78	59.42	39.39	74.00	54.00	-14.61	AVG	
44.88		4.99	49.87		74.00	54.00	-4.13	Peak	
41.45		6.35	47.80		74.00	54.00	-6.20	Peak	
	9	66 Chaml	ber_B at 3	3Meter / V	ertical				
Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
59.16	47.50	-0.78	58.38	46.72	74.00	54.00	-7.28	AVG	
55.50	42.67	1.01	56.51	43.68	74.00	54.00	-10.32	AVG	
56.00	47.27	3.15	59.15	50.42	74.00	54.00	-3.58	AVG	
58.27	37.50	4.76	63.03	42.26	74.00	54.00	-11.74	AVG	
54.99	34.67	4.78	59.77	39.45	74.00	54.00	-14.55	AVG	
46.75		4.99	51.74		74.00	54.00	-2.26	Peak	
	PK (dBuV) 55.90 58.41 58.26 57.04 54.64 44.88 41.45 Reading-PK (dBuV) 59.16 55.50 56.00 58.27 54.99	Reading-PK (dBuV) Reading-AV (dBuV) 55.90 58.41 44.27 58.26 49.30 57.04 37.10 54.64 34.61 44.88 41.45 9 Reading-PK (dBuV) (dBuV) 59.16 47.50 55.50 42.67 56.00 47.27 58.27 37.50 54.99 34.67	Reading-PK (dBuV) (dBuV) (dBuV) Correction Factor (dB/m) 55.90 -3.81 58.41 44.27 -0.65 58.26 49.30 3.16 57.04 37.10 4.77 54.64 34.61 4.78 44.88 6.35 PK (dBuV) (dBuV) (dBuV) (dBuV) (dBuV) (dBuV) (dBuV) 59.16 47.50 -0.78 55.50 42.67 1.01 56.00 47.27 3.15 58.27 37.50 4.76 54.99 34.67 4.78	Reading-PK (dBuV) (dBuV) (dBuV) Correction Factor (dBuV/m) Result-PK (dBuV/m) 55.90 -3.81 52.09 58.41 44.27 -0.65 57.76 58.26 49.30 3.16 61.42 57.04 37.10 4.77 61.81 54.64 34.61 4.78 59.42 44.88 4.99 49.87 41.45 6.35 47.80 PK (dBuV) (dBuV) (dBuV) (dB/m) Result-PK (dBuV/m) 59.16 47.50 -0.78 58.38 55.50 42.67 1.01 56.51 56.00 47.27 3.15 59.15 58.27 37.50 4.76 63.03 54.99 34.67 4.78 59.77	Reading-PK (dBuV) Reading-AV (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) 55.90 -3.81 52.09 58.41 44.27 -0.65 57.76 43.62 58.26 49.30 3.16 61.42 52.46 57.04 37.10 4.77 61.81 41.87 54.64 34.61 4.78 59.42 39.39 44.88 4.99 49.87 41.45 6.35 47.80 Security PK (dBuV) (dBuV) (dBuV) (dBm) Result-PK (dBuV/m) (dBuV/m) Result-AV (dBuV/m) 59.16 47.50 -0.78 58.38 46.72 55.50 42.67 1.01 56.51 43.68 56.00 47.27 3.15 59.15 50.42 58.27 37.50 4.76 63.03 42.26 54.99 34.67 4.78 59.77 39.45	Reading-PK (dBuV) Reading-PK (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) 55.90 -3.81 52.09 74.00 58.41 44.27 -0.65 57.76 43.62 74.00 58.26 49.30 3.16 61.42 52.46 74.00 57.04 37.10 4.77 61.81 41.87 74.00 54.64 34.61 4.78 59.42 39.39 74.00 44.88 4.99 49.87 74.00 41.45 6.35 47.80 74.00 Security (dBuV) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) 59.16 47.50 -0.78 58.38 46.72 74.00 55.50 42.67 1.01 56.51 43.68 74.00 56.00 47.27 3.15 59.15 50.42 74.00 58.27 37.50 4.76	Reading-PK (dBuV) Reading-AV (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-AV (dBuV/m) Limit-AV (dBuV/m) 55.90 -3.81 52.09 74.00 54.00 58.41 44.27 -0.65 57.76 43.62 74.00 54.00 58.26 49.30 3.16 61.42 52.46 74.00 54.00 57.04 37.10 4.77 61.81 41.87 74.00 54.00 54.64 34.61 4.78 59.42 39.39 74.00 54.00 44.88 4.99 49.87 74.00 54.00 41.45 6.35 47.80 74.00 54.00 **Reading-PK (dBuV) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) 59.16 47.50 -0.78 58.38 46.72 74.00 54.00 55.50 42.67 1.01 56.51 43.68 74.	Reading-PK (dBuV) Reading-AV (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-AV (dBuV/m) Margin (dB) 55.90 -3.81 52.09 74.00 54.00 -1.91 58.41 44.27 -0.65 57.76 43.62 74.00 54.00 -10.38 58.26 49.30 3.16 61.42 52.46 74.00 54.00 -15.4 57.04 37.10 4.77 61.81 41.87 74.00 54.00 -12.13 54.64 34.61 4.78 59.42 39.39 74.00 54.00 -14.61 44.88 4.99 49.87 74.00 54.00 -4.13 41.45 6.35 47.80 74.00 54.00 -6.20 **Geading-PK (dBuV) Result-PK (dBuV/m) Result-PK (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) Margin (dB) 59.16 47.50 -0.78 58.38 46.72	

Remark:

4440.00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

7.68

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

49.02

74.00

54.00

-4.98

Peak

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

41.34

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11n HT20 TX / CH High	Temp. & Humidity	24°C, 51%

966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1064.00	58.89	47.23	-4.33	54.56	42.90	74.00	54.00	-11.10	AVG
1554.00	55.14		-2.70	52.44		74.00	54.00	-1.56	Peak
1732.00	52.85		-0.74	52.11		74.00	54.00	-1.89	Peak
2996.00	57.55	37.37	4.77	62.32	42.14	74.00	54.00	-11.86	AVG
3000.00	55.63	34.95	4.78	60.41	39.73	74.00	54.00	-14.27	AVG
3285.00	46.73		5.01	51.74		74.00	54.00	-2.26	Peak
5865.00	41.22		10.78	52.00		74.00	54.00	-2.00	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1398.00	55.53		-3.54	51.99		74.00	54.00	-2.01	Peak
1722.00	57.06	47.28	-0.85	56.21	46.43	74.00	54.00	-7.57	AVG
1888.00	50.39		0.98	51.38		74.00	54.00	-2.62	Peak
2990.00	57.61	36.82	4.75	62.36	41.57	74.00	54.00	-12.43	AVG
3000.00	55.61	35.08	4.78	60.39	39.86	74.00	54.00	-14.14	AVG
3285.00	49.18	46.68	5.01	54.19	51.69	74.00	54.00	-2.31	AVG
4470.00	40.74		7.75	48.48		74.00	54.00	-5.52	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11n HT40 TX / CH Low	Temp. & Humidity	24°C, 51%

	966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1556.00	57.41	44.60	-2.68	54.73	41.92	74.00	54.00	-12.08	AVG	
1730.00	55.33	45.03	-0.76	54.57	44.27	74.00	54.00	-9.73	AVG	
2500.00	57.35	46.91	3.11	60.46	50.02	74.00	54.00	-3.98	AVG	
2990.00	56.63	36.17	4.75	61.38	40.92	74.00	54.00	-13.08	AVG	
3000.00	55.22	34.62	4.78	60.00	39.40	74.00	54.00	-14.60	AVG	
3225.00	45.38		4.96	50.35		74.00	54.00	-3.65	Peak	
5760.00	39.37		10.53	49.90		74.00	54.00	-4.10	Peak	
		9	66 Chaml	ber_B at 3	3Meter / V	ertical				
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1236.00	55.86		-3.92	51.94		74.00	54.00	-2.06	Peak	
1730.00	51.60		-0.76	50.83		74.00	54.00	-3.17	Peak	
1888.00	54.03	44.88	0.98	55.01	45.86	74.00	54.00	-8.14	AVG	
2996.00	57.98	37.17	4.77	62.75	41.94	74.00	54.00	-12.06	AVG	
3000.00	54.96	34.58	4.78	59.74	39.36	74.00	54.00	-14.64	AVG	
3225.00	46.24		4.96	51.21		74.00	54.00	-2.79	Peak	
4440.00	41.04		7.68	48.72		74.00	54.00	-5.28	Peak	

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

Margin = Result - Limit

 $Remark\ Peak = Result(PK) - Limit(AV)$

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11n HT40 TX / CH Middle	Temp. & Humidity	24°C, 51%

966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1554.00	57.10	43.78	-2.70	54.40	41.08	74.00	54.00	-12.92	AVG
1730.00	52.79		-0.76	52.03		74.00	54.00	-1.97	Peak
2500.00	57.11	46.18	3.11	60.22	49.29	74.00	54.00	-4.71	AVG
2998.00	57.26	37.29	4.77	62.03	42.06	74.00	54.00	-11.94	AVG
3000.00	55.33	34.79	4.78	60.11	39.57	74.00	54.00	-14.43	AVG
3255.00	45.34		4.99	50.33		74.00	54.00	-3.67	Peak
4485.00	40.87		7.78	48.65		74.00	54.00	-5.35	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1728.00	59.06	46.93	-0.78	58.28	46.15	74.00	54.00	-7.85	AVG
1890.00	53.62	42.45	1.01	54.63	43.46	74.00	54.00	-10.54	AVG
2496.00	56.01	44.48	3.10	59.11	47.58	74.00	54.00	-6.42	AVG
2988.00	56.32	36.72	4.74	61.06	41.46	74.00	54.00	-12.54	AVG
3000.00	54.88	34.63	4.78	59.66	39.41	74.00	54.00	-14.59	AVG
3255.00	47.07		4.99	52.06		74.00	54.00	-1.94	Peak
4395.00	41.20		7.59	48.79		74.00	54.00	-5.21	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(AV)

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/11/30
Test Mode	IEEE 802.11n HT40 TX / CH High	Temp. & Humidity	24°C, 51%

966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1066.00	59.18	45.50	-4.32	54.86	41.18	74.00	54.00	-12.82	AVG
1288.00	57.92	45.56	-3.80	54.12	41.76	74.00	54.00	-12.24	AVG
1734.00	55.17	43.58	-0.72	54.45	42.86	74.00	54.00	-11.14	AVG
2986.00	55.89	37.15	4.73	60.62	41.88	74.00	54.00	-12.12	AVG
3000.00	54.45	34.39	4.78	59.23	39.17	74.00	54.00	-14.83	AVG
3270.00	46.81		5.00	51.81		74.00	54.00	-2.19	Peak
4440.00	39.87		7.68	47.56		74.00	54.00	-6.44	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1336.00	58.53	45.89	-3.69	54.84	42.20	74.00	54.00	-11.80	Peak
1724.00	55.53	45.23	-0.83	54.70	44.40	74.00	54.00	-9.60	Peak
1888.00	54.22	41.53	0.98	55.20	42.51	74.00	54.00	-11.49	Peak
2988.00	56.83	36.47	4.74	61.57	41.21	74.00	54.00	-12.79	Peak
3000.00	55.28	34.55	4.78	60.06	39.33	74.00	54.00	-14.67	Peak
3270.00	50.53	48.33	5.00	55.53	53.33	74.00	54.00	-0.67	Peak

Remark:

4500.00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

7.81

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

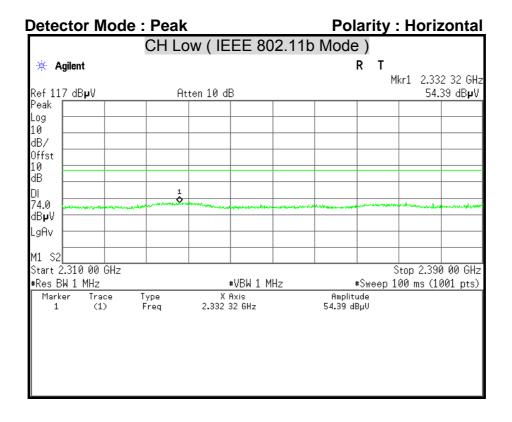
74.00

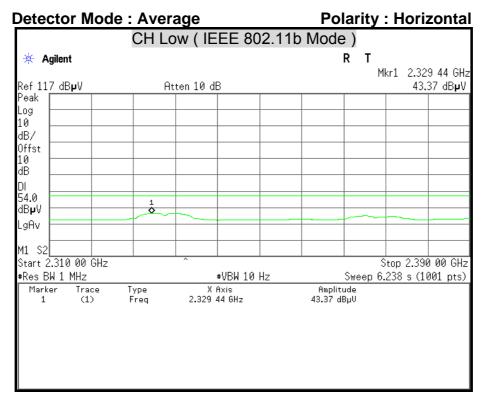
54.00

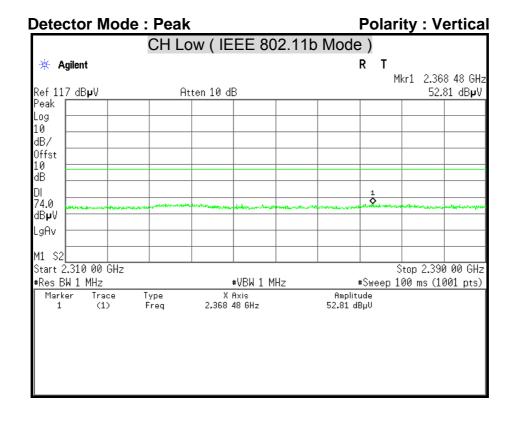
-5.50

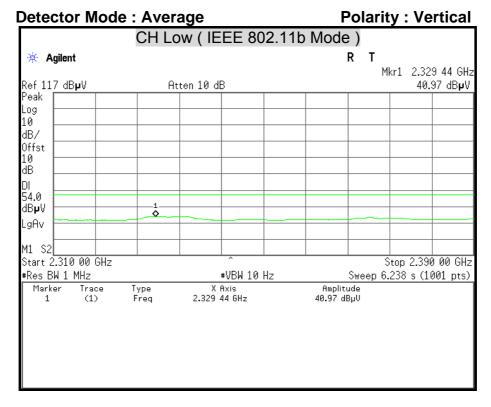
Peak

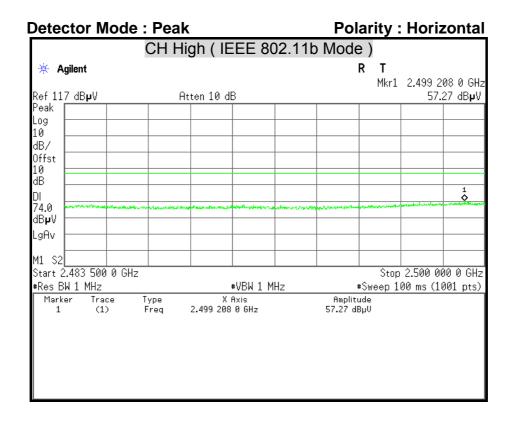
48.50

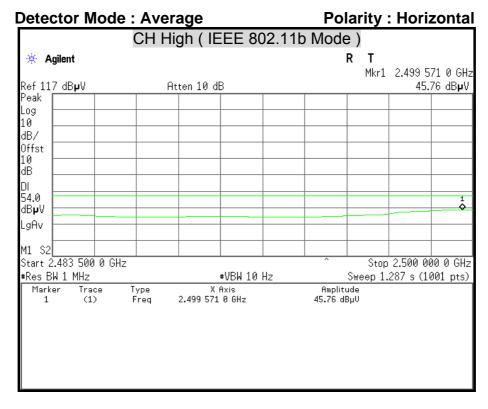

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

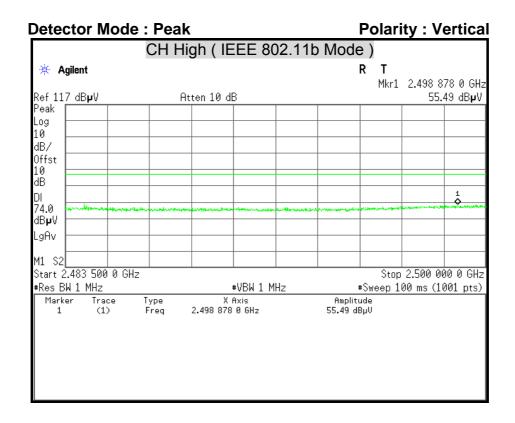

40.69

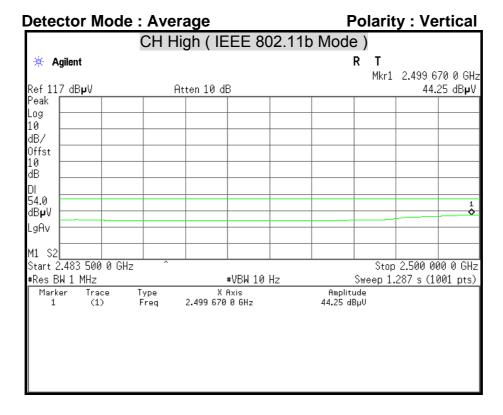

Margin = Result - Limit

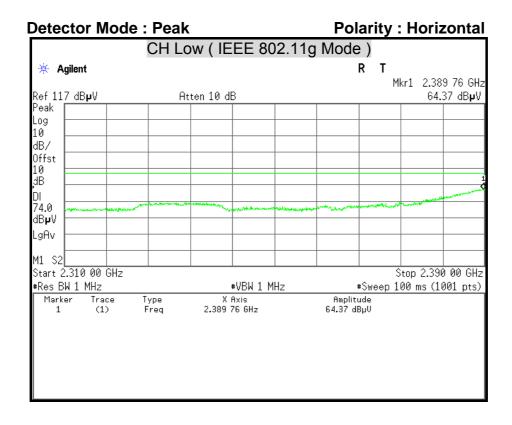

 $Remark\ Peak = Result(PK) - Limit(AV)$

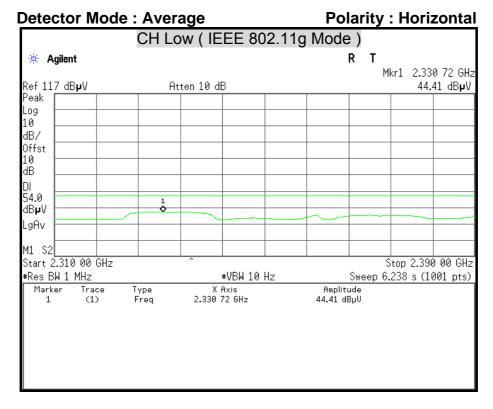

Restricted Band Edges

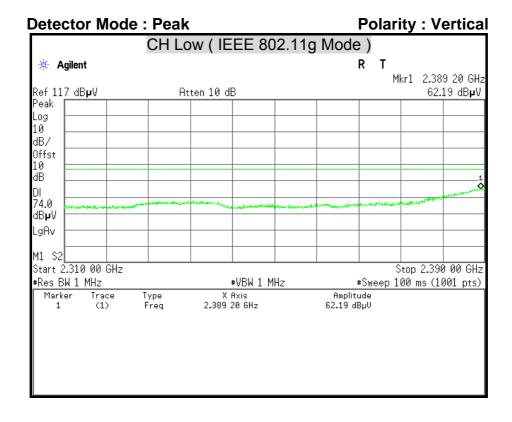


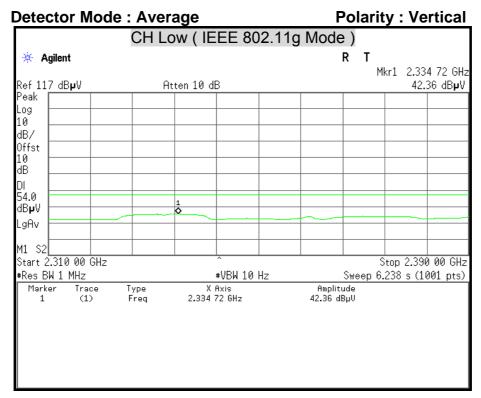


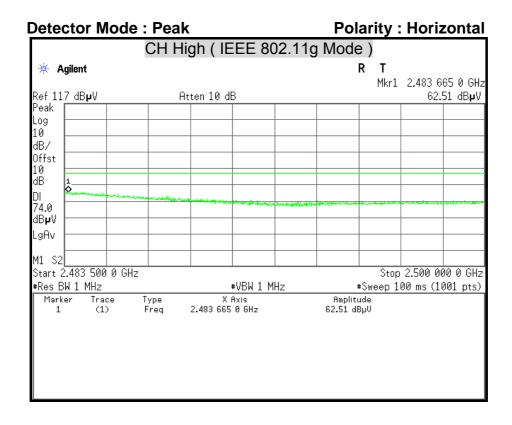


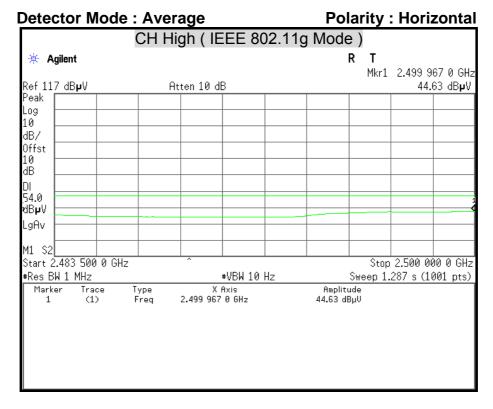


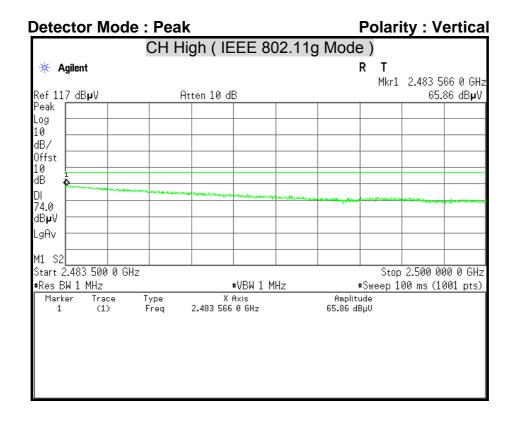


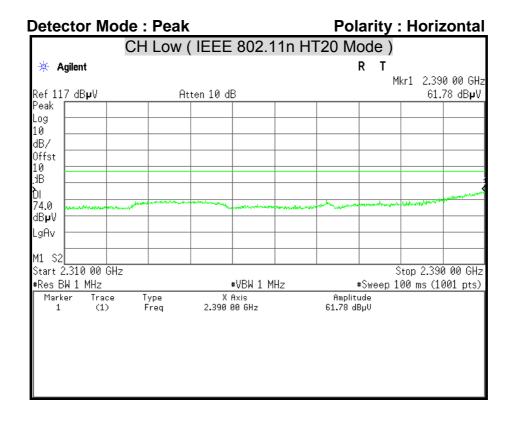


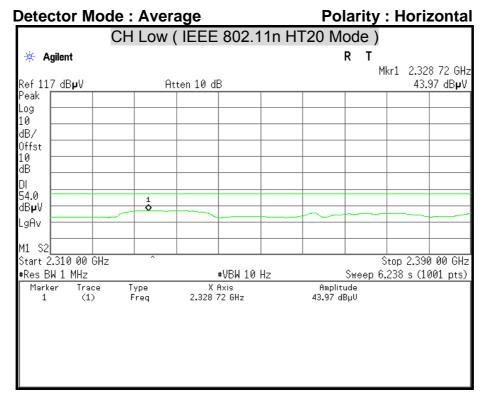


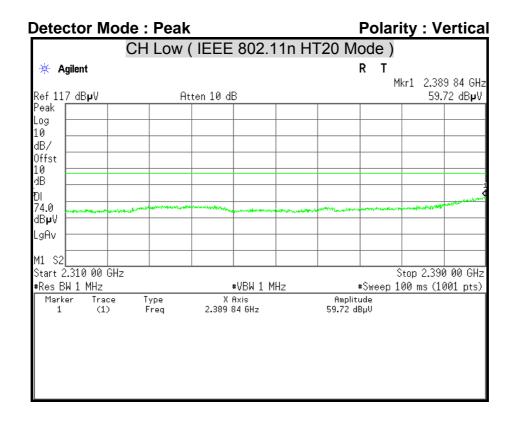


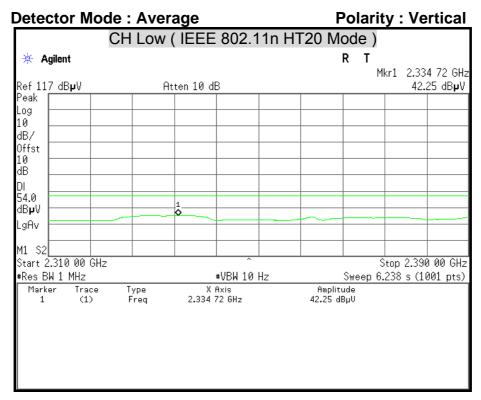


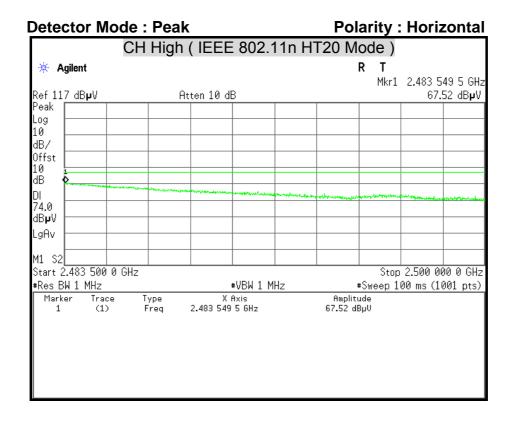


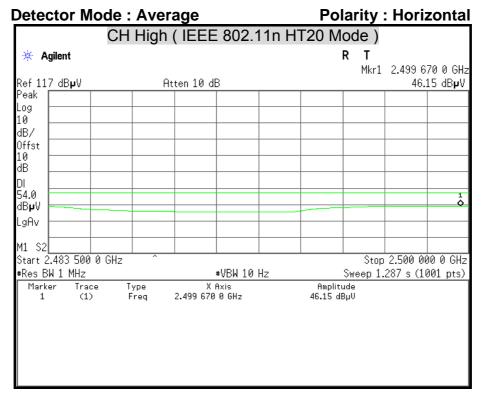


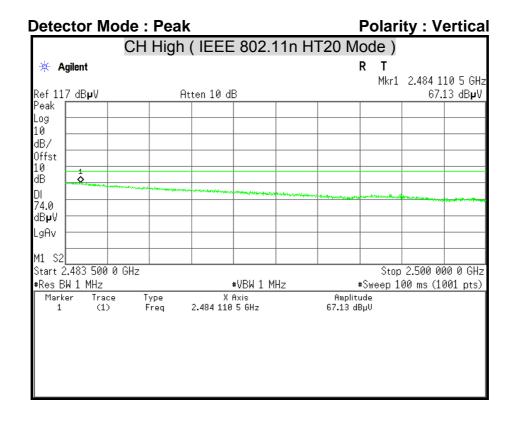


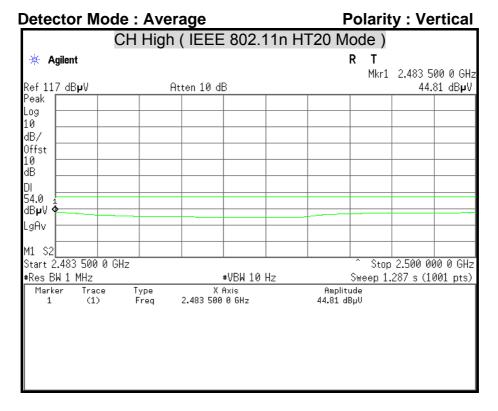


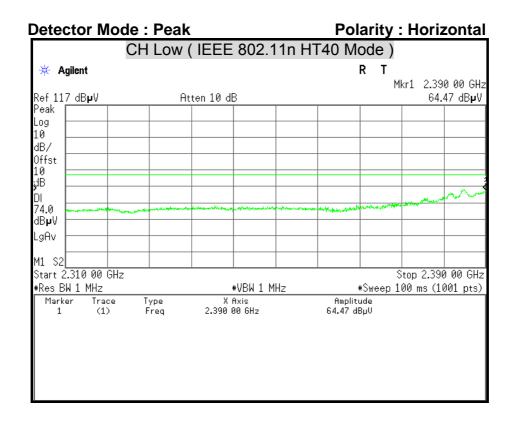


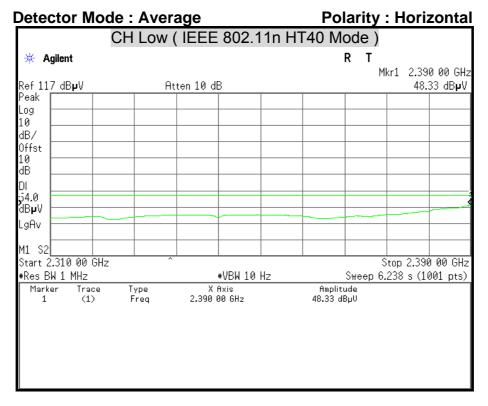


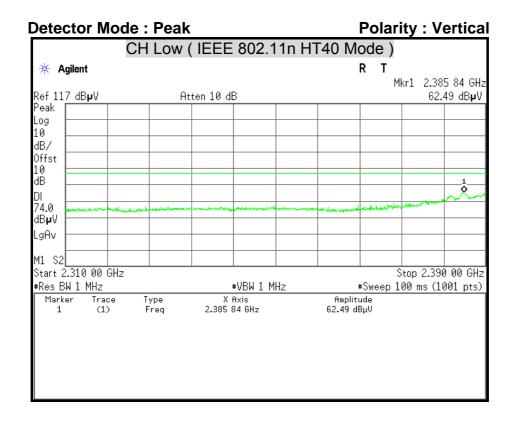


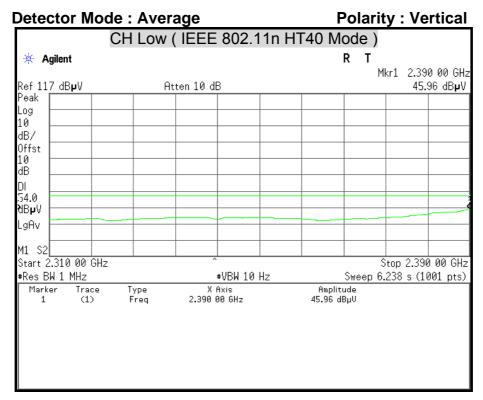


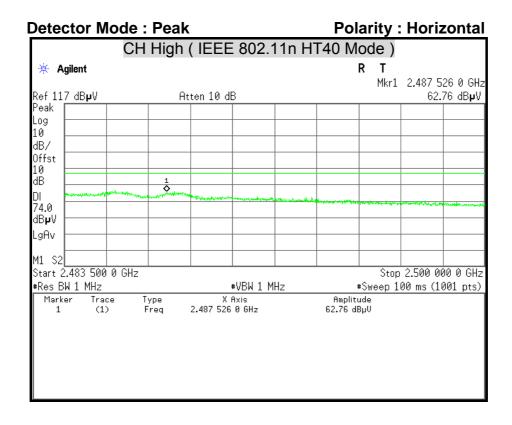


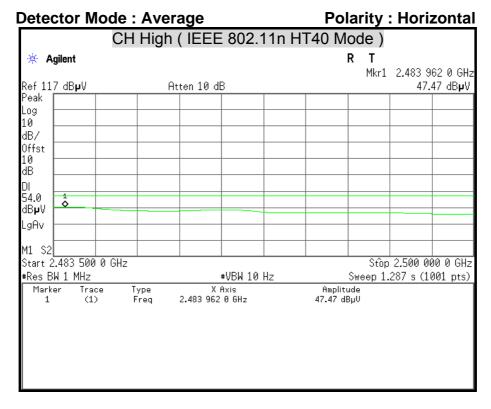




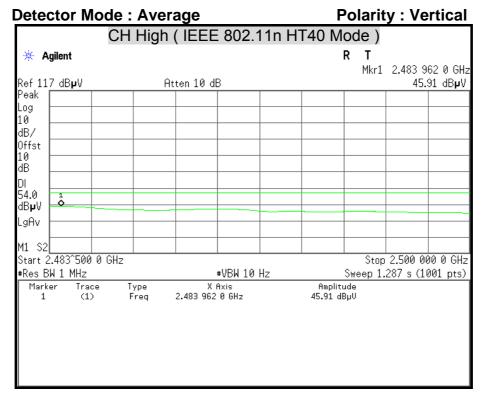










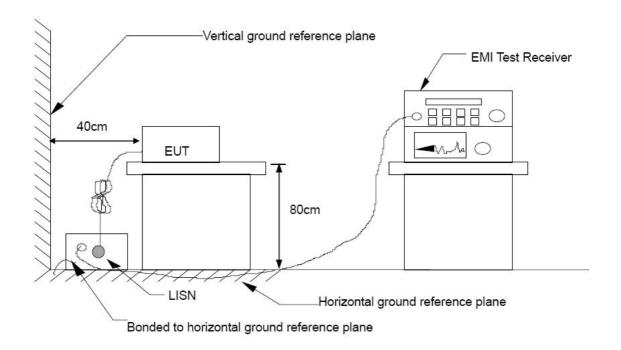


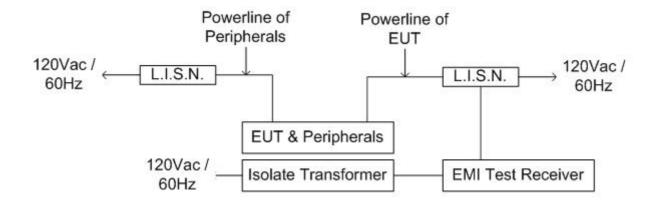
7.7 CONDUCTED EMISSION

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBµv)		
(MHz)	Quasi-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5.00	56	46	
5.00 - 30.0	60	50	


TEST EQUIPMENT


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/11/2014
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	03/07/2014
EMI Receiver	ROHDE & SCHWARZ	ESCS 30	835418/008	10/16/2014
Pulse Limiter	ROHDE & SCHWARZ	ESH3-Z2	100117	07/01/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

Report No.: T131205L01-RP1

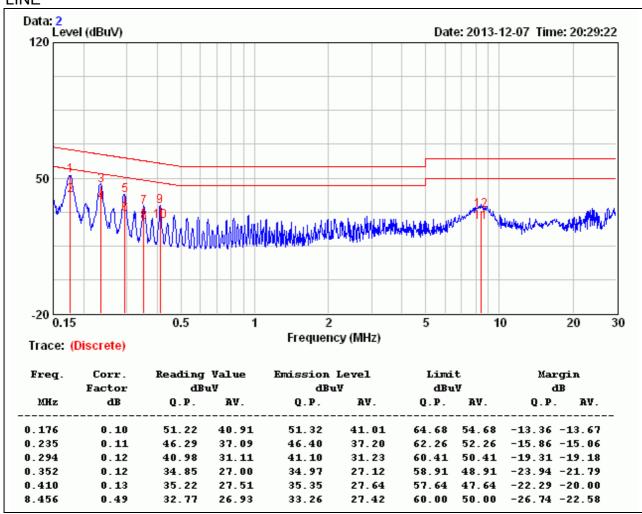
TEST SETUP

TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.4:2009.

The test procedure is performed in a 4m × 3m × 2.4m (L×W×H) shielded room.

The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

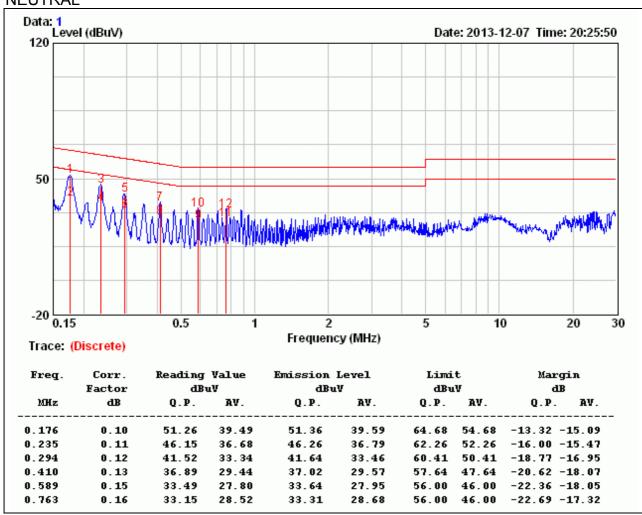

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/12/07
Test Mode	Normal Operating	Temp. & Humidity	24°C, 52%

LINE



Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value

Product Name	AIO Panel	Test By	Waternil Guan
Test Model	DMS-SA1300-A1E	Test Date	2013/12/07
Test Mode	Normal Operating	Temp. & Humidity	24°C, 52%

NEUTRAL

Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value