

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Teldat S.A.
Applicant Address	Isaac Newton, 10, Parque Tecnológico de Madrid, 28760 - Tres Cantos, Madrid, Spain
FCC ID	YUATLDPV00A1
Manufacturer's company	Alpha Networks Inc.
Manufacturer Address	No.8 Li-shing 7th Rd., Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.
Manufacturer's company	ALPHA NETWORKS (CHANGSHU) LTD.
Manufacturer Address	369# Yintong Road, Southeast Economic Development Zone, Changshu, Jiangsu Province, PR. China

Product Name	Enterprise Router			
Brand Name	Teldat, Alcatel-lucent			
Model No.	LDPV00A1, TLDPV03A1, TLDPV04A1, OA5710V, OA5710V-4A, DA5710V-4V			
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407			
Test Freq. Range	5150 ~ 5250MHz			
Received Date	Mar. 18, 2013			
Final Test Date	Jun. 05, 2013			
Submission Type	Original Equipment			

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a (5150 ~ 5250MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2009**,

47 CFR FCC Part 15 Subpart E, KDB 789033 D01 v01r03 and KDB 662911 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CERT	IFICATE OF COMPLIANCE	1
2.	SUMN	Mary of the test result	2
3.	GENE	RAL INFORMATION	3
	3.1.	Product Details	
	3.2.	Accessories	. 4
	3.3.	Table for Filed Antenna	5
	3.4.	Table for Carrier Frequencies	. 5
	3.5.	Table for Test Modes	. 6
	3.6.	Table for Testing Locations	. 7
	3.7.	Table for Multiple Listing	. 7
	3.8.	Table for Supporting Units	. 8
	3.9.	Table for Parameters of Test Software Setting	
	3.10.	EUT Operation during Test	. 8
	3.11.	Duty Cycle	
	3.12.	Test Configurations	11
4.	TEST F	RESULT	13
	4.1.	AC Power Line Conducted Emissions Measurement	13
	4.2.	26dB Bandwidth & 99% Occupied Bandwidth Measurement	17
	4.3.	Maximum Conducted Output Power Measurement	
	4.4.	Power Spectral Density Measurement	
	4.5.	Peak Excursion Measurement	
	4.6.	Radiated Emissions Measurement	43
	4.7.	Band Edge Emissions Measurement	
	4.8.	Frequency Stability Measurement	
	4.9.	Antenna Requirements	64
5.	LIST C	OF MEASURING EQUIPMENTS	5
6.	TEST L	OCATION	57
7.	MEAS	SUREMENT UNCERTAINTY	58
ΑF	PEND	DIX A. TEST PHOTOSA1 ~ A	۱6
ΑF	PEND	DIX B. MAXIMUM PERMISSIBLE EXPOSUREB1 ~ E	34
ΑF	PEND	DIX C. CO-LOCATION REPORTC1 ~ C ²	18

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR341816AB	Rev. 01	Initial issue of report	Jul. 16, 2013
FR341816AB	Rev. 02	Add new a brand name	Aug. 16, 2013

Page No. : ii of ii Issued Date : Aug. 16, 2013

Certificate No.: CB10206022

Page No.

: 1 of 70

Issued Date : Aug. 16, 2013

1. CERTIFICATE OF COMPLIANCE

Product Name : Enterprise Router

Brand Name : Teldat, Alcatel-lucent

Model No. : TLDPV00A1, TLDPV03A1, TLDPV04A1, OA5710V, OA5710V-4A,

OA5710V-4V

Applicant: Teldat S.A.

Test Rule Part(s) : 47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 18, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E					
Part	Rule Section	Result	Under Limit			
4.1	15.207	AC Power Line Conducted Emissions	Complies	13.03 dB		
4.2 15.407(a)		26dB Spectrum Bandwidth & 99% Occupied	- Complies			
4.2	15.407(a)	Bandwidth	Compiles			
4.3	15.407(a)	Maximum Conducted Output Power	Complies	0.01 dB		
4.4	15.407(a)	Power Spectral Density	Complies	0.14 dB		
4.5	15.407(a)	Peak Excursion	Complies	3.42 dB		
4.6	4.6 15.407(b) Radiated Emissions		Complies	5.87 dB		
4.7	15.407(b)	Band Edge Emissions		0.13 dB		
4.8	15.407(g)	Frequency Stability	Complies	-		
4.9	15.203	Antenna Requirements	Complies	-		

Page No. : 2 of 70

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description	
Product Type	WLAN (2TX, 2RX)	
Radio Type	Intentional Transceiver	
Power Type	From Power Adapter	
Modulation	see the below table for IEEE 802.11n	
Data Modulation	For 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)	
Data Rate (Mbps)	see the below table for IEEE 802.11n	
Frequency Range	5150 ~ 5250MHz	
Channel Number	4 for 20MHz bandwidth ; 2 for 40MHz bandwidth	
Channel Band Width (99%)	MCS0 (20MHz): 18.08 MHz ; MCS0 (40MHz): 36.48 MHz	
Maximum Conducted	MCS0 (20MHz), 14 92 dBm - MCS0 (40MHz), 14 70 dBm	
Output Power	MCS0 (20MHz): 16.82 dBm ; MCS0 (40MHz): 16.79 dBm	
Carrier Frequencies	Please refer to section 3.4	
Antenna	Please refer to section 3.3	

IEEE 802.11a

Items	Description	
Product Type	WLAN (2TX, 2RX)	
Radio Type	Intentional Transceiver	
Power Type	From Power Adapter	
Modulation	OFDM for IEEE 802.11a	
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)	
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)	
Frequency Range	5150 ~ 5250MHz	
Channel Number	4	
Channel Band Width (99%)	17.12 MHz	
Maximum Conducted	16.99 dBm	
Output Power	10.99 GBITI	
Carrier Frequencies	Please refer to section 3.4	
Antenna	Please refer to section 3.3	

FCC ID: YUATLDPV00A1

Antenna & Band width

Antenna	Two (TX)		
Band width Mode	20 MHz	40 MHz	
IEEE 802.11a	V	X	
IEEE 802.11n	V	V	

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	2	MCS 0-15
802.11n (HT40)	2	MCS 0-15

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: Modulation modes consist of below configuration:

11a: IEEE 802.11a, HT20/HT40: IEEE 802.11n.

3.2. Accessories

Power	Brand	Model No.	Rating		
Adaptor 1	APD	DA-36M12	Input: 100-240V~50-60Hz, 0.8A Max		
Adapter 1	APD	DA-301VI12	Output: 12V, 3.0A		
Adoptor 2	OEM	ADS0361-U120333	Input: 100-240V~50-60Hz, 1.0A		
Adapter 2	Adapter 2 OEM ADS0361-		Output: 12V, 3.33A		
Other					
Power Cable*1: Non-Shielded, 2.1m					

Report Format Version: 02 Page No. FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

3.3. Table for Filed Antenna

Ant.	Brand	Model No.	Antenna Type	Connector	Gain (dBi)
1	MAG.LAYERS	EDA-8709-25GR2-A9	Dipole	SMA Male RP	2
2	MAG.LAYERS	EDA-8709-25GR2-A9	Dipole	SMA Male RP	2

Note: The EUT has two antennas.

<For 2.4GHz Band:>

For IEEE 802.11b/g mode (1TX, 2RX):

Only Chain 1 can be used as transmitting, but Chain 1 and Chain 2 could receive simultaneously.

For IEEE 802.11n mode (2TX/2RX):

Chain 1 and Chain 2 could transmit/receive simultaneously.

<For 5GHz Band:>

For IEEE 802.11a/n mode (2TX/2RX):

Chain 1 and Chain 2 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

The EUT has three bandwidth system.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48.

For 40MHz bandwidth systems, use Channel 38, 46.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150~5250 MHz Band 1	36	5180 MHz	44	5220 MHz
	38	5190 MHz	46	5230 MHz
	40	5200 MHz	48	5240 MHz

Report Format Version: 02 Page No. : 5 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode		Data Rate	Channel	Chain
AC Power Conducted Emission	CTX		-	-	-
Max. Conducted Output Power	11n 20MHz	Band 1	MCS0	36/40/48	1+2
	11n 40MHz	Band 1	MCS0	38/46	1+2
	11a	Band 1	6Mbps	36/40/48	1+2
Power Spectral Density	11n 20MHz	Band 1	MCS0	36/40/48	1+2
	11n 40MHz	Band 1	MCS0	38/46	1+2
	11a	Band 1	6Mbps	36/40/48	1+2
26dB Spectrum Bandwidth	11n 20MHz	Band 1	MCS0	36/40/48	1+2
99% Occupied Bandwidth	11n 40MHz	Band 1	MCS0	38/46	1+2
Measurement	11a	Band 1	6Mbps	36/40/48	1+2
Peak Excursion	11n 20MHz	Band 1	MCS0	36/40/48	1+2
	11n 40MHz	Band 1	MCS0	38/46	1+2
	11a	Band 1	6Mbps	36/40/48	1+2
Radiated Emission Below 1GHz	CTX		-	-	-
Radiated Emission Above 1GHz	11n 20MHz	Band 1	MCS0	36/40/48	1+2
	11n 40MHz	Band 1	MCS0	38/46	1+2
	11a	Band 1	6Mbps	36/40/48	1
Band Edge Emission	11n 20MHz	Band 1	MCS0	36/40/48	1+2
	11n 40MHz	Band 1	MCS0	38/46	1+2
	11a	Band 1	6Mbps	36/40/48	1+2
Frequency Stability	Un-modulatio	n	-	40	N/A

<For MPE and Co-location Test>:

The EUT could be applied with WLAN function and module's function; therefore Maximum Permissible Exposure (Please refer to Appendix B) and Co-location (please refer to Appendix C) tests are added for simultaneously transmit between WLAN function and module's function.

Report Format Version: 02 Page No. : 6 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

Please refer section 6 for Test Site Address.

3.7. Table for Multiple Listing

The model names in the following table are all refer to the identical product.

Brand Name	Model	LTE module
Teldat	TLDPV00A1	X
	TLDPV03A1	E371
	TLDPV04A1	E362
Alcatel-lucent	OA5710V	Χ
	OA5710V-4A	E371
	OA5710V-4V	E362

EUT have two module's as below table:

Manufacturer	Model	Function	Bands	FCC ID	IC
		LTE-Verizon	GPRS (850, 1900)		
Novatel	E362	(100M DL, 50M UL)	CDMA (850, 1900)	PKRNVWE362	3229B-E362
Novatei	E302	Fallback	WCDMA (850,1900)		
		(CDMA-EVDO)	LTE (700→B13)		
		LTE-AT&T	GPRS (850, 1900)		
Novatel	E371	(100M DL, 50M UL)	WCDMA (850, 1900)	PKRNVWE371	3229A-E371
		Fallback (HSPA+)	LTE (700→B17)		

Note: There are two module's can be used for EUT.

Report Format Version: 02 : 7 of 70 Page No. Issued Date : Aug. 16, 2013

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	D420	E2KWM3945ABG

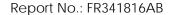
3.9. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11n / Chain 1 + Chain 2

Test Software Version	Telnet 192.168.1.1		
Frequency	5180 MHz	5200 MHz	5240 MHz
MCS0 20MHz	48	48	48
Frequency	5190 MHz	5230 MHz	-
MCS0 40MHz	30	48	-

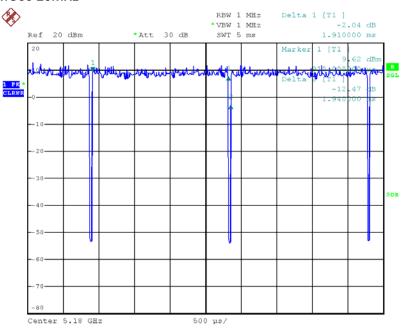
Power Parameters of IEEE 802.11a / Chain 1 + Chain 2

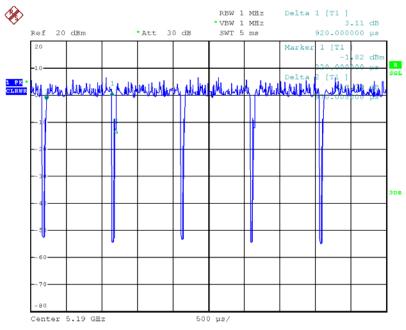

Test Software Version	Telnet 192.168.1.1		
Frequency	5180 MHz	5200 MHz	5240 MHz
IEEE 802.11a	48	48	48

3.10. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

: 8 of 70 Page No. Issued Date : Aug. 16, 2013

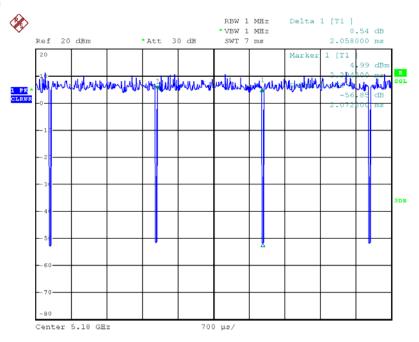

Report Format Version: 02 FCC ID: YUATLDPV00A1


3.11. Duty Cycle

IEEE 802.11n MCS0 20MHz

Date: 22.MAY.2013 16:08:23

IEEE 802.11n MCS0 40MHz


Date: 22.MAY.2013 16:10:10

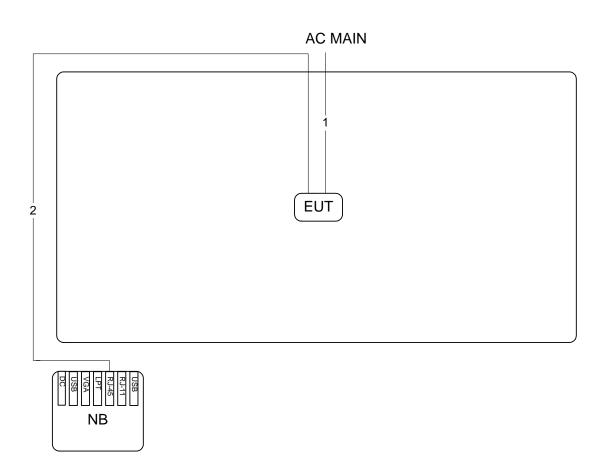
Page No. : 9 of 70

IEEE 802.11a

Date: 22.MAY.2013 15:58:01

3.12. Test Configurations

3.12.1. AC Power Line Conduction Emissions Test Configuration



Item	Connection	Shield	Length
1	Power cable	No	3m
2	RJ-45 cable	No	10m

3.12.2. Radiation Emissions Test Configuration

Item	Connection	Shield	Length
1	Power cable	No	3m
2	RJ-45 cable	No	10m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

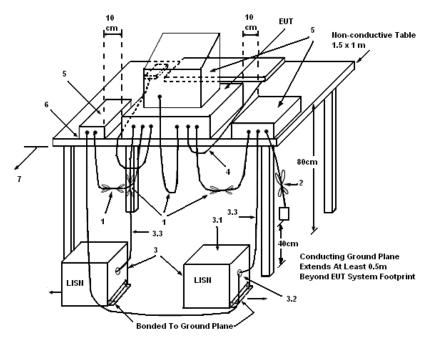
For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz


4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: 02 Page No. : 13 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

4.1.4. Test Setup Layout

LEGEND:

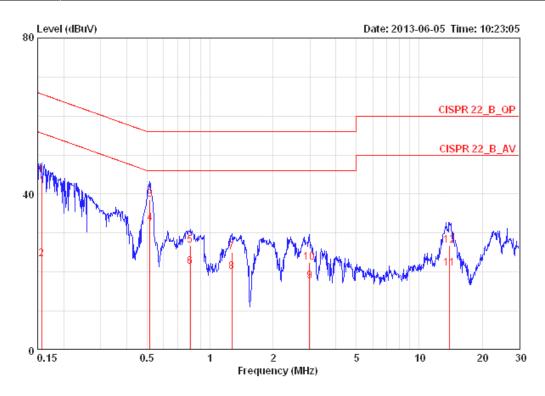
- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 $\,\Omega$. LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

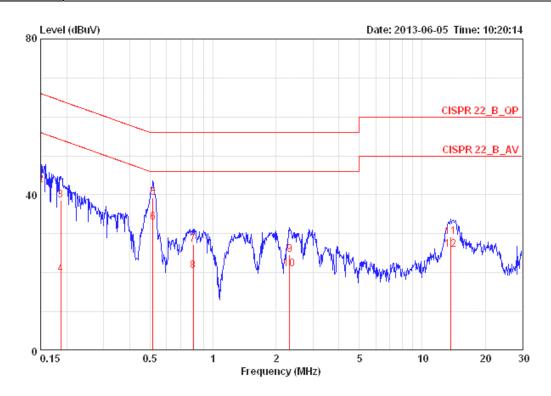
The EUT was placed on the test table and programmed in normal function.


Page No. : 14 of 70



4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	24°C	Humidity	48%
Test Engineer	Hank Yang	Phase	Line
Configuration	CTX		



			Uver	Limit	Kead	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
	MAZ	шьич	ш	шьич	ubuv	ш	ш		
1	0.15650	44.66	-20.99	65.65	44.32	0.16	0.18	LINE	QP
2	0.15650	23.27	-32.38	55.65	22.93	0.16	0.18	LINE	AVERAGE
3	0.51550	38.56	-17.44	56.00	38.21	0.15	0.20	LINE	QP
4	0.51550	32.48	-13.52	46.00	32.13	0.15	0.20	LINE	AVERAGE
5	0.80449	26.86	-29.14	56.00	26.50	0.16	0.20	LINE	QP
6	0.80449	21.40	-24.60	46.00	21.04	0.16	0.20	LINE	AVERAGE
7	1.269	25.00	-31.00	56.00	24.61	0.18	0.21	LINE	QP
8	1.269	19.98	-26.02	46.00	19.59	0.18	0.21	LINE	AVERAGE
9	2.993	17.61	-28.39	46.00	17.15	0.21	0.25	LINE	AVERAGE
10	2.993	22.45	-33.55	56.00	21.99	0.21	0.25	LINE	QP
11	13.989	20.87	-29.13	50.00	20.07	0.40	0.40	LINE	AVERAGE
12	13.989	26.88	-33.12	60.00	26.08	0.40	0.40	LINE	QP

Temperature	24°C	Humidity	48%
Test Engineer	Hank Yang	Phase	Neutral
Configuration	CTX		

				Over	Limit	Read	LISN	Cable		
		Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
		MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	L	0.15000	25.15	-30.85	56.00	24.89	0.08	0.18	NEUTRAL	AVERAGE
2	:	0.15000	42.44	-23.56	66.00	42.18	0.08	0.18	NEUTRAL	QP
3	;	0.18739	38.54	-25.62	64.15	38.26	0.08	0.20	NEUTRAL	QP
4	Ŀ	0.18739	19.72	-34.44	54.15	19.44	0.08	0.20	NEUTRAL	AVERAGE
5	i	0.51550	39.16	-16.84	56.00	38.88	0.08	0.20	NEUTRAL	QP
6	; e	0.51550	32.97	-13.03	46.00	32.69	0.08	0.20	NEUTRAL	AVERAGE
7	•	0.80449	27.30	-28.70	56.00	27.01	0.09	0.20	NEUTRAL	QP
8	;	0.80449	20.56	-25.44	46.00	20.27	0.09	0.20	NEUTRAL	AVERAGE
9)	2.321	24.66	-31.34	56.00	24.31	0.11	0.24	NEUTRAL	QP
10	1	2.321	20.88	-25.12	46.00	20.53	0.11	0.24	NEUTRAL	AVERAGE
11	L	13.695	29.21	-30.79	60.00	28.51	0.30	0.40	NEUTRAL	QP
12	!	13.695	25.94	-24.06	50.00	25.24	0.30	0.40	NEUTRAL	AVERAGE

Note:

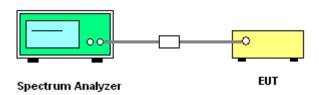
Level = Read Level + LISN Factor + Cable Loss.

4.2. 26dB Bandwidth & 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

	26dB Bandwidth
Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 26dB Bandwidth
RBW	Approximately 1% of the emission bandwidth
VBW	VBW > RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto
9	99% Occupied Bandwidth
Spectrum Parameters	Setting
Span	1.5 times to 5.0 times the OBW
RBW	1 % to 5 % of the OBW
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Setup Layout

Report Format Version: 02 Page No. : 17 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 02 Page No. : 18 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

4.2.7. Test Result of 26dB Bandwidth & 99% Occupied Bandwidth

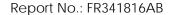
Temperature	25 °C	Humidity	56%
Test Engineer	Benson Peng	Configurations	IEEE 802.11n

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	19.68	18.08
40	5200 MHz	21.28	18.08
48	5240 MHz	19.68	18.08

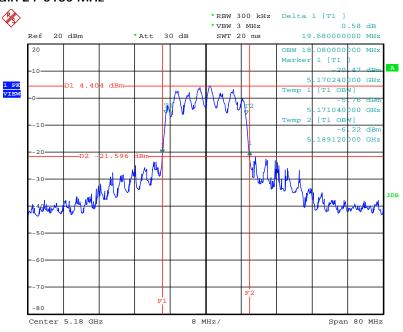
Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
38	5190 MHz	39.04	36.16	
46	5230 MHz	38.40	36.48	


Temperature	25 ℃	Humidity	56%
Test Engineer	Benson Peng	Configurations	IEEE 802.11a

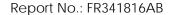
Configuration IEEE 802.11a / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	22.24	17.12
40	5200 MHz	21.60	17.12
48	5240 MHz	21.60	17.12

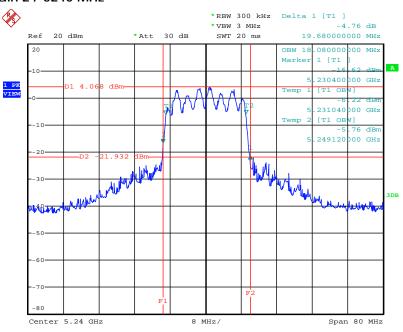

Page No.

: 20 of 70

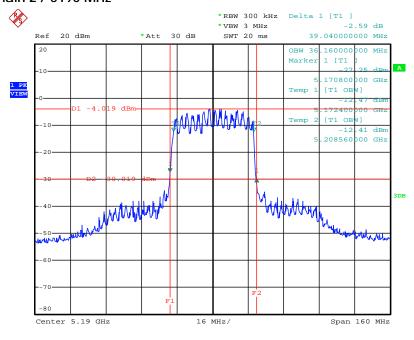
26dB Bandwidth & 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 / 5180 MHz


Date: 3.JUN.2013 22:25:16

26dB Bandwidth & 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 / 5200 MHz


Date: 3.JUN.2013 22:24:30

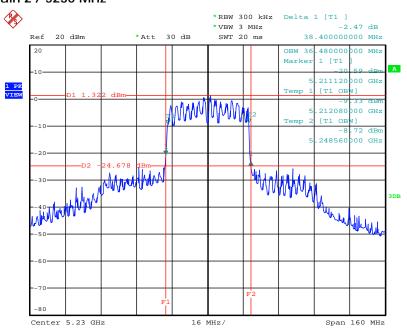
Page No. : 21 of 70 Issued Date : Aug. 16, 2013



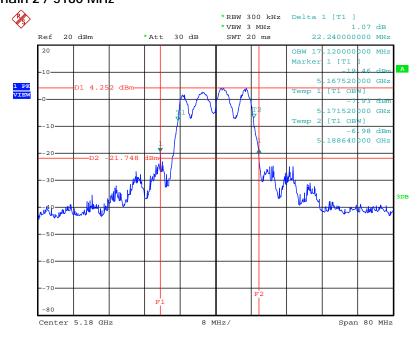
26dB Bandwidth & 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 / 5240 MHz

Date: 3.JUN.2013 22:23:23

26dB Bandwidth & 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 / 5190 MHz


Date: 3.JUN.2013 22:25:58

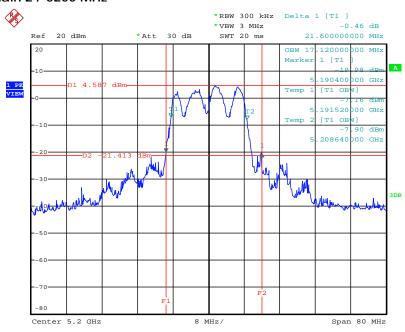
Page No. : 22 of 70 Issued Date : Aug. 16, 2013



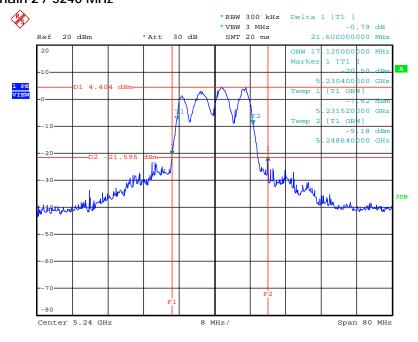
26dB Bandwidth & 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 / 5230 MHz

Date: 3.JUN.2013 22:26:46

26dB Bandwidth & 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5180 MHz


Date: 3.JUN.2013 22:17:41

Page No. : 23 of 70



26dB Bandwidth & 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5200 MHz

Date: 3.JUN.2013 22:21:07

26dB Bandwidth & 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5240 MHz

Date: 3.JUN.2013 22:21:39

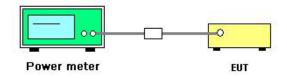
Page No. : 24 of 70 Issued Date : Aug. 16, 2013

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2. Measuring Instruments and Setting


The following table is the setting of the peak power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB 789033 D01 v01r03 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E, section (E) Maximum conducted output power =>(3) Method PM (Measurement using an RF average power meter) Multiple antenna systems was performed in accordance with KDB 662911 D01 v01r02 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 02 Page No. : 25 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	25 ℃	Humidity	56%
Test Engineer	Benson Peng	Configurations	IEEE 802.11n
Test Date	Jun. 03, 2013		

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2

Channel	Frequency	Conducted Power (dBm)		Total Conducted Output Power	Max. Limit	Result
		Chain 1	Chain 2	(dBm)	(dbiii)	
36	5180 MHz	13.86	13.75	16.82	16.94	Complies
40	5200 MHz	13.78	13.72	16.76	17.00	Complies
48	5240 MHz	13.86	13.74	16.81	16.94	Complies

Note: Power Limit=4+10*log(B) or 17dBm;4+10*log(19.68)=16.94dBm<17dBm, so power limit=16.94dBm.

Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2

Channel	Frequency	Conducted Power (dBm)		Total Conducted Output Power	Max. Limit	Result
		Chain 1	Chain 2	(dBm)	(dBm)	
38	5190 MHz	9.57	10.03	12.82	17.00	Complies
46	5230 MHz	13.62	13.94	16.79	17.00	Complies

Report Format Version: 02 FCC ID: YUATLDPV00A1

Page No. : 26 of 70 Issued Date : Aug. 16, 2013

Temperature	25 ℃	Humidity	56%
Test Engineer	Benson Peng	Configurations	IEEE 802.11a
Test Date	Jun. 03, 2013		

Configuration IEEE 802.11a / Chain 1 + Chain 2

Channel	Frequency			Total Conducted Output Power	Max. Limit	Result
		Chain 1	Chain 2	(dBm)	(dBm)	
36	5180 MHz	13.92	13.64	16.79	17.00	Complies
40	5200 MHz	14.09	13.87	16.99	17.00	Complies
48	5240 MHz	13.71	13.78	16.76	17.00	Complies

4.4. Power Spectral Density Measurement

4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

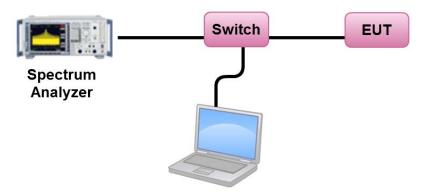
Frequency Range	Power Spectral Density limit (dBm/MHz)
5.15~5.25 GHz	4

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

4.4.3. Test Procedures


- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- 2. Test was performed in accordance with KDB 789033 D01 v01r03 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E, section (C) Maximum conducted output power => (d) Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).
- 3. Multiple antenna systems was performed in accordance KDB 662911 D01 v01r02 in-Band Power Spectral Density (PSD) Measurements (1) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.

Report Format Version: 02 Page No. : 28 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Page No. : 29 of 70 Issued Date : Aug. 16, 2013

4.4.7. Test Result of Power Spectral Density

Temperature	25 ℃	Humidity	56%
Test Engineer	Benson Peng	Configurations	IEEE 802.11n
Test Date	Jun. 03, 2013		

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	3.51	4.00	Complies
40	5200 MHz	3.59	4.00	Complies
48	5240 MHz	3.63	4.00	Complies

Note: Directional gain= $G_{ANT}+10log(N_{ANT}/Nss)=5.01dBi<6dBi$, so the limit doesn't reduce.

Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-3.98	4.00	Complies
46	5230 MHz	0.28	4.00	Complies

Note: Directional gain= $G_{ANT}+10log(N_{ANT}/Nss)$ =5.01dBi <6dBi, so the limit doesn't reduce.

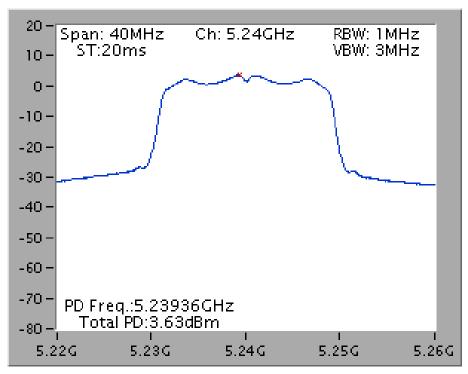
Page No. : 30 of 70 Issued Date : Aug. 16, 2013

Temperature	25 ℃	Humidity	56%
Test Engineer	Benson Peng	Configurations	IEEE 802.11a
Test Date	Jun. 03, 2013		

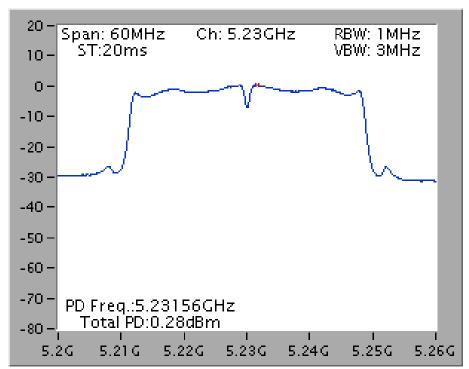
Configuration IEEE 802.11a / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	3.57	4.00	Complies
40	5200 MHz	3.86	4.00	Complies
48	5240 MHz	3.59	4.00	Complies

Note: Directional gain=G_{ANT}+10log(N_{ANT}/Nss) =5.01dBi <6dBi, so the limit doesn't reduce.

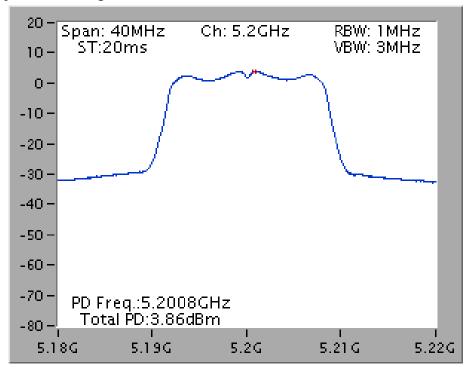

Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.


Page No. : 31 of 70 Issued Date : Aug. 16, 2013

Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 / 5240 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 / 5230 MHz


: 33 of 70

Issued Date : Aug. 16, 2013

Page No.

Power Density Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5200 MHz

4.5. Peak Excursion Measurement

4.5.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

spectrum analyzer.	
Spectrum	Setting
Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1MHz (Peak Trace) / 1MHz (Average Trace)
VBW	≥ 3MHz (Peak Trace) / ≥ 3MHz (Average Trace)
Detector	Peak (Peak Trace) / RMS (Average Trace)
Trace	Trace: Max hold (Peak Trace) /
Trace	Trace Average Sweep Count 100 (Average Trace)
Sweep Time	AUTO

4.5.3. Test Procedures

- 1. Trace A, Set RBW =1MHz, VBW = 3MHz, Span >26dB bandwidth, Max. hold.
- 2. Delta Mark trace A Maximum frequency and trace B same frequency.
- 3. Repeat the above procedure until measurements for all frequencies were complete.
- 5. Testing each modulation mode on a single channel in single operating band at single output port. All signal types need test (DSSS, OFDM). All modulation types need test (BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM). All bandwidth modes need test.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.4.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 02 Page No. : 34 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

4.5.7. Test Result of Peak Excursion

Temperature	25 ℃	Humidity	56%
Test Engineer	Benson Peng	Configurations	IEEE 802.11n

Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2

Modulation	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
BSPK(MCS0)	5180 MHz	8.69	13	Complies
QPSK(MCS1)	5180 MHz	8.93	13	Complies
16QAM(MCS3)	5180 MHz	9.22	13	Complies
64QAM(MCS5)	5180 MHz	9.58	13	Complies

Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2

Modulation	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
BSPK(MCS0)	5230MHz	8.13	13	Complies
QPSK(MCS1)	5230MHz	8.41	13	Complies
16QAM(MCS3)	5230MHz	9.39	13	Complies
64QAM(MCS5)	5230MHz	9.40	13	Complies

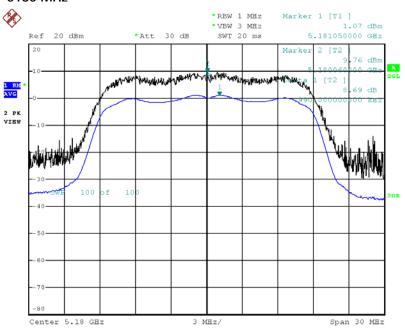
Report Format Version: 02 FCC ID: YUATLDPV00A1

sion: 02 Page No. : 35 of 70 00A1 Issued Date : Aug. 16, 2013

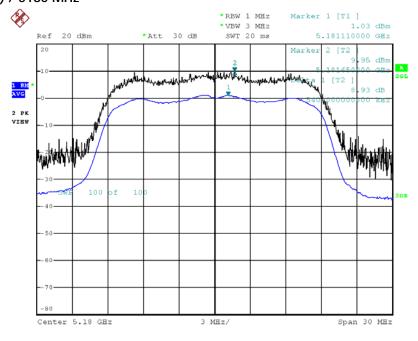
Temperature	25 ℃	Humidity	56%
Test Engineer	Benson Peng	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Chain 1 + Chain 2

Modulation	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
BSPK(6Mbps)	5200 MHz	8.32	13	Complies
QPSK(12Mbps)	5200 MHz	8.99	13	Complies
16QAM(24Mbps)	5200 MHz	9.02	13	Complies
64QAM(48Mbps)	5200 MHz	8.76	13	Complies


Note: Only the channel with maximum results was listed in the report.

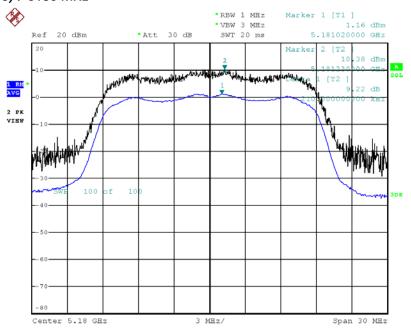
Page No. : 36 of 70 Issued Date : Aug. 16, 2013



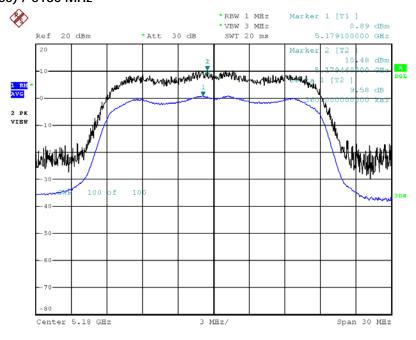
Peak Excursion Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 / BSPK(MCS0) / 5180 MHz

Date: 3.JUN.2013 22:46:26

Peak Excursion Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 / QPSK(MCS1) / 5180 MHz


Date: 3.JUN.2013 22:47:18

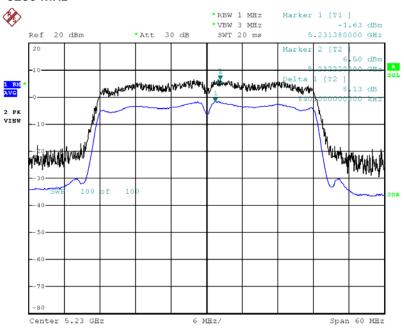
Page No. : 37 of 70 Issued Date : Aug. 16, 2013



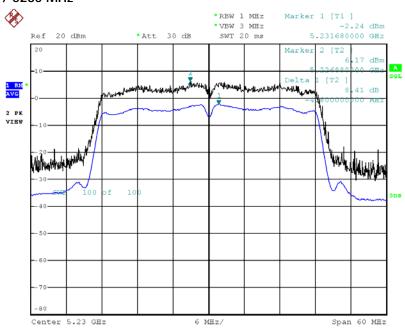
Peak Excursion Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 / 16QAM(MCS3) / 5180 MHz

Date: 3.JUN.2013 22:48:02

Peak Excursion Plot on Configuration IEEE 802.11n MCS0 20MHz / Chain 1 + Chain 2 / 64QAM(MCS5) / 5180 MHz


Date: 3.JUN.2013 22:48:39

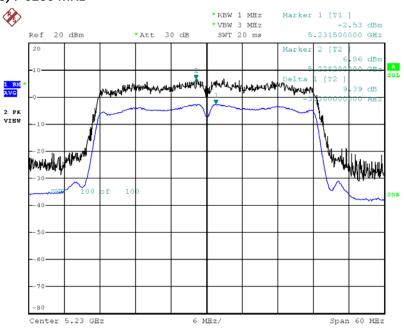
Page No. : 38 of 70 Issued Date : Aug. 16, 2013



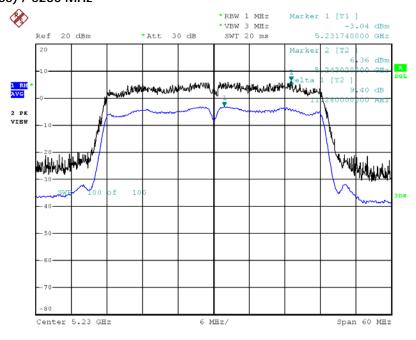
Peak Excursion Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 / BSPK(MCS0) / 5230 MHz

Date: 3.JUN.2013 22:50:05

Peak Excursion Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 / QPSK(MCS1) / 5230 MHz


Date: 3.JUN.2013 22:50:56

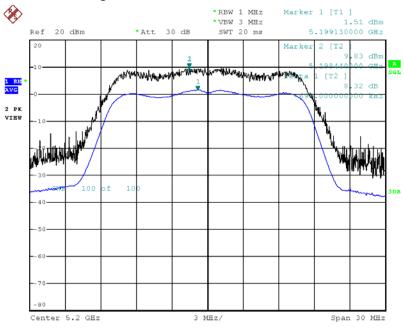
Page No. : 39 of 70 Issued Date : Aug. 16, 2013



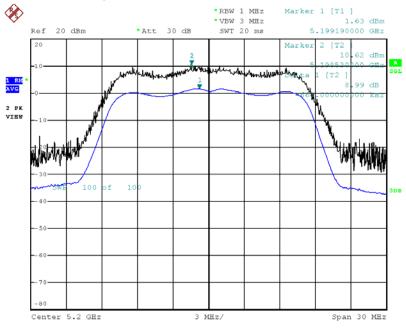
Peak Excursion Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 / 16QAM(MCS3) / 5230 MHz

Date: 3.JUN.2013 22:52:05

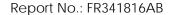
Peak Excursion Plot on Configuration IEEE 802.11n MCS0 40MHz / Chain 1 + Chain 2 / 64QAM(MCS5) / 5230 MHz


Date: 3.JUN.2013 22:53:00

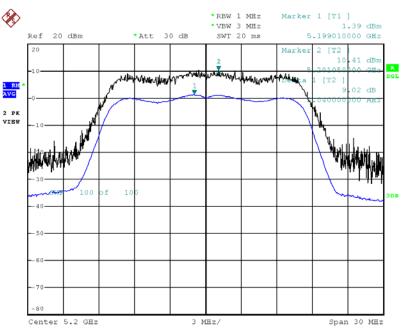
Page No. : 40 of 70 Issued Date : Aug. 16, 2013



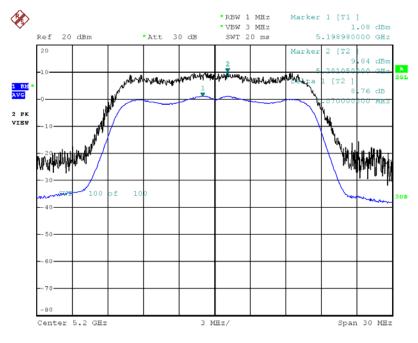
Peak Excursion Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / BSPK(6Mbps) / 5200 MHz


Date: 3.JUN.2013 22:41:30

Peak Excursion Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / QPSK(12Mbps) / 5200 MHz


Date: 3.JUN.2013 22:42:51

Page No. : 41 of 70 Issued Date : Aug. 16, 2013



Peak Excursion Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 16QAM(24Mbps) / 5200 MHz

Date: 3.JUN.2013 22:43:37

Peak Excursion Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 64QAM(48Mbps) / 5200 MHz

Date: 3.JUN.2013 22:44:30

Page No. : 42 of 70 Issued Date : Aug. 16, 2013

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. For transmitters operating in the In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

1		
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted	1MHz / 2MHz for pook
band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: 02 Page No. : 43 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

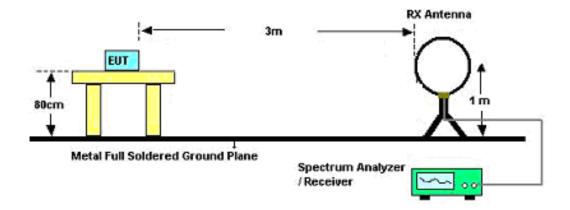
4.6.3. Test Procedures

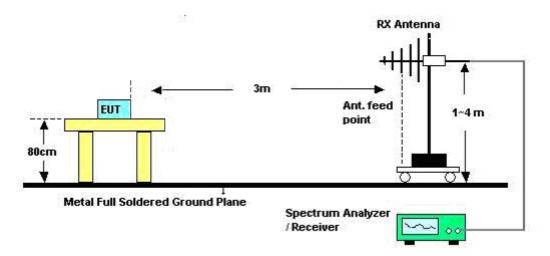
1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- **6.** For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Page No.

: 44 of 70


Issued Date : Aug. 16, 2013



4.6.4. Test Setup Layout

For radiated emissions below 1GHz

For radiated emissions above 1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Page No. : 45 of 70

Issued Date : Aug. 16, 2013

4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24.5° C	Humidity	60%
Test Engineer	David Tseng	Configurations	CTX
Test Date	Apr. 18, 2013		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

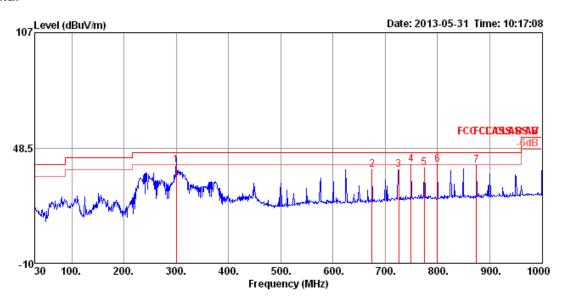
The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

Report Format Version: 02
FCC ID: YUATLDPV00A1

Page No. : 46 of 70 Issued Date : Aug. 16, 2013

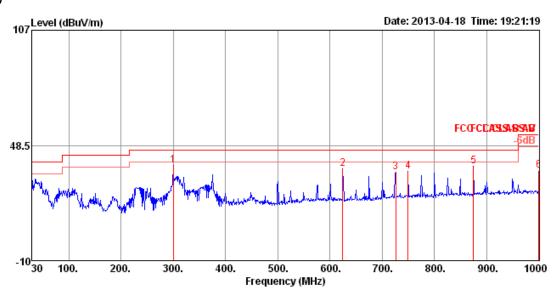


4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24.5° C	Humidity	60%
Test Engineer	David Tseng	Configurations	CTX

Horizontal

			Limit	0∨er	Read	CableA	htenna	Preamp	A/Pos	T/Pos		
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor			Pol/Phase	Remark
_												
	MHz	dBu\//m	dBu\∕/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1 qp	299.66	39.49	46.00	-6.51	55.76	2.13	13.02	31.42	100	347	HORIZONTAL	QP
2	675.05	37.70	46.00	-8.30	46.95	3.33	18.78	31.36	125	325	HORIZONTAL	Peak
3	725.49	37.68	46.00	-8.32	46.06	3.46	19.43	31.27	125	112	HORIZONTAL	Peak
4	749.74	39.87	46.00	-6.13	48.02	3.53	19.69	31.37	100	326	HORIZONTAL	Peak
5	774.96	38.54	46.00	-7.46	46.56	3.62	19.71	31.35	100	32	HORIZONTAL	Peak
6 рр	800.18	40.13	46.00	-5.87	47.97	3.67	19.76	31.27	100	280	HORIZONTAL	Peak
7	874.87	39.52	46.00	-6.48	46.54	3.89	20.24	31.15	100	155	HORIZONTAL	Peak


Report Format Version: 02
FCC ID: YUATLDPV00A1

Issued Date : Aug. 16, 2013

Vertical

	Freq	Level		Limit						1/POS	Pol/Phase	Remark
-	MHz	dBu\∕/m	dBu\//m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1 рр	299.66	38.35	46.00	-7.65	54.62	2.13	13.02	31.42	150	248	VERTICAL	Peak
2	624.61	36.50	46.00	-9.50	46.11	3.18	18.61	31.40	100	166	VERTICAL	Peak
3	725.49	34.79	46.00	-11.21	43.17	3.46	19.43	31.27	100	310	VERTICAL	Peak
4	749.74	35.40	46.00	-10.60	43.55	3.53	19.69	31.37	100	322	VERTICAL	Peak
5	874.87	37.93	46.00	-8.07	44.95	3.89	20.24	31.15	125	38	VERTICAL	Peak
6	1000.00	35.61	54.00	-18.39	41.14	4.21	21.44	31.18	125	17	VERTICAL	Peak

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

Temperature	24.5° C	Humidity	57%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n MCS0 20MHz Ch 36 / Chain 1 + Chain 2
Test Date	May 03, 2013		

Horizontal

	Pol/Phase
MHz dBuV/m dBuV/m dB dBuV dB dB/m dB cm	deg ———
•	296 HORIZONTAL 296 HORIZONTAL

Vertical

Freq	Level		Over Limit						A/Pos	-	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
15540.34 15543.64								-	100 100		VERTICAL VERTICAL

Page No. : 49 of 70 Issued Date : Aug. 16, 2013

Temperature	24.5° C	Humidity	57%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n MCS0 20MHz Ch 40 / Chain 1 + Chain 2
Test Date	May 03, 2013		

Freq	Level	Limit Line	Over Limit						A/Pos	-	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
15600.24 15603.94								_	100 100		HORIZONTAL HORIZONTAL

Freq	Level		Over Limit					Remark	A/Pos	T/Pos Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg
15595.00 15604.62									100 100	146 VERTICAL

Temperature	24.5° C	Humidity	57%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n MCS0 20MHz Ch 48 / Chain 1 + Chain 2
Test Date	May 03, 2013		

3
HORIZONTAL
1

Freq	Level	Limit Line	Over Limit					A/Pos	T/Pos Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		deg
15719.40 15723.04								 100 100	256 VERTICAL 256 VERTICAL

Temperature	24.5° C	Humidity	57%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n MCS0 40MHz Ch 38 / Chain 1 + Chain 2
Test Date	May 03, 2013		

Freq	Level		Over Limit					Remark	A/Pos	-	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
15565.26 15572.94								_	100 100		HORIZONTAL HORIZONTAL

Freq	Level		Over Limit					Remark	A/Pos	T/Pos Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg
15567.44 15574.20								_	100 100	249 VERTICAL 249 VERTICAL

Temperature	24.5 ℃	Humidity	57%
Test Engineer	Robert Chang	Configurations	IEEE 802.11n MCS0 40MHz Ch 46
			/ Chain 1 + Chain 2
Test Date	May 03, 2013		

	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1	15687.60	54.31	74.00	-19.69	41.17	10.79	37.91	35.56	Peak	100	132	HORIZONTAL
2	15692.10	40.98	54.00	-13.02	27.87	10.79	37.88	35.56	Average	100	132	HORIZONTAL

	Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg
1	15693.02	55.13	74.00	-18.87	42.02	10.79	37.88	35.56	Peak	100	239 VERTICAL
2	15694.06	41.01	54.00	-12.99	27.90	10.79	37.88	35.56	Average	100	239 VERTICAL

Temperature	24.5° C	Humidity	57%
Test Engineer	Robert Chang	Configurations	IEEE 802.11a Ch 36 / Chain 1 + Chain 2
Test Date	May 03, 2013		

	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1	15539.60	55.02	74.00	-18.98	41.72	10.77	38.12	35.59	Peak	100	19	HORIZONTAL
2	15540.24	41.59	54.00	-12.41	28.29	10.77	38.12	35.59	Average	100	19	HORIZONTAL

Vertical

Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg
15537.46 15539.50								-	100 100	322 VERTICAL 322 VERTICAL

Page No. : 54 of 70 Issued Date : Aug. 16, 2013

Temperature	24.5° C	Humidity	57%
Test Engineer	Robert Chang	Configurations	IEEE 802.11a Ch 40 / Chain 1 + Chain 2
Test Date	May 03, 2013		

Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
15600.12 15604.60								-	119 119		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg ————
	15595.66									100	127 VERTICAL
2	15597.40	40.97	54.00	-13.03	27.73	10.78	38.04	35.58	Average	100	127 VERTICAL

Temperature	24.5° C	Humidity	57%
Test Engineer	Robert Chang	Configurations	IEEE 802.11a Ch 48 / Chain 1 + Chain 2
Test Date	May 03, 2013		

Freq	Level		Over Limit					Remark	A/Pos	T/Pos Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg
15715.30 15716.34									100 100	156 VERTICAL 156 VERTICAL

Vertical

			Limit	Over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBuV/m	dBuV/m	₫B	dBu√	dB	dB/m	dB		cm	deg	
1	15719.62	57.48	74.00	-16.52	44.40	10.79	37.85	35.56	Peak	100	66	HORIZONTAL
2	15719.64	44.18	54.00	-9.82	31.10	10.79	37.85	35.56	Average	100	66	HORIZONTAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 56 of 70 Issued Date : Aug. 16, 2013

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance			
·					
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	100 MHz			
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average			
RBW / VBW (Emission in non-restricted	1MHz / 2MHz for pool,			
band)	1MHz / 3MHz for peak			

4.7.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

Report Format Version: 02 Page No. : 57 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	24.5° C	Humidity	57%		
Tost Engineer	Dobort Chang	Configurations	IEEE 802.11n MCS0 20MHz Ch 36, 40,		
Test Engineer	Robert Chang	Configurations	48 / Chain 1 + Chain 2		
Test Date	May 03, 2013				

Channel 36

		Freq	Level	Limit Line					Preamp Factor		A/Pos	T/Pos	Pol/Phase
	-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
	1	5149.00	70.45	74.00	-3.55	30.31	6.13	34.01	0.00	Peak	100	20	VERTICAL
Г	2	5149.40	53.87	54.00	-0.13	13.73	6.13	34.01	0.00	Average	100	20	VERTICAL
	3	5179.20	111.56		•	71.33	6.15	34.08	0.00	Peak	100	20	VERTICAL
	4	5179.40	101.12			60.89	6.15	34.08	0.00	Average	100	20	VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1 2 3 4	5149.60 5150.00 5200.80 5201.20	53.08 116.44						0.00 0.00	Peak Average Peak Average	111 111 111 111	345 345	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line		Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	5146.40	56.97	74.00	-17.03	16.83	6.13	34.01	0.00	Peak	110	346	VERTICAL
2	5148.20	44.15	54.00	-9.85	4.01	6.13	34.01	0.00	Average	110	346	VERTICAL
3	5240.60	106.45			66.09	6.18	34.18	0.00	Average	110	346	VERTICAL
4	5240.60	117.52			77.16	6.18	34.18	0.00	Peak	110	346	VERTICAL
5	5350.00	45.67	54.00	-8.33	4.99	6.26	34.42	0.00	Average	110	346	VERTICAL
6	5350.60	58.21	74.00	-15.79	17.53	6.26	34.42	0.00	Peak	110	346	VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Report Format Version: 02 Page No. : 59 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

Temperature	24.5° C	Humidity	57%		
Test Engineer	Robert Chang	Configurations	IEEE 802.11n MCS0 40MHz Ch 38, 46 /		
			Chain 1 + Chain 2		
Test Date	May 03, 2013				

Channel 38

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1 2 3 4	5148.00 5148.80 5191.20 5191.20	53.56 94.57			32.91 13.42 54.33 65.63	6.13 6.16		0.00 0.00	Peak Average Average Peak	111 111 111 111	345 345	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

	Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1	5149.20	53.55	54.00	-0.45	13.41	6.13	34.01	0.00	Average	113	341	VERTICAL
2	5149.60	72.80	74.00	-1.20	32.66	6.13	34.01	0.00	Peak	113	341	VERTICAL
3	5231.60	99.76			59.40	6.18	34.18	0.00	Average	113	341	VERTICAL
4	5232.00	111.64			71.28	6.18	34.18	0.00	Peak	113	341	VERTICAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 60 of 70 Issued Date : Aug. 16, 2013

Temperature	24.5 °C	Humidity	57%		
Toot Engineer	Dobort Chang	Configurations	IEEE 802.11a Ch 36, 40, 48 /		
Test Engineer	Robert Chang	Configurations	Chain 1 + Chain 2		
Test Date	May 03, 2013				

Channel 36

	Freq	Level	Limit Line		Read Level					A/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	5142.20	70.90	74.00	-3.10	30.79	6.13	33.98	0.00	Peak	100	25	VERTICAL
2	5150.00	53.59	54.00	-0.41	13.45	6.13	34.01	0.00	Average	8960	25	VERTICAL
3	5180.20	111.63			71.40	6.15	34.08	0.00	Peak	100	25	VERTICAL
4	5181.00	101.84			61.61	6.15	34.08	0.00	Average	100	25	VERTICAL

Item 5, 6 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line					Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1	5147.20	68.35	74.00	-5.65	28.21	6.13	34.01	0.00	Peak	111	346	VERTICAL
2	5150.00	52.20	54.00	-1.80	12.06	6.13	34.01	0.00	Average	111	346	VERTICAL
3	5201.20	105.86			65.59	6.16	34.11	0.00	Average	111	346	VERTICAL
4	5201.20	115.86			75.59	6.16	34.11	0.00	Peak	111	346	VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line	Over Limit	Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	5144.60	44.22	54.00	-9.78	4.08	6.13	34.01	0.00	Average	114	191	VERTICAL
2	5145.80	57.03	74.00	-16.97	16.89	6.13	34.01	0.00	Peak	114	191	VERTICAL
3	5239.40	106.31			65.95	6.18	34.18	0.00	Average	114	191	VERTICAL
4	5239.40	116.71			76.35	6.18	34.18	0.00	Peak	114	191	VERTICAL
5	5350.00	44.92	54.00	-9.08	4.24	6.26	34.42	0.00	Average	114	191	VERTICAL
6	5350.00	56.57	74.00	-17.43	15.89	6.26	34.42	0.00	Peak	114	191	VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 61 of 70 Issued Date : Aug. 16, 2013

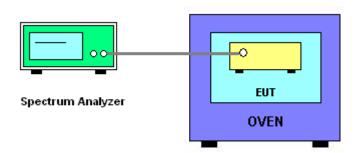
4.8. Frequency Stability Measurement

4.8.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 10⁶ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is 0°C~45°C.

4.8.4. Test Setup Layout

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5200
126.50	5200.0720
110.00	5200.0712
93.50	5200.0702
Max. Deviation (MHz)	0.072000
Max. Deviation (ppm)	13.85

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)					
(°C)	5200					
-30	5200.0716					
-20	5200.0710					
-10	5200.0712					
0	5200.0702					
10	5200.0700					
20	5200.0696					
30	5200.0716					
40	5200.0710					
50	5200.0712					
Max. Deviation (MHz)	0.071600					
Max. Deviation (ppm)	13.77					

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further,

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Page No. : 64 of 70 Issued Date : Aug. 16, 2013

Page No.

: 65 of 70

Issued Date : Aug. 16, 2013

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Oct. 23, 2012	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 26, 2012	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9kHz ~ 30MHz	Jun. 22, 2012	Conduction (CO01-CB)
Impulsbegrenzer Pulse Limiter	Rohde&Schwarz	ESH3-Z2	100430	9kHz~30MHz	Feb. 21, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 04, 2012	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	-	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Apr. 16, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Jul. 31, 2012	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 16, 2012	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Apr. 15, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Oct. 08, 2012	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 05, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 28, 2012	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 27, 2012	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

 $[\]sp{"*"}$ Calibration Interval of instruments listed above is two years.

Page No.

: 67 of 70

Issued Date : Aug. 16, 2013

6. TEST LOCATION

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

7. MEASUREMENT UNCERTAINTY

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

	Und	certain				
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$		
Receiver reading	0.026	dB	normal(k=2)	0.013		
Cable loss	0.002	dB	normal(k=2)	0.001		
AMN/LISN specification	1.200	dB	normal(k=2)	0.600		
Mismatch Receiver VSWR 1= AMN/LISN VSWR 2=	-0.080	dB	U-shaped	0.060		
combined standard uncertainty Ue(y)	1.2					
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)		2.4				

Uncertainty of Conducted Emission Measurement

	Und	certain			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$	
Cable loss	0.038	dB	normal(k=2)	0.019	
Attenuator	0.047	dB	normal(k=2)	0.024	
Power Meter specification	0.300	dB	normal(k=2)	0.150	
Power Sensor specification	0.300	dB	normal(k=2)	0.150	
Mismatch Receiver VSWR 1= Antenna VSWR 2= Pre Amplifier VSWR 3=	-0.080	dB	U-shaped	0.060	
combined standard uncertainty Ue(y)	0.403				
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)			0.806		

Report Format Version: 02 Page No. : 68 of 70 FCC ID: YUATLDPV00A1 Issued Date : Aug. 16, 2013

<u>Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)</u>

	Und	certain	ty of x_i			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$		
Receiver reading	0.1727	dB	normal(k=1)	0.1727		
Cable loss	0.1736	dB	normal(k=2)	0.0868		
Antenna gain	0.1687	dB	normal(k=2)	0.0843		
Site imperfection	0.4898	dB	Triangular	0.2		
Pre-amplifier gain	0.3661	dB	normal(k=2)	0.183		
Transmitter antenna	1.7	dB	rectangular	0.9815		
Signal generator	0.5	dB	rectangular	0.2887		
Mismatch	0.08	dB	u-shape	0.244		
Spectrum analyzer	0.5	dB	rectangular	0.2887		
combined standard uncertainty Ue(y)	1.1434					
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)			2.2869			

<u>Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)</u>

	Uncertainty of x_i				
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$	
Receiver reading	0.1908	dB	normal(k=1)	0.1908	
Cable loss	0.1685	dB	normal(k=2)	0.0843	
Antenna gain	0.1912	dB	normal(k=2)	0.0956	
Site imperfection	1.3091	dB	Triangular	0.5344	
Pre-amplifier gain	0.3043	dB	normal(k=2)	0.1521	
Transmitter antenna	1.7	dB	rectangular	0.9815	
Signal generator	0.5	dB	rectangular	0.2887	
Mismatch	0.08	dB	u-shape	0.244	
Spectrum analyzer	0.8	dB	rectangular	0.4619	
combined standard uncertainty Ue(y)	1.2965				
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	2.593				

Report Format Version: 02
FCC ID: YUATLDPV00A1

Page No. : 69 of 70 Issued Date : Aug. 16, 2013

<u>Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)</u>

	Uncertainty of x_i				
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$	
Receiver reading	0.1864	dB	normal(k=1)	0.1864	
Cable loss	0.1666	dB	normal(k=2)	0.0833	
Antenna gain	0.1904	dB	normal(k=2)	0.0952	
Site imperfection	0.4882	dB	Triangular	0.1993	
Pre-amplifier gain	0.2688	dB	normal(k=2)	0.1344	
Transmitter antenna	1.7	dB	rectangular	0.9815	
Signal generator	0.5	dB	rectangular	0.2887	
Mismatch	0.08	dB	u-shape	0.244	
Spectrum analyzer	0.8	dB	rectangular	0.4619	
combined standard uncertainty Ue(y)	1.1874				
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	2.3749				

Page No.

: 70 of 70

Issued Date : Aug. 16, 2013