

SAR Test Report

Report No.: AGC00200130501FH01

FCC ID : YSEGO180

PRODUCT DESIGNATION: GSM Mobile Phone

APPLICATION PURPOSE: Class II Permissive Change

BRAND NAME : GO MOBILE

MODEL NAME : GO180

CLIENT: Nexus Telecom Inc.

DATE OF ISSUE : May 14, 2013

FCC Oet65 Supplement C June 2001

STANDARD(S) : IEEE Std. 1528-2003

47CFR § 2.1093

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.:AGC00200130501FH01 Page 2 of 68

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	May 14, 2013	Valid	Original Report

Test Report Certification				
Applicant Name	Nexus Telecom Inc.			
Applicant Address	PO Box 873, Venterpool Plaza 873 Road Town, Tortola Virgin Islands (British)			
Manufacturer Name	United Creation Technology Co., Ltd.			
Manufacturer Address	Room 201, Block A, Science and technology building phase-II, Nanhai Road 1057, Shekou, Nanshan district, Shenzhen, CN.			
Product Designation	GSM Mobile Phone			
Brand Name	GO MOBILE			
Model Name	GO180			
Different Description	N/A			
EUT Voltage	DC3.7V by battery			
Applicable Standard	FCC Oet65 Supplement C June 2001 IEEE Std. 1528-2003 47CFR § 2.1093			
Test Date	May 10, 2013			
Performed Location	Attestation of Global Compliance(Shenzhen) Co., Ltd.			
i enormed Location	2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen, China			
Report Template	AGCRT-US-2.5G1/SAR (2013-03-01)			

Checked By

Argela b

Angela b

Angela Li May 14, 2013

Solyur 2lany

Authorized By

Solger Zhang May 14, 2013

TABLE OF CONTENTS

1. GENERAL INFORMATION	5
1.1. EUT DESCRIPTION	7
2. SAR MEASUREMENT SYSTEM	
2.1. COMOSAR SYSTEM DESCRIPTION	
3. TISSUE SIMULATING LIQUID	
3.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	13 14
4. SAR MEASUREMENT PROCEDURE	16
4.1. SAR SYSTEM VALIDATION4.2. SAR MEASUREMENT PROCEDURE	16 18
5. SAR EXPOSURE LIMITS	19
6. TEST EQUIPMENT LIST	20
7. MEASUREMENT UNCERTAINTY	21
8. CONDUCTED POWER MEASUREMENT	22
9. TEST RESULTS	23
9.1. SAR TEST RESULTS SUMMARY	23
APPENDIX A. SAR SYSTEM VALIDATION DATA	25
APPENDIX B. SAR MEASUREMENT DATA	29
APPENDIX C. TEST SETUP PHOTOGRAPHS &EUT PHOTOGRAPHS	33
APPENDIX D. PROBE CALIBRATION DATA	41
ADDENDIY E DIDOLE CALIBRATION DATA	51

Report No.:AGC00200130501FH01 Page 5 of 68

1. General Information

1.1. EUT Description

General Information					
Product Designation	GSM Mobile Phone				
Test Model	GO180				
Hardware Version	92521_1_12				
Software Version	N/A				
Device Category	Portable				
RF Exposure Environment	Uncontrolled				
Antenna Type	Internal				
GSM and GPRS					
Support Band	☐ GSM 850 ☐ PCS 1900 (U.S. Bands) ☐ GSM 900 ☐ DCS 1800 (Non-U.S. Bands)				
GPRS Type	Class B				
GPRS Class	Class 8,10 (1Tx+4Rx, 2Tx+3Rx)				
TX Frequency Range	GSM 850 : 824.2~848.8MHz; PCS 1900: 1850.2~1909.8MHz;				
RX Frequency Range	GSM 850 : 869~894MHz PCS 1900: 1930~1990MHz				
Release Version	R99				
Type of modulation	GMSK for GSM/GPRS				
Antenna Gain	1.0dBi				
Max. Output Power (Avg. Burst Power)	GSM850: 32.56dBm(31.55dBm- Avg. Burst Power) PCS1900: 29.65dBm(28.79dBm- Avg. Burst Power)				
Max. Output Power (Radiated)	GSM850: 30.46dBm- ERP PCS1900: 28.36dBm- EIRP				
Bluetooth					
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0 □V3.0+EDR □V4.0				
Operation Frequency	2402~2480MHz				
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK				

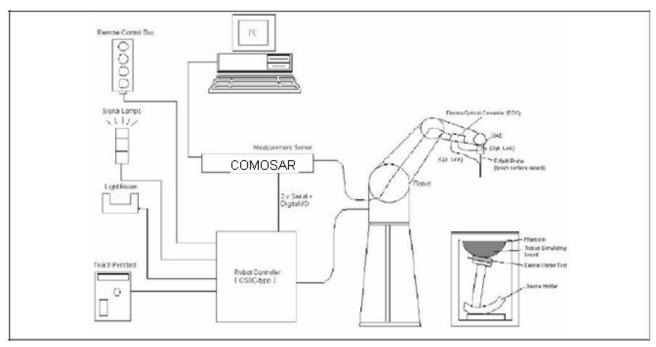
Avg. Burst Power	2.62dBm			
Antenna Gain	1.2dBi			
WIFI				
WIFI Specification	□802.11a ⊠802.11b ⊠802.11g ⊠802.11n(20) ⊠802.11n(40)			
Operation Frequency	2412~2462MHz			
Avg. Burst Power	11b: 9.58 dBm,11g: 8.72 dBm,11n(20): 8.65 dBm,11n(40): 6.47dBm			
Antenna Gain	1.2dBi			
Accessories				
Battery	Brand name: GO MOBILE Model No. : GO180 Voltage and Capacitance: 3.7 V &900mAh			
Adapter	Brand name: GO MOBILE Model No. : GO180 Input: AC 100-240V 50/60Hz 0.12A output: DC5.0V 500mA			
Earphone	Brand name: N/A Model No. : N/A			

Note: The sample used for testing is end product.

Report No.:AGC00200130501FH01 Page 7 of 68

1.2. Test Procedure

1	Setup the EUT and simulators as shown on above.
2	Turn on the power of all equipment.
3	EUT Communicate with CMU 200, and test them respectively at U.S. bands


1.3. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21± 2
Humidity (%RH)	30-70	55±2

2. SAR Measurement System

2.1. COMOSAR System Description

The COMOSAR system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot with controller, teach pendant and software.

An arm extension for accommodating the data acquisition electronics (DAE).

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection,

collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital Communicate Mobile to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.

The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

A computer running WinXP and the Opensar software.

Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.

The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Post processor, COMOSAR allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dissymmetric probe manufactured by SPEAG.

The probe is specially designed and calibrated for use in liquid with high permittivity. The dissymmetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN62209-1, IEC 62209, etc.) Under ISO17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EP159		
Manufacture	Satimo		
Frequency	0.3 GHz-3 GHz Linearity:±0.2dB(300 MHz-3 GHz)	与人工工一	
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.2dB		
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm		
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precision of better 30%.		

2.3. Robot

The COMOSAR system uses the high precision robots TX90 XL type out of the newer series from Satimo SA (France).For the 6-axis controller COMOSAR system, the KUKA robot controller version from Satimo is used.

The XL robot series have many features that are important for our application:

High precision (repeatability 0.02 mm)

High reliability (industrial design)

Jerk-free straight movements

Low ELF interference (the closed metallic

construction shields against motor control fields)

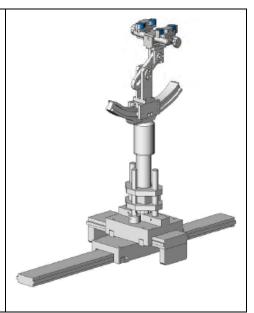
6-axis controller

2.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



2.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵr =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

Left head Right head Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Report No.:AGC00200130501FH01 Page 13 of 68

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

Ingredient	850MHz	850MHz	1900MHz	1900MHz
(% Weight)	Head	Body	Head	Body
Water	40.45	52.4	54.90	40.5
Salt	1.42	1.40	0.18	0.50
Sugar	57.6	45.0	0.00	58.0
HEC	0.40	1.00	0.00	0.50
Preventol	0.10	0.20	0.00	0.50
DGBE	0.00	0.00	44.92	0.00

Report No.:AGC00200130501FH01 Page 14 of 68

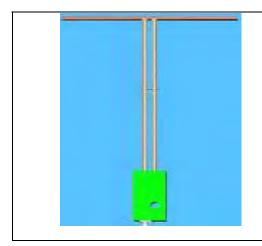
3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using COMOSAR Dielectric Probe Kit and R&S Network Analyzer ZVL6 .

Tissue Stimulant Measurement for GSM 850					
Frequency (MHz)	Parts	Description	Dielectric F	Tissue Temp [°C]	
850MHz	Head	Reference result ±5% window	εr 41.50 39.425-43.575	δ[s/m] 0.90 0.855-0.945	N/A
		May 10, 2013	40.68	0.89	21

Tissue Stimulant Measurement for PCS 1900					
Frequency (MHz)	Parts	Description	Dielectric Parameters		Tissue Temp [°C]
1900MHz	Head	Reference result ±5% window	εr 40.00 38.00-42.00	δ[s/m] 1.40 1.33-1.47	N/A
		May 10, 2013	41.39	1.46	21

3.3. Tissue Dielectric Parameters for Head and Body Phantoms


The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency (MHz)	head		body	
	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
850	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation 4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
900 MHz	149.0	83.3	3.6
1900MHz	68	39.5	3.6

Report No.:AGC00200130501FH01 Page 17 of 68

4.1.2. Validation Result

System Performance Check at 850 MHz &1900MHz for Head								
Validation Kit: SN 46/11DIP 0G900-185								
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp.[°C]				
850 MHz	Reference result ± 10% window	10.9 9.81 to 11.99	6.99 6.29 to 7.69	N/A				
	May 10, 2013	10.97	6.71	21.0				
Validation Kit	:: SN 46/11DIP 1G900-	187		•				
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp.[°C]				
1900 MHz	Reference result ± 10% window	39.7 35.73 to 43.67	20.5 18.45 to 22.55	N/A				
	May 10, 2013	40.29	20.94	21.0				
Note: All SAR values are normalized to 1W forward power.								

Report No.:AGC00200130501FH01 Page 18 of 68

4.2. SAR Measurement Procedure

The COMOSAR calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

When multiple peak SAR location were found during the same configuration or test mode, Zoom scan shall performed on each peak SAR location, only the peak point with maximum SAR value will be reported for the configuration or test mode.

Report No.:AGC00200130501FH01 Page 19 of 68

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg

6. Test Equipment List

Equipment description	Manufacturer/Mo del	Identification No.	Current calibration date	Next calibration date	
SAR Probe	Satimo	SN 22/12 EP159	12/11/2012	12/10/2013	
Phantom	Satimo	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	Satimo	-	Validated. No cal required.	Validated. No cal required.	
Comm Tester	R&S - CMU200	069Y7-158-13-712	02/28/2013	02/27/2014	
Comm Tester	Agilent-8960	GB46310822	10/22/2012	10/21/2013	
Multimeter	Keithley 2000	1188656	02/28/2013	02/27/2014	
Dipole	Satimo SID900	SN46/11 DIP 0G900-185	12/09/2011	12/08/2013	
Dipole	Satimo SID1900	SN46/11 DIP 1G900-187	12/09/2011 12/08/2013		
Amplifier	Aethercomm	SN 046	12/08/2012	12/07/2013	
Signal Generator	Agilent-E4421B	MY43351603	05/29/2012	05/28/2013	
Power Meter	HP E4418A	US38261498	02/28/2013	02/27/2014	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/28/2013	02/27/2014	

Note: Per KDB 50824 Dipole SAR Validation Verification, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

7. Measurement Uncertainty

7. Weasurement on		-	timo Uı	ncer	tainty				
Measurem	ent uncerta				averaged o	over 1 gram	/ 10 gram.		
Error Description	Sec	Tol (±%	Prob. Dist.	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g) (±%)	Std. Unc. (10g)(± %)	(Vi) Veff
Measurement System		•	•		•		, , ,	,	
Probe Calibration	E.2.1	6	N	1	1	1	6	6	00
Axial Isotropy	E.2.2	3	R	√3	$(1-c_p)^{1/2}$	$(1-c_p)^{1/2}$	1.22474	1.22474	00
Hemispherical Isotropy	E.2.2	5	R	√3	√Cp	√C _p	2.04124	2.04124	00
Boundary Effects	E.2.3	1	R	√3	1	1	0.57735	0.57735	00
Linearity	E.2.4	5	R	√3	1	1	2.88675	2.88675	00
System Detection Limits	E.2.5	1	R	√3	1	1	0.57735	0.57735	00
Readout Electronics	E.2.6	0.5	N	1	1	1	0.5	0.5	00
Response Time	E.2.7	0.2	R	√3	1	1	0.11547	0.11547	00
Integration Time	E.2.8	2	R	√3	1	1	1.1547	1.1547	00
RF Ambient Noise	E.6.1	3	R	√3	1	1	1.73205	1.73205	00
Probe Positioner Mechanical Tolerance	E.6.2	2	R	√3	1	1	1.1547	1.1547	00
Probe Positioning with Respect to Phantom Shell	E.63	1	R	√3	1	1	0.57735	0.57735	00
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E.5.2	1.5	R	\ <u>S</u>	1	1	0.86603	0.86603	80
Dipole		•	•	•	•		•	•	•
Device Positioning	8,E.4.2	1	N	√3	1	1	0.57735	0.57735	N-1
Power Drift	8.6.6.2	2	R	√3	1	1	1.1547	1.1547	00
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	R	√3	1	1	2.3094	2.3094	00
Liquid Conductivity (target)	E.3.2	5	R	√3	0.64	0.43	1.84752	1.2413	00
Liquid Conductivity (meas.)	E.3.3	2.5	N	1	0.64	0.43	1.6	1.075	00
Liquid Permittivity (target)	E.3.2	3	R	√3	0.6	0.49	1.03923	0.8487	00
Liquid Permittivity (meas.)	E.3.3	2.5	N	1	0.6	0.49	1.5	1.225	М
Combined Standard Uncertainty			RSS				8.09272	7.9296	
Expanded Uncertainty (95%CONFIDENCE INTERVAL)			k				16.18544	15.8592	

Page 22 of 68

8. Conducted Power Measurement

Mode	Frequency(MHz)	Peak Power(dBm)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)				
Maximum Po	Maximum Power <2>								
GSM 850	824.2	32.56	31.55	-9	22.55				
PCS1900	1850.2	29.65	28.79	-9	19.79				

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Note 2:

Original Model: GO180 Antenna gain: 1.0dBi As Class II Permissive Change in difference:

Original Model is single card, compared with the original project; the new project is double card.

Gain antenna is the same as Original Model. So that the ERP/EIRP power could be equal to the original filing Note 3:

Original Report No.: AGC00200130402FH01 FCC ID: YSEGO180

Based on the original test report, only the card 2 was verified for the differences.

Page 23 of 68

9. Test Results

9.1. SAR Test Results Summary

9.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528, and Body SAR was performed with the device 15mm from the phantom. Body SAR was also performed with the headset attached and without.

9.1.2. Body SAR with Headset

Testing with the headset was performed at the position and channels that resulted in the highest body SAR. This testing was performed with GPRS transmitting with 2 uplink timeslots. This operation mode represents the maximum SAR situation, when downloading data via GPRS and listening to music by headset. SAR without the headset attached was significantly higher than with the headset, and also was verified several times and confirmed, so the final test data shown were the worst case without headset. In the Body SAR test result table, body-worn means display of device down, body-front means display of device up.

9.1.3. Operation Mode

This is a multi-slot class 10 device capable of 2 uplink timeslots. During the head SAR test, the device was transmitting with maximum 1 uplink timeslot; during the body SAR test, it was transmitting with maximum 2 uplink timeslots. Additionally, this device doesn't support dual transfer mode (DTM).

9.1.4. Test Result

SAR MEASUREMENT									
Ambie	ent Tempera	ture (°C) : 2	Relative Humidity (%): 55						
Liquid	Liquid Temperature (°C): 21 ± 2 Depth of Liquid (cm):>15								
Produ	Product: GSM Mobile Phone								
Test M	lode: GSM8	350 with GN	ISK modulat	ion					
	Configurat	ion	/ untorina		Frequency		SAR (1g)	Limit	
SIM	Position	Status	Position		MHz	(<±5%)	(W/kg)	(W/kg)	
<2>	Left	Cheek	Fixed	190	836.6	-0.85	0.713	1.6	

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. refer to KDB 941225.

SAR MEASUREMENT									
Ambient Temperature (°C) : 21 ± 2						Relative Hur	Relative Humidity (%): 55		
Liquid Temperature (°C) : 21 ± 2						Depth of Liquid (cm):>15			
Produ	Product: GSM Mobile Phone								
Test N	/lode: PCS1	900 with GI	MSK modula	ition					
	Configurat	ion	Antenna	Frequency		Power Drift	SAR (1g)	Limit	
SIM	Position	Status	Position	channel	MHz	(<±5%)	(W/kg)	(W/kg)	
<2>	Left	Cheek	Fixed	661	1880.0	1.63	0.875	1.6	
1									

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. refer to KDB 941225.

Page 25 of 68

Appendix A. SAR System Validation Data

Test Laboratory: AGC Lab Date: May 10, 2013

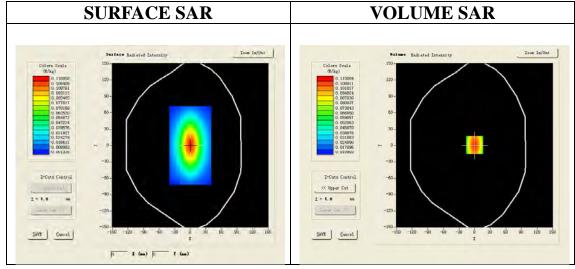
System Check Head 850 MHz

DUT: Dipole 900 MHz Type: SID 900

Communication System CW; Communication System Band: D850 (850.0 MHz); Duty Cycle: 1:1; Conv.F=6.05 Frequency: 850 MHz; Medium parameters used: f = 850 MHz; $\sigma = 0.89 \text{ mho/m}$; $\epsilon r = 40.68$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=10dBm Ambient temperature ($^{\circ}$ C): 21, Liquid temperature ($^{\circ}$ C): 21

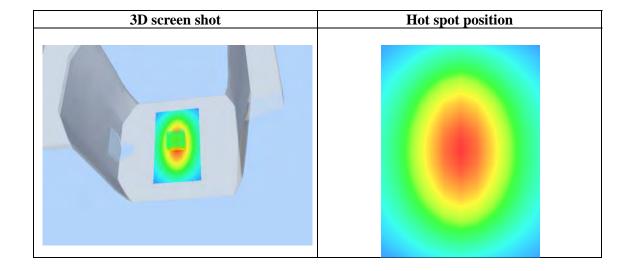
Satimo Configuration:


Probe: EP159; Calibrated: 12/11/2012

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM1; Type: SAM

Measurement SW: OpenSAR V4_02_01


Configuration/System Check GSM 850 Head/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check GSM 850 Head/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Maximum location: X=0.00, Y=1.00

SAR 10g (W/Kg)	0.067090
SAR 1g (W/Kg)	0.109719

Z (mm)	0.00	4.00	9.00	14.00	19.00				
SAR (W/Kg)	0.0000	0.1158	0.0723	0.0461	0.0308				
	SAR, Z Axis Scan ($X = 0$, $Y = 1$)								
C). 12-								
C). 10 -	\longrightarrow			-				
(#/kg)). 08 –	+							
SAR G). 06 –								
C	0.04								
0	0.02 - 0.0 2.5 5			5 20.0 22.5 25	5.0				
			Z (mm)						
_									

Page 27 of 68

Test Laboratory: AGC Lab Date: May 10, 2013

System Check Head 1900MHz

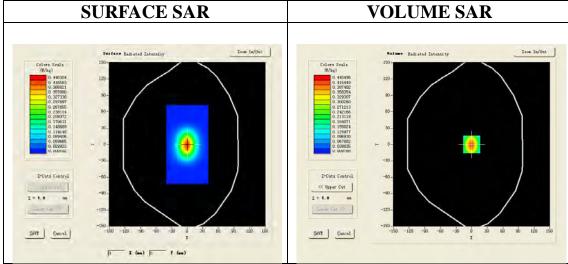
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=5.73 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ mho/m; $\epsilon r = 41.39$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=10dBm Ambient temperature ($^{\circ}$ C): 21, Liquid temperature ($^{\circ}$ C): 21

Satimo Configuration:

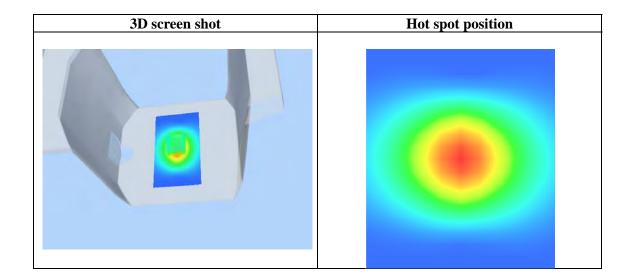
Probe: EP159; Calibrated: 12/11/2012


• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM1; Type: SAM

· Measurement SW: OpenSAR V4 02 01

Configuration/System Check PCS1900 Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check PCS1900 Head/Zoom Scan: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	0.209381
SAR 1g (W/Kg)	0.402944

Z (mm)	0.00	4.00	9.00	14.00	19.00					
SAR (W/Kg)	0.0000	0.4437	0.2419	0.1328	0.0750					
	SAR, Z Axis Scan $(X = 0, Y = 0)$									
0). 45 –									
0). 40 –	\longrightarrow			-					
0). 35 -	\longrightarrow	\perp							
⊛0). 30 –	+	\perp							
), 30 -	+								
). 20 -	++								
. O). 15 -									
0). 10 -									
	0.04									
		5.0 7.5 10.0	12.5 15.0 17.	5 20.0 22.5 25	5.0					
Z (mm)										

Page 29 of 68

Appendix B. SAR measurement Data

Test Laboratory: AGC Lab

Date: May 10, 2013

GSM 850 Mid-Touch-Left <SIM 2>

DUT: GSM Mobile Phone; Type: GO180

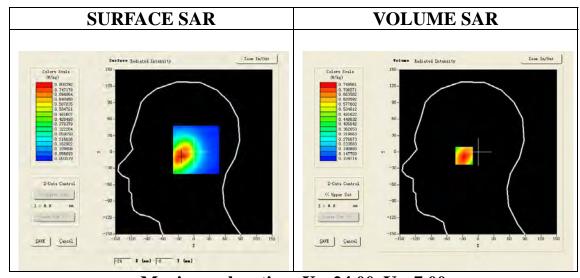
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=6.05 Frequency: 836.6 MHz; Medium parameters used: f = 850 MHz; $\sigma = 0.89$ mho/m; $\epsilon r = 40.68$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

Satimo Configuration:

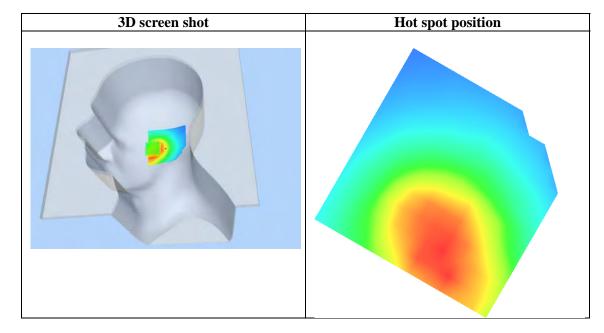
Probe: EP159; Calibrated: 12/11/2012


· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM1; Type: SAM

Measurement SW: OpenSAR V4_02_01

Configuration/GSM 850 Mid-Touch-Left/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm Configuration/GSM 850 Mid-Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Left head		
Device Position	Cheek		
Band	GSM 850		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		

Maximum location: X=-24.00, Y=-7.00

SAR 10g (W/Kg)	0.491754		
SAR 1g (W/Kg)	0.712976		

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.7472	0.5438	0.3980	0.2903
	SAR, Z	Axis Scan	(X = -24,	¥ = -7)	
	1. 7 –				
0	1.7-				-
	1.6-				
(a)					
(#/kg)	.5-				
		'	\setminus		
SAR o	. 4-				
	1.3-				
ا ا					
0	.2-				
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0					
Z (mm)					

Page 31 of 68

Test Laboratory: AGC Lab Date: May 10, 2013

PCS 1900 Mid-Touch-Left <SIM 2>

DUT: GSM Mobile Phone; Type: GO180

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=5.73; Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ mho/m; $\epsilon r = 41.39$; $\rho = 1000$ kg/m³;

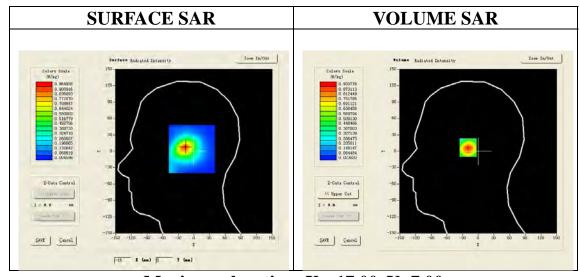
Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.0, Liquid temperature ($^{\circ}$ C): 21.0

Satimo Configuration:

Probe:EP159; Calibrated: 12/11/2012

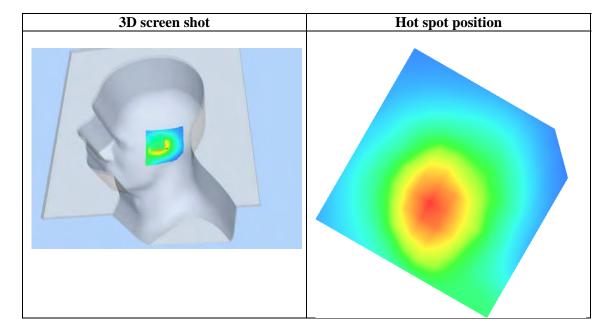
Sensor-Surface: 4mm (Mechanical Surface Detection)

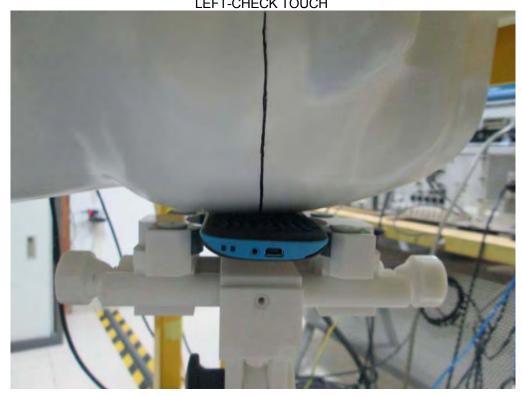

· Phantom: SAM1; Type: SAM

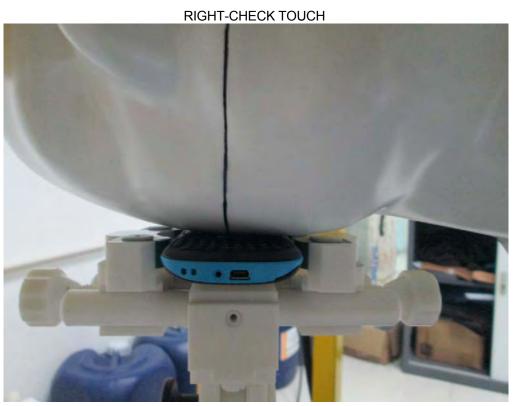
· Measurement SW: OpenSAR V4_02_01

 $\label{lem:configuration} \textbf{Configuration/PCS1900 Mid-Touch-Left/Area Scan: Measurement grid: } dx=20mm, dy=20mm \\ \textbf{Configuration/PCS1900 Mid-Touch-Left/Zoom Scan: Measurement grid: } dx=8mm, \\ \textbf{dx=8mm}, \\ \textbf{d$

dy=8mm, dz=5mm;

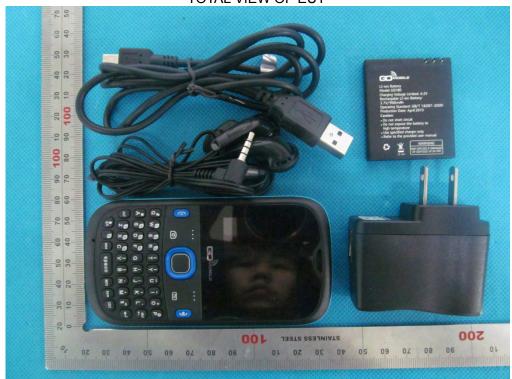

Area Scan	sam_direct_droit2_surf8mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Very fast		
Phantom	Left head		
Device Position	Cheek		
Band	PCS 1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		


Maximum location: X=-17.00, Y=7.00


SAR 10g (W/Kg)	0.470174	
SAR 1g (W/Kg)	0.874895	

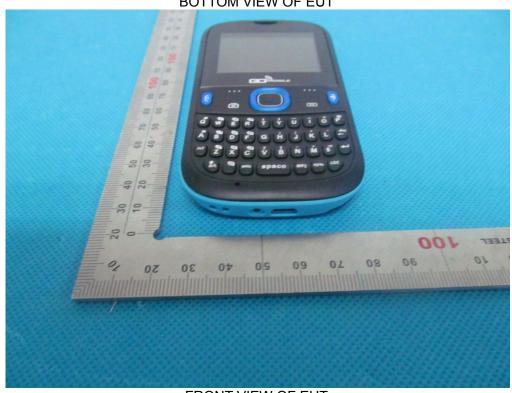
Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.9321	0.5127	0.2849	0.1748
	SAR, Z	Axis Scan	(X = -17,	¥ = 7)	
0.	9-				
0.	.8-	lack			
0.	.7-	\rightarrow	+		
.0 (%/kg)	. 6 -	$+\lambda$			-
€ 0.	.5-	++	+		-
SAR o.	4-		+++		-
0.	.3-				-
	.2-		1 1 1		-
0.	.1- 0.0 2.5 5	.0 7.5 10.0	12.5 15.0 17.5	5 20.0 22.5 25	5.0
Z (mm)					

Appendix C. TEST SETUP PHOTOGRAPHS &EUT PHOTOGRAPHS Test Setup Photographs LEFT-CHECK TOUCH


DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2003

EUT PHOTOGRAPHS


TOTAL VIEW OF EUT

