HCT CO., LTD.

PRODUCT COMPLIANCE DIVISION
SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI, KYOUNGKI-DO, 467-701, KOREA
TEL: +82 31 639 8539 FAX: +82 31 639 8525 www.hct.co.kr

EMI VERIFICATION REPORT

Applicant:

JUNI KOREA

E603 Bundang Techno Park 151 Yatap-Dong Bundang-Gu Seongnam-Si Gyeonggi-Do, Korea Date of Issue: January 27, 2011 Test Report No.: HCTE1101FE44

Test Site: HCT CO., LTD. HCT FRN: 0005-8664-21

MODEL:

JFW-600

Rule Part(s) / Standard(s)

: FCC PART 15 Subpart B / CISPR 22 Class B

Equipment Type

: WiMAX Femto

Trade Name

: JUNI KOREA

Port / Connector(s)

: DC In Port / Headset Port

The device bearing the trade name and model specified above, has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003. (See Test Report if any modifications were made for compliance)

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Report prepared by : Kyoung Hee Yoon

Test Engineer of EMC Tech. Part

Approved by : Sang Jun Lee

Manager of EMC Tech. Part

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Report No.: HCTE1101FE44

Model: JFW-600

Date: January 27, 2011

TABLE OF CONTENTS

	PAGE
1. GENERAL INFORMATION	
1.1 Product description	3
1.2 Related submittal(s)/Grant(s)	3
1.3 Tested system details	4
1.4 Cable description	5
1.5 Noise suppression parts on cable. (I/O cable)	5
1.6 Test methodology	6
1.7 Test facility	6
1.8 Frequency Range of Radiated Measurements	6
2. SYSTEM TEST CONFIGURATION	
2.1 Configuration of tested system	7
3. PRELIMINARY TEST	
3.1 Conducted Emission test	8
3.2 Radiated Emission test	8
4. CONDUCTED AND RADIATED EMISSION TESTS SUMMARY	
4.1 Conducted Emission test	10
4.2 Radiated Emission test	15
4.3 Test setup photos	16
5. FIELD STRENGTH CALCULATION	18
6. TEST EQUIPMENT	19
7. CONCLUSION	20

1. GENERAL INFORMATION

1.1 Product Description

Equipment Under Test (E.U.T) is **WiMAX Femto, Model: JFW-600** manufactured by **JUNI KOREA.** Its basic purpose is used for communications.

Model (s)	JFW-600
E.U.T Type	WiMAX Femto
TX/RX Frequency	2 508.5 Mbz to 2 684 Mbz , 2412 ~2462MHz, 2422~2452MHz

1.2 Related Submittal(s) / Grant(s)

Original submittal only.

1.3 Tested System Details

All equipment descriptions used in the tested system (including inserted cards) are:

Device Type	Manufacturer	Model Number/ Serial Number	FCC ID / DoC	Connected To	
WiMAX Femto	JUNI KOREA	JFW-600	-	TA	
Travel adaptor	LG NORTEL	SA-B019 <i>RA9X001977</i>	-	E.U.T	
Notebook PC	H.P	Compaq 6730b CNU8390H5T	DoC	E.U.T	
Notebook PC adaptor	otebook PC adaptor Hipro Eletronics (Suzgou) Co.,Ltd		-	Notebook PC	
Mouse	Mouse Microsoft		DoC	Notebook PC	
GPS antenna	-	107457	-	E.U.T	
WiMAX antenna (1,2)	-	-	-	E.U.T	
WLAN antenna (1,2)		-	-	E.U.T	
LAN (1,2,3,4)	1,2,3,4)		-	E.U.T	
WAN	-	125 Ω Term.	-	E.U.T	

Date: January 27, 2011

1.4 Cable Description

Product Name	Port	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (m)
	DC in	N	-	(P)1.8
	AC in	N	-	(P)1.8
	LAN 1	Not applicable	N	(D)1.2
WIMAN Family	LAN 2	Not applicable	N	(D)1.2
WiMAX Femto	LAN 3	Not applicable	N	(D)1.2
	LAN 4	Not applicable	N	(D)1.2
	WLAN	Not applicable	Y	(D)1.2
	GPS antenna	Not applicable	Y	(D)3.0
Notebook PC	DC in	N	-	(P)1.8
Notebook PC adaptor	AC in	N	-	(P)1.8

^{*} The marked "(D)" means the data cable and "(P)" means the power cable.

1.5 Noise Suppression Parts on Cable. (I/O cable)

Product Name	Port	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
	DC in	Y	E.U.T end	Y	E.U.T end
	AC in	N	Not applicable	Y	Both end
	LAN 1	N	Not applicable	Y	E.U.T end
WiMAX Femto	LAN 2	N	Not applicable	Y	E.U.T end
WIMAX Femto	LAN 3	N	Not applicable	Y	E.U.T end
	LAN 4	N	Not applicable	Y	E.U.T end
	WLAN	Y	E.U.T end	Y	Both end
	GPS antenna	Y	E.U.T end	Y	Both end
Notebook PC	DC in	Y	Notebook PC End	Y	Notebook PC End
Notebook PC adaptor	AC in	N	-	Y	Notebook PC adaptor End

Date: January 27, 2011

1.6 Test Methodology

Both Conducted and Radiated testing was performed according to the procedures in ANSI C63.4/2003. Radiated testing was performed at an antenna to E.U.T distance of 3 m

1.7 Test Facility

The 10 m semi anechoic chamber used to collect the radiated data is located at the 105-1, Jangam-Ri, Majang-Myeon, Icheon-Si, Kyoungki-Do, South Korea, and the conducted measurement facility used to measure the conducted data are located at San 136-1, Ami-Ri Bubal-Eup, Icheon-Si, Kyoungki-Do, 467-701, South Korea. Those measurement facilities are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. Detailed description of test facilities was submitted to the Commission and accepted dated Sep. 03, 2010 (Registration Number: 90661)

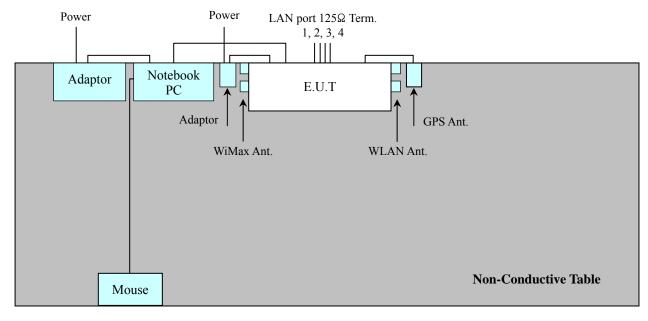
1.8 Frequency Range of Radiated Measurements

An unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a Radiated Emission limit is specified, up to the frequency shown in the following table

Highest frequency generated or used in the device or on which the device operates or tunes (Mb)	Upper frequency of measurement range (順)
Below 1.705	30
1.705 to 108	1 000
108 to 500	2 000
500 to 1 000	5 000
Above 1 000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

2. SYSTEM TEST CONFIGURATION

2.1 Configuration of Test System


Power Line Conducted test : E.U.T was connected to LISN, all other peripheral equipment were

connected to another LISN. Preliminary Power Line Conducted Emission tests were performed by using the procedure in ANSI C63.4/2003 7.2.3 to determine the worst operating conditions.

Radiated Emission test 1

: Preliminary Radiated Emission tests were performed by using the procedure in ANSI C63.4/2003 8.3.1.1 to determine the worst operating condition. Final Radiated Emission tests were performed at 3 m semi-anechoic chamber.

[Configuration of Tested System]

Power Line: 110 VAC

3. PRELIMINARY TEST

3.1 Conducted Emission Test

During preliminary tests, the following operating mode was investigated:

Operation Mode	The Worst Operating Condition
Idle	0
Data Communication	0

3. 2 Radiated Emission Test

During preliminary tests, the following operating mode was investigated:

Operation Mode	The Worst Operating Condition
Idle	0
Data Communication	0

4. CONDUCTED AND RADIATED EMISSION TEST SUMMARY

4.1 Conducted Emission Test

The following table shows the highest levels of conducted emissions on both polarization of hot and neutral line.

Limit apply to : CISPR 22 Class B

Detector : Quasi-Peak, Average (6 dB Bandwidth: 9 kHz)

Operating condition : Normal mode

Temperature : 24.7 °C

Humidity level : 44.8 %

Test date : January 17, 2011

* NOTE: Refer to page 11 to page 14 for details

Model: JFW-600

Date: January 27, 2011

Report No.: HCTE1101FE44

HCT

EMC

EUT: JFW-600
Manufacturer: JUNI
Operating Condition: NORMAL MODE
Test Site: SHIELD ROOM
Operator: KH, YOON
Test Specification: CISPR22 CLASS B

Comment:

SCAN TABLE: "CISPR22 CLASS B"

Н

Short Desc	ription:		CISPR 22 CL	ASS B		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	500.0 kHz	4.0 kHz	MaxPeak Average	10.0 ms	9 kHz	None
500.0 kHz	5.0 MHz	4.0 kHz	MaxPeak Average	10.0 ms	9 kHz	None
5.0 MHz	30.0 MHz	4.0 kHz	MaxPeak Average	10.0 ms	9 kHz	None

MEASUREMENT RESULT: "FENTO CELL_fin QP"

1/17/2011	4:37PM					
Frequenc		Transd dB	Limit dBuV	Margin dB	Line	PE
1211	c dbµ v	ab	агру	QD.		
0.15801	0 55.10	10.1	66	10.5		
0.17401	0 53.80	10.1	65	11.0		
0.31401	0 48.50	10.1	60	11.4		
2.85600	0 40.80	10.3	56	15.2		
3.08000	0 41.20	10.3	56	14.8		
3.35600	77.	10.4	56	15.3		
5.00000		10.5	56	23.9		
5.12400		10.5	60	28.4		
6.08800	0 26.90	10.6	60	33.1		

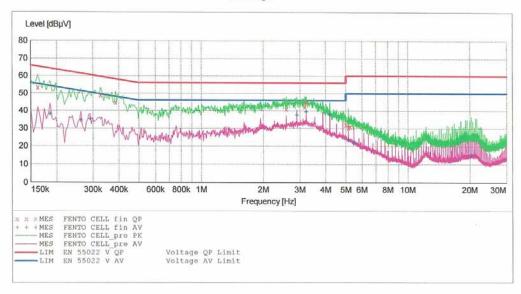
Page 1/2 1/17/2011 4:37PM HCT EMC LAB

Date: January 27, 2011

MEASUREMENT RESULT: "FENTO CELL_fin AV"

Frequency	Level	Transd	Limit	Margin	Line	PE
and the second s					Title	PE
MHz	dΒμV	dB	dBµV	dB		
0.266010	34.40	10.1	51	16.9		
0.314010	35.80	10.1	50	14.0		
0.366010	32.00	10.1	49	16.6		
2.888000	37.10	10.3	46	8.9		
3.208000	37.20	10.4	46	8.8		
4.168000	38.80	10.4	46	7.2		
5.000000	25.00	10.5	46	21.0		
5.128000	23.70	10.5	50	26.3		
5.448000	21.80	10.5	50	28.2		

Page 2/2 1/17/2011 4:37PM HCT EMC LAB


HCT

EMC

EUT: JFW-600 Manufacturer: JUNI Operating Condition: NORMAL MODE Test Site: SHIELD ROOM Operator: KH, YOON Test Specification: CISPR22 CLASS B Comment:

SCAN TABLE: "CISPR22 CLASS B"
Short Description: CISPR 22 CLASS B
Start Stop Step Detector Meas.
Frequency Frequency Width Time
150.0 kHz 500.0 kHz 4.0 kHz MaxPeak 10.0 IF Detector Meas. Transducer Bandw. 10.0 ms 9 kHz None Average 500.0 kHz 5.0 MHz 4.0 kHz MaxPeak 10.0 ms 9 kHz None Average 5.0 MHz 30.0 MHz 4.0 kHz MaxPeak 10.0 ms 9 kHz None Average

Date: January 27, 2011

MEASUREMENT RESULT: "FENTO CELL fin QP"

1,	/17/2011 4:3	4PM					
	Frequency	Level	Transd	Limit	Margin	Line	PE
	MHz	dBµV	dB	dBµV	dB		
	0.162010	53.30	10.1	65	12.0		
	0.326010	48.90	10.1	60	10.6		
	0.386010	44.80	10.1	58	13.3		
	2.584000	41.10	10.3	56	14.9		
	3.176000	42.50	10.4	56	13.5		
	3.224000	44.80	10.4	56	11.2		
	5.000000	32.20	10.5	56	23.8		
	5.156000	30.80	10.5	60	29.2		
	5.264000	31.00	10.5	60	29.0		

Page 1/2 1/17/2011 4:34PM HCT EMC LAB

Date: January 27, 2011

MEASUREMENT RESULT: "FENTO CELL_fin AV"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Line	PE
0.186010	38.20	10.1	54	16.0		
0.262010	34.40	10.1	51	16.9		
0.290010	35.40	10.1	51	15.1		
2.904000	37.60	10.3	46	8.4		
3.224000	39.40	10.4	46	6.6		
4.192000	37.90	10.4	46	8.1		
5.156000	23.40	10.5	50	26.6		
5.476000	21.80	10.5	50	28.2		
20.272000	15.30	11.6	50	34.7		

Page 2/2 1/17/2011 4:34PM HCT EMC LAB

4.2 Radiated Emission Test

The following table shows the highest levels of Radiated Emissions on both polarization of horizontal and vertical.

Limit apply to : FCC PART 15 Subpart B

Detector : Quasi-Peak (6 dB Bandwidth: 120 kHz)

Operating condition : Normal mode

Temperature : 13.0 °C Humidity level : 28.0 %

Test date : January 24, 2011

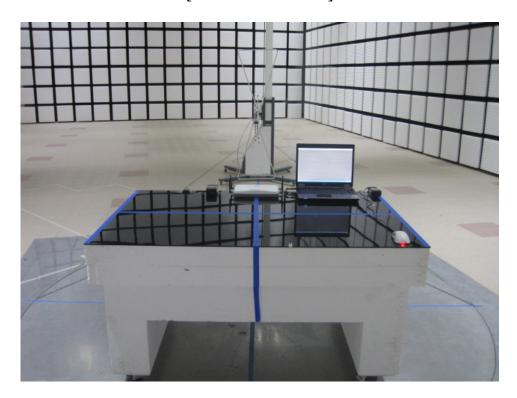
Frequency	Reading	Ant. Factor	Cable Loss	Ant. POL	Total	Limit	Margin
MHz	dBμV	dB/m	dB	(H/V)	dBμV/m	dBμV/m	dB
95.8	28.1	8.4	1.3	V	37.8	43.5	5.7
136.0	22.0	12.4	1.4	V	35.8	43.5	7.7
180.0	26.4	11.6	1.8	V	39.8	43.5	3.7
180.0	26.4	11.6	1.8	Н	39.8	43.5	3.7
200.0	28.0	9.9	1.5	V	39.4	43.5	4.1
400.0	21.5	15.6	2.6	Н	39.7	46.0	6.3
800.0	14.3	22.6	3.9	Н	40.8	46.0	5.2

*** NOTE:**

- 1. This test only got data for noise.
- 2. For measurement above 1 $\,\mathrm{GHz}$, noise level is more than 10 $\,\mathrm{dB}$ below the limit, specified in FCC Part 15.35

4.3 Test Setup Photos

[Conducted Emission]



Model: JFW-600 Date: January 27, 2011 Report No.: HCTE1101FE44

[Radiated Emission]

5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the antenna factor and cable factor.

The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF$$

Where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

Assume a receiver reading of 21.5 dB μ V is obtained. The antenna factor of 7.4 dB/m and a cable factor of 1.1 dB are added. The 30 dB μ V/m value is mathematically converted to its corresponding level in μ V/m.

$$FS = 21.5 + 7.4 + 1.1 = 30 \text{ dB}\mu\text{V/m}$$

[Radiated Emission 10 m Limits]

Frequency of Emission	Field Strength			
(MHz)	μV/m	dBµV/m		
30 to 88	100	40.0		
88 to 216	150	43.5		
216 to 960	200	46.0		
Above 960	500	54.0		

6. TEST EQUIPMENT

	<u>Type</u>	Manufacturer	Model Number	Serial Number	Next CAL Date				
	Conducted Emission								
\boxtimes	EMI Test Receiver	Rohde & Schwarz	ESCI	100033	2011.02.19				
\boxtimes	LISN	Rohde & Schwarz	ESH3-Z5	100282	2011.02.05				
	LISN	Rohde & Schwarz	ENV216	3560.6550.02	2011.04.06				
\boxtimes	Attenuator	Rohde & Schwarz	ESH3-Z2	357.8810.52	2011.10.25				
	Radiated Emission								
	EMI Test Receiver	Rohde & Schwarz	ESI40	831564103	2011.10.29				
\boxtimes	EMI Test Receiver	Rohde & Schwarz	ESU26	100241	2011.09.01				
\boxtimes	Trilog Antenna	Schwarzbeck	VULB9160	3301	2012.09.13				
	Antenna master	INNCO Systems	MA4000-EP	MA4000/283	-				
\boxtimes	Turn Table	INNCO Systems	DT3000-3T	DT3000/69	-				
\boxtimes	Communication Antenna	Schwarzbeck	USLP9142	9142-248	-				
	RF-Amplifier	MITEQ	AMF-6D-0010 1800-35.20P.PS	-	2011.05.20				
	Base Station	Rohde & Schwarz	CMU 200	1100000802	2011.02.17				

Date: January 27, 2011

7. CONCLUSION

The data collected shows that the **JUNI KOREA**, **WiMAX Femto**, **Model: JFW-600** complies with §15.107 and §15.109 of the FCC rules.