# ENGINEERING TEST REPORT



2.4GHz Amplified RF Module Model: 348

FCC ID: YUS348

Applicant:

Tap Acquisition, Inc. DBA TapDynamics 4500 Westgrove Dr., Suite 215 Addison, TX 75001

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247
Frequency Hopping Spread Spectrum Operating in 2400 – 2483.5 MHz Band

UltraTech's File No.: EVTA-001F15C247

This Test report is Issued under the Authority of Tri M. Luu Vice President of Engineering UltraTech Group of Labs

Date: September 30, 2011

Report Prepared by: Dan Huynh | Tested by: Mr. Hung Trinh

Issued Date: September 30, 2011 Test Dates: February 18 ~ April 6, 2011

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

# **UltraTech**

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

 $oldsymbol{L}$ 

**FCC** 











91038

1309

46390-2049

NvLap Lab Code 200093-0

SL2-IN-E-1119R

#### **TABLE OF CONTENTS**

| <b>EXHIBIT</b>                                                       | 1.                                                                 | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1      |
|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1.1.<br>1.2.<br>1.3.                                                 | RELAT                                                              | E<br>ED SUBMITTAL(S)/GRANT(S)<br>ATIVE REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                    | 1      |
| EXHIBIT                                                              | 2.                                                                 | PERFORMANCE ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2      |
| 2.1.<br>2.2.<br>2.3.<br>2.4.<br>2.5.<br>2.6.                         | EQUIP<br>EUT'S<br>ASSO<br>LIST C                                   | T INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3<br>3 |
| EXHIBIT                                                              | 3.                                                                 | EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS                                                                                                                                                                                                                                                                                                                                                                                                             | 5      |
| 3.1.<br>3.2.                                                         | CLIMA<br>OPERA                                                     | TE TEST CONDITIONSATIONAL TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>5 |
| EXHIBIT                                                              | 4.                                                                 | SUMMARY OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      |
| 4.1.<br>4.2.<br>4.3.                                                 | APPLI<br>MODIF                                                     | TION OF TESTSCABILITY & SUMMARY OF EMC EMISSION TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                         | 6      |
| EXHIBIT                                                              |                                                                    | MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 5.1.<br>5.2.<br>5.3.<br>5.4.<br>5.5.<br>5.6.<br>5.7.<br>5.8.<br>5.9. | MEASI<br>MEASI<br>ESSEN<br>AC PO<br>COMP<br>PROVI<br>PEAK<br>TRANS | PROCEDURES  JREMENT UNCERTAINTIES  JREMENT EQUIPMENT USED  JITIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER  WER LINE CONDUCTED EMISSIONS [§15.207(a)]  LIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS  SIONS FOR FREQUENCY HOPPING SYSTEMS [§ 15.247(a)(1)]  CONDUCTED OUTPUT POWER [§ 15.247(b)]  SMITTER BAND-EDGE & SPURIOUS CONDUCTED EMISSIONS [§ 15.247(d)]  SMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205] |        |
| 5.11. <b>EXHIBIT</b>                                                 |                                                                    | POSURE REQUIRMENTS [§§ 15.247(e)(i), 1.1310 & 2.1091]                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| EXHIBIT                                                              | ь.                                                                 | TEST EQUIPMENT LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63     |
| EXHIBIT                                                              | 7.                                                                 | MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64     |
| 7.1.<br>7.2.                                                         |                                                                    | ONDUCTED EMISSION MEASUREMENT UNCERTAINTYTED EMISSION MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                        |        |

#### **EXHIBIT 1. INTRODUCTION**

#### 1.1. SCOPE

| Reference:                    | FCC Part 15, Subpart C, Section 15.247                                                                                                                                                                                                                                                                       |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Title:                        | Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15                                                                                                                                                                                                                                     |  |
| Purpose of Test:              | Equipment Certification for Frequency Hopping Spread Spectrum Transmitter Operating in the Frequency Band 2400-2483.5 MHz.                                                                                                                                                                                   |  |
| Test Procedures:              | Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. |  |
| Environmental Classification: | [x] Commercial, industrial or business environment [x] Residential environment                                                                                                                                                                                                                               |  |

# 1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

#### 1.3. NORMATIVE REFERENCES

| Publication                    | Year                         | Title                                                                                                                                                               |
|--------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Parts 0-19              | 2010                         | Code of Federal Regulations (CFR), Title 47 – Telecommunication                                                                                                     |
| ANSI C63.4 2003                |                              | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |
| ANSI C63.10                    | 2009                         | American National Standard for Testing Unlicensed Wireless Devices                                                                                                  |
| CISPR 22 &<br>EN 55022         | 2008-09, Edition 6.0<br>2006 | Information Technology Equipment - Radio Disturbance<br>Characteristics - Limits and Methods of Measurement                                                         |
| CISPR 16-1-1<br>+A1<br>+A2     | 2006<br>2006<br>2007         | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus                                                     |
| CISPR 16-1-2<br>+A1<br>+A2     | 2003<br>2004<br>2006         | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances                                                  |
| FCC Public Notice<br>DA 00-705 | 2000                         | Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems                                                                                     |

## **EXHIBIT 2. PERFORMANCE ASSESSMENT**

#### 2.1. CLIENT INFORMATION

| APPLICANT       |                                                                                                     |  |
|-----------------|-----------------------------------------------------------------------------------------------------|--|
| Name:           | Tap Acquisition, Inc. DBA TapDynamics                                                               |  |
| Address:        | 4500 Westgrove Dr., Suite 215<br>Addison, TX 75001<br>USA                                           |  |
| Contact Person: | Mr. Shawn C. Nielsen Phone #: 519-342-1004 Fax #: 519-886-1003 Email Address: snielsen@gabaeind.com |  |

| MANUFACTURER    |                                                                                                     |  |
|-----------------|-----------------------------------------------------------------------------------------------------|--|
| Name:           | Tap Acquisition, Inc. DBA TapDynamics                                                               |  |
| Address:        | 4500 Westgrove Dr., Suite 215<br>Addison, TX 75001<br>USA                                           |  |
| Contact Person: | Mr. Shawn C. Nielsen Phone #: 519-342-1004 Fax #: 519-886-1003 Email Address: snielsen@gabaeind.com |  |

## 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

| Brand Name:                    | Tap Acquisition, Inc. DBA TapDynamics                    |
|--------------------------------|----------------------------------------------------------|
| Product Name:                  | 2.4GHz Amplified RF Module                               |
| Model Name or Number:          | 348                                                      |
| Serial Number:                 | Test Sample                                              |
| Type of Equipment:             | Spread Spectrum Transmitter                              |
| Input Power Supply Type:       | External power supply                                    |
| Primary User Functions of EUT: | Remote control or monitoring through RF Transceiver link |

#### 2.3. **EUT'S TECHNICAL SPECIFICATIONS**

| TRANSMITTER                     |                                     |  |
|---------------------------------|-------------------------------------|--|
| Equipment Type:                 | Mobile     Base Station (fixed use) |  |
| Intended Operating Environment: | Commercial, industrial or business  |  |
| Power Supply Requirement:       | 3.3VDC@25mA<br>5VDC@250mA max.      |  |
| RF Output Power Rating:         | 25.21 dBm (332 mW) Peak             |  |
| Operating Frequency Range:      | 2402 – 2476 MHz                     |  |
| RF Output Impedance:            | 50 Ω                                |  |
| Channel Spacing:                | 1 MHz                               |  |
| Duty Cycle:                     | 100%                                |  |
| Modulation Type:                | GFSK                                |  |
| Oscillator Frequencies:         | 16 MHz                              |  |
| Antenna Connector Types:        | Integral                            |  |

#### 2.4. **ASSOCIATED ANTENNA DESCRIPTION**

| Antenna:         |                         |  |
|------------------|-------------------------|--|
| Manufacturer:    | Fractus                 |  |
| Type:            | Fractal Array, SMT chip |  |
| Model:           | FR05-S1-N-0-001         |  |
| Frequency Range: | 2.4-2.5GHz              |  |
| Impedance:       | 50 Ohm                  |  |
| Gain (dBi):      | 2.2                     |  |

#### 2.5. **LIST OF EUT'S PORTS**

| Port<br>Number | EUT's Port Description | Number of Identical Ports | Connector Type | Cable Type<br>(Shielded/Non-shielded) |
|----------------|------------------------|---------------------------|----------------|---------------------------------------|
| None.          |                        |                           |                |                                       |

#### 2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

| Ancillary Equipment # 1  |                                       |  |
|--------------------------|---------------------------------------|--|
| Description:             | Test Jig                              |  |
| Brand name:              | Tap Acquisition, Inc. DBA TapDynamics |  |
| Model Name or Number:    | N/A                                   |  |
| Serial Number:           | N/A                                   |  |
| Connected to EUT's Port: | Module pin signals                    |  |

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

## **EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS**

#### 3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

| Temperature:        | 21 to 23 °C      |
|---------------------|------------------|
| Humidity:           | 45 to 58%        |
| Pressure:           | 102 kPa          |
| Power Input Source: | 3.3 VDC or 5 VDC |

#### 3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

| Operating Modes:          | <ul> <li>Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements.</li> <li>The EUT operates in normal Frequency Hopping mode for occupancy duration, and frequency separation.</li> </ul>                                               |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special Test Software:    | Special software provided by the applicant was installed to allow the EUT to operate in hopping mode or at each channel frequency continuously. For example, the transmitter will be operated at each of lowest, middle and highest frequencies individually continuously during testing |
| Special Hardware Used:    | Test Jig                                                                                                                                                                                                                                                                                 |
| Transmitter Test Antenna: | The EUT is tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment as described with the test results.                                                                                                                                   |

| Transmitter Test Signals                                                                                          |                         |
|-------------------------------------------------------------------------------------------------------------------|-------------------------|
| Frequency Band(s):                                                                                                | 2402 - 2476 MHz         |
| Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.) | 2402, 2439 and 2476 MHz |
| RF Power Output: (measured maximum output power at antenna terminals)                                             | 25.21 dBm (332 mW) Peak |
| Normal Test Modulation:                                                                                           | GFSK                    |
| Modulating Signal Source:                                                                                         | Internal                |

#### **EXHIBIT 4. SUMMARY OF TEST RESULTS**

#### 4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the
  Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and
  found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site
  measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC
  File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada Site No.: 2049A-3, Expiry Date:
  May 1, 2011)

#### 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

| FCC Section(s)                            | Test Requirements                                                                 | Compliance*<br>(Yes/No) |
|-------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|
| 15.203                                    | Antenna requirements                                                              | Yes**                   |
| 15.207(a)                                 | AC Power Line Conducted Emissions                                                 | Yes                     |
| 15.247(a)(1)                              | Provisions for Frequency Hopping Systems                                          | Yes                     |
| 15.247(b)                                 | Peak Conducted Output Power                                                       | Yes                     |
| 15.247(d)                                 | Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal | Yes                     |
| 15.247(d), 15.209 & 15.205                | Transmitter Spurious Radiated Emissions                                           | Yes                     |
| 15.247(i) 1.1307, 1.1310, 2.1091 & 2.1093 | RF Exposure                                                                       | Yes                     |

<sup>\*</sup> Preliminary tests conducted with 3.3 VDC and 5 VDC supplied to the test jig board to determine the worst-case test configuration, the power measurement results indicate similar power levels. Therefore, tests conducted from this point on, except where otherwise specified, shall be performed with 3.3 VDC input to the test jig board.

#### 4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

<sup>\*\*</sup> The EUT complies with the requirement; it employs a unique (non-standard) antenna connector for all external antennas proposed for use with the EUT or permanently mounted integral antenna.

# EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

#### 5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in FCC Public Notice @ DA 00-705 (March 30, 2000) – Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

#### 5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement. Refer to Exhibit 7 for Measurement Uncertainties.

#### 5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

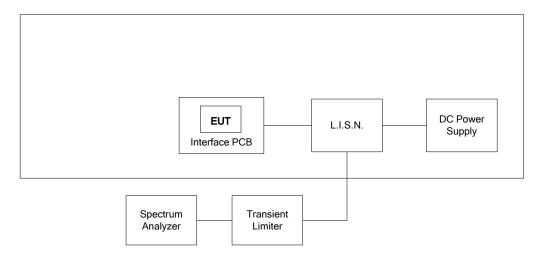
#### 5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER

Remote control or monitoring through RF Transceiver link.

# 5.5. AC POWER LINE CONDUCTED EMISSIONS [§15.207(a)]

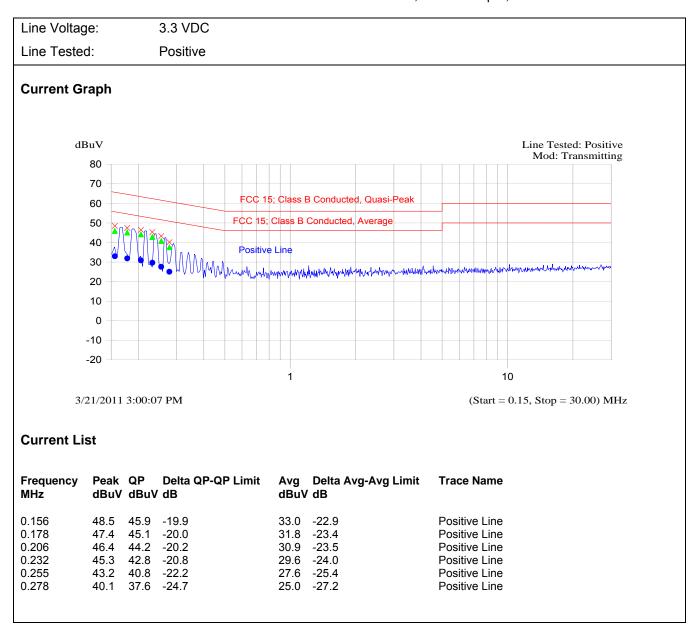
#### 5.5.1. Limit(s)

The equipment shall meet the limits of the following table:


| Frequency of emission     | Conducted Limit (dBμV) |                       |  |
|---------------------------|------------------------|-----------------------|--|
| (MHz)                     | Quasi-peak             | Average               |  |
| 0.15–0.5<br>0.5–5<br>5-30 | 66 to 56*56            | 56 to 46*<br>46<br>50 |  |

<sup>\*</sup>Decreases linearly with the logarithm of the frequency

#### 5.5.2. Method of Measurements


**ANSI C63.4** 

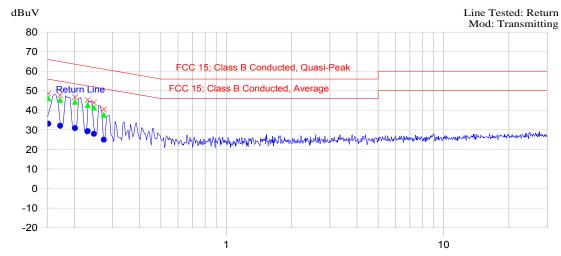
# 5.5.3. Test Arrangement



#### 5.5.4. Test Data

Plot 5.5.4.1. Power Line Conducted Emissions, 3.3 VDC Input, Tx Mode




Plot 5.5.4.2. Power Line Conducted Emissions, 3.3 VDC Input, Tx Mode

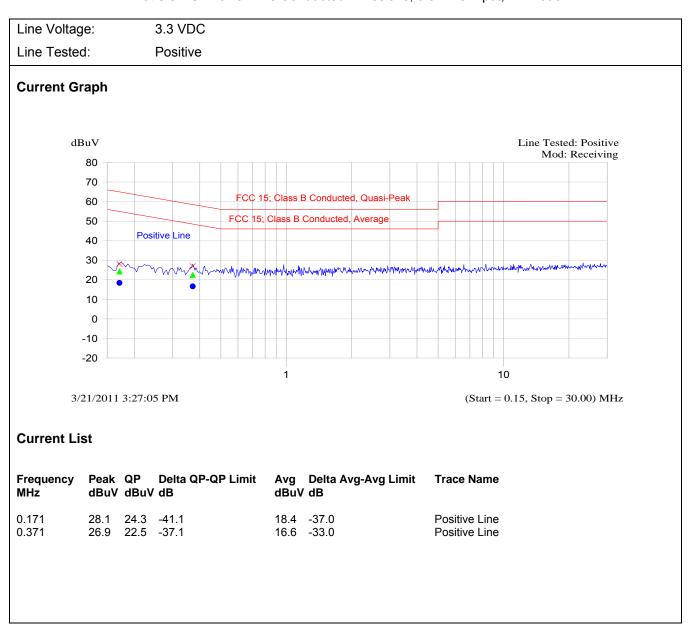
Line Voltage: 3.3 VDC
Line Tested: Return

Current Graph

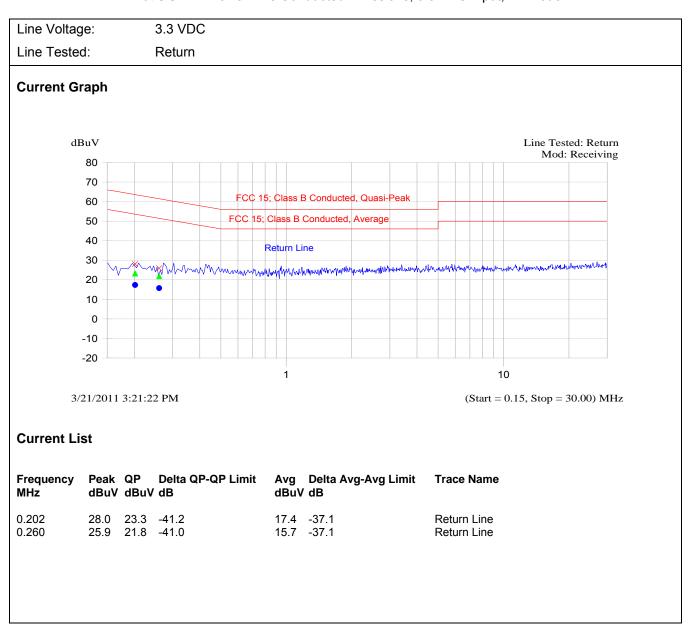
dBuV

Line Tested: Return
Mod: Transmitting




3/21/2011 3:08:42 PM

(Start = 0.15, Stop = 30.00) MHz


#### **Current List**

| Frequency<br>MHz |      | QP<br>dBuV | Delta QP-QP Limit<br>dB | Avg<br>dBuV | Delta Avg-Avg Limit<br>dB | Trace Name  |
|------------------|------|------------|-------------------------|-------------|---------------------------|-------------|
| 0.152            | 48.6 | 46.1       | -19.8                   | 33.1        | -22.8                     | Return Line |
| 0.172            | 47.7 | 45.4       | -20.0                   | 32.1        | -23.3                     | Return Line |
| 0.201            | 46.7 | 44.3       | -20.2                   | 30.8        | -23.6                     | Return Line |
| 0.231            | 45.3 | 42.7       | -20.9                   | 29.3        | -24.3                     | Return Line |
| 0.246            | 43.9 | 41.4       | -21.8                   | 28.0        | -25.2                     | Return Line |
| 0.273            | 40.4 | 37.6       | -24.8                   | 25.0        | -27.4                     | Return Line |
|                  |      |            |                         |             |                           |             |

Plot 5.5.4.3. Power Line Conducted Emissions, 3.3 VDC Input, Rx Mode



Plot 5.5.4.4. Power Line Conducted Emissions, 3.3 VDC Input, Rx Mode



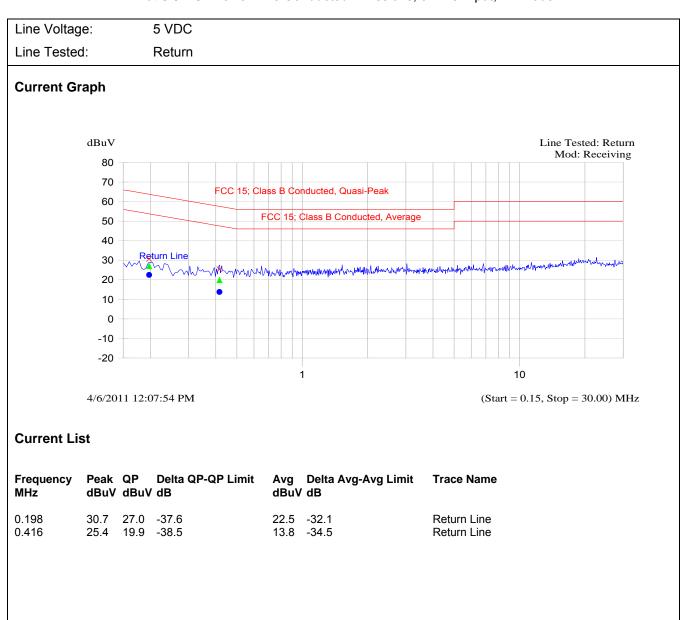
#### **ULTRATECH GROUP OF LABS**

Plot 5.5.4.5. Power Line Conducted Emissions, 5 VDC Input, Tx Mode

Line Voltage: 5 VDC Line Tested: Positive **Current Graph** dBuV Line Tested: Positive Mod: Transmitting 80 70 FCC 15; Class B Conducted, Quasi-Peak 60 FCC 15; Class B Conducted, Average 50 40 Positive Line 30 20 10 0 -10 -20 10 4/6/2011 10:40:33 AM (Start = 0.15, Stop = 30.00) MHz**Current List** 

| Frequency<br>MHz |              | QP<br>dBuV   | Delta QP-QP Limit<br>dB | Avg<br>dBuV | Delta Avg-Avg Limit<br>dB | Trace Name                     |
|------------------|--------------|--------------|-------------------------|-------------|---------------------------|--------------------------------|
| 0.168<br>0.204   | 48.9<br>47.8 | 46.4<br>45.2 |                         |             | -21.4<br>-21.9            | Positive Line<br>Positive Line |
| 0.219            | 47.2         | 44.6         | -19.4                   | 31.7        | -22.3                     | Positive Line                  |
| 0.248            | 45.5         | 42.7         | -20.4                   | 29.9        | -23.2                     | Positive Line                  |
| 0.269            | 43.9         | 40.3         | -22.2                   | 28.0        | -24.6                     | Positive Line                  |
|                  |              |              |                         |             |                           |                                |

Plot 5.5.4.6. Power Line Conducted Emissions, 5 VDC Input, Tx Mode


Line Voltage: 5 VDC Line Tested: Return **Current Graph** dBuV Line Tested: Return Mod: Transmitting 80 70 FCC 15; Class B Conducted, Quasi-Peak 60 FCC 15; Class B Conducted, Average 50 40 30 20 10 0 -10 -20 10 4/6/2011 10:52:18 AM (Start = 0.15, Stop = 30.00) MHz**Current List** Frequency Peak QP Delta QP-QP Limit Avg Delta Avg-Avg Limit **Trace Name** dBuV dBuV dB dBuV dB MHz 0.145 49.7 47.4 35.3 Return Line 0.160 Return Line 49.0 46.7 -19.0 34.4 -21.3 0.171 48.8 46.3 -19.1 34.0 -21.4 Return Line 0.179 48.6 46.1 -19.1 33.5 -21.6 Return Line 33.2 -21.5 Return Line 0.195 48.0 45.6 -19.1 0.211 47.4 45.0 -19.2 32.2 -22.0 Return Line 0.235 46.7 44.0 32.2 -21.4 Return Line -19.5 0.257 45.1 42.0 -20.9 29.4 -23.4 Return Line

#### **ULTRATECH GROUP OF LABS**

Plot 5.5.4.7. Power Line Conducted Emissions, 5 VDC Input, Rx Mode

Line Voltage: 5 VDC Line Tested: Positive **Current Graph** dBuV Line Tested: Positive Mod: Receiving 80 70 FCC 15; Class B Conducted, Quasi-Peak 60 FCC 15; Class B Conducted, Average 50 Positive Line 40 30 20 10 0 -10 -20 10 4/6/2011 12:16:26 PM (Start = 0.15, Stop = 30.00) MHz**Current List** Frequency Peak QP Delta QP-QP Limit Avg Delta Avg-Avg Limit **Trace Name** dBuV dBuV dB dBuV dB MHz 0.199 31.1 26.8 -37.7 22.0 -32.6 Positive Line Positive Line 0.267 25.8 21.6 -41.0 15.6 -37.0

Plot 5.5.4.8. Power Line Conducted Emissions, 5 VDC Input, Rx Mode



#### **ULTRATECH GROUP OF LABS**

#### **COMPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS** 5.6.

| FCC Section | FCC Rules                                                                                                                                                                                                                                                                                                                                                                                                                                      | Manufacturer's Clarification               |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 15.31       | The hoping function must be disabled for tests, which should be performed with the EUT transmitting on the number of frequencies specified in this Section. The measurements made at the upper and lower ends of the band of operation should be made with the EUT tuned to the highest and lowest available channels.                                                                                                                         | The hoping function was disabled for tests |
| 15.203      | Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.  The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed:  The application (or intended use) of the EUT. | Integral antenna.                          |
|             | <ul> <li>The installation requirements of the EUT</li> <li>The method by which the EUT will be marketed</li> </ul>                                                                                                                                                                                                                                                                                                                             |                                            |
| 15.204      | Provided the information for every antenna proposed for use with the EUT:  > type (e.g. Yagi, patch, grid, dish, etc),  > manufacturer and model number  > gain with reference to an isotropic radiator                                                                                                                                                                                                                                        | See user manual                            |
| 15.247(a)   | Description of how the EUT meets the definition of a frequency hopping spread spectrum, found in Section 2.1. Based on the technical description.                                                                                                                                                                                                                                                                                              | See Operational Description                |
| 15.247(a)   | Pseudo Frequency Hopping Sequence: Describe how the hopping sequence is generated. Provide an example of the hopping sequence channels, in order to demonstrate that the sequence meets the requirements specified in the definition of a frequency hopping spread spectrum system, found in Section 2.1                                                                                                                                       | See Operational Description                |

| FCC Section                | FCC Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manufacturer's Clarification |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 15.247(a)                  | Equal Hopping Frequency Use: Describe how each individual EUT meets the requirement that each of its hopping channels is used equally on average (e.g. that each new transmission event begins on the next channel in the hopping sequence after final channel used in the previous transmission events).                                                                                                                                                                                                                                                                                               | See Operational Description  |
| 15.247(g)                  | Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. | See Operational Description  |
| 15.247(h)                  | Describe how the EUT complies with the requirement that it not have the ability to coordinated with other FHSS is an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters                                                                                                                                                                                                                                                                                                                                                                              | See Operational Description  |
| Public Notice<br>DA 00-705 | System Receiver Input Bandwidth: Describe how the associated receiver(s) complies with the requirement that its input bandwidth (either RF or IF) matches the bandwidth of the transmitted signal.                                                                                                                                                                                                                                                                                                                                                                                                      | See Operational Description  |
| Public Notice<br>DA 00-705 | System Receiver Hopping Capability: Describe how the associated receiver(s) has the ability to shift frequencies in synchronization with the transmitted signals                                                                                                                                                                                                                                                                                                                                                                                                                                        | See Operational Description  |

#### 5.7. PROVISIONS FOR FREQUENCY HOPPING SYSTEMS [§ 15.247(a)(1)]

#### 5.7.1. Limit(s)

§ 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

§ 15.247(a)(1)( (iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

#### 5.7.2. Method of Measurements

FCC Public Notice DA 00-705

#### **Carrier Frequency Separation:**

The hopping function of the EUT is enabled. Use the spectrum analyzer setting as follows:

- Span = wide enough to capture the peaks of two adjacent channels
- RBW = 1% of the span
- VBW > RBW
- Sweep = Auto
- Detector = peak
- Trace = max hold

#### Number of hopping frequency:

The hopping function of the EUT is enabled. Use the spectrum analyzer setting as follows:

- Span = the frequency band of operation
- RBW = 1% of the span
- VBW > RBW
- Sweep = Auto
- Detector = peak
- Trace = max hold

#### Time of Occupancy (Dwell Time):

The hopping function of the EUT is enabled. Use the spectrum analyzer setting as follows:

- Span = 0 Hz centered on a hopping channel
- RBW = 1 MHz
- VBW > RBW
- Sweep = as necessary to capture the entire dwell time per hopping channel
- Detector = peak
- Trace = max hold

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g. date rate modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

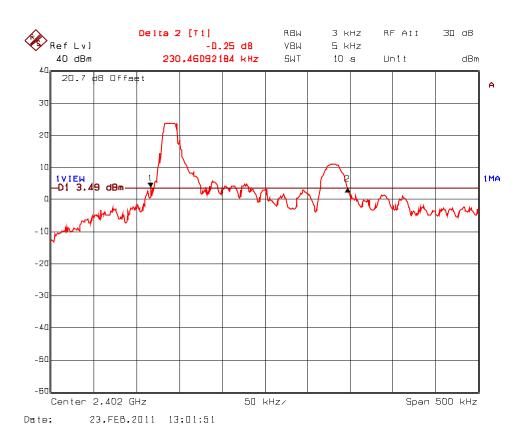
#### 20 dB Bandwidth:

Use the spectrum analyzer setting as follows:

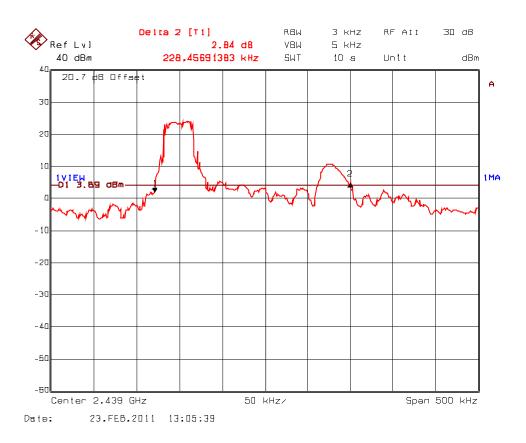
- Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
- RBW = 1% of the 20 dB bandwidth
- VBW > RBW
- Sweep = auto
- Detector = peak
- Trace = max hold
- The transmitter shall be transmitting at its maximum data rate.
- Allow the trace to stabilize.
- Use the marker-to-peak function to set the marker to the peak of the emission.
- Use the marker-delta function to measure 20 dB down on both sides of the emission.
- The 20 dB BW is the delta reading in frequency between two markers.

#### 5.7.3. Test Arrangement

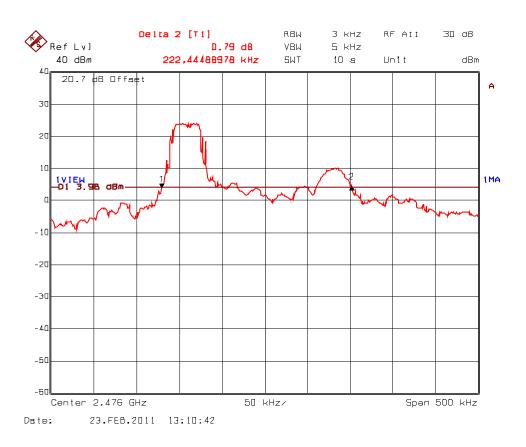



# 5.7.4. Test Data

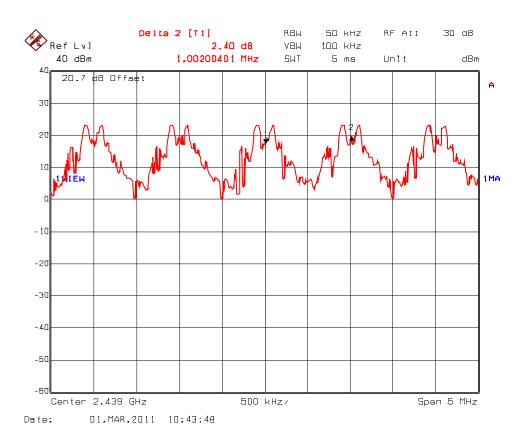
| Test Description                                | FCC Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Measured Values              | Comments   |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|
| Receiver Input Bandwidth and Hopping Capability | The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.                                                                                                                                                                                                                                                                                          |                              | See Note 1 |
| 20 dB BW of the hopping channel                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 230.46 kHz                   | See Note 2 |
| Channel Hopping Frequency Separation            | Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. | 1 MHz                        | See Note 2 |
| Number hopping frequencies                      | Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.  Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.                                                                                                                                                                                                                                                              | 75 hopping frequencies       | See Note 2 |
| Average Time of Occupancy                       | The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.                                                                                                                                                                                                                                                                                                                             | 211.25 ms in a period of 30s | See Note 2 |


Note 1: See operational description exhibit for details.

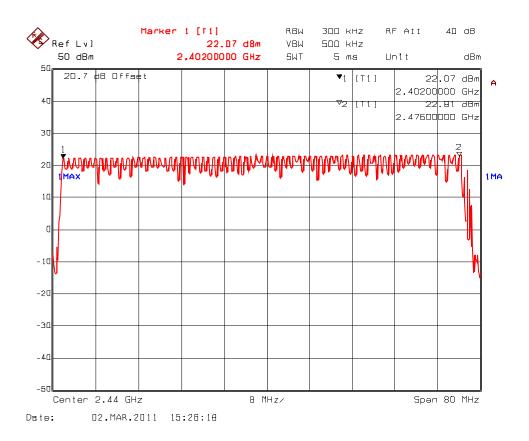
Note 2: See the following plots for details.


**Plot 5.7.4.1.** 20 dB Bandwidth Test Frequency: 2402 MHz




**Plot 5.7.4.2.** 20 dB Bandwidth Test Frequency: 2439 MHz

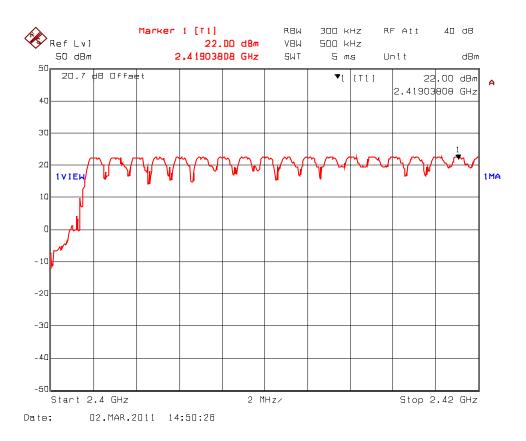



Plot 5.7.4.3. 20 dB Bandwidth Test Frequency: 2476 MHz

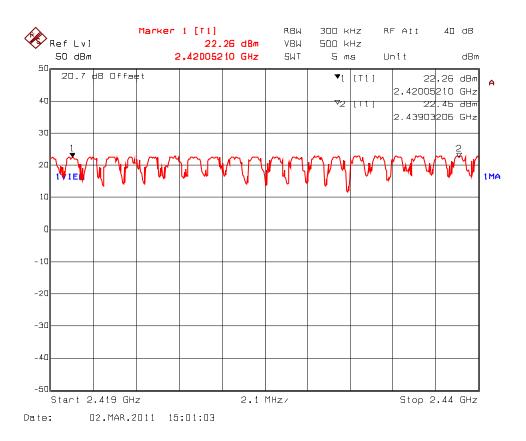


Plot 5.7.4.4. Carrier Frequency Separation

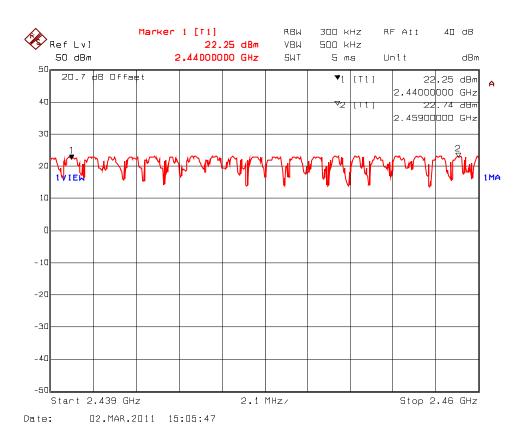



**Plot 5.7.4.5.** Number of Hopping Frequencies 75 hopping channels from 2402 - 2475 MHz

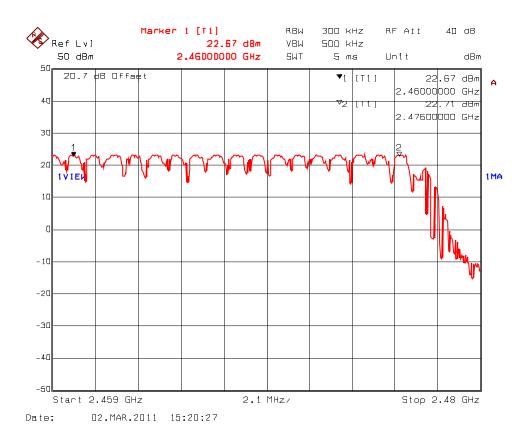



File #: EVTA-001F15C247

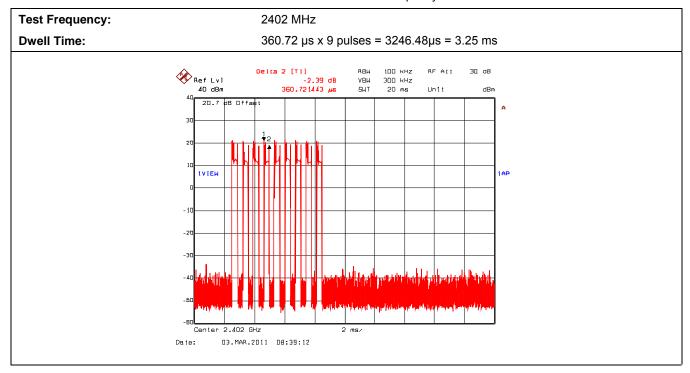
September 30, 2011


**Plot 5.7.4.6.** Number of Hopping Frequencies 18 hopping channels from 2400 - 2419 MHz

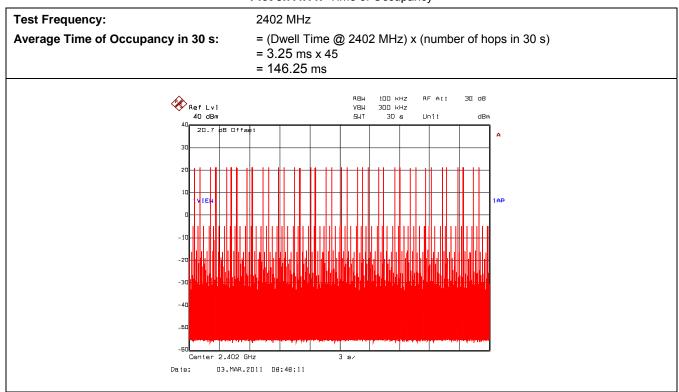



**Plot 5.7.4.7.** Number of Hopping Frequencies 20 hopping channels from 2420 - 2439 MHz

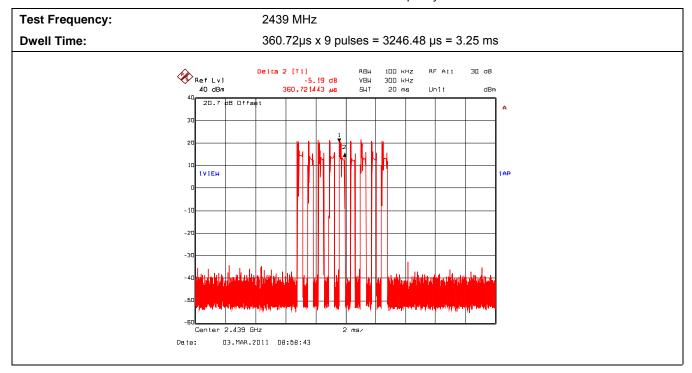



**Plot 5.7.4.8.** Number of Hopping Frequencies 20 hopping channels from 2440 - 2459 MHz

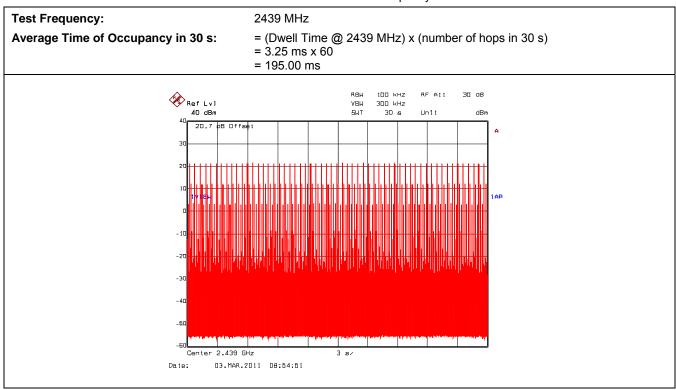



**Plot 5.7.4.9.** Number of Hopping Frequencies 17 hopping channels from 2460 - 2475 MHz

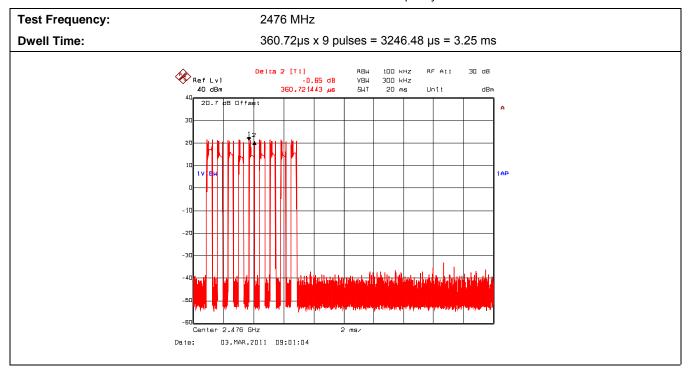



Plot 5.7.4.10. Time of Occupancy

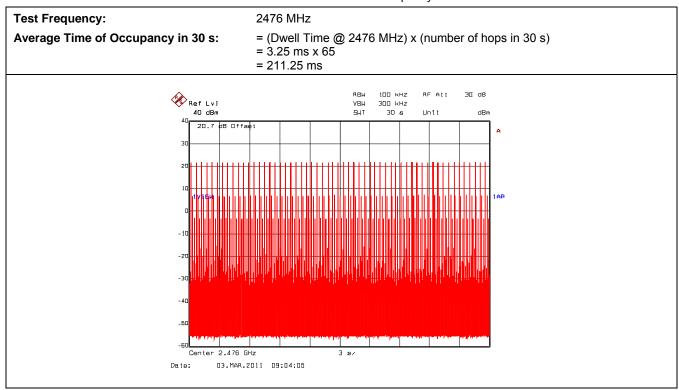



Plot 5.7.4.11. Time of Occupancy




Plot 5.7.4.12. Time of Occupancy




Plot 5.7.4.13. Time of Occupancy



Plot 5.7.4.14. Time of Occupancy



Plot 5.7.4.15. Time of Occupancy



## 5.8. PEAK CONDUCTED OUTPUT POWER [§ 15.247(b)]

### 5.8.1. Limit(s)

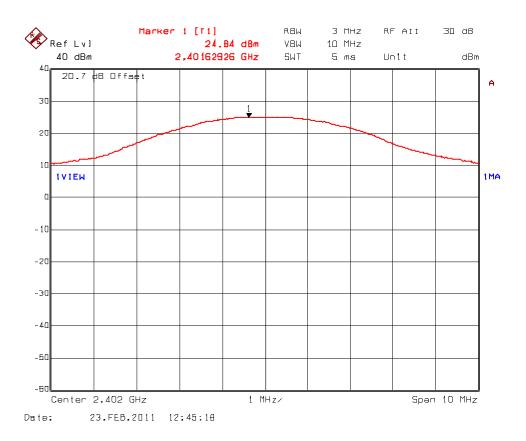
The maximum peak conducted output power of the intentional radiator shall not exceed the following:

§ 15.247(b)(1 For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

#### 5.8.2. Method of Measurements & Test Arrangement

FCC Public Notice DA 00-705

#### 5.8.3. Test Arrangement




#### 5.8.4. Test Data

| Frequency<br>(MHz) | Peak Conducted<br>Power (dBm) | Peak EIRP <sup>(Note 1)</sup><br>(dBm) | Peak Conducted<br>Power Limit (dBm) | EIRP Limit<br>(dBm) |
|--------------------|-------------------------------|----------------------------------------|-------------------------------------|---------------------|
| 2402               | 24.84                         | 27.04                                  | 30                                  | 36                  |
| 2439               | 25.09                         | 27.29                                  | 30                                  | 36                  |
| 2476               | 25.21                         | 27.41                                  | 30                                  | 36                  |


Note 1: The Peak EIRP is calculated as the sum of Peak Conducted Power in dBm and antenna assembly gain of EUT in dBi.

Plot 5.8.4.1. Peak Output Power at 2402 MHz, 3.3 VDC Input




File #: EVTA-001F15C247

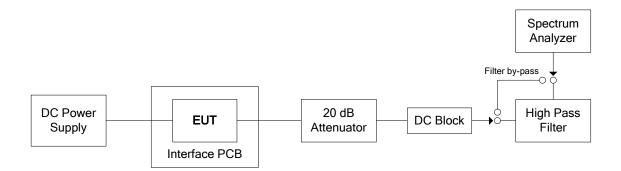
Plot 5.8.4.2. Peak Output Power at 2439 MHz, 3.3 VDC Input



Plot 5.8.4.3. Peak Output Power at 2476 MHz, 3.3 VDC Input



# 5.9. TRANSMITTER BAND-EDGE & SPURIOUS CONDUCTED EMISSIONS [§ 15.247(d)]


### 5.9.1. Limit(s)

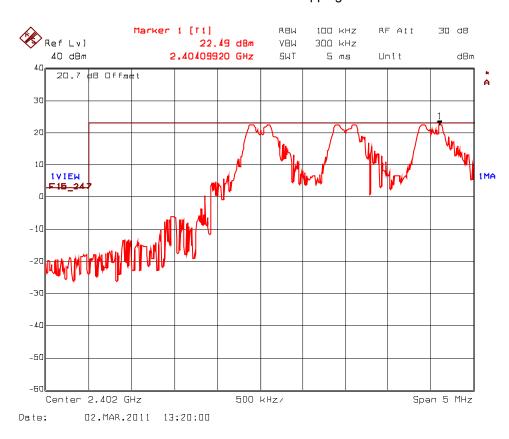
§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

#### 5.9.2. Method of Measurements

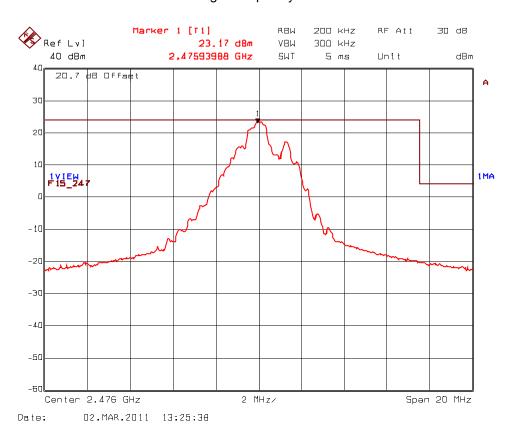
FCC Public Notice DA 00-705


### 5.9.3. Test Arrangement

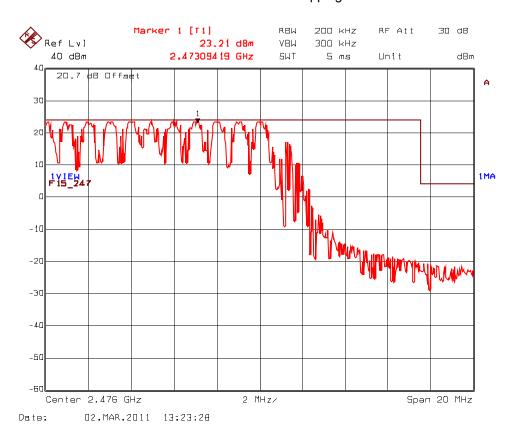



# 5.9.4. Test Data

# 5.9.4.1. Band-Edge RF Conducted Emissions

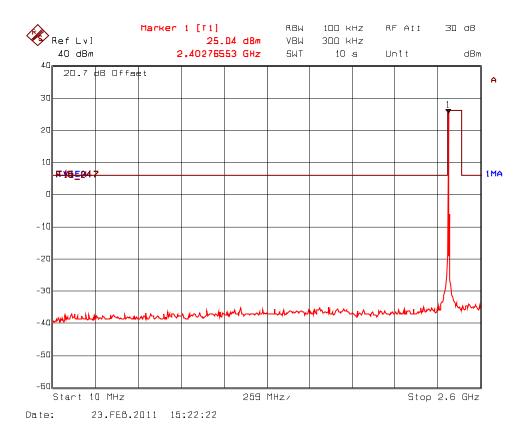

Plot 5.9.4.1.1. Band-Edge RF Conducted Emissions Low End of Frequency Band Single Frequency Mode



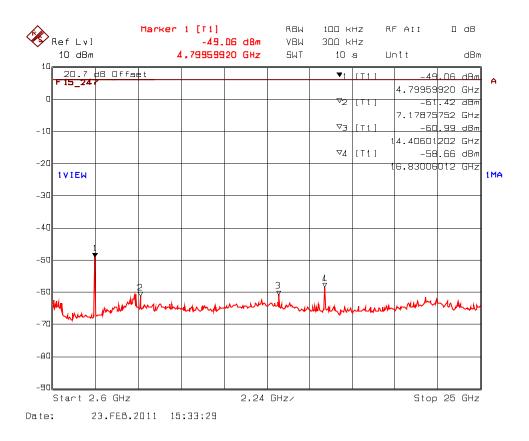

Plot 5.9.4.1.2. Band-Edge RF Conducted Emissions Low End of Frequency Band Pseudorandom Channel Hopping Mode



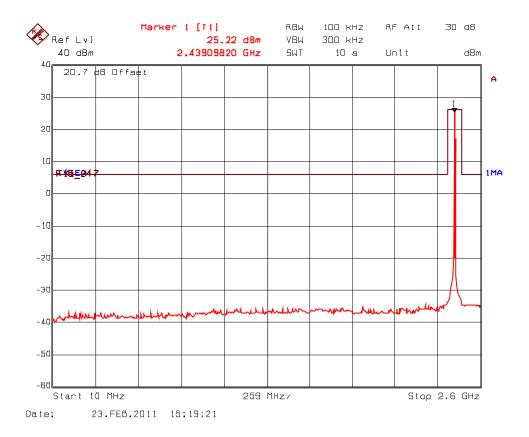
Plot 5.9.4.1.3. Band-Edge RF Conducted Emissions High End of Frequency Band Single Frequency Mode




Plot 5.9.4.1.4. Band-Edge RF Conducted Emissions High End of Frequency Band Pseudorandom Channel Hopping Mode

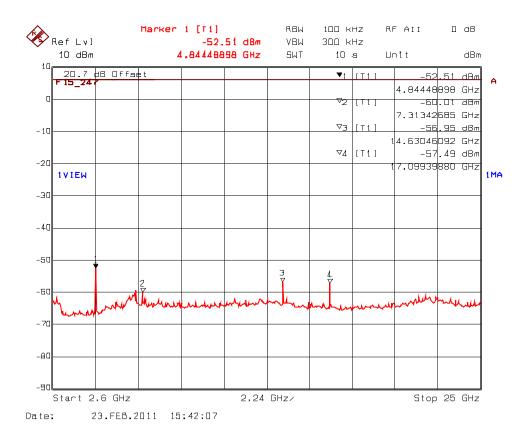



# 5.9.4.2. Spurious RF Conducted Emissions

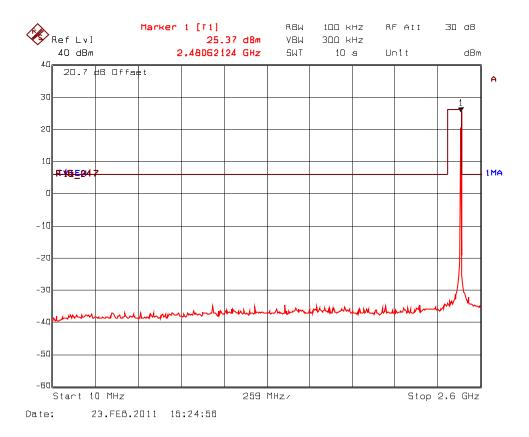

**Plot 5.9.4.2.1.** Spurious RF Conducted Emissions, 10 MHz - 2.6 GHz Transmitter Frequency: 2402 MHz



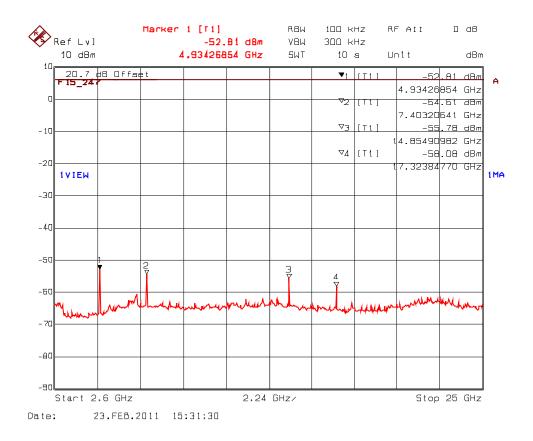
**Plot 5.9.4.2.2.** Spurious RF Conducted Emissions, 2.6 GHz - 25 GHz Transmitter Frequency: 2402 MHz




**Plot 5.9.4.2.3.** Spurious RF Conducted Emissions, 10 MHz - 2.6 GHz Transmitter Frequency: 2439 MHz




File #: EVTA-001F15C247


**Plot 5.9.4.2.4.** Spurious RF Conducted Emissions, 2.6 GHz - 25 GHz Transmitter Frequency: 2439 MHz



**Plot 5.9.4.2.5.** Spurious RF Conducted Emissions, 10 MHz - 2.6 GHz Transmitter Frequency: 2476 MHz



**Plot 5.9.4.2.6.** Spurious RF Conducted Emissions, 2.6 GHz - 25 GHz Transmitter Frequency: 2476 MHz



#### 5.10. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

# 5.10.1. Limit(s)

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Section 15.205(a) - Restricted Bands of Operation

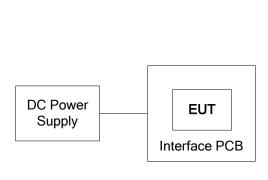
| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 16.42–16.423        | 399.9–410     | 4.5–5.15    |
| 1 0.495–0.505     | 16.69475–16.69525   | 608–614       | 5.35–5.46   |
| 2.1735–2.1905     | 16.80425–16.80475   | 960–1240      | 7.25–7.75   |
| 4.125–4.128       | 25.5–25.67          | 1300–1427     | 8.025–8.5   |
| 4.17725-4.17775   | 37.5–38.25          | 1435–1626.5   | 9.0–9.2     |
| 4.20725-4.20775   | 73–74.6             | 1645.5–1646.5 | 9.3–9.5     |
| 6.215–6.218       | 74.8–75.2           | 1660–1710     | 10.6–12.7   |
| 6.26775–6.26825   | 108–121.94          | 1718.8–1722.2 | 13.25–13.4  |
| 6.31175–6.31225   | 123–138             | 2200–2300     | 14.47–14.5  |
| 8.291–8.294       | 149.9–150.05        | 2310–2390     | 15.35–16.2  |
| 8.362-8.366       | 156.52475–156.52525 | 2483.5–2500   | 17.7–21.4   |
| 8.37625-8.38675   | 156.7–156.9         | 2690–2900     | 22.01–23.12 |
| 8.41425–8.41475   | 162.0125–167.17     | 3260–3267     | 23.6–24.0   |
| 12.29–12.293      | 167.72–173.2        | 3332–3339     | 31.2–31.8   |
| 12.51975–12.52025 | 240–285             | 3345.8–3358   | 36.43–36.5  |
| 12.57675–12.57725 | 322–335.4           | 3600-4400     | (2)         |
| 13.36–13.41       |                     |               |             |

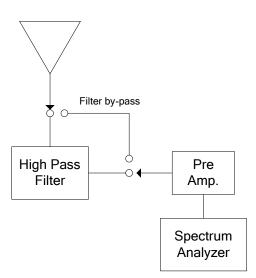
<sup>&</sup>lt;sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

Section 15.209(a) - Radiated Emission Limits; General Requirements

| Frequency (MHz)                                                       | Field Strength (microvolts/meter)                       | Measurement Distance (meters)  |
|-----------------------------------------------------------------------|---------------------------------------------------------|--------------------------------|
| 0.009 - 0.490<br>0.490 - 1.705<br>1.705 - 30.0<br>30 - 88<br>88 - 216 | 2,400 / F (kHz)<br>24,000 / F (kHz)<br>30<br>100<br>150 | 300<br>30<br>30<br>3<br>3<br>3 |
| 216 – 960<br>Above 960                                                | 200<br>500                                              | 3 3                            |

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

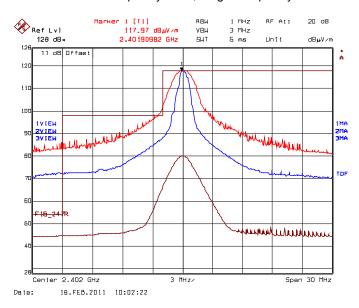

File #: EVTA-001F15C247 September 30, 2011


<sup>&</sup>lt;sup>2</sup> Above 38.6

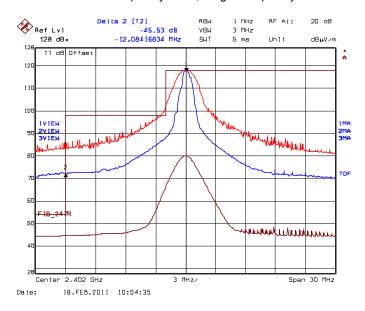
# 5.10.2. Method of Measurements

FCC Public Notice DA 00-705

# 5.10.3. Test Arrangement







#### 5.10.4. Test Data

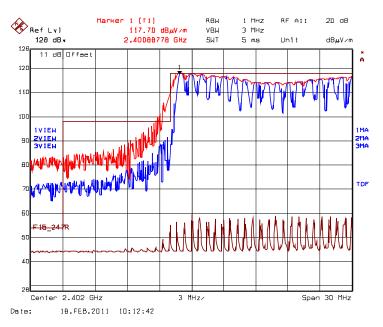
# 5.10.4.1. Band-Edge RF Radiated Emissions Test Results

**Plot 5.10.4.1.1.** Band-Edge RF Radiated Emissions @ 3 m, Horizontal Rx Antenna Orientation Low End of Frequency Band, Single Frequency Mode



**Plot 5.10.4.1.2.** Band-Edge RF Radiated Emissions @ 3 m, Horizontal Rx Antenna Orientation Low End of Frequency Band, Single Frequency Mode




Trace 1: RBW = 1 MHz, VBW = 3 MHz

Trace 2: RBW= 300 kHz, VBW= 500 kHz, Delta (Peak to Band-Edge): 45.53 dB

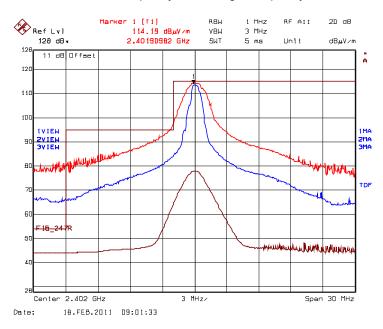
Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2390 MHz: Peak = 117.97dB $\mu$ V/m - 45.53 dB = 72.44 dB $\mu$ V/m (limit 74dB $\mu$ V/m)

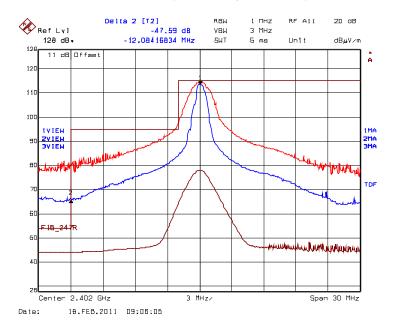
**Plot 5.10.4.1.3.** Band-Edge RF Radiated Emissions @ 3 m, Horizontal Rx Antenna Orientation Low End of Frequency Band, Pseudorandom Channel Hopping Mode



**Plot 5.10.4.1.4.** Band-Edge RF Radiated Emissions @ 3 m, Horizontal Rx Antenna Orientation Low End of Frequency Band, Pseudorandom Channel Hopping Mode




Trace 2: RBW = 300 kHz, VBW = 500 kHz, Delta (Peak to Band-Edge): 44.84 dB

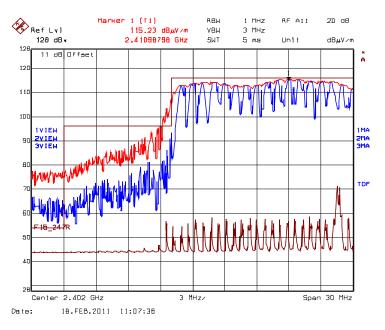

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2390 MHz: Peak =  $117.70 \text{ dB}\mu\text{V/m} - 44.84\text{dB} = 72.86 \text{ dB}\mu\text{V/m}$  (limit 74 dB $\mu\text{V/m}$ )

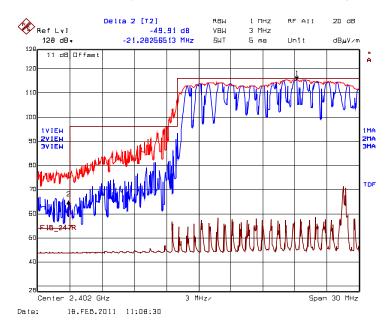
**Plot 5.10.4.1.5.** Band-Edge RF Radiated Emissions @ 3 m, Vertical Rx Antenna Orientation Low End of Frequency Band, Single Frequency Mode



**Plot 5.10.4.1.6.** Band-Edge RF Radiated Emissions @ 3 m, Vertical Rx Antenna Orientation Low End of Frequency Band, Single Frequency Mode




Trace 2: RBW = 300 kHz, VBW = 500 kHz, Delta (Peak to Band-Edge): 47.59 dB

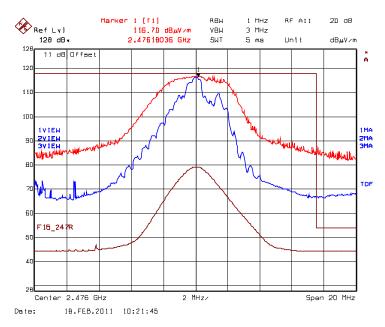

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2390 MHz: Peak = 114.19 dB $\mu$ V/m – 47.59 dB= 66.60 dB $\mu$ V/m (limit 74 dB $\mu$ V/m)

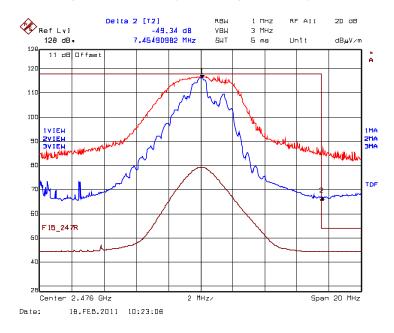
**Plot 5.10.4.1.7.** Band-Edge RF Radiated Emissions @ 3 m, Vertical Rx Antenna Orientation Low End of Frequency Band, Pseudorandom Channel Hopping Mode



**Plot 5.10.4.1.8.** Band-Edge RF Radiated Emissions @ 3 m, Vertical Rx Antenna Orientation Low End of Frequency Band, Pseudorandom Channel Hopping Mode




Trace 2: RBW = 300 kHz, VBW = 500 kHz, Delta (Peak to Band-Edge): 49.91 dB

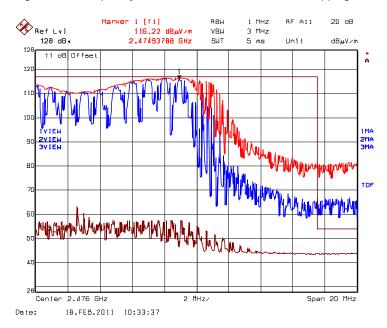

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2390 MHz: Peak= 115.23 dB $\mu$ V/m – 49.91 dB = 65.32 dB $\mu$ V/m (limit 74 dB $\mu$ V/m)

**Plot 5.10.4.1.9.** Band-Edge RF Radiated Emissions @ 3 m, Horizontal Rx Antenna Orientation High End of Frequency Band, Single Frequency Mode



**Plot 5.10.4.1.10.** Band-Edge RF Radiated Emissions @ 3 m, Horizontal Rx Antenna Orientation High End of Frequency Band, Single Frequency Mode




Trace 2: RBW = 200 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 49.34 dB

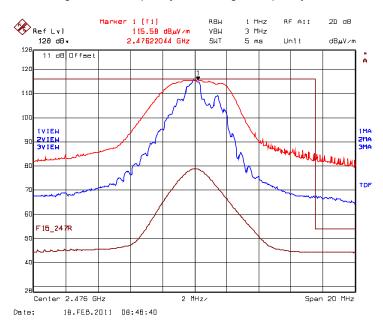
Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak =  $116.70 \text{ dB}\mu\text{V/m} - 49.34 \text{ dB} = 67.36 \text{ dB}\mu\text{V/m}$  (limit 74 dB $\mu\text{V/m}$ )

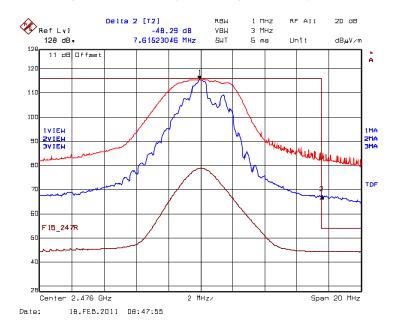
**Plot 5.10.4.1.11.** Band-Edge RF Radiated Emissions @ 3 m, Horizontal Rx Antenna Orientation High End of Frequency Band, Pseudorandom Channel Hopping Mode



**Plot 5.10.4.1.12.** Band-Edge RF Radiated Emissions @ 3 m, Horizontal Rx Antenna Orientation High End of Frequency Band, Pseudorandom Channel Hopping Mode




Trace 2: RBW = 200 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 50.44 dB

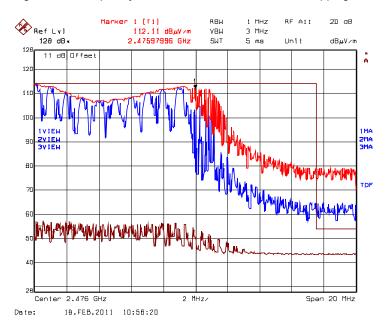

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak =  $116.22 \text{ dB}\mu\text{V/m} - 50.44 \text{ dB} = 65.78 \text{ dB}\mu\text{V/m}$  (limit 74 dB $\mu\text{V/m}$ )

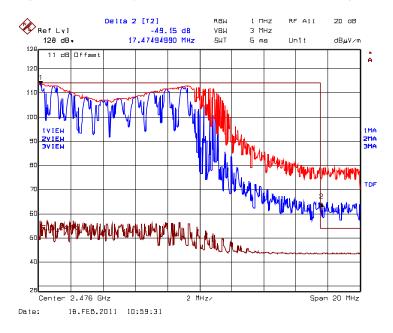
**Plot 5.10.4.1.13.** Band-Edge RF Radiated Emissions @ 3 m, Vertical Rx Antenna Orientation High End of Frequency Band, Single Frequency Mode



**Plot 5.10.4.1.14.** Band-Edge RF Radiated Emissions @ 3 m, Vertical Rx Antenna Orientation High End of Frequency Band, Single Frequency Mode




Trace 2: RBW = 200 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 48.29 dB


Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak =  $115.58 \text{ dB}\mu\text{V/m} - 48.29 \text{ dB} = 67.29 \text{ dB}\mu\text{V/m}$  (limit 74 dB $\mu\text{V/m}$ )

**Plot 5.10.4.1.15.** Band-Edge RF Radiated Emissions @ 3 m, Vertical Rx Antenna Orientation High End of Frequency Band, Pseudorandom Channel Hopping Mode



**Plot 5.10.4.1.16.** Band-Edge RF Radiated Emissions @ 3 m, Vertical Rx Antenna Orientation High End of Frequency Band, Pseudorandom Channel Hopping Mode



Trace 2: RBW = 200 kHz, VBW = 300 kHz, Delta (Peak to Band-Edge): 49.15 dB

Trace 3: RBW = 1 MHz, VBW = 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak = 112.11  $dB\mu V/m - 49.15 dB = 62.96 dB\mu V/m$  (limit 74  $dB\mu V/m$ )

# 5.10.4.2. Spurious RF Radiated Emissions Test Results

### Remarks:

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.
- The following test results are the worst-case measurements.

| Fundamenta         | I Frequency:                 | 2402 MH                     | Z                         |                             |                             |                |               |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| Test Freque        | ncy Range:                   | 30 MHz –                    | - 25 GHz                  |                             |                             |                |               |
| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
| 2402               | 115.23                       |                             | V                         |                             |                             |                |               |
| 2402               | 117.97                       |                             | Н                         |                             |                             |                |               |
| 4804               | 64.50                        | 47.46                       | V                         | 54.0                        | 98.0                        | -6.5           | Pass*         |
| 4804               | 63.43                        | 47.70                       | Н                         | 54.0                        | 98.0                        | -6.3           | Pass*         |
| 19216              | 59.20                        | 45.12                       | V                         | 54.0                        | 98.0                        | -8.9           | Pass*         |
| 19216              | 59.62                        | 45.51                       | Н                         | 54.0                        | 98.0                        | -8.5           | Pass*         |

<sup>\*</sup>Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

| Fundamenta         | l Frequency:                 | 2439 MH                     | Z                         |                             |                             |                |               |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| Test Freque        | ncy Range:                   | 30 MHz –                    | 25 GHz                    |                             |                             |                |               |
| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
| 2439               | 114.19                       |                             | V                         |                             |                             |                |               |
| 2439               | 115.83                       |                             | Н                         |                             |                             |                |               |
| 4878               | 62.58                        | 46.48                       | V                         | 54.0                        | 95.8                        | -7.5           | Pass*         |
| 4878               | 63.51                        | 47.46                       | Н                         | 54.0                        | 95.8                        | -6.5           | Pass*         |
| 7317               | 52.58                        | 39.46                       | V                         | 54.0                        | 95.8                        | -14.5          | Pass*         |
| 7317               | 53.18                        | 40.61                       | Н                         | 54.0                        | 95.8                        | -13.4          | Pass*         |
| 19512              | 61.92                        | 47.11                       | V                         | 54.0                        | 95.8                        | -6.9           | Pass*         |
| 19512              | 60.22                        | 45.09                       | Н                         | 54.0                        | 95.8                        | -8.9           | Pass*         |

<sup>\*</sup>Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

| Fundamenta         | I Frequency:                 | 2476 MH                     | z                         |                             |                             |                |               |
|--------------------|------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| Test Freque        | ncy Range:                   | 30 MHz –                    | 25 GHz                    |                             |                             |                |               |
| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | RF<br>Avg Level<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
| 2476               | 115.58                       |                             | V                         |                             |                             |                |               |
| 2476               | 116.70                       |                             | Н                         |                             |                             |                |               |
| 4952               | 62.74                        | 45.76                       | V                         | 54.0                        | 96.7                        | -8.2           | Pass*         |
| 4952               | 63.54                        | 46.63                       | Н                         | 54.0                        | 96.7                        | -7.4           | Pass*         |
| 7428               | 52.47                        | 40.77                       | V                         | 54.0                        | 96.7                        | -13.2          | Pass*         |
| 7428               | 54.73                        | 43.11                       | Н                         | 54.0                        | 96.7                        | -10.9          | Pass*         |
| 19808              | 59.69                        | 45.86                       | V                         | 54.0                        | 96.7                        | -8.1           | Pass*         |
| 19808              | 56.60                        | 43.45                       | Н                         | 54.0                        | 96.7                        | -10.6          | Pass*         |
| 22284              | 59.65                        | 45.69                       | V                         | 54.0                        | 96.7                        | -8.3           | Pass*         |
| 22284              | 55.51                        | 42.33                       | Н                         | 54.0                        | 96.7                        | -11.7          | Pass*         |

<sup>\*</sup>Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

# RF EXPOSURE REQUIRMENTS [§§ 15.247(e)(i), 1.1310 & 2.1091]

The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation.

### FCC 47 CFR § 1.1310:

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency range<br>(MHz) | Electric field<br>strength<br>(V/m)              | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²) | Averaging time (minutes) |  |  |  |  |
|--------------------------|--------------------------------------------------|-------------------------------------|---------------------------|--------------------------|--|--|--|--|
| (A) Lim                  | (A) Limits for Occupational/Controlled Exposures |                                     |                           |                          |  |  |  |  |
| 0.3–3.0                  | 614                                              | 1.63                                | *(100)                    | 6                        |  |  |  |  |
| 3.0–30                   | 1842/f                                           | 4.89/f                              | *(900/f <sup>2</sup> )    | 6                        |  |  |  |  |
| 30–300                   | 61.4                                             | 0.163                               | 1.0                       | 6                        |  |  |  |  |
| 300–1500                 |                                                  |                                     | f/300                     | 6                        |  |  |  |  |
| 1500–100,000             |                                                  |                                     | 5                         | 6                        |  |  |  |  |
| (B) Limits               | for General Populati                             | on/Uncontrolled Exp                 | oosure                    |                          |  |  |  |  |
| 0.3–1.34                 | 614                                              | 1.63                                | *(100)                    | 30                       |  |  |  |  |
| 1.34–30                  | 824/f                                            | 2.19/f                              | *(180/f <sup>2</sup> )    | 30                       |  |  |  |  |
| 30–300                   | 27.5                                             | 0.073                               | 0.2                       | 30                       |  |  |  |  |
| 300-1500                 |                                                  |                                     | f/1500                    | 30                       |  |  |  |  |
| 1500–100,000             |                                                  |                                     | 1.0                       | 30                       |  |  |  |  |

f = frequency in MHz

\* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

#### 5.11.1. Method of Measurements

Refer to Sections 1.1310, 2.1091

In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed:

- (1) Calculation that estimates the minimum separation distance (20 cm or more) between an antenna and persons required to satisfy power density limits defined for free space.
- (2) Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement
- (3) Any caution statements and/or warning labels that are necessary in order to comply with the exposure
- (4) Any other RF exposure related issues that may affect MPE compliance

### Calculation Method of RF Safety Distance:

$$S = \frac{P \cdot G}{4 \cdot \pi \cdot r^2} = \frac{EIRP}{4 \cdot \pi \cdot r^2}$$

Where:

P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power

S: power density mW/cm<sup>2</sup>

G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

#### 5.11.2. RF Evaluation

| Evaluation of RF Exposure Compliance Requirements                                                                                                                                          |                                                                                                                                                         |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| RF Exposure Requirements                                                                                                                                                                   | Compliance with FCC Rules                                                                                                                               |  |  |  |
| Minimum calculated separation distance between antenna and persons required: *6.6 cm                                                                                                       | Manufacturer' instruction for separation distance between antenna and persons required: <b>20 cm.</b>                                                   |  |  |  |
| Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement | Antenna installation and device operating instructions shall be provided to installers to maintain and ensure compliance with RF exposure requirements. |  |  |  |
| Caution statements and/or warning labels that are necessary in order to comply with the exposure limits                                                                                    | Refer to User's Manual for RF Exposure Information.                                                                                                     |  |  |  |
| Any other RF exposure related issues that may affect MPE compliance                                                                                                                        | None.                                                                                                                                                   |  |  |  |

<sup>\*</sup>The minimum separation distance between the antenna and bodies of users are calculated using the following formula:

$$r = \sqrt{\frac{P \cdot G}{4 \cdot \pi \cdot S}} = \sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}}$$

 $S = 1.0 \text{ mW/cm}^2$ 

EIRP = 27.41 dBm =  $10^{(27.41/10)}$  mW = 551 mW (Worst Case)

(Minimum Safe Distance, r) = 
$$\sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}} = \sqrt{\frac{551}{4 \cdot \pi \cdot (1.0)}} \approx 6.6cm$$

File #: EVTA-001F15C247

#### **EXHIBIT 6. TEST EQUIPMENT LIST**

| Test Instruments   | Manufacturer    | Model No.              | Serial No. | Frequency Range                 | Cal. Due<br>Date |
|--------------------|-----------------|------------------------|------------|---------------------------------|------------------|
| Spectrum Analyzer  | Agilent         | E7401A                 | US40240432 | 9 kHz – 1.5 GHz                 | 10 Jan 2012      |
| L.I.S.N.           | EMCO            | 3810/2                 | 2209       | 9 kHz – 30 MHz                  | 25 Aug 2011      |
| Transient Limiter  | Pasternack      | PE7010-20              |            | DC – 2 GHz<br>20 dB attenuation | 18 Jan 2012      |
| Spectrum Analyzer  | Rohde & Schwarz | FSEK30                 | 100077     | 20 Hz – 40 GHz                  | 14 Aug 2011      |
| Spectrum Analyzer  | Rohde & Schwarz | ESU40                  | 100037     | 20 Hz – 40 GHz                  | 15 Mar 2012      |
| RF Amplifier       | Hewlett Packard | 84498                  | 3008A00769 | 1 – 26.5 GHz                    | 17 Feb 2012      |
| RF Amplifier       | AH System       | PAM-0118               | 225        | 20 MHz – 18 GHz                 | 15 Mar 2012      |
| High Pass Filter   | K&L             | 11SH10-<br>4000/T12000 | 4          | Cut off 2.4 GHz                 | Cal. on use      |
| Horn Antenna       | Emco            | 3155                   | 6570       | 1 – 18 GHz                      | 22 Feb 2012      |
| Horn Antenna       | Emco            | 3155                   | 5955       | 1 – 18 GHz                      | 09 Jan 2012      |
| Biconi-Log Antenna | Emco            | 3142C                  | 00026873   | 26 – 3000 MHz                   | 18 Apr 2011      |
| Dipole Antenna     | Emco            | 3121C                  | 434        | 26 – 1000 MHz                   | 16 Aug 2011      |
| Signal Generator   | Hewlett Packard | 83752B                 | 3610A00457 | 0.01 – 20 GHz                   | 19 Oct 2011      |
| Power Divider      | Mini-Circuits   | 15542                  | 0235       | DC – 18 GHz                     | Cal. on use      |
| Attenuator         | Narda           | 4768-10                | -          | DC – 40 GHz                     | Cal. on use      |
| DC Block           | Hewlett-Packard | 11742A                 | 12460      | 0.045 – 26.5 GHz                | Cal. on use      |
| DC Power Supply    | Tenma           | 72-7295                | 490300270  | 1 – 40vdc                       | Cal. on use      |

# **EXHIBIT 7. MEASUREMENT UNCERTAINTY**

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

### 7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

|                | Line Conducted Emission Measurement Uncertainty (150 kHz – 30 MHz):                        | Measured      | Limit        |
|----------------|--------------------------------------------------------------------------------------------|---------------|--------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 1.57 | <u>+</u> 1.8 |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                                         | <u>+</u> 3.14 | <u>+</u> 3.6 |

# 7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

|                | Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):   | Measured      | Limit        |
|----------------|-----------------------------------------------------------------------------|---------------|--------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 2.15 | <u>+</u> 2.6 |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                          | <u>+</u> 4.30 | <u>+</u> 5.2 |

|                | Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):                    | Measured      | Limit        |
|----------------|--------------------------------------------------------------------------------------------|---------------|--------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$ | <u>+</u> 2.39 | <u>+</u> 2.6 |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                                         | <u>+</u> 4.78 | <u>+</u> 5.2 |

|                | Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):       | Measured      | Limit               |
|----------------|--------------------------------------------------------------------------------------------|---------------|---------------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$ | <u>+</u> 1.87 | Under consideration |
| U              | Expanded uncertainty U: U = 2u <sub>c</sub> (y)                                            | <u>+</u> 3.75 | Under consideration |