



## SAR Test Report

Product Name : Wireless USB Adaptor

Model No. : GWF-3S4T

FCC ID : YWTWF3SXXT

Applicant : Shenzhen Ogemray Technology Co., Ltd

Address : 3/F, No.9 Bldg. Minxing Industrial Park. Minkang Rd.  
Minzhi St. Baoan District. Shenzhen

Date of Receipt : 24/02/2012

Date of Test : 22/04/2012~23/04/2012

Issued Date : 25/04/2012

Report No. : 122S082R-HP-US-P03V01

Report Version : V1.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

# Test Report Certification

Issued Date: 25/04/2012

Report No: 122S082R-HP-US-P03V01



Product Name : Wireless USB Adaptor  
Applicant : Shenzhen Ogemray Technology Co., Ltd  
Address : 3/F, No.9 Bldg. Minxing Industrial Park. Minkang Rd. Minzhi St. Baoan District. Shenzhen  
Manufacturer : Shenzhen Ogemray Technology Co., Ltd  
Address : 3/F, No.9 Bldg. Minxing Industrial Park. Minkang Rd. Minzhi St. Baoan District. Shenzhen  
FCC ID : YWTWF3SXXT  
Model No. : GWF-3S4T  
EUT Voltage : DC 5V  
Applicable Standard : FCC OET65 Supplement C June 2001  
IEEE Std. 1528-2003,  
47CFR § 2.1093  
Test Result : Max. SAR Measurement (1g)  
802.11b: **0.587** W/kg  
Performed Location : Suzhou EMC Laboratory  
No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., Suzhou, China  
TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098  
FCC Registration Number: 800392  
Documented By : Alice Ni  
(Engineering ADM: Alice Ni)  
Reviewed By : Robin Wu  
(Engineering Supervisor: Robin Wu)  
Approved By : Marlin Chen  
(Engineering Manager: Marlin Chen)

## Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

|               |   |                |
|---------------|---|----------------|
| Taiwan R.O.C. | : | BSMI, NCC, TAF |
| Germany       | : | TUV Rheinland  |
| Norway        | : | Nemko, DNV     |
| USA           | : | FCC, NVLAP     |
| Japan         | : | VCCI           |
| China         | : | CNAS           |

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <http://www.quietek.com/tw/ctg/cts/accreditations.htm>  
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <http://www.quietek.com/>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

## **HsinChu Testing Laboratory :**

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qiongliong Shiang, Hsinchu County 307, Taiwan, R.O.C.  
TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : [service@quietek.com](mailto:service@quietek.com)

## **LinKou Testing Laboratory :**

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.  
TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : [service@quietek.com](mailto:service@quietek.com)

Suzhou Testing Laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., SuZhou, China  
TEL : +86-512-6251-5088 / FAX : 86-512-6251-5098 E-Mail : [service@quietek.com](mailto:service@quietek.com)

## TABLE OF CONTENTS

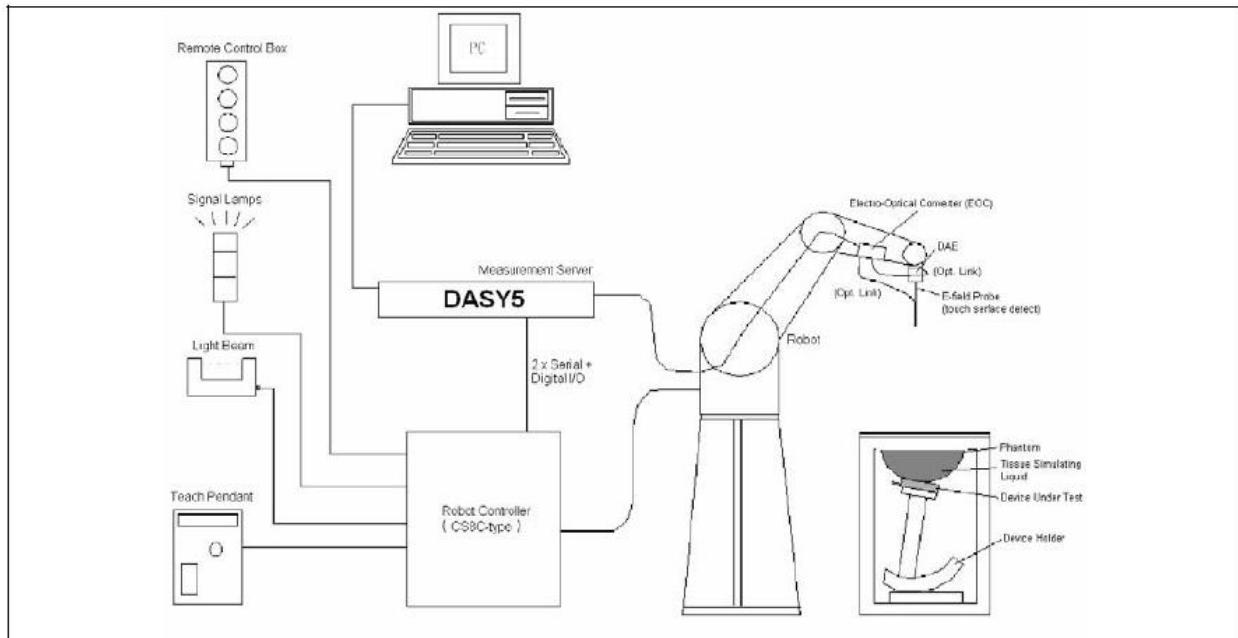
| <b>Description</b>                                                   | <b>Page</b> |
|----------------------------------------------------------------------|-------------|
| <b>1. General Information</b> .....                                  | <b>6</b>    |
| 1.1. EUT Description .....                                           | 6           |
| 1.2. Test Environment.....                                           | 7           |
| <b>2. SAR Measurement System</b> .....                               | <b>8</b>    |
| 2.1. DASY5 System Description.....                                   | 8           |
| 2.1.1. Applications .....                                            | 9           |
| 2.1.2. Area Scans .....                                              | 9           |
| 2.1.3. Zoom Scan (Cube Scan Averaging) .....                         | 9           |
| 2.1.4. Uncertainty of Inter-/Extrapolation and Averaging .....       | 9           |
| 2.2. DASY5 E-Field Probe.....                                        | 10          |
| 2.2.1. Isotropic E-Field Probe Specification .....                   | 10          |
| 2.3. Boundary Detection Unit and Probe Mounting Device .....         | 11          |
| 2.4. DATA Acquisition Electronics (DAE) and Measurement Server ..... | 11          |
| 2.5. Robot.....                                                      | 12          |
| 2.6. Light Beam Unit.....                                            | 12          |
| 2.7. Device Holder.....                                              | 13          |
| 2.8. SAM Twin Phantom.....                                           | 13          |
| <b>3. Tissue Simulating Liquid</b> .....                             | <b>14</b>   |
| 3.1. The composition of the tissue simulating liquid .....           | 14          |
| 3.2. Tissue Calibration Result.....                                  | 14          |
| 3.3. Tissue Dielectric Parameters for Head and Body Phantoms .....   | 15          |
| <b>4. SAR Measurement Procedure</b> .....                            | <b>16</b>   |
| 4.1. SAR System Validation.....                                      | 16          |
| 4.1.1. Validation Dipoles .....                                      | 16          |
| 4.1.2. Validation Result .....                                       | 16          |
| 4.2. SAR Measurement Procedure.....                                  | 17          |
| 5. SAR Exposure Limits.....                                          | 18          |
| <b>6. Test Equipment List</b> .....                                  | <b>19</b>   |
| <b>7. Measurement Uncertainty</b> .....                              | <b>20</b>   |
| <b>8. Conducted Power Measurement</b> .....                          | <b>21</b>   |
| <b>9. Test Procedures</b> .....                                      | <b>22</b>   |

|                                                                       |           |
|-----------------------------------------------------------------------|-----------|
| 9.1. Test position and configuration .....                            | 22        |
| 9.2. SAR Test Results Summary .....                                   | 23        |
| <b>Appendix A. SAR System Validation Data .....</b>                   | <b>25</b> |
| <b>Appendix B. SAR measurement Data .....</b>                         | <b>26</b> |
| <b>Appendix C. Test Setup Photographs &amp; EUT Photographs .....</b> | <b>47</b> |
| <b>Appendix D. Probe Calibration Data .....</b>                       | <b>59</b> |
| <b>Appendix E. Dipole Calibration Data.....</b>                       | <b>70</b> |
| <b>Appendix F. DAE Calibration Data.....</b>                          | <b>79</b> |

## 1. General Information

### 1.1. EUT Description

|                                  |                                                                                                |
|----------------------------------|------------------------------------------------------------------------------------------------|
| Product Name                     | Wireless USB Adaptor                                                                           |
| FCC ID                           | YWTWF3SXXT                                                                                     |
| Model No.                        | GWF-3S4T                                                                                       |
| Frequency Range                  | 802.11b/g/n(20MHz): 2412 - 2462 MHz<br>802.11n(40MHz): 2422 - 2452 MHz                         |
| Channel Number                   | 802.11b/g/n(20MHz): 11<br>802.11n(40MHz): 7                                                    |
| Type of Modulation               | 802.11b: DSSS<br>802.11g/n: OFDM                                                               |
| Data Rate                        | 802.11g: 6/9/12/18/24/36/48/54 Mbps<br>802.11b: 1/2/5.5/11 Mbps<br>802.11n: up to 150 Mbps     |
| Device Category                  | Mobile                                                                                         |
| RF Exposure Environment          | Uncontrolled                                                                                   |
| Antenna Type                     | Dipole                                                                                         |
| Peak Antenna Gain                | 2 dBi                                                                                          |
| Max. Output Power<br>(Conducted) | 802.11b: 18.81dBm<br>802.11g: 15.79dBm<br>802.11n(20MHz): 14.53dBm<br>802.11n(40MHz): 14.00dBm |


## 1.2. Test Environment

Ambient conditions in the laboratory:

| Items            | Required | Actual  |
|------------------|----------|---------|
| Temperature (°C) | 18-25    | 21.5± 2 |
| Humidity (%RH)   | 30-70    | 52      |

## 2. SAR Measurement System

## 2.1. DASY5 System Description



The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

### **2.1.1. Applications**

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

### **2.1.2. Area Scans**

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm<sup>2</sup> step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

### **2.1.3. Zoom Scan (Cube Scan Averaging)**

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m<sup>3</sup> is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

### **2.1.4. Uncertainty of Inter-/Extrapolation and Averaging**

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2 \left( \frac{\pi}{2} \frac{\sqrt{x'^2 + y'^2}}{5a} \right)$$

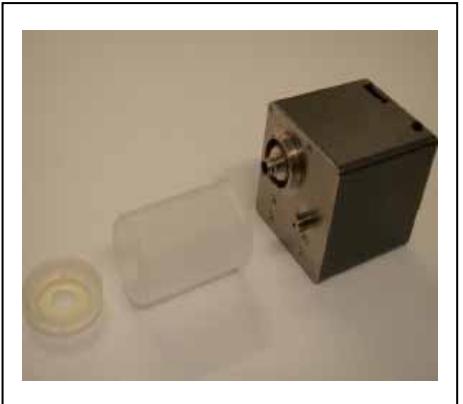
$$f_2(x, y, z) = Ae^{-\frac{z}{a}} \frac{a^2}{a^2 + x'^2} \left( 3 - e^{-\frac{2z}{a}} \right) \cos^2 \left( \frac{\pi}{2} \frac{y'}{3a} \right)$$

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left( e^{-\frac{2z}{a}} + \frac{a^2}{2(a + 2z)^2} \right)$$

## 2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.


### 2.2.1. Isotropic E-Field Probe Specification

|                      |                                                                                                                                                                                                            |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Model</b>         | EX3DV4                                                                                                                                                                                                     |
| <b>Construction</b>  | Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)                                                      |
| <b>Frequency</b>     | 10 MHz to 6 GHz<br>Linearity: $\pm 0.2$ dB (30 MHz to 6 GHz)                                                                                                                                               |
| <b>Directivity</b>   | $\pm 0.3$ dB in HSL (rotation around probe axis)<br>$\pm 0.5$ dB in tissue material (rotation normal to probe axis)                                                                                        |
| <b>Dynamic Range</b> | 10 $\mu$ W/g to 100 mW/g<br>Linearity: $\pm 0.2$ dB (noise: typically $< 1$ $\mu$ W/g)                                                                                                                     |
| <b>Dimensions</b>    | Overall length: 330 mm (Tip: 20 mm)<br>Tip diameter: 2.5 mm (Body: 12 mm)<br>Typical distance from probe tip to dipole centers: 1 mm                                                                       |
| <b>Application</b>   | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%. |



### 2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.



### 2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.



The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.



## 2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller



## 2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



## 2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\epsilon_r = 3$  and loss tangent  $\delta = 0.02$ . The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.



## 2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom



The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

### 3. Tissue Simulating Liquid

#### 3.1. The composition of the tissue simulating liquid

| INGREDIENT<br>(% Weight) | 2450MHz<br>Head | 2450MHz<br>Body |
|--------------------------|-----------------|-----------------|
| Water                    | 46.7            | 73.2            |
| Salt                     | 0.00            | 0.04            |
| Sugar                    | 0.00            | 0.00            |
| HEC                      | 0.00            | 0.00            |
| Preventol                | 0.00            | 0.00            |
| DGBE                     | 53.3            | 26.7            |
| Triton X-100             | 0.00            | 0.00            |

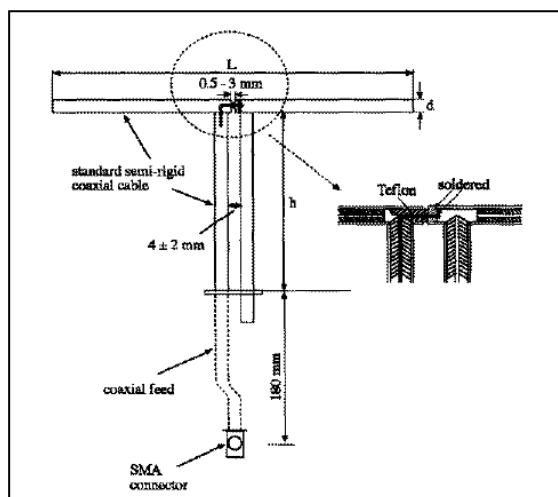
#### 3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

| Body Tissue Simulant Measurement |                                 |                        |                      |                      |
|----------------------------------|---------------------------------|------------------------|----------------------|----------------------|
| Frequency<br>[MHz]               | Description                     | Dielectric Parameters  |                      | Tissue Temp.<br>[°C] |
|                                  |                                 | $\epsilon_r$           | $\sigma$ [s/m]       |                      |
| 2450MHz                          | Reference result<br>± 5% window | 52.7<br>50.07 to 55.34 | 1.95<br>1.85 to 2.05 | N/A                  |
|                                  | 22-04-2012                      | 52.06                  | 1.99                 | 21.0                 |

### 3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.


| Target Frequency<br>(MHz) | Head         |                | Body         |                |
|---------------------------|--------------|----------------|--------------|----------------|
|                           | $\epsilon_r$ | $\sigma$ (S/m) | $\epsilon_r$ | $\sigma$ (S/m) |
| 150                       | 52.3         | 0.76           | 61.9         | 0.80           |
| 300                       | 45.3         | 0.87           | 58.2         | 0.92           |
| 450                       | 43.5         | 0.87           | 56.7         | 0.94           |
| 835                       | 41.5         | 0.90           | 55.2         | 0.97           |
| 900                       | 41.5         | 0.97           | 55.0         | 1.05           |
| 915                       | 41.5         | 0.98           | 55.0         | 1.06           |
| 1450                      | 40.5         | 1.20           | 54.0         | 1.30           |
| 1610                      | 40.3         | 1.29           | 53.8         | 1.40           |
| 1800 – 2000               | 40.0         | 1.40           | 53.3         | 1.52           |
| <b>2450</b>               | <b>39.2</b>  | <b>1.80</b>    | <b>52.7</b>  | <b>1.95</b>    |
| 3000                      | 38.5         | 2.40           | 52.0         | 2.73           |
| 5800                      | 35.3         | 5.27           | 48.2         | 6.00           |

( $\epsilon_r$  = relative permittivity,  $\sigma$  = conductivity and  $\rho = 1000$  kg/m<sup>3</sup>)

## 4. SAR Measurement Procedure

### 4.1. SAR System Validation

#### 4.1.1. Validation Dipoles



The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

| Frequency | L (mm) | h (mm) | d (mm) |
|-----------|--------|--------|--------|
| 2450MHz   | 53.5   | 30.4   | 3.6    |

#### 4.1.2. Validation Result

| System Performance Check at 2450MHz |                                  |                        |                        |                   |
|-------------------------------------|----------------------------------|------------------------|------------------------|-------------------|
| Validation Dipole: D2450V2, SN: 839 |                                  |                        |                        |                   |
| Frequency [MHz]                     | Description                      | SAR [w/kg]<br>1g       | SAR [w/kg]<br>10g      | Tissue Temp. [°C] |
| 2450 MHz                            | Reference result<br>± 10% window | 48.7<br>43.83 to 53.57 | 22.8<br>20.52 to 25.08 | N/A               |
|                                     | 22-04-2012                       | 49.2                   | 22.48                  | 21.0              |

Note: All SAR values are normalized to 1W forward power.

#### 4.2. SAR Measurement Procedure

The DASY 5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

$\sigma$ : represents the simulated tissue conductivity

$\rho$ : represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm<sup>2</sup> ) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm<sup>3</sup> ).

## 5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

### **Limits for General Population/Uncontrolled Exposure (W/kg)**

| Type Exposure                                            | Uncontrolled Environment Limit |
|----------------------------------------------------------|--------------------------------|
| Spatial Peak SAR (1g cube tissue for brain or body)      | 1.60 W/kg                      |
| Spatial Average SAR (whole body)                         | 0.08 W/kg                      |
| Spatial Peak SAR (10g for hands, feet, ankles and wrist) | 4.00 W/kg                      |

## 6. Test Equipment List

| Instrument                           | Manufacturer | Model No.     | Serial No.      | Cali. Due Date |
|--------------------------------------|--------------|---------------|-----------------|----------------|
| Stäubli Robot TX60L                  | Stäubli      | TX60L         | F10/5C90A1/A/01 | only once      |
| Controller                           | Stäubli      | SP1           | S-0034          | only once      |
| Dipole Validation Kits               | Speag        | D2450V2       | 839             | 2013.02.23     |
| SAM Twin Phantom                     | Speag        | SAM           | TP-1561/1562    | N/A            |
| Device Holder                        | Speag        | SD 000 H01 HA | N/A             | N/A            |
| Data Acquisition Electronic          | Speag        | DAE4          | 1220            | 2013.01.23     |
| E-Field Probe                        | Speag        | EX3DV4        | 3710            | 2013.03.12     |
| SAR Software                         | Speag        | DASY5         | V5.2 Build 162  | N/A            |
| Power Amplifier                      | Mini-Circuit | ZHL-42        | D051404-28      | N/A            |
| Directional Coupler                  | Agilent      | 778D          | 20160           | N/A            |
| Universal Radio Communication Tester | R&S          | CMU 200       | 117088          | 2013.04.18     |
| Vector Network                       | Agilent      | E5071C        | MY48367267      | 2013.04.10     |
| Signal Generator                     | Agilent      | E4438C        | MY49070163      | 2013.04.10     |
| Power Meter                          | Anritsu      | ML2495A       | 0905006         | 2013.01.12     |
| Wide Bandwidth Sensor                | Anritsu      | MA2411B       | 0846014         | 2013.01.12     |

## 7. Measurement Uncertainty

| DASY5 Uncertainty                                                            |               |             |      |                         |                          |                   |                    |                                       |
|------------------------------------------------------------------------------|---------------|-------------|------|-------------------------|--------------------------|-------------------|--------------------|---------------------------------------|
| Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram / 10 gram. |               |             |      |                         |                          |                   |                    |                                       |
| Error Description                                                            | Uncert. value | Prob. Dist. | Div. | (c <sub>i</sub> )<br>1g | (c <sub>i</sub> )<br>10g | Std. Unc.<br>(1g) | Std. Unc.<br>(10g) | (v <sub>i</sub> )<br>v <sub>eff</sub> |
| <b>Measurement System</b>                                                    |               |             |      |                         |                          |                   |                    |                                       |
| Probe Calibration                                                            | ±6.0%         | N           | 1    | 1                       | 1                        | ±6.0%             | ±6.0%              | ∞                                     |
| Axial Isotropy                                                               | ±4.7%         | R           | ✓3   | 0.7                     | 0.7                      | ±1.9%             | ±1.9%              | ∞                                     |
| Hemispherical Isotropy                                                       | ±9.6%         | R           | ✓3   | 0.7                     | 0.7                      | ±3.9%             | ±3.9%              | ∞                                     |
| Boundary Effects                                                             | ±1.0%         | R           | ✓3   | 1                       | 1                        | ±0.6%             | ±0.6%              | ∞                                     |
| Linearity                                                                    | ±4.7%         | R           | ✓3   | 1                       | 1                        | ±2.7%             | ±2.7%              | ∞                                     |
| System Detection Limits                                                      | ±1.0%         | R           | ✓3   | 1                       | 1                        | ±0.6%             | ±0.6%              | ∞                                     |
| Readout Electronics                                                          | ±0.3%         | N           | 1    | 1                       | 1                        | ±0.3%             | ±0.3%              | ∞                                     |
| Response Time                                                                | ±0.8%         | R           | ✓3   | 1                       | 1                        | ±0.5%             | ±0.5%              | ∞                                     |
| Integration Time                                                             | ±2.6%         | R           | ✓3   | 1                       | 1                        | ±1.5%             | ±1.5%              | ∞                                     |
| RF Ambient Noise                                                             | ±3.0%         | R           | ✓3   | 1                       | 1                        | ±1.7%             | ±1.7%              | ∞                                     |
| RF Ambient Reflections                                                       | ±3.0%         | R           | ✓3   | 1                       | 1                        | ±1.7%             | ±1.7%              | ∞                                     |
| Probe Positioner                                                             | ±0.4%         | R           | ✓3   | 1                       | 1                        | ±0.2%             | ±0.2%              | ∞                                     |
| Probe Positioning                                                            | ±2.9%         | R           | ✓3   | 1                       | 1                        | ±1.7%             | ±1.7%              | ∞                                     |
| Max. SAR Eval.                                                               | ±1.0%         | R           | ✓3   | 1                       | 1                        | ±0.6%             | ±0.6%              | ∞                                     |
| <b>Test Sample Related</b>                                                   |               |             |      |                         |                          |                   |                    |                                       |
| Device Positioning                                                           | ±2.9%         | N           | 1    | 1                       | 1                        | ±2.9%             | ±2.9%              | 145                                   |
| Device Holder                                                                | ±3.6%         | N           | 1    | 1                       | 1                        | ±3.6%             | ±3.6%              | 5                                     |
| Power Drift                                                                  | ±5.0%         | R           | ✓3   | 1                       | 1                        | ±2.9%             | ±2.9%              | ∞                                     |
| <b>Phantom and Setup</b>                                                     |               |             |      |                         |                          |                   |                    |                                       |
| Phantom Uncertainty                                                          | ±4.0%         | R           | ✓3   | 1                       | 1                        | ±2.3%             | ±2.3%              | ∞                                     |
| Liquid Conductivity (target)                                                 | ±5.0%         | R           | ✓3   | 0.64                    | 0.43                     | ±1.8%             | ±1.2%              | ∞                                     |
| Liquid Conductivity (meas.)                                                  | ±2.5%         | N           | 1    | 0.64                    | 0.43                     | ±1.6%             | ±1.1%              | ∞                                     |
| Liquid Permittivity (target)                                                 | ±5.0%         | R           | ✓3   | 0.6                     | 0.49                     | ±1.7%             | ±1.4%              | ∞                                     |
| Liquid Permittivity (meas.)                                                  | ±2.5%         | N           | 1    | 0.6                     | 0.49                     | ±1.5%             | ±1.2%              | ∞                                     |
| <b>Combined Std. Uncertainty</b>                                             |               |             |      |                         |                          | ±10.9%            | ±10.7%             | 387                                   |
| <b>Expanded STD Uncertainty</b>                                              |               |             |      |                         |                          | ±21.9%            | ±21.4%             |                                       |

## 8. Conducted Power Measurement

| Test Mode       | Data Rate (Mbps) | Channel No. | Frequency (MHz) | Average Power (dBm) |
|-----------------|------------------|-------------|-----------------|---------------------|
| 802.11b         | 1                | 01          | 2412            | <b>18.81</b>        |
|                 |                  | 06          | 2437            | 18.71               |
|                 |                  | 11          | 2462            | 18.55               |
| 802.11g         | 6                | 01          | 2412            | 15.79               |
|                 |                  | 06          | 2437            | 15.76               |
|                 |                  | 11          | 2462            | 15.60               |
| 802.11n (20MHz) | 6.5              | 01          | 2412            | 14.53               |
|                 |                  | 06          | 2437            | 14.50               |
|                 |                  | 11          | 2462            | 14.30               |
| 802.11n (40MHz) | 13               | 03          | 2422            | 13.94               |
|                 |                  | 06          | 2437            | 13.97               |
|                 |                  | 09          | 2452            | 14.00               |

## 9. Test Procedures

### 9.1. Test position and configuration

SAR was performed with the device configured in the positions according to IEEE1528, and KDB 447498 D02 SAR Procedures for Dongle Xmtr v02, body SAR was performed with the device to phantom separation distance of 5mm. All USB orientations (A: Horizontal-Up, B: Horizontal-Down, C: Vertical-Front, D: Vertical-Back, and E: Tip) were evaluated with 15cm USB cable for extension. The antenna swivel angle (0°, 45°, 90°) were evaluated also. Please check the SAR test photos.

Other KDB files were referred for this device SAR evaluation: KDB 248227, KDB 388624 and KDB 302947.

## 9.2. SAR Test Results Summary

| SAR MEASUREMENT                    |                     |           |      |                                |                                  |                  |                 |  |  |  |  |
|------------------------------------|---------------------|-----------|------|--------------------------------|----------------------------------|------------------|-----------------|--|--|--|--|
| Ambient Temperature (°C) : 21.5 ±2 |                     |           |      | Relative Humidity (%): 55      |                                  |                  |                 |  |  |  |  |
| Liquid Temperature (°C) : 21.0 ±2  |                     |           |      | Depth of Liquid (cm):>15       |                                  |                  |                 |  |  |  |  |
| Product: Wireless USB Adaptor      |                     |           |      |                                |                                  |                  |                 |  |  |  |  |
| Test Mode: 802.11b                 |                     |           |      |                                |                                  |                  |                 |  |  |  |  |
| Test Position<br>Body              | Antenna<br>Position | Frequency |      | Separation<br>Distance<br>(cm) | Power<br>Drift<br>( $<\pm 0.2$ ) | SAR 1g<br>(W/kg) | Limit<br>(W/kg) |  |  |  |  |
|                                    |                     | Channel   | MHz  |                                |                                  |                  |                 |  |  |  |  |
| Horizontal Up<br>(Laptop)          | Straight            | 1         | 2412 | 0.5                            | -0.17                            | <b>0.520</b>     | 1.6             |  |  |  |  |
| Horizontal Up<br>(Laptop)          | Swivel 0°           | 1         | 2412 | 0.5                            | -0.17                            | <b>0.587</b>     | 1.6             |  |  |  |  |
| Horizontal Up<br>(Laptop)          | Swivel 0°           | 6         | 2437 | 0.5                            | -0.12                            | <b>0.475</b>     | 1.6             |  |  |  |  |
| Horizontal Up<br>(Laptop)          | Swivel 0°           | 11        | 2462 | 0.5                            | -0.16                            | <b>0.389</b>     | 1.6             |  |  |  |  |
| Horizontal Up<br>(Laptop)          | Swivel 45°          | 1         | 2412 | 0.5                            | -0.12                            | <b>0.035</b>     | 1.6             |  |  |  |  |
| Horizontal Up<br>(Laptop)          | Swivel 90°          | 1         | 2412 | 0.5                            | -0.11                            | <b>0.015</b>     | 1.6             |  |  |  |  |
| Horizontal Down<br>(USB Cable)     | Straight            | 1         | 2412 | 0.5                            | -0.05                            | <b>0.343</b>     | 1.6             |  |  |  |  |
| Horizontal Down<br>(USB Cable)     | Swivel 0°           | 1         | 2412 | 0.5                            | 0.13                             | <b>0.290</b>     | 1.6             |  |  |  |  |
| Vertical Front<br>(Laptop)         | Straight            | 1         | 2412 | 0.5                            | -0.12                            | <b>0.434</b>     | 1.6             |  |  |  |  |
| Vertical Front<br>(Laptop)         | Swivel 0°           | 1         | 2412 | 0.5                            | 0.13                             | <b>0.305</b>     | 1.6             |  |  |  |  |
| Vertical Front<br>(Laptop)         | Swivel 45°          | 1         | 2412 | 0.5                            | -0.12                            | <b>0.033</b>     | 1.6             |  |  |  |  |
| Vertical Front<br>(Laptop)         | Swivel 90°          | 1         | 2412 | 0.5                            | 0.10                             | <b>0.014</b>     | 1.6             |  |  |  |  |
| Vertical Back<br>(USB Cable)       | Straight            | 1         | 2412 | 0.5                            | 0.003                            | <b>0.415</b>     | 1.6             |  |  |  |  |
| Vertical Back<br>(USB Cable)       | Swivel 0°           | 1         | 2412 | 0.5                            | -0.13                            | <b>0.483</b>     | 1.6             |  |  |  |  |

|                           |            |   |      |     |       |              |     |
|---------------------------|------------|---|------|-----|-------|--------------|-----|
| Tip<br>(USB Cable)        | Straight   | 1 | 2412 | 0.5 | -0.12 | <b>0.010</b> | 1.6 |
| Tip<br>(USB Cable)        | Swivel 45° | 1 | 2412 | 0.5 | -0.10 | <b>0.013</b> | 1.6 |
| Tip<br>(USB Cable)        | Swivel 90° | 1 | 2412 | 0.5 | -0.13 | <b>0.429</b> | 1.6 |
| Test Mode: 802.11g        |            |   |      |     |       |              |     |
| Horizontal Up<br>(Laptop) | Swivel 0°  | 1 | 2412 | 0.5 | 0.004 | <b>0.189</b> | 1.6 |
| Test Mode: 802.11n(20MHz) |            |   |      |     |       |              |     |
| Horizontal Up<br>(Laptop) | Swivel 0°  | 1 | 2412 | 0.5 | -0.16 | <b>0.213</b> | 1.6 |
| Test Mode: 802.11n(40MHz) |            |   |      |     |       |              |     |
| Horizontal Up<br>(Laptop) | Swivel 0°  | 9 | 2452 | 0.5 | -0.15 | <b>0.219</b> | 1.6 |

## Appendix A. SAR System Validation Data

Date/Time: 22-04-2012

Test Laboratory: QuieTek Lab

System Check Body 2450MHz

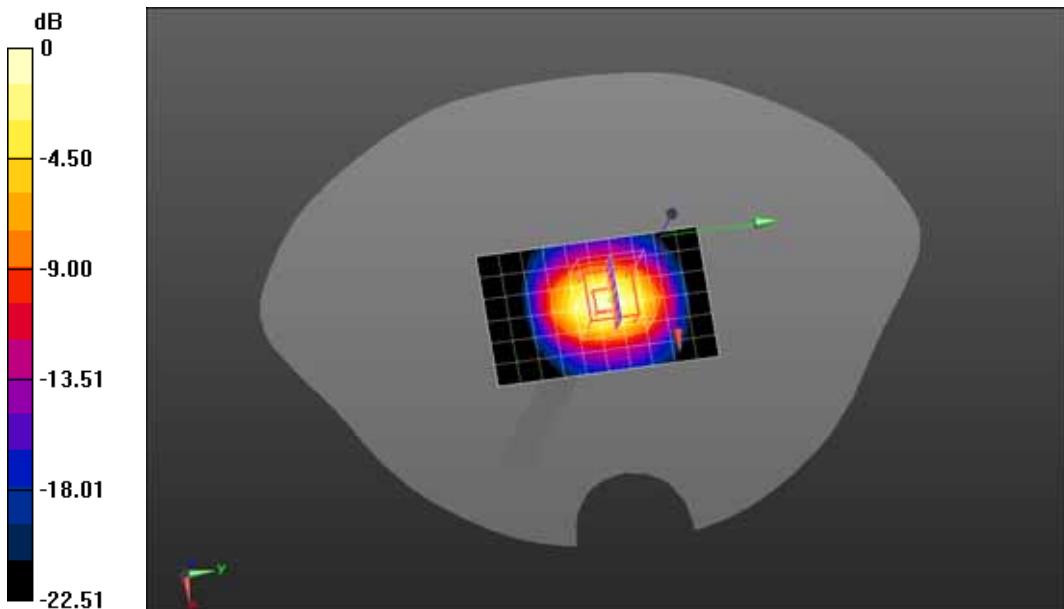
**DUT: Dipole 2450 MHz D2450V2; Type: D2450V2**

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used:  $f = 2450$  MHz;  $\sigma = 1.99$  mho/m;  $\epsilon_r = 52.06$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section ; Input Power=250mW

Ambient temperature ( ) : 21.5, Liquid temperature ( ) : 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/System Check Body 2450MHz/Area Scan (7x11x1):** Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 13.408 mW/g

**Configuration/System Check Body 2450MHz/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 81.585 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 25.3510

**SAR(1 g) = 12.3 mW/g; SAR(10 g) = 5.62 mW/g** Maximum value of SAR (measured) = 14.054 mW/g



0 dB = 14.050mW/g = 22.95 dB mW/g

## Appendix B. SAR measurement Data

Date/Time: 22-04-2012

Test Laboratory: QuieTek Lab

802.11b Low-Horizontal Up(Antenna Straight)

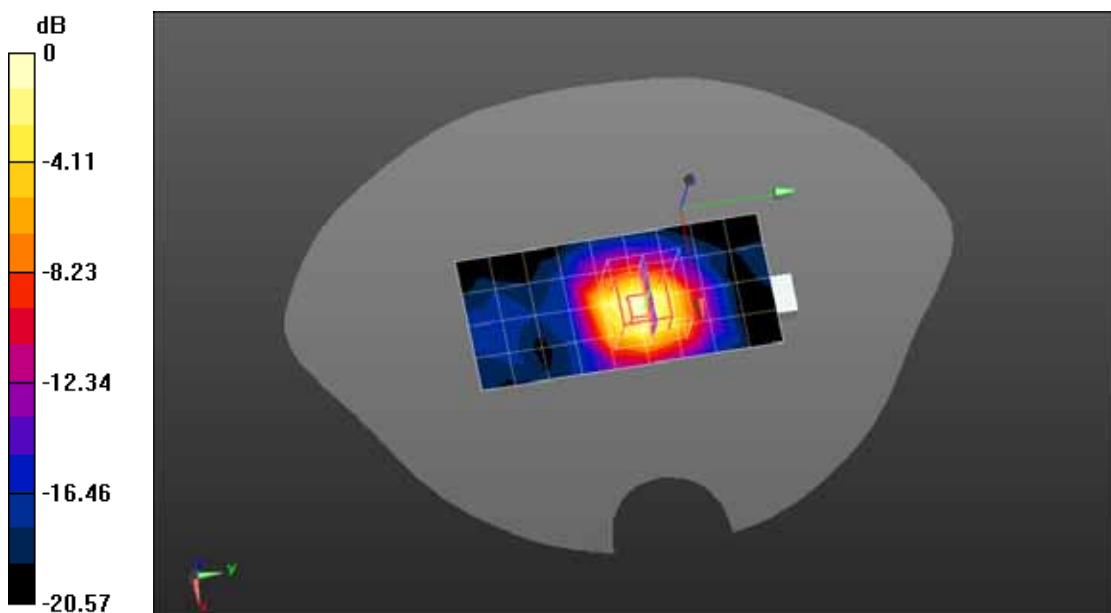
**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)


**Configuration/802.11b Low-Horizontal Up/Area Scan (5x10x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.598 mW/g

**Configuration/802.11b Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 22.148 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.0970

**SAR(1 g) = 0.520 mW/g; SAR(10 g) = 0.237 mW/g** Maximum value of SAR (measured) = 0.583 mW/g



0 dB = 0.580mW/g = -4.73 dB mW/g

Date/Time: 22-04-2012

Test Laboratory: QuieTek Lab

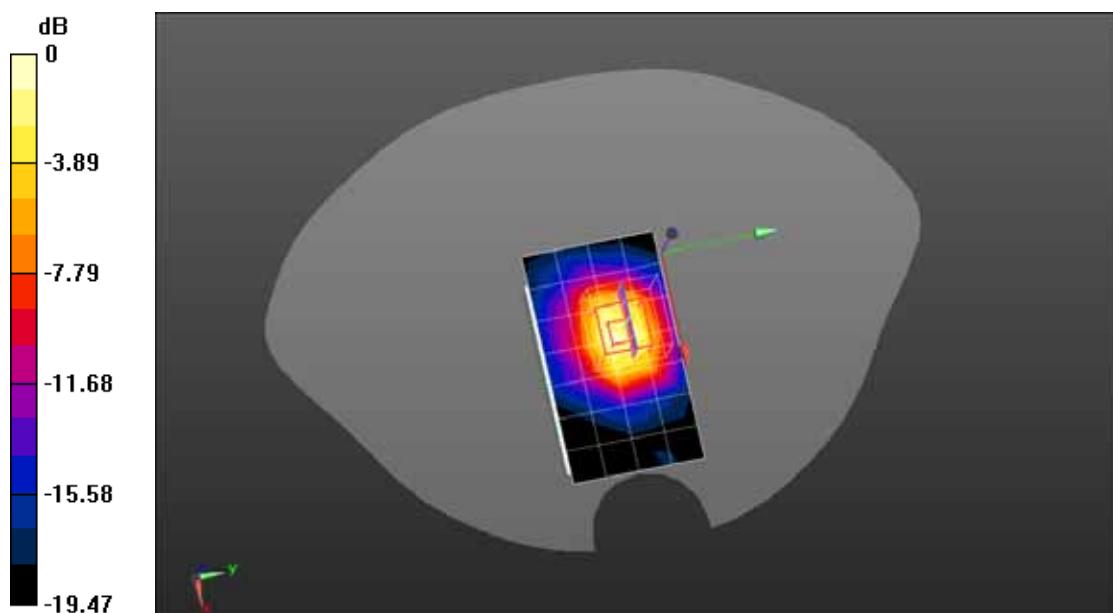
802.11b Low-Horizontal Up(Antenna Swivel 0°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

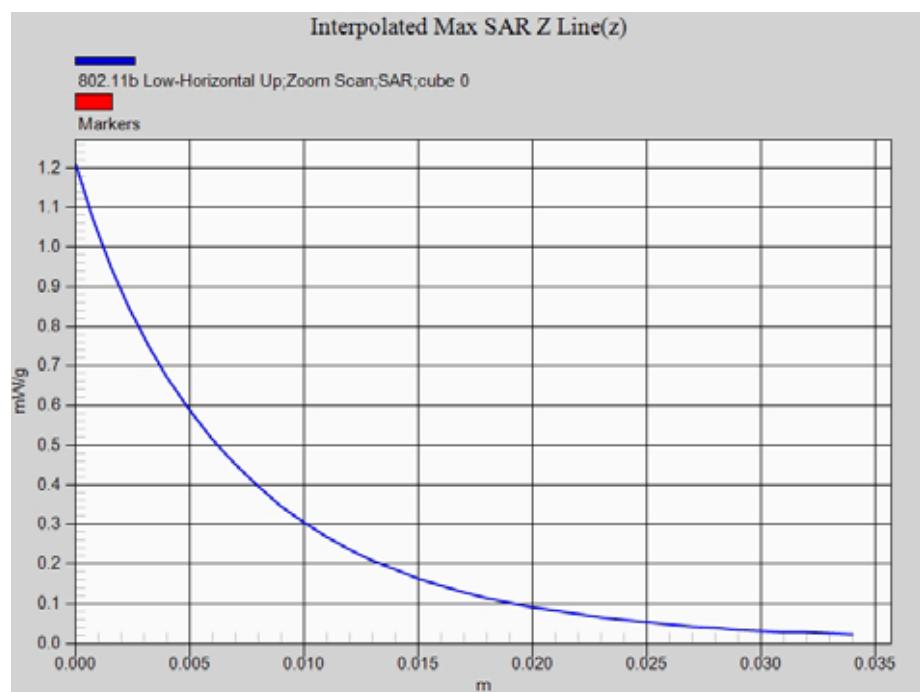
Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Horizontal Up/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm  
Maximum value of SAR (measured) = 0.603 mW/g


**Configuration/802.11b Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15.330 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.2120

**SAR(1 g) = 0.587 mW/g; SAR(10 g) = 0.272 mW/g** Maximum value of SAR (measured) = 0.650 mW/g



0 dB = 0.650mW/g = -3.74 dB mW/g

**Z-Axis Plot**

Date/Time: 22-04-2012

## Test Laboratory: QuieTek Lab

## 802.11b Mid-Horizontal Up(Antenna Swivel 0°)

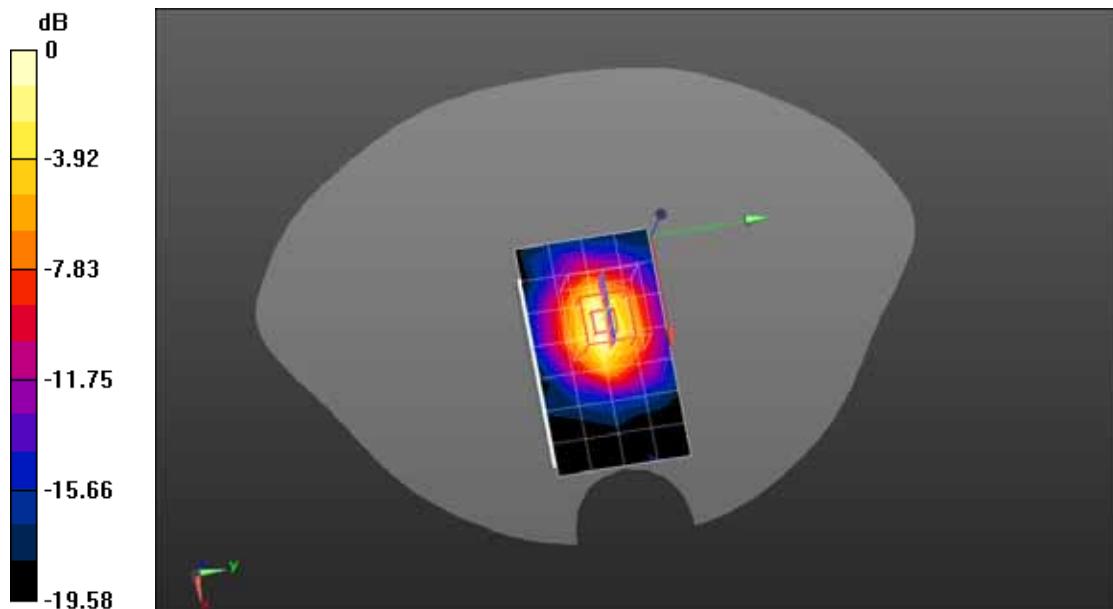
**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used:  $f = 2437$  MHz;  $\sigma = 1.98$  mho/m;  $\epsilon_r = 52.15$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

## DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)


## Configuration/802.11b Mid-Horizontal Up/Area Scan (8x5x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.524 mW/g

**Configuration/802.11b Mid-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15.580 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.9780

**SAR(1 g) = 0.475 mW/g; SAR(10 g) = 0.222 mW/g** Maximum value of SAR (measured) = 0.531 mW/g



Date/Time: 22-04-2012

Test Laboratory: QuieTek Lab

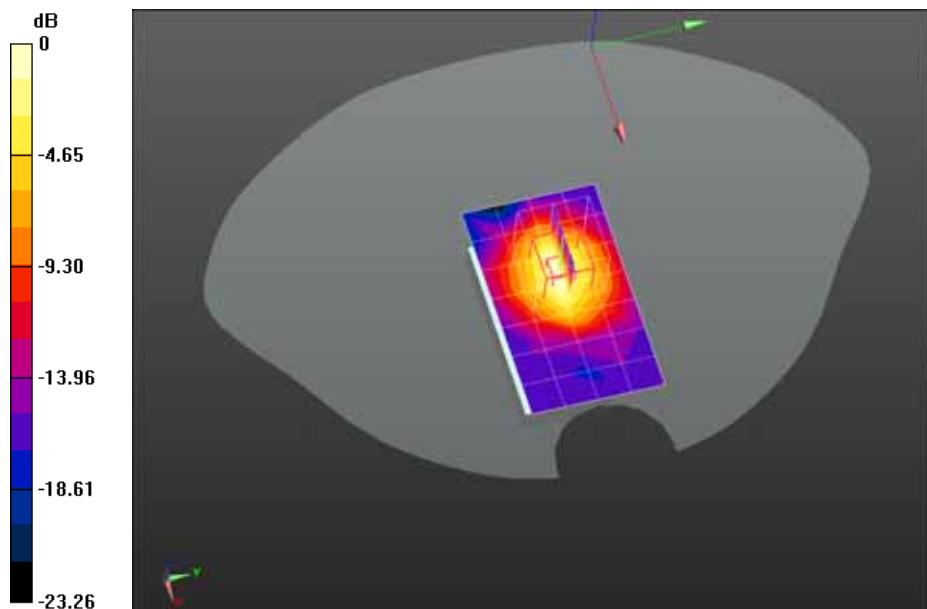
802.11b High-Horizontal Up(Antenna Swivel 0°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used:  $f = 2462$  MHz;  $\sigma = 2.01$  mho/m;  $\epsilon_r = 51.98$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b High-Horizontal Up/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.413 mW/g

**Configuration/802.11b High-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.456 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.8110

**SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.182 mW/g** Maximum value of SAR (measured) = 0.436 mW/g

0 dB = 0.440 mW/g = -7.13 dB mW/g

Date/Time: 22-04-2012

Test Laboratory: QuieTek Lab

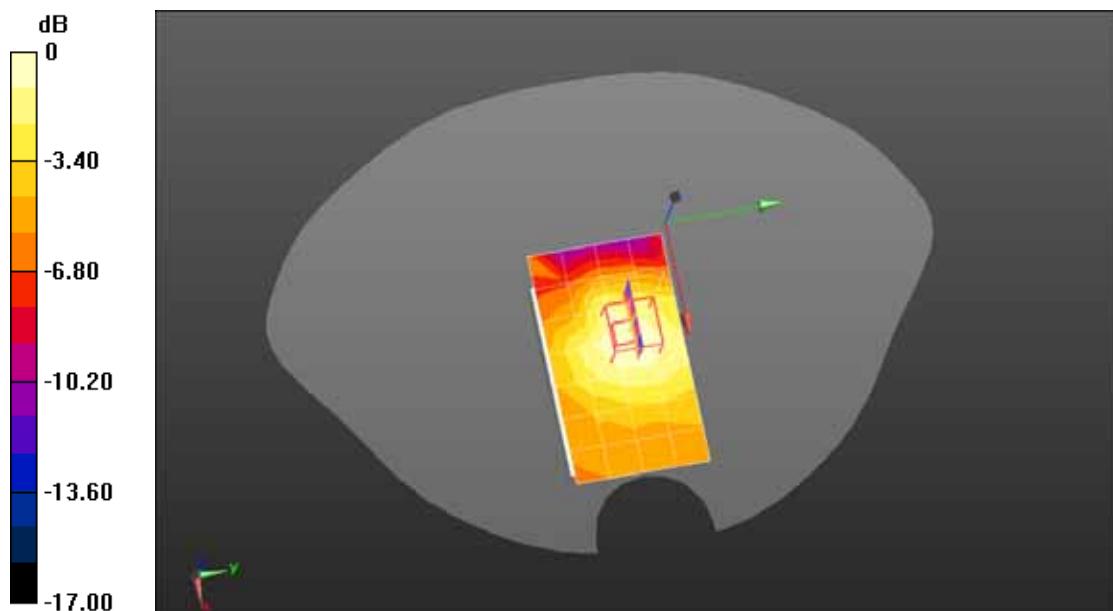
802.11b Low-Horizontal Up(Antenna Swivel 45°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Horizontal Up/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm  
Maximum value of SAR (measured) = 0.041 mW/g

**Configuration/802.11b Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.022 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.0670

**SAR(1 g) = 0.035 mW/g; SAR(10 g) = 0.021 mW/g** Maximum value of SAR (measured) = 0.036 mW/g



Date/Time: 22-04-2012

Test Laboratory: QuieTek Lab

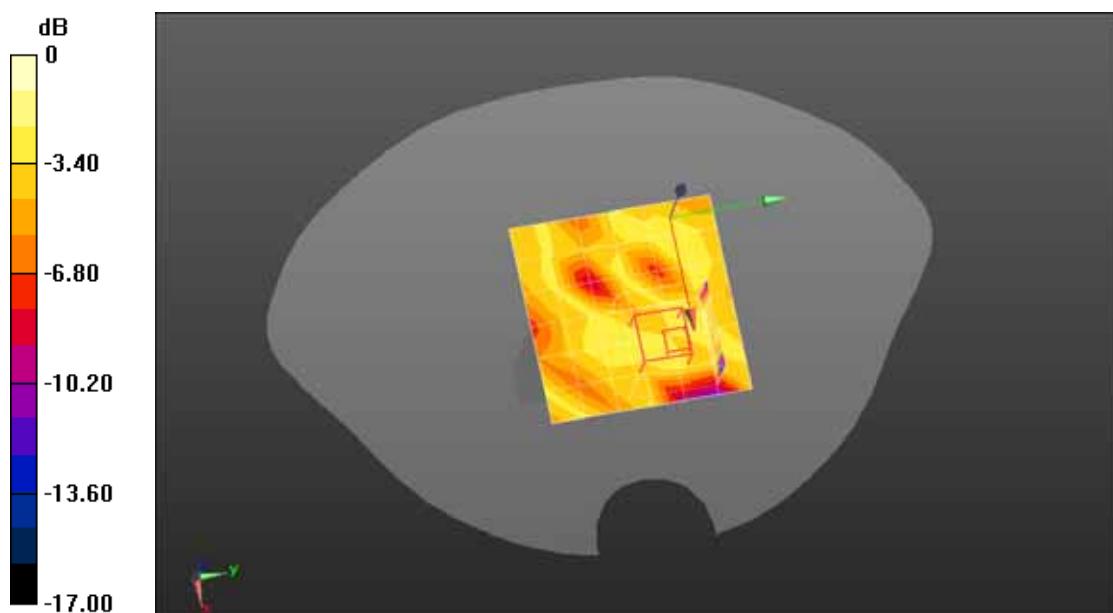
802.11b Low-Horizontal Up(Antenna Swivel 90°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Horizontal Up/Area Scan (7x7x1):** Measurement grid: dx=15mm, dy=15mm  
Maximum value of SAR (measured) = 0.012 mW/g

**Configuration/802.11b Low-Horizontal Up/Zoom Scan (6x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.185 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.0240

**SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.011 mW/g** Maximum value of SAR (measured) = 0.016 mW/g



0 dB = 0.020mW/g = -33.98 dB mW/g

Date/Time: 22-04-2012

Test Laboratory: QuieTek Lab

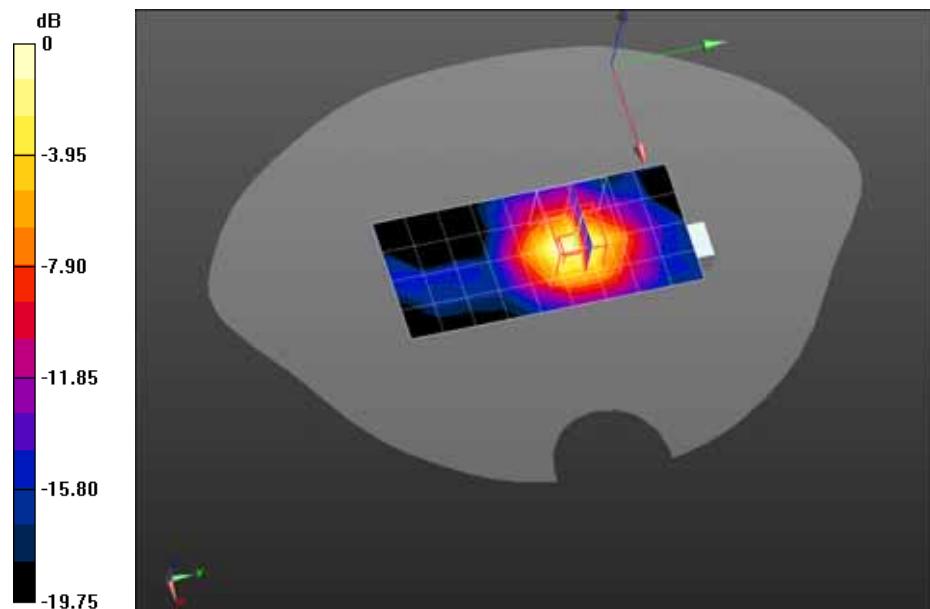
802.11b Low-Horizontal Down(Antenna Straight)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Horizontal Down/Area Scan (5x10x1):** Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.327 mW/g

**Configuration/802.11b Low-Horizontal Down/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.936 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.6880

**SAR(1 g) = 0.343 mW/g; SAR(10 g) = 0.164 mW/g** Maximum value of SAR (measured) = 0.386 mW/g



0 dB = 0.390mW/g = -8.18 dB mW/g

Date/Time: 22-04-2012

Test Laboratory: QuieTek Lab

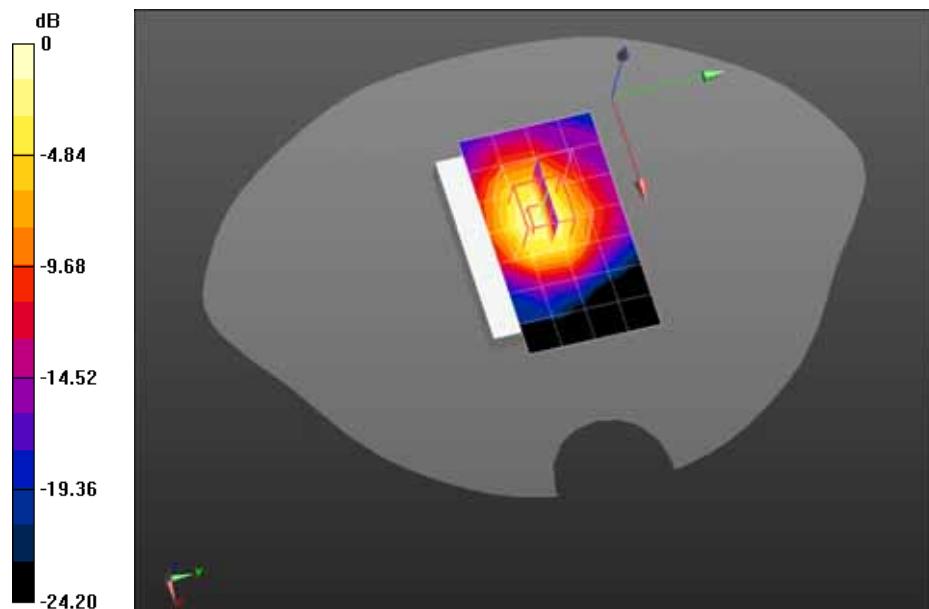
802.11b Low-Horizontal Down(Antenna Swivel 0°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Horizontal Down/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.255 mW/g

**Configuration/802.11b Low-Horizontal Down/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.691 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.5720

**SAR(1 g) = 0.290 mW/g; SAR(10 g) = 0.141 mW/g** Maximum value of SAR (measured) = 0.326 mW/g



Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

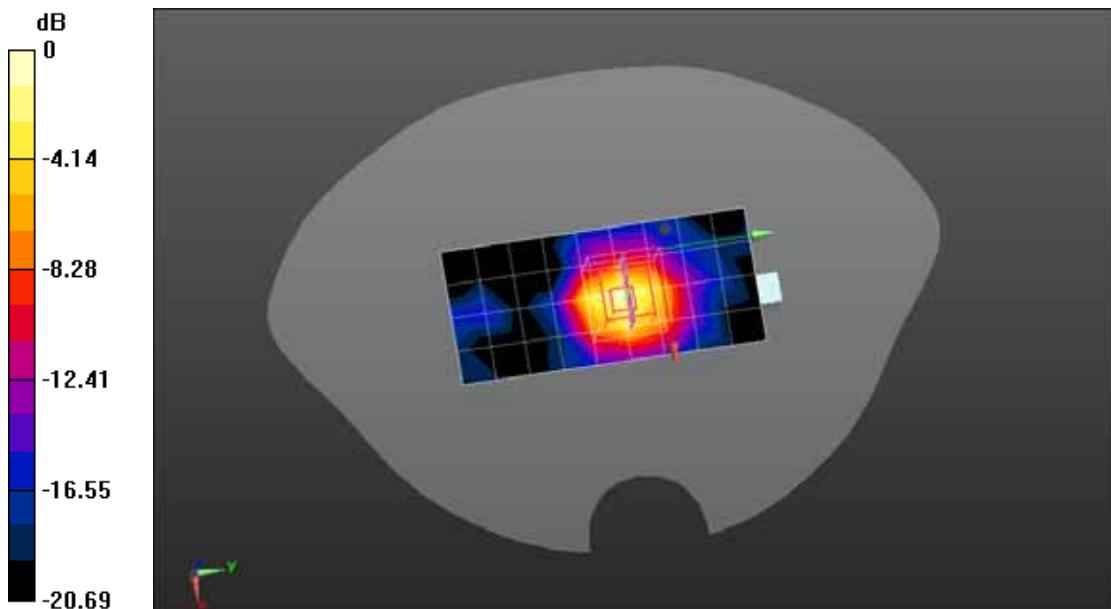
802.11b Low-Vertical Front(Antenna Straight)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Vertical Front/Area Scan (5x10x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.454 mW/g

**Configuration/802.11b Low-Vertical Front/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15.558 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.9160

**SAR(1 g) = 0.434 mW/g; SAR(10 g) = 0.197 mW/g** Maximum value of SAR (measured) = 0.491 mW/g

0 dB = 0.490mW/g = -6.20 dB mW/g

Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

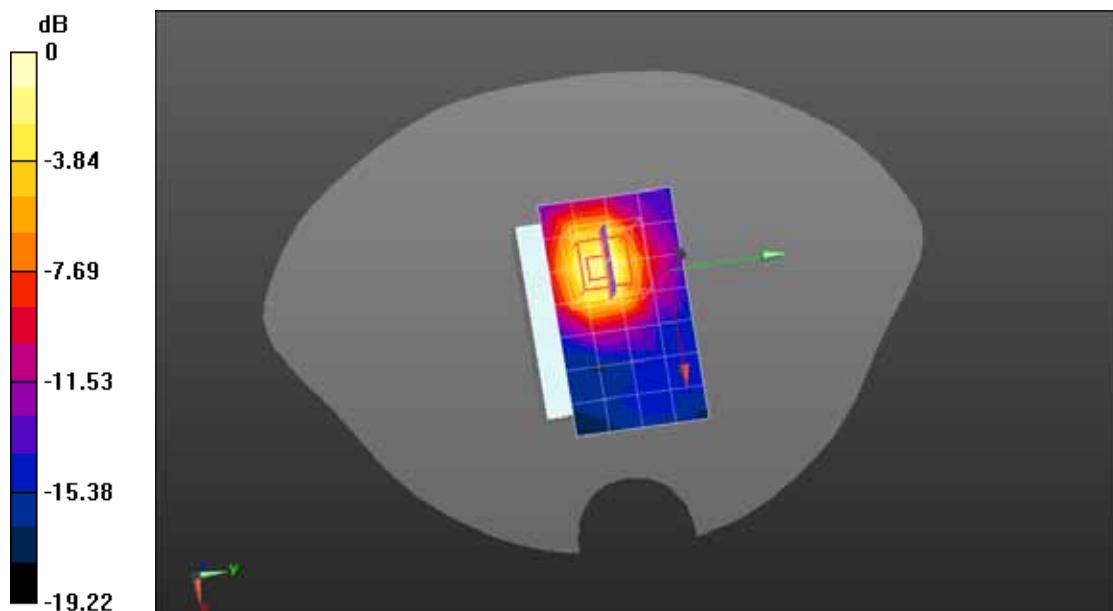
802.11b Low-Vertical Front(Antenna Swivel 0°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Vertical Front/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm  
Maximum value of SAR (measured) = 0.249 mW/g

**Configuration/802.11b Low-Vertical Front/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.100 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.6210

**SAR(1 g) = 0.305 mW/g; SAR(10 g) = 0.147 mW/g** Maximum value of SAR (measured) = 0.337 mW/g



Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

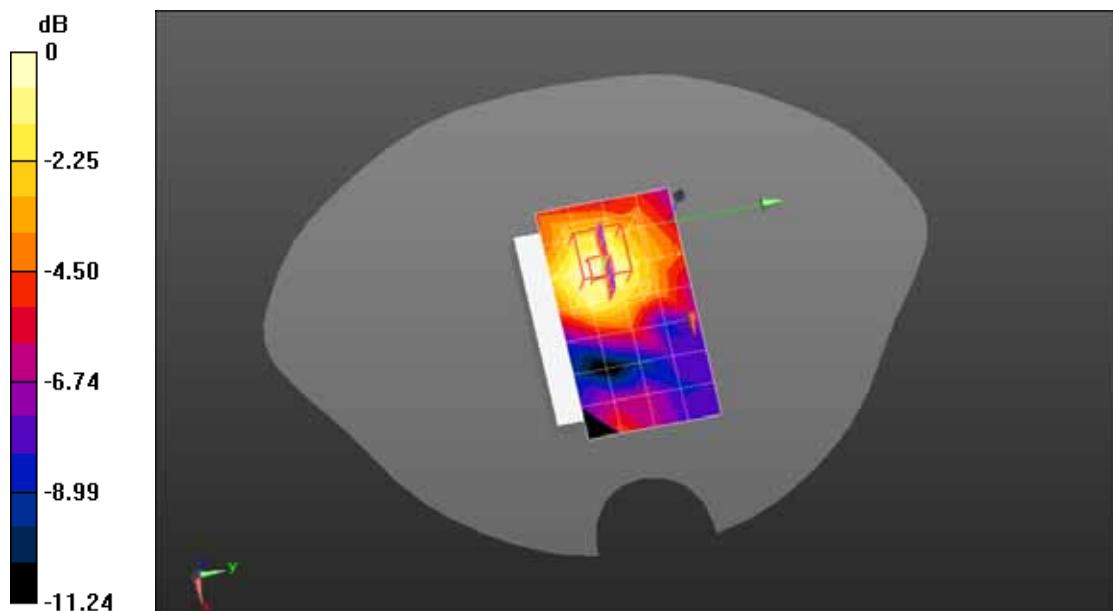
802.11b Low-Vertical Front(Antenna Swivel 45°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Vertical Front/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm  
Maximum value of SAR (measured) = 0.028 mW/g

**Configuration/802.11b Low-Vertical Front/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.110 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.0650

**SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.020 mW/g** Maximum value of SAR (measured) = 0.035 mW/g



Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

802.11b Low-Vertical Front(Antenna Swivel 90°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Vertical Front/Area Scan (7x7x1):** Measurement grid: dx=15mm, dy=15mm  
Maximum value of SAR (measured) = 0.013 mW/g

**Configuration/802.11b Low-Vertical Front/Zoom Scan (5x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.729 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.0280

**SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.010 mW/g** Maximum value of SAR (measured) = 0.017 mW/g



Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

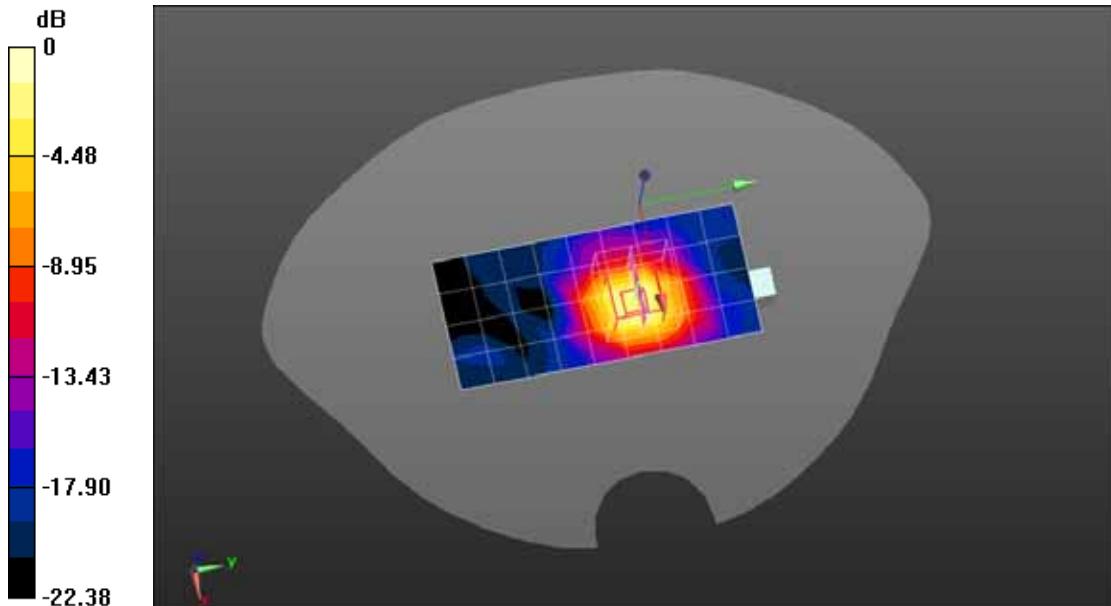
802.11b Low-Vertical Back(Antenna Straight)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Vertical Back/Area Scan (5x10x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.292 mW/g

**Configuration/802.11b Low-Vertical Back/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.681 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 0.8730

**SAR(1 g) = 0.415 mW/g; SAR(10 g) = 0.190 mW/g** Maximum value of SAR (measured) = 0.465 mW/g

0 dB = 0.460mW/g = -6.74 dB mW/g

Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

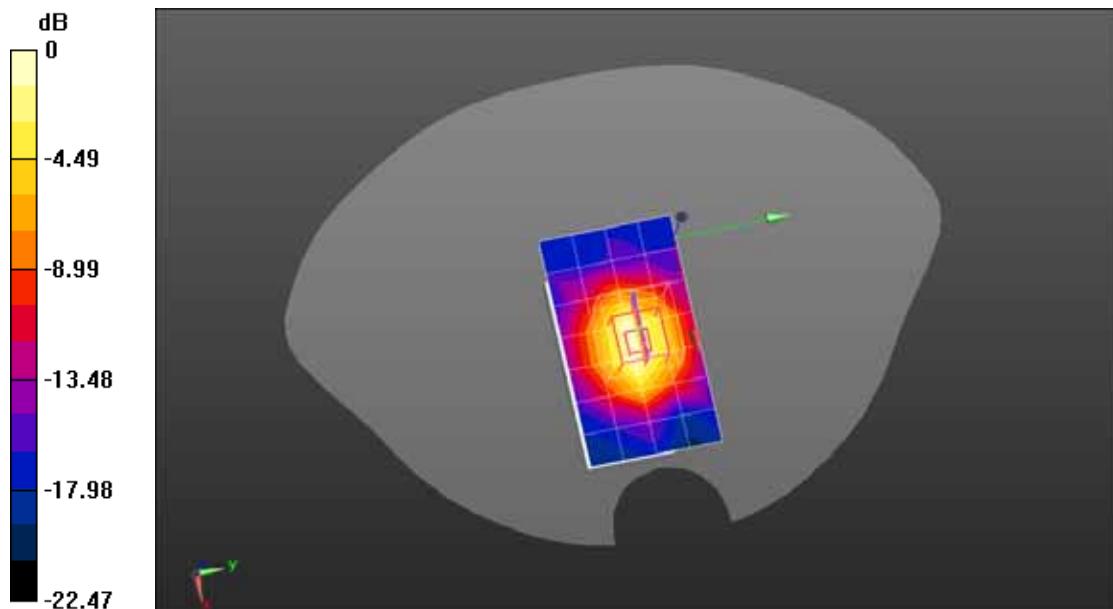
802.11b Low-Vertical Back(Antenna Swivel 0°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> ; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Vertical Back/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.577 mW/g

**Configuration/802.11b Low-Vertical Back/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.540 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.9820

**SAR(1 g) = 0.483 mW/g; SAR(10 g) = 0.229 mW/g** Maximum value of SAR (measured) = 0.540 mW/g

0 dB = 0.540mW/g = -5.35 dB mW/g

Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

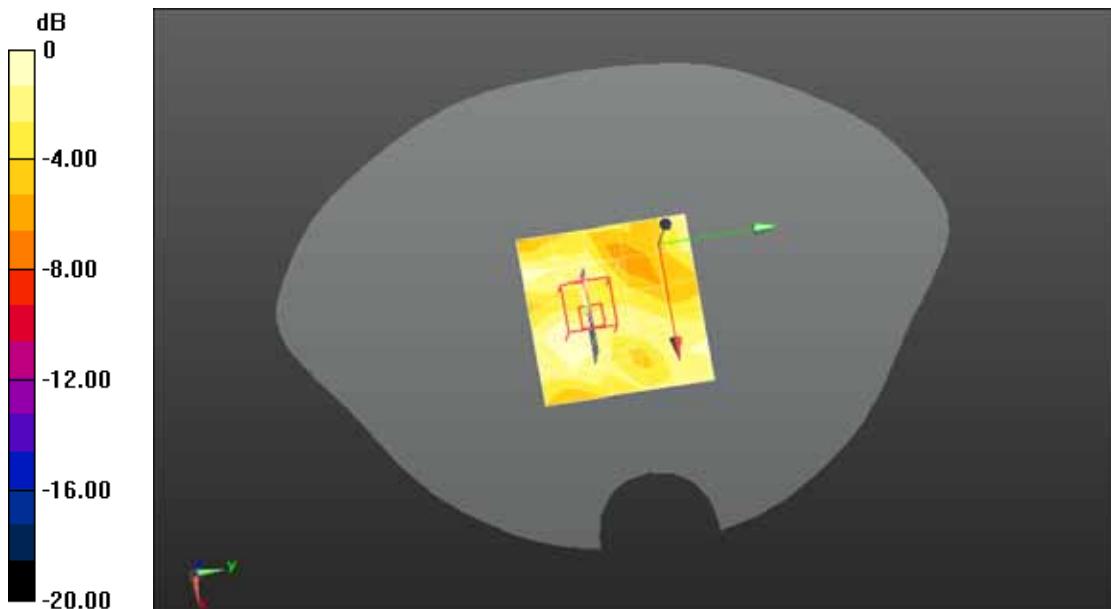
802.11b Low-Tip(Antenna Straight)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Tip/Area Scan (6x6x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.010 mW/g

**Configuration/802.11b Low-Tip/Zoom Scan (6x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 0.334 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.0430

**SAR(1 g) = 0.010 mW/g; SAR(10 g) = 0.00513 mW/g** Maximum value of SAR (measured) = 0.00972 mW/g

Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

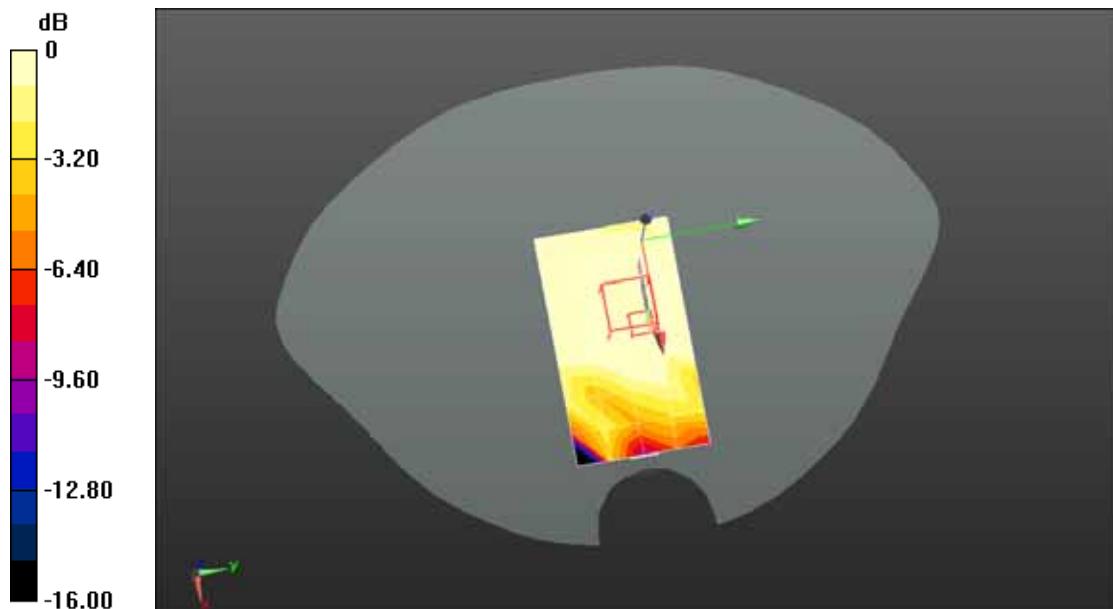
802.11b Low-Tip (Antenna Swivel 45°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Tip/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.016 mW/g

**Configuration/802.11b Low-Tip/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.089 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.0340

**SAR(1 g) = 0.013 mW/g; SAR(10 g) = 0.00655 mW/g** Maximum value of SAR (measured) = 0.014 mW/g

0 dB = 0.010mW/g = -40.00 dB mW/g

Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

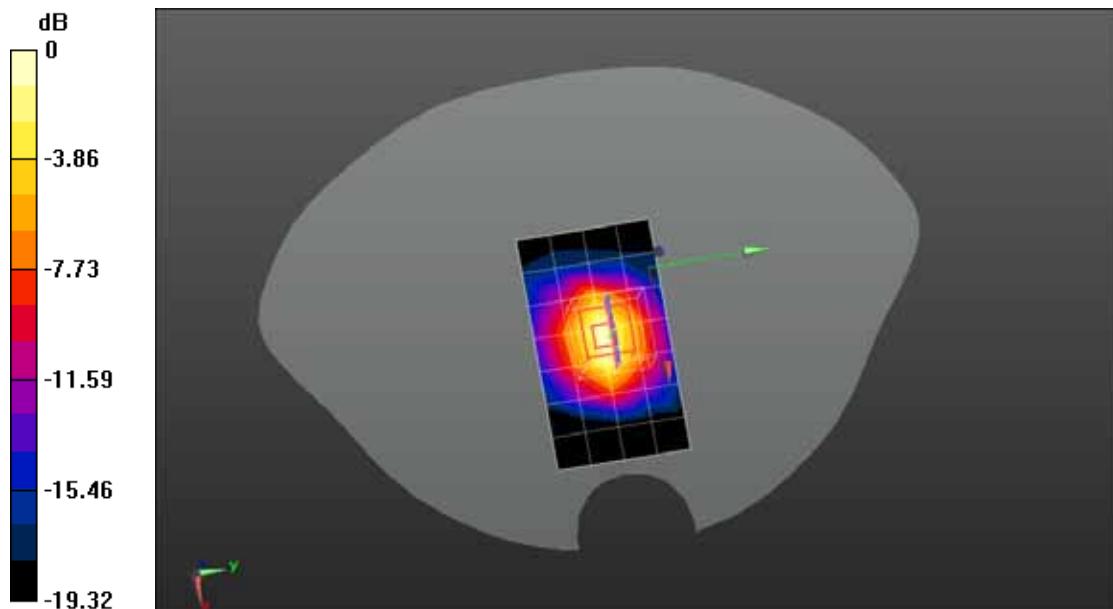
802.11b Low-Tip (Antenna Swivel 90°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11b Low-Tip/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.467 mW/g

**Configuration/802.11b Low-Tip/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.499 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.8660

**SAR(1 g) = 0.429 mW/g; SAR(10 g) = 0.201 mW/g** Maximum value of SAR (measured) = 0.476 mW/g

0 dB = 0.480mW/g = -6.38 dB mW/g

Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

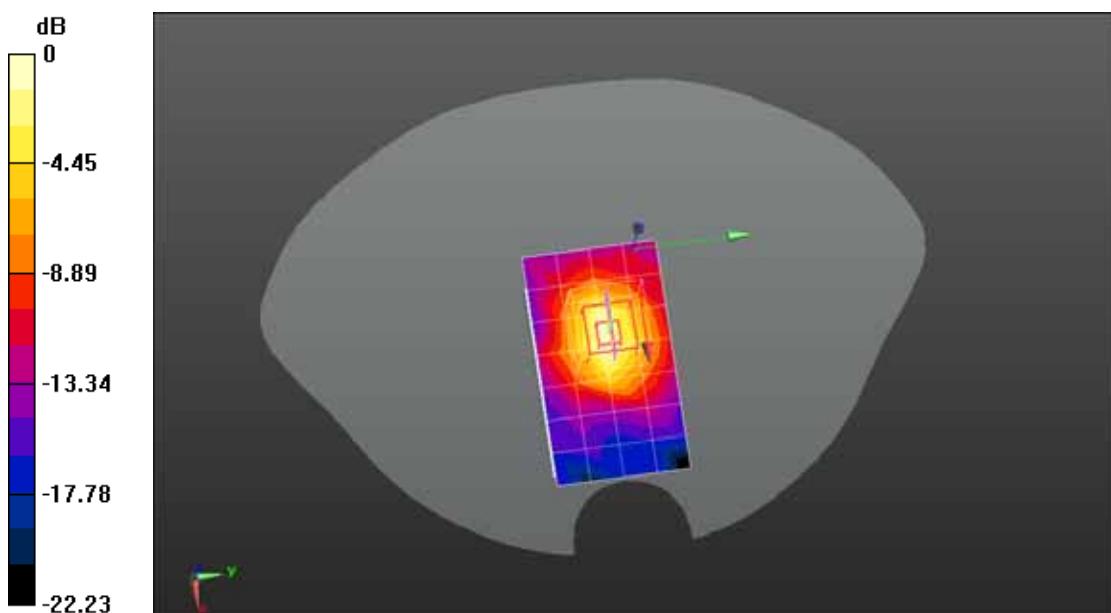
802.11g Low-Horizontal Up(Antenna Swivel 0°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11g; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11g Low-Horizontal Up/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm  
Maximum value of SAR (measured) = 0.198 mW/g

**Configuration/802.11g Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.773 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 0.3840

**SAR(1 g) = 0.189 mW/g; SAR(10 g) = 0.089 mW/g** Maximum value of SAR (measured) = 0.215 mW/g



0 dB = 0.210mW/g = -13.56 dB mW/g

Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

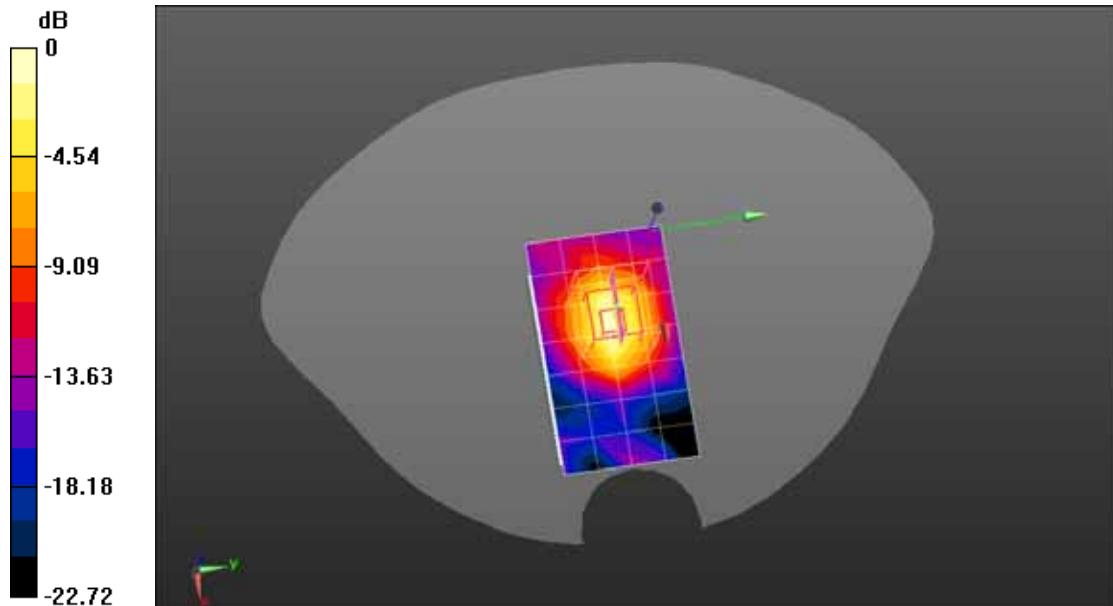
802.11n(20MHz) Low-Horizontal Up(Antenna Swivel 0°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11n(20MHz); Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used:  $f = 2412$  MHz;  $\sigma = 1.94$  mho/m;  $\epsilon_r = 52.23$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11n(20MHz) Low-Horizontal Up/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.225 mW/g

**Configuration/802.11n(20MHz) Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.776 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.4280

SAR(1 g) = 0.213 mW/g; SAR(10 g) = 0.104 mW/g Maximum value of SAR (measured) = 0.237 mW/g



0 dB = 0.240mW/g = -12.40 dB mW/g

Date/Time: 23-04-2012

Test Laboratory: QuieTek Lab

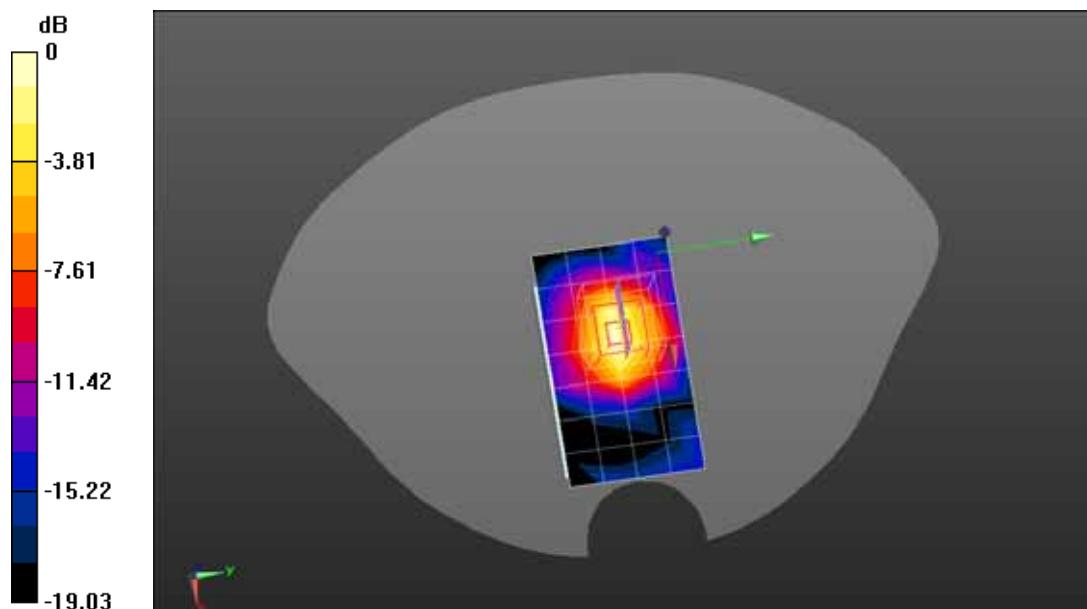
802.11n(40MHz) High-Horizontal Up(Antenna Swivel 0°)

**DUT: Wireless USB Adaptor; Type: GWF-3S4T**

Communication System: Wi-Fi; Communication System Band: 802.11n(40MHz); Duty Cycle: 1:1; Frequency: 2452 MHz; Medium parameters used:  $f = 2452$  MHz;  $\sigma = 2$  mho/m;  $\epsilon_r = 52.05$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Flat Section

Ambient temperature ( ): 21.5, Liquid temperature ( ): 21.0

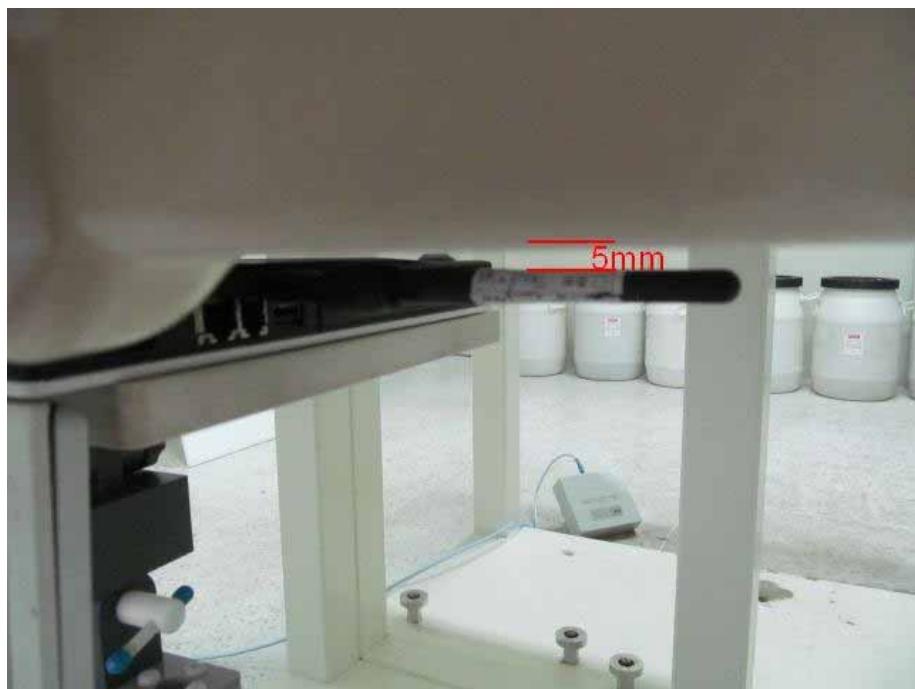
DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 23/01/2012
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Configuration/802.11n(40MHz) High-Horizontal Up/Area Scan (8x5x1):** Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.225 mW/g

**Configuration/802.11n(40MHz) High-Horizontal Up/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.414 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.4400


**SAR(1 g) = 0.219 mW/g; SAR(10 g) = 0.105 mW/g** Maximum value of SAR (measured) = 0.240 mW/g

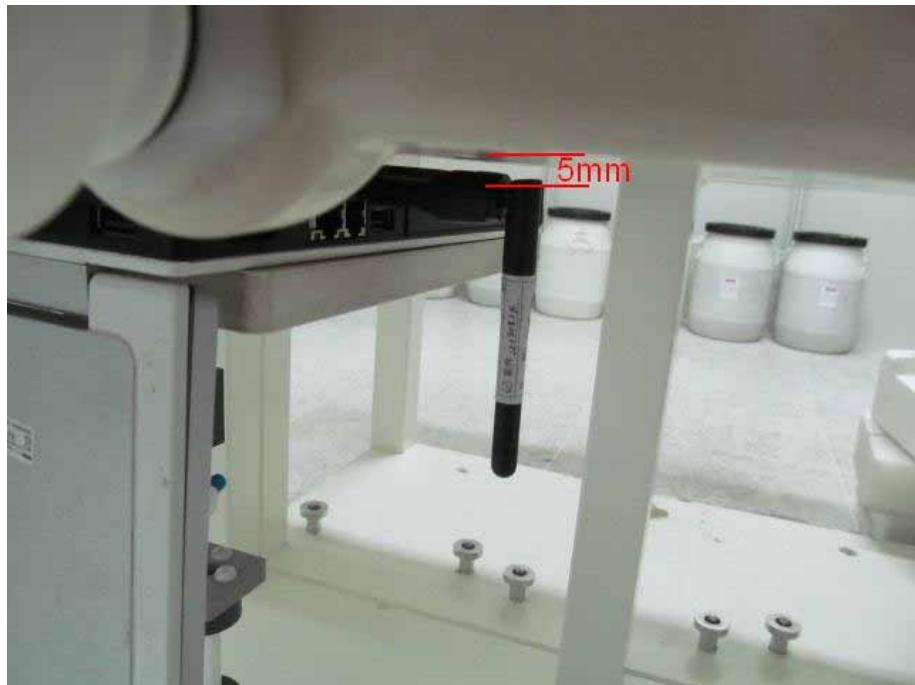


0 dB = 0.240mW/g = -12.40 dB mW/g

## Appendix C. Test Setup Photographs & EUT Photographs

### Test Setup Photographs




(Horizontal Up-Antenna Straight)



(Horizontal Up-Antenna Swivel 0°)



(Horizontal Up-Antenna Swivel 45°)



(Horizontal Up-Antenna Swivel 90°)



(Horizontal Down-Antenna Straight)



(Horizontal Down-Antenna Swivel 0°)



(Vertical Front-Antenna Straight)



(Vertical Front-Antenna Swivel 0°)



(Vertical Front-Antenna Swivel 45°)



(Vertical Front-Antenna Swivel 90°)



(Vertical Back-Antenna Straight)

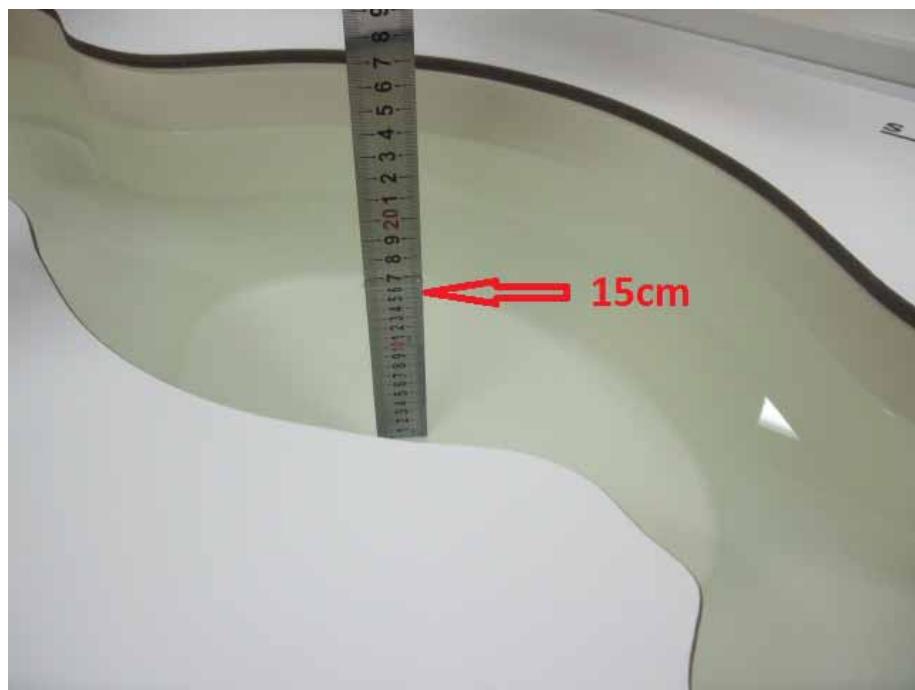


(Vertical Back-Antenna Swivel 0°)



(Tip-Antenna Straight)




(Tip-Antenna Swivel 45°)



(Tip- Antenna Swivel 90°)

**Depth of the liquid in the phantom – Zoom in**

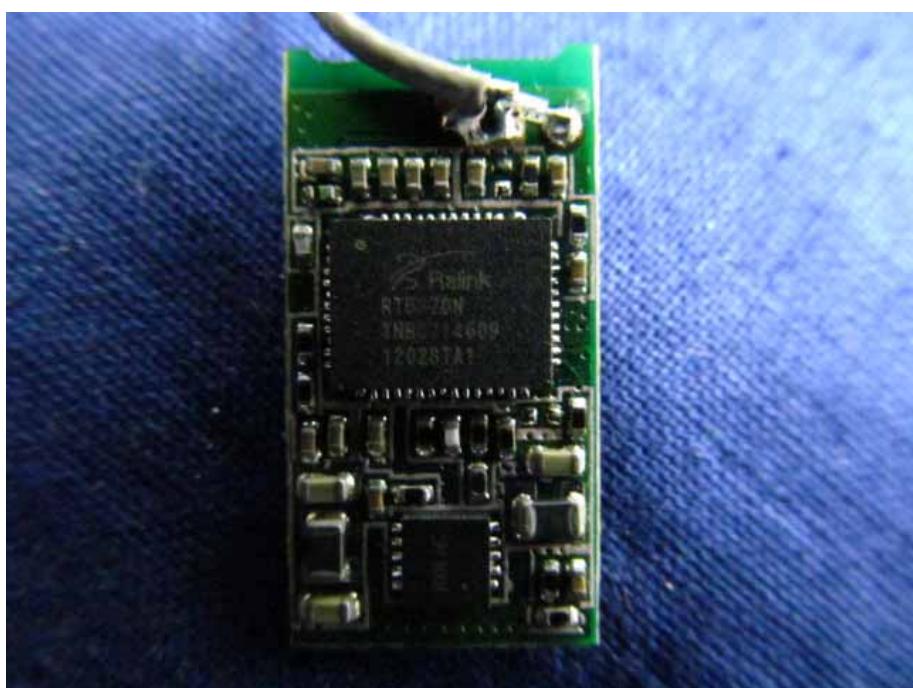
Note: The position used in the measurements were according to IEEE 1528 - 2003



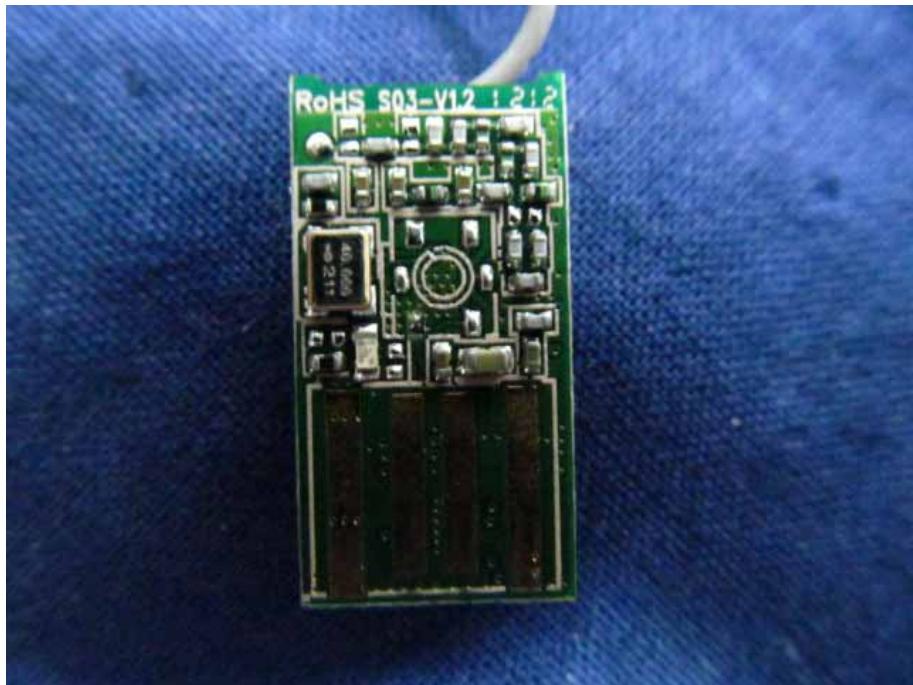
**EUT Photographs**

(1) EUT Photo




(2) EUT Photo




(3) EUT Photo



(4) EUT Photo



(5) EUT Photo



## Appendix D. Probe Calibration Data

Calibration Laboratory of  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst  
C Service suisse d'étalonnage  
S Servizio svizzero di taratura  
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client: Quietek-CN (Auden)

Certificate No: EX3-3710\_Mar12

### CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3710

Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4,  
QA CAL-25.v4  
Calibration procedure for dosimetric E-field probes

Calibration date: March 12, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).  
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^\circ\text{C}$  and humidity  $< 70\%$ .

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 31-Mar-11 (No. 217-01372)         | Apr-12                 |
| Power sensor E4412A        | NY41498087      | 31-Mar-11 (No. 217-01372)         | Apr-12                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 29-Mar-11 (No. 217-01369)         | Apr-12                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-11 (No. 217-01367)         | Apr-12                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 29-Mar-11 (No. 217-01370)         | Apr-12                 |
| Reference Probe ES3DV2     | SN: 3013        | 29-Dec-11 (No. ES3-3013_Dec11)    | Dec-12                 |
| DAE4                       | SN: 654         | 3-May-11 (No. DAE4-654_May11)     | May-12                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-11)  | In house check: Apr-13 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 |

|                |                                                         |            |
|----------------|---------------------------------------------------------|------------|
| Calibrated by: | Name: Jeton Kastrati<br>Function: Laboratory Technician | Signature: |
| Approved by:   | Name: Katja Pokovic<br>Function: Technical Manager      | Signature: |

Issued: March 13, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst  
C Service suisse d'étalonnage  
S Servizio svizzero di taratura  
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

#### Glossary:

|                          |                                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSL                      | tissue simulating liquid                                                                                                                             |
| NORM $x,y,z$             | sensitivity in free space                                                                                                                            |
| ConvF                    | sensitivity in TSL / NORM $x,y,z$                                                                                                                    |
| DCP                      | diode compression point                                                                                                                              |
| CF                       | crest factor (1/duty_cycle) of the RF signal                                                                                                         |
| A, B, C                  | modulation dependent linearization parameters                                                                                                        |
| Polarization $\varphi$   | $\varphi$ rotation around probe axis                                                                                                                 |
| Polarization $\vartheta$ | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis |

#### Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$ : Assessed for E-field polarization  $\vartheta = 0$  ( $f \leq 900$  MHz in TEM-cell;  $f > 1800$  MHz: R22 waveguide).  $NORM_{x,y,z}$  are only intermediate values, i.e., the uncertainties of  $NORM_{x,y,z}$  does not affect the  $E^2$ -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency\_response$  (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$ : DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- $PAR$ : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z$ ;  $VRx,y,z$ :  $A, B, C$  are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \leq 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for  $f > 800$  MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to  $NORM_{x,y,z} * ConvF$  whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 – SN:3710

March 12, 2012

# Probe EX3DV4

## SN:3710

Manufactured: July 21, 2009  
Repaired: February 21, 2012  
Calibrated: March 12, 2012

Calibrated for DASY/EASY Systems  
(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3710

March 12, 2012

**DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710****Basic Calibration Parameters**

|                                                           | Sensor X | Sensor Y | Sensor Z | Unc (k=2)     |
|-----------------------------------------------------------|----------|----------|----------|---------------|
| Norm ( $\mu\text{V}/(\text{V}/\text{m})^2$ ) <sup>A</sup> | 0.51     | 0.56     | 0.44     | $\pm 10.1 \%$ |
| DCP (mV) <sup>B</sup>                                     | 101.3    | 98.9     | 100.9    |               |

**Modulation Calibration Parameters**

| UID   | Communication System Name | PAR  |   | A<br>dB | B<br>dB | C<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-------|---------------------------|------|---|---------|---------|---------|----------|---------------------------|
| 10000 | CW                        | 0.00 | X | 0.00    | 0.00    | 1.00    | 114.4    | $\pm 2.2 \%$              |
|       |                           |      | Y | 0.00    | 0.00    | 1.00    | 94.4     |                           |
|       |                           |      | Z | 0.00    | 0.00    | 1.00    | 114.2    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of NormX,Y,Z do not affect the  $E^2$ -field uncertainty inside TSL (see Pages 5 and 6).

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3710

March 12, 2012

**DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710**

Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>c</sup> | Relative Permittivity <sup>f</sup> | Conductivity (S/m) <sup>f</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth (mm) | Unct. (k=2) |
|----------------------|------------------------------------|---------------------------------|---------|---------|---------|-------|------------|-------------|
| 450                  | 43.5                               | 0.87                            | 9.61    | 9.61    | 9.61    | 0.12  | 1.00       | ± 13.4 %    |
| 750                  | 41.9                               | 0.89                            | 9.51    | 9.51    | 9.51    | 0.24  | 1.16       | ± 12.0 %    |
| 835                  | 41.5                               | 0.90                            | 9.18    | 9.18    | 9.18    | 0.22  | 1.15       | ± 12.0 %    |
| 900                  | 41.5                               | 0.97                            | 8.97    | 8.97    | 8.97    | 0.19  | 1.35       | ± 12.0 %    |
| 1810                 | 40.0                               | 1.40                            | 8.32    | 8.32    | 8.32    | 0.79  | 0.60       | ± 12.0 %    |
| 1900                 | 40.0                               | 1.40                            | 8.16    | 8.16    | 8.16    | 0.72  | 0.66       | ± 12.0 %    |
| 2450                 | 39.2                               | 1.80                            | 7.25    | 7.25    | 7.25    | 0.36  | 0.91       | ± 12.0 %    |
| 2600                 | 39.0                               | 1.96                            | 6.96    | 6.96    | 6.96    | 0.39  | 0.95       | ± 12.0 %    |
| 3500                 | 37.9                               | 2.91                            | 6.80    | 6.80    | 6.80    | 0.33  | 1.09       | ± 13.1 %    |
| 5200                 | 36.0                               | 4.66                            | 5.21    | 5.21    | 5.21    | 0.35  | 1.80       | ± 13.1 %    |
| 5500                 | 35.6                               | 4.96                            | 4.95    | 4.95    | 4.95    | 0.35  | 1.80       | ± 13.1 %    |
| 5800                 | 35.3                               | 5.27                            | 4.56    | 4.56    | 4.56    | 0.45  | 1.80       | ± 13.1 %    |

<sup>c</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>f</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

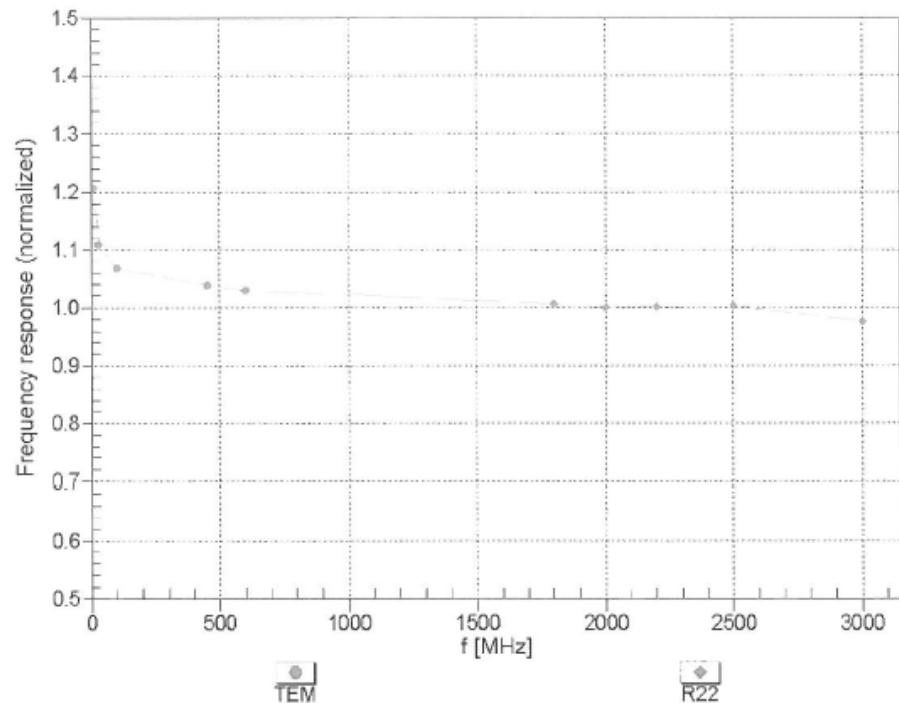
EX3DV4- SN:3710

March 12, 2012

**DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710**

Calibration Parameter Determined in Body Tissue Simulating Media

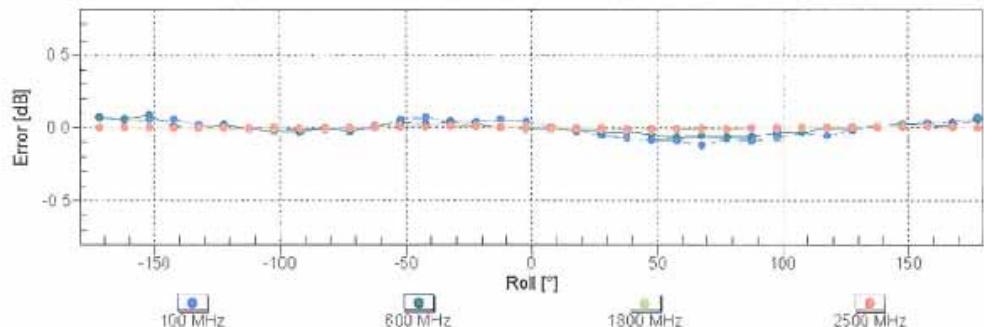
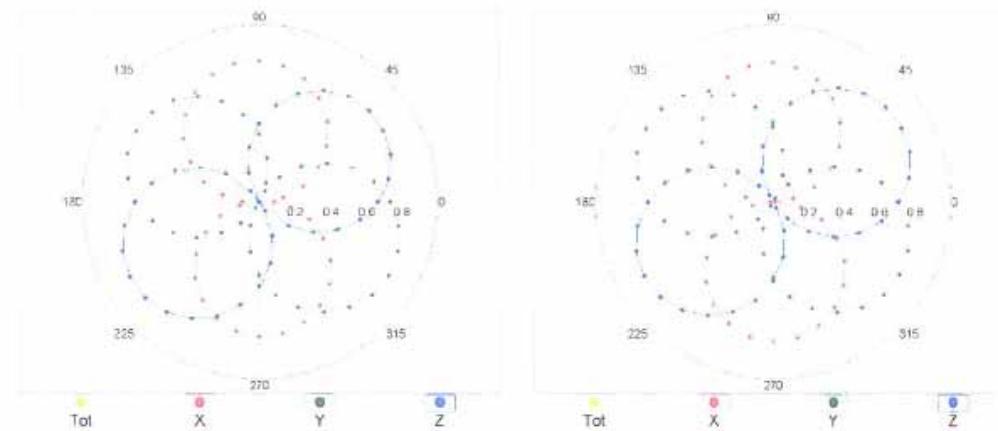
| f (MHz) <sup>c</sup> | Relative Permittivity <sup>f</sup> | Conductivity (S/m) <sup>f</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth (mm) | Unct. (k=2) |
|----------------------|------------------------------------|---------------------------------|---------|---------|---------|-------|------------|-------------|
| 450                  | 56.7                               | 0.94                            | 10.69   | 10.69   | 10.69   | 0.06  | 1.00       | ± 13.4 %    |
| 750                  | 55.5                               | 0.96                            | 9.33    | 9.33    | 9.33    | 0.43  | 0.86       | ± 12.0 %    |
| 835                  | 55.2                               | 0.97                            | 9.13    | 9.13    | 9.13    | 0.63  | 0.70       | ± 12.0 %    |
| 900                  | 55.0                               | 1.05                            | 9.04    | 9.04    | 9.04    | 0.39  | 0.88       | ± 12.0 %    |
| 1810                 | 53.3                               | 1.52                            | 7.73    | 7.73    | 7.73    | 0.33  | 1.10       | ± 12.0 %    |
| 1900                 | 53.3                               | 1.52                            | 7.43    | 7.43    | 7.43    | 0.42  | 0.90       | ± 12.0 %    |
| 2450                 | 52.7                               | 1.95                            | 6.98    | 6.98    | 6.98    | 0.79  | 0.59       | ± 12.0 %    |
| 2600                 | 52.5                               | 2.16                            | 6.68    | 6.68    | 6.68    | 0.79  | 0.52       | ± 12.0 %    |
| 3500                 | 51.3                               | 3.31                            | 6.23    | 6.23    | 6.23    | 0.36  | 1.13       | ± 13.1 %    |
| 5200                 | 49.0                               | 5.30                            | 4.20    | 4.20    | 4.20    | 0.50  | 1.90       | ± 13.1 %    |
| 5500                 | 48.6                               | 5.65                            | 3.82    | 3.82    | 3.82    | 0.50  | 1.90       | ± 13.1 %    |
| 5800                 | 48.2                               | 6.00                            | 3.89    | 3.89    | 3.89    | 0.60  | 1.90       | ± 13.1 %    |


<sup>c</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.<sup>f</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4– SN:3710

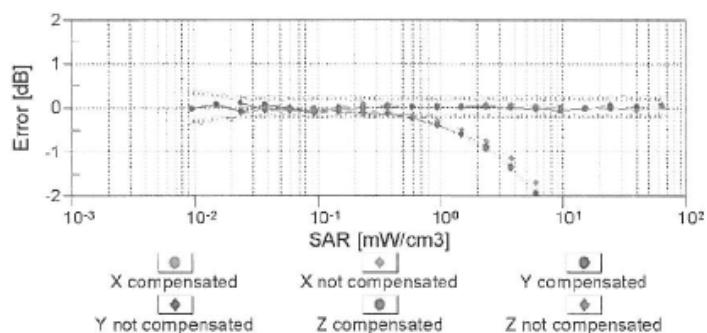
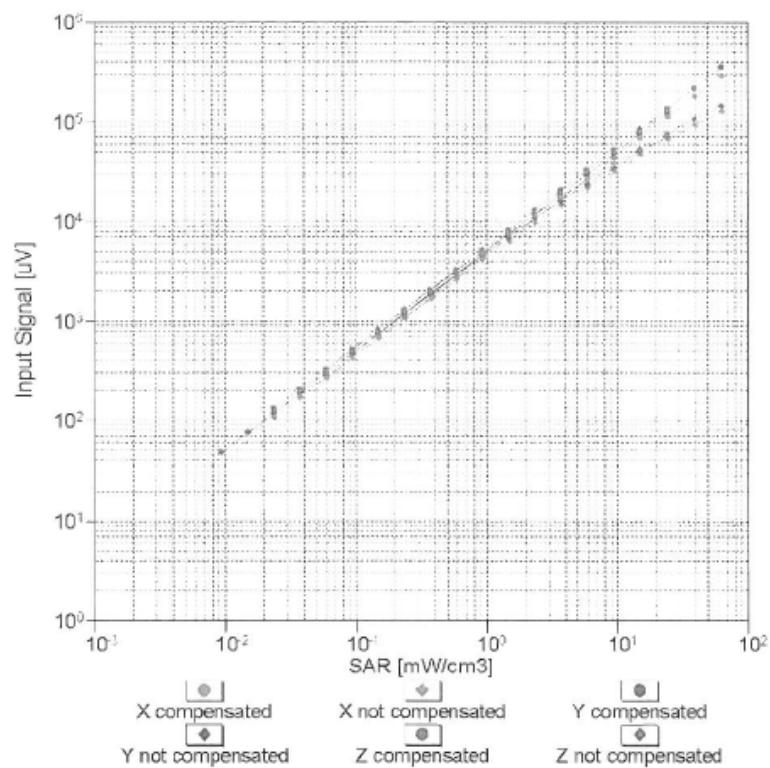
March 12, 2012

### Frequency Response of E-Field



(TEM-Cell:ifi110 EXX, Waveguide: R22)



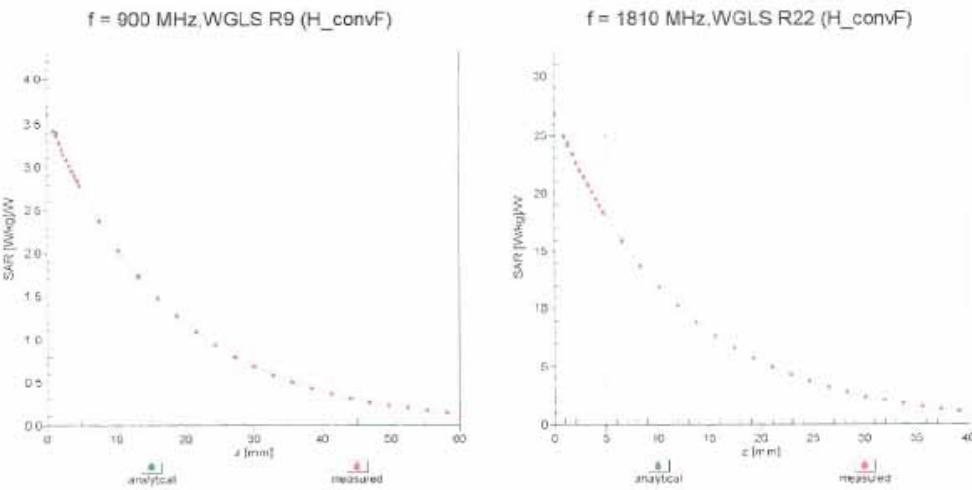
Uncertainty of Frequency Response of E-field:  $\pm 6.3\%$  ( $k=2$ )



EX3DV4- SN.3710

March 12, 2012

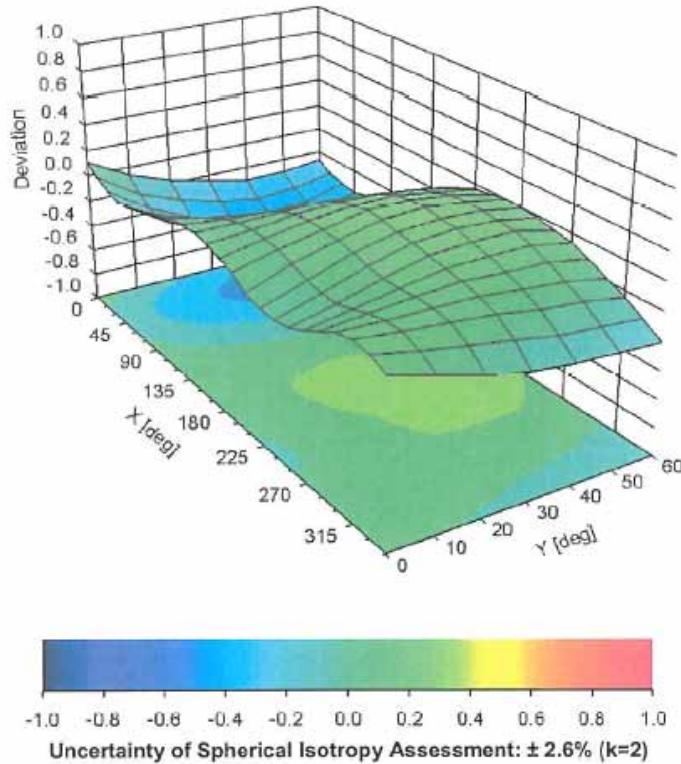
**Receiving Pattern ( $\phi$ ),  $\theta = 0^\circ$**  $f=600$  MHz, TEM $f=1800$  MHz, R22Uncertainty of Axial Isotropy Assessment:  $\pm 0.5\%$  ( $k=2$ )

EX3DV4- SN:3710


March 12, 2012

**Dynamic Range f(SAR<sub>head</sub>)**  
(TEM cell , f = 900 MHz)**Uncertainty of Linearity Assessment: ± 0.6% (k=2)**

EX3DV4- SN:3710


March 12, 2012

## Conversion Factor Assessment



## Deviation from Isotropy in Liquid

Error ( $\phi, \theta$ ),  $f = 900 \text{ MHz}$



EX3DV4- SN:3710

March 12, 2012

**DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710****Other Probe Parameters**

|                                               |                |
|-----------------------------------------------|----------------|
| Sensor Arrangement                            | Triangular     |
| Connector Angle (°)                           | Not applicable |
| Mechanical Surface Detection Mode             | enabled        |
| Optical Surface Detection Mode                | disabled       |
| Probe Overall Length                          | 337 mm         |
| Probe Body Diameter                           | 10 mm          |
| Tip Length                                    | 9 mm           |
| Tip Diameter                                  | 2.5 mm         |
| Probe Tip to Sensor X Calibration Point       | 1 mm           |
| Probe Tip to Sensor Y Calibration Point       | 1 mm           |
| Probe Tip to Sensor Z Calibration Point       | 1 mm           |
| Recommended Measurement Distance from Surface | 2 mm           |

**Appendix E. Dipole Calibration Data**

Calibration Laboratory of  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst  
C Service suisse d'étalonnage  
C Servizio svizzero di taratura  
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Quietek-CN (Auden)

Certificate No: D2450V2-839\_Feb12

## CALIBRATION CERTIFICATE

Object D2450V2 - SN: 839

Calibration procedure(s) QA CAL-05.v8  
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: February 23, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date   Certificate No.)    | Scheduled Calibration |
|-----------------------------|--------------------|--------------------------------|-----------------------|
| Power meter EPM-442A        | GB37480704         | 05-Oct-11 (No. 217-01451)      | Oct-12                |
| Power sensor HP 8481A       | US37292783         | 05-Oct-11 (No. 217-01451)      | Oct-12                |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 29-Mar-11 (No. 217-01368)      | Apr-12                |
| Type N mismatch combination | SN: 5017.2 / 06327 | 29-Mar-11 (No. 217-01371)      | Apr-12                |
| Reference Probe ES3DV3      | SN: 3205           | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12                |
| DAE4                        | SN: 601            | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12                |

| Secondary Standards       | ID #             | Check Date (in house)             | Scheduled Check        |
|---------------------------|------------------|-----------------------------------|------------------------|
| Power sensor HP 8481A     | MY41092317       | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 |
| RF generator R&S SMT-06   | 100005           | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 |
| Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 |

| Calibrated by: | Name           | Function              | Signature |
|----------------|----------------|-----------------------|-----------|
|                | Israe El-Naouq | Laboratory Technician |           |

| Approved by: | Name          | Function          | Signature |
|--------------|---------------|-------------------|-----------|
|              | Katja Pokovic | Technical Manager |           |

Issued: February 23, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

**Calibration Laboratory of**  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalonnage  
**S** Servizio svizzero di taratura  
**S** Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

**Glossary:**

|       |                                 |
|-------|---------------------------------|
| TSL   | tissue simulating liquid        |
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

**Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

**Additional Documentation:**

- d) DASY4/5 System Handbook

**Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

**Measurement Conditions**

DASY system configuration, as far as not given on page 1.

|                              |                        |             |
|------------------------------|------------------------|-------------|
| DASY Version                 | DASY5                  | V52.8.0     |
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

**Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.9 ± 6 %   | 1.86 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | ----         | ----             |

**SAR result with Head TSL**

|                                                       |                    |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
| SAR measured                                          | 250 mW input power | 13.2 mW / g               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 51.9 mW /g ± 17.0 % (k=2) |

|                                                         |                    |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
| SAR measured                                            | 250 mW input power | 6.09 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.1 mW /g ± 16.5 % (k=2) |

**Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.3 ± 6 %   | 2.02 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | ----         | ----             |

**SAR result with Body TSL**

|                                                       |                    |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
| SAR measured                                          | 250 mW input power | 12.4 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 48.7 mW / g ± 17.0 % (k=2) |

|                                                         |                    |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
| SAR measured                                            | 250 mW input power | 5.76 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.8 mW / g ± 16.5 % (k=2) |

**Appendix****Antenna Parameters with Head TSL**

|                                      |                               |
|--------------------------------------|-------------------------------|
| Impedance, transformed to feed point | 55.7 $\Omega$ - 1.0 $j\Omega$ |
| Return Loss                          | - 25.2 dB                     |

**Antenna Parameters with Body TSL**

|                                      |                               |
|--------------------------------------|-------------------------------|
| Impedance, transformed to feed point | 52.1 $\Omega$ + 1.0 $j\Omega$ |
| Return Loss                          | - 32.9 dB                     |

**General Antenna Parameters and Design**

|                                  |          |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.160 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

**Additional EUT Data**

|                 |               |
|-----------------|---------------|
| Manufactured by | SPEAG         |
| Manufactured on | July 20, 2009 |

**DASY5 Validation Report for Head TSL**

Date: 23.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839**

Communication System: CW; Frequency: 2450 MHz

Medium parameters used:  $f = 2450$  MHz;  $\sigma = 1.86$  mho/m;  $\epsilon_r = 38.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

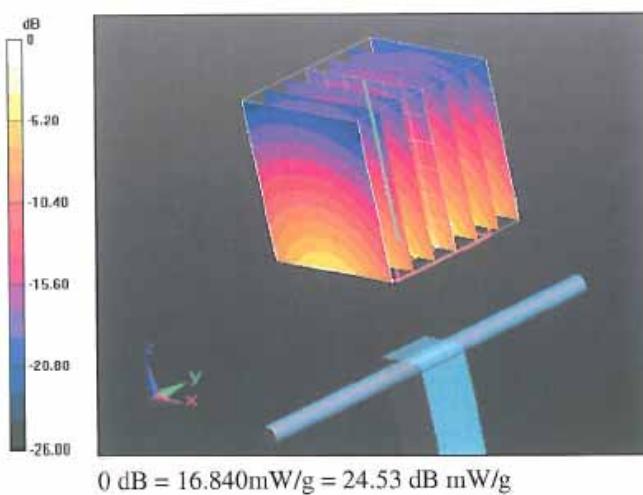
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

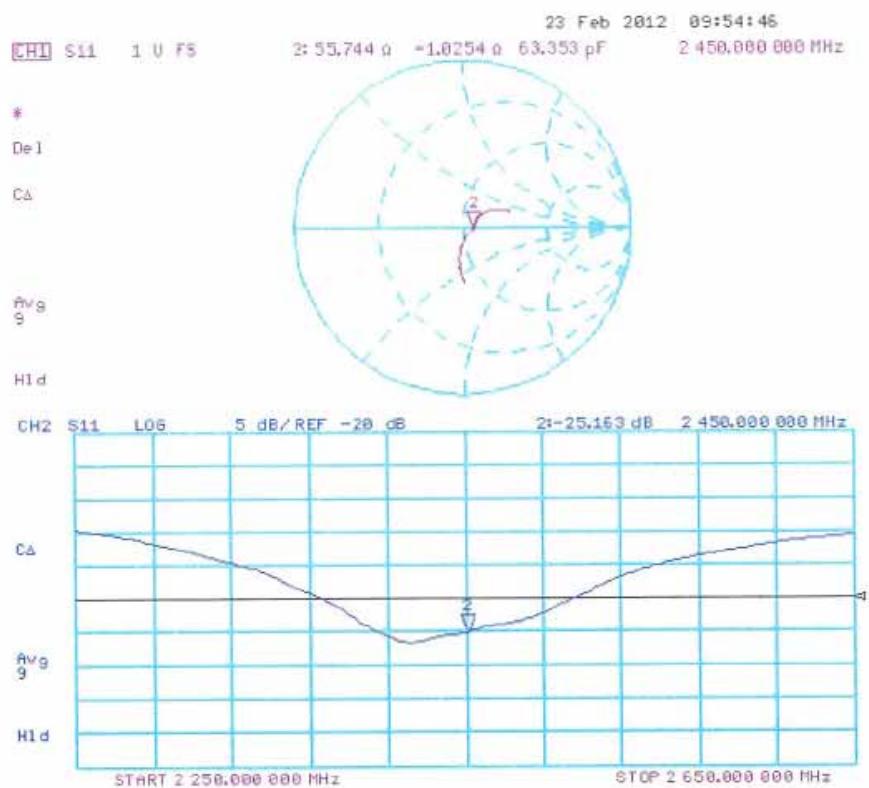
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

**Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:**


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.155 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 27.8700

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.09 mW/g

Maximum value of SAR (measured) = 16.839 mW/g



## Impedance Measurement Plot for Head TSL



**DASY5 Validation Report for Body TSL**

Date: 23.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839**

Communication System: CW; Frequency: 2450 MHz

Medium parameters used:  $f = 2450$  MHz;  $\sigma = 2.02$  mho/m;  $\epsilon_r = 52.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

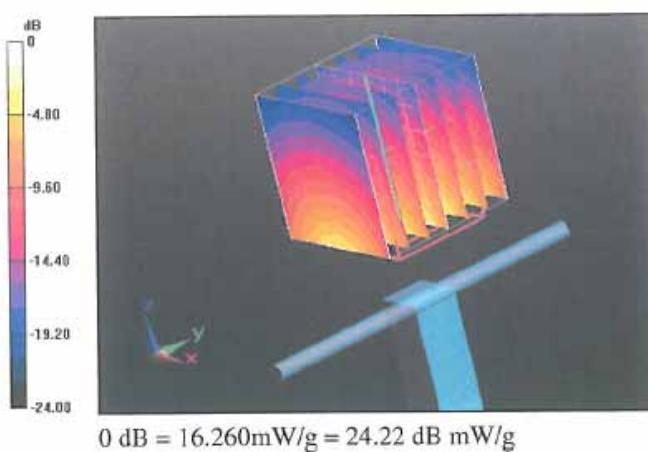
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

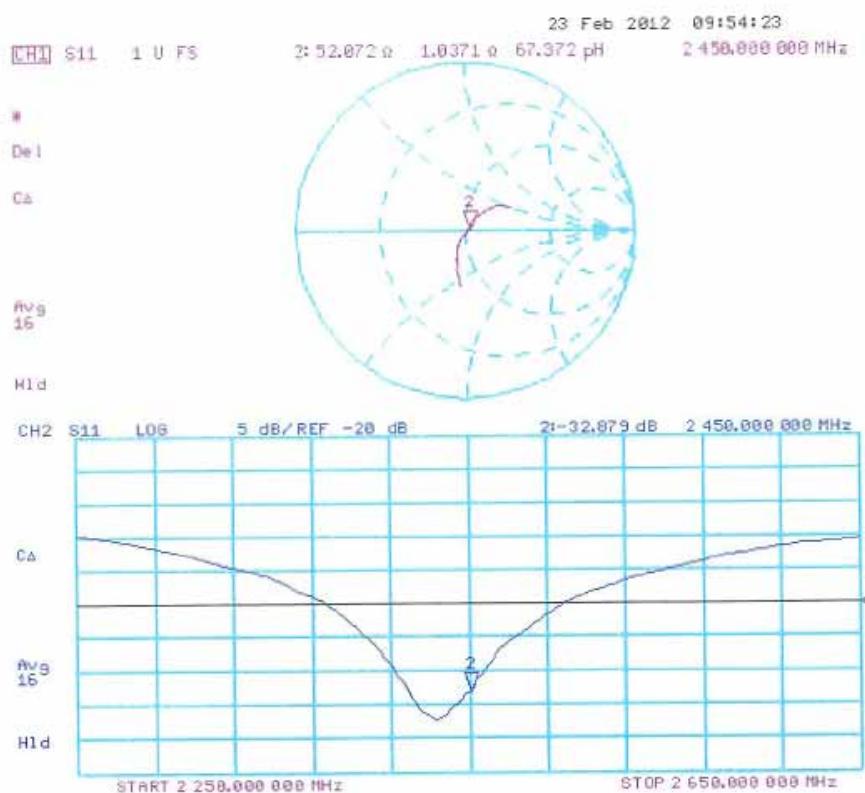
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

**Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:**


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.056 V/m; Power Drift = 0.0053 dB


Peak SAR (extrapolated) = 25.2250

SAR(1 g) = 12.4 mW/g; SAR(10 g) = 5.76 mW/g

Maximum value of SAR (measured) = 16.258 mW/g



## Impedance Measurement Plot for Body TSL



## Appendix F. DAE Calibration Data

Calibration Laboratory of  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst  
C Service suisse d'étalonnage  
S Servizio svizzero di taratura  
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Quietek-CN (Auden)

Certificate No: DAE4-1220\_Jan12

### CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BJ - SN: 1220

Calibration procedure(s) QA CAL-06.v24  
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: January 23, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^\circ\text{C}$  and humidity  $< 70\%$ .

Calibration Equipment used (M&amp;TE critical for calibration)

| Primary Standards             | ID #               | Cal Date (Certificate No.) | Scheduled Calibration  |
|-------------------------------|--------------------|----------------------------|------------------------|
| Keithley Multimeter Type 2001 | SN: 0810278        | 28-Sep-11 (No:11450)       | Sep-12                 |
| Secondary Standards           | ID #               | Check Date (in house)      | Scheduled Check        |
| Calibrator Box V2.1           | SE UWS 053 AA 1001 | 05-Jan-12 (in house check) | In house check: Jan-13 |

|                |                           |                        |               |
|----------------|---------------------------|------------------------|---------------|
| Calibrated by: | Name<br>Dominique Steffen | Function<br>Technician | Signature<br> |
| Approved by:   | Fin Bomholt               | R&D Director           |               |

Issued: January 23, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

**Calibration Laboratory of**  
Schmid & Partner  
Engineering AG  
Zeughausstrasse 43, 8004 Zurich, Switzerland



**S** Schweizerischer Kalibrierdienst  
**C** Service suisse d'étalonnage  
**C** Servizio svizzero di taratura  
**S** Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)  
The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

### Glossary

|                 |                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------|
| DAE             | data acquisition electronics                                                            |
| Connector angle | information used in DASY system to align probe sensor X to the robot coordinate system. |

### Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
  - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
  - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
  - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - *Power consumption*: Typical value for information. Supply currents in various operating modes.

**DC Voltage Measurement**

A/D - Converter Resolution nominal

High Range: 1LSB =  $6.1\mu\text{V}$ , full range =  $-100...+300\text{ mV}$ Low Range: 1LSB =  $61\text{nV}$ , full range =  $-1.....+3\text{mV}$ 

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                                | Y                                | Z                                |
|---------------------|----------------------------------|----------------------------------|----------------------------------|
| High Range          | $405.267 \pm 0.1\% (\text{k}=2)$ | $404.990 \pm 0.1\% (\text{k}=2)$ | $404.221 \pm 0.1\% (\text{k}=2)$ |
| Low Range           | $3.97762 \pm 0.7\% (\text{k}=2)$ | $3.99629 \pm 0.7\% (\text{k}=2)$ | $3.98707 \pm 0.7\% (\text{k}=2)$ |

**Connector Angle**

|                                           |                           |
|-------------------------------------------|---------------------------|
| Connector Angle to be used in DASY system | $176.5^\circ \pm 1^\circ$ |
|-------------------------------------------|---------------------------|

**Appendix****1. DC Voltage Linearity**

| High Range |         | Reading (µV) | Difference (µV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 199991.77    | -2.52           | -0.00     |
| Channel X  | + Input | 20001.19     | 1.01            | 0.01      |
| Channel X  | - Input | -19996.52    | 3.93            | -0.02     |
| Channel Y  | + Input | 199992.70    | -2.15           | -0.00     |
| Channel Y  | + Input | 19999.00     | -1.14           | -0.01     |
| Channel Y  | - Input | -19999.75    | 0.71            | -0.00     |
| Channel Z  | + Input | 199991.55    | -3.11           | -0.00     |
| Channel Z  | + Input | 19999.33     | -0.76           | -0.00     |
| Channel Z  | - Input | -20001.23    | -0.67           | 0.00      |

| Low Range |         | Reading (µV) | Difference (µV) | Error (%) |
|-----------|---------|--------------|-----------------|-----------|
| Channel X | + Input | 1999.14      | -1.60           | -0.08     |
| Channel X | + Input | 201.79       | 0.59            | 0.29      |
| Channel X | - Input | -198.19      | 0.48            | -0.24     |
| Channel Y | + Input | 1999.56      | -0.99           | -0.05     |
| Channel Y | + Input | 200.20       | -0.96           | -0.48     |
| Channel Y | - Input | -199.38      | -0.54           | 0.27      |
| Channel Z | + Input | 2000.07      | -0.52           | -0.03     |
| Channel Z | + Input | 200.32       | -0.83           | -0.41     |
| Channel Z | - Input | -199.60      | -0.78           | 0.39      |

**2. Common mode sensitivity**

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (µV) | Low Range<br>Average Reading (µV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 10.22                              | 8.65                              |
|           | -200                              | -6.99                              | -8.91                             |
| Channel Y | 200                               | -10.43                             | -11.02                            |
|           | -200                              | 7.95                               | 9.22                              |
| Channel Z | 200                               | 14.25                              | 13.66                             |
|           | -200                              | -15.77                             | -14.99                            |

**3. Channel separation**

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (µV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | -1.62          | -2.79          |
| Channel Y | 200                | 8.07           | -              | -2.95          |
| Channel Z | 200                | 7.90           | 6.93           | -              |

**4. AD-Converter Values with inputs shorted**

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15896            | 16218           |
| Channel Y | 16012            | 15924           |
| Channel Z | 15702            | 15710           |

**5. Input Offset Measurement**

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

|           | Average (µV) | min. Offset (µV) | max. Offset (µV) | Std. Deviation (µV) |
|-----------|--------------|------------------|------------------|---------------------|
| Channel X | 0.67         | -0.77            | 1.84             | 0.43                |
| Channel Y | -1.44        | -2.35            | -0.02            | 0.39                |
| Channel Z | -0.81        | -1.60            | 0.01             | 0.37                |

**6. Input Offset Current**

Nominal Input circuitry offset current on all channels: &lt;25fA

**7. Input Resistance** (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

**8. Low Battery Alarm Voltage** (Typical values for information)

| Typical values | Alarm Level (VDC) |
|----------------|-------------------|
| Supply (+ Vcc) | +7.9              |
| Supply (- Vcc) | -7.6              |

**9. Power Consumption** (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |