

Report test test

Customer:

Inventory Systems GmbH

Heerstraße 2
14052 Berlin
Tel.: +49 30 200 036 124
Fax: +49 30 200 036 172

RF test report

100393-AU02+W02

 Industry Canada
Inventory Systems GmbH
Pager

DO-G1164

The test result refers exclusively
to the model tested.

This report must not be copied without
the written authorization by the lab.
Revision: 1.0

EMV **TESTHAUS** GmbH

Gustav-Hertz-Straße 35
94315 Straubing
Tel.: +49 9421 56868-0
Fax: +49 9421 56868-100
Email: company@emv-testhaus.com

Accreditation:

Registration number: DGA-PL-224/95-03
CAB (EMC) registration number: BNetzA-CAB-02/21-02/3
FCC facility registration number: 221458
MRA US-EU, FCC designation number: DE0010

Location of Testing:

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany

The technical accuracy is guaranteed through the quality management of the
EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany
Revision: 1.0

Inventory Systems GmbH

Pager

100393-AU02+W02

Page 2 of 40

Table of contents

1	Test regulations	5
2	Equipment under Test (EUT)	6
3	AC power line conducted emissions	8
4	Maximum output power	15
5	Power spectral density measurement	19
6	6dB spectrum bandwidth measurement.....	23
7	Radiated emission measurement (<1 GHz)	26
8	Radiated emission measurement (>1 GHz)	32
9	Exposure of humans to RF fields.....	37
10	Equipment calibration status.....	38
11	Measurement uncertainty	39
12	Summary	40

List of pictures

Picture 1: Outline of conducted emission test setup	10
Picture 2: Conducted emission on mains, phase 1 (Chart)	11
Picture 3: Conducted emission on mains, phase 1 (Table)	12
Picture 4: Conducted emission on mains, neutral (Chart)	13
Picture 5: Conducted emission on mains, neutral (Table).....	14
Picture 6: Test setup for output power measurement	16
Picture 7: Spectrum graph of field strength measurement	18
Picture 8: Test setup for spectral density measurement	20
Picture 9: Spectrum graph of power spectral density measurement	22
Picture 10: Test setup for 6dB spectrum bandwidth measurement	24
Picture 11: Spectrum graph of 6dB spectrum bandwidth measurement.....	25
Picture 12: Test setup for radiated emission measurement (< 1 GHz)	28
Picture 13: Radiated emission 30 MHz – 1000MHz.....	29
Picture 14: Radiated emission 30 MHz – 1000MHz (Table).....	30
Picture 15: Radiated emission 30 MHz – 1000MHz (RX mode).....	31
Picture 16: Test setup for radiated emission measurement (> 1 GHz)	34
Picture 17: Radiated emission: Spectrum of radiated emission > 1GHz (pre-scan)	35
Picture 18: Radiated emission: Spectrum of radiated emission > 1GHz (RX mode)	36

List of tables

Table 1: Equipment Calibration status	38
Table 2: Measurement uncertainty	39

1 Test regulations

CFR 47 Part 2: 01-2010	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)
CFR 47 Part 15: 10-2009	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)
ANSI C63.4: December 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
RSS-Gen Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment, published by Industry Canada
RSS-102: Issue 4 March 2010	Radio Frequency Exposure Compliance of Radiocommunications Apparatus
RSS-210: Issue 7 June 2007	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, published by Industry Canada

1.1 Summary of test results

Standard	Test result
FCC CFR 47 Part 15	Passed
RSS-210 Issue 7 Annex 8 and RSS-Gen Issue 2	Passed

2 Equipment under Test (EUT)

Product type: Pager

Model Name: DO-G1164

Manufacturer: Dommel GmbH
Westring 15
91717 Wassertrüdingen

Serial number:

FCC ID: YRADO-G1164

IC 9255A-G1164

Application freq. band: 902 MHz - 928 MHz

Frequency range: 915 MHz

Operating frequency: 915 MHz

Channel spacing: N/A

Number of RF-channels: 1

Antenna type: Integrated PCB antenna

detachable not detachable

Power supply: USB powered
nominal: 5.0 V

Temperature range: 0°C to +70°C

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany
Revision: 1.0

Inventory Systems GmbH

Pager

100393-AU02+W02

Page 6 of 40

2.1 Photo documentation

See annex C

2.2 Short description of the EUT

The product is a monitoring system for atypical removal of products. This is the pager which informs the operator about events that occur. The unit operates at a frequency of 915 MHz.

2.3 Operation mode

The EUT was tested in the following operation modes:

- Tested in continuous transmit mode with modulation
- Tested in receive mode

2.4 Configuration

The following peripheral devices and interface cables were connected during the tests:

Device	Model:	S/N
Pager	DO-G1164	
Testnotebook	Pro 600 IW	N/A

Used cables

Numbers:	Description: (type / lengths / remarks)	Serial No
1	USB cable, shielded, 0.75 m	N/A
1	AC power cable, unshielded, 1.5 m	N/A

3 AC power line conducted emissions

according to CFR 47 Part 15, section 15.207

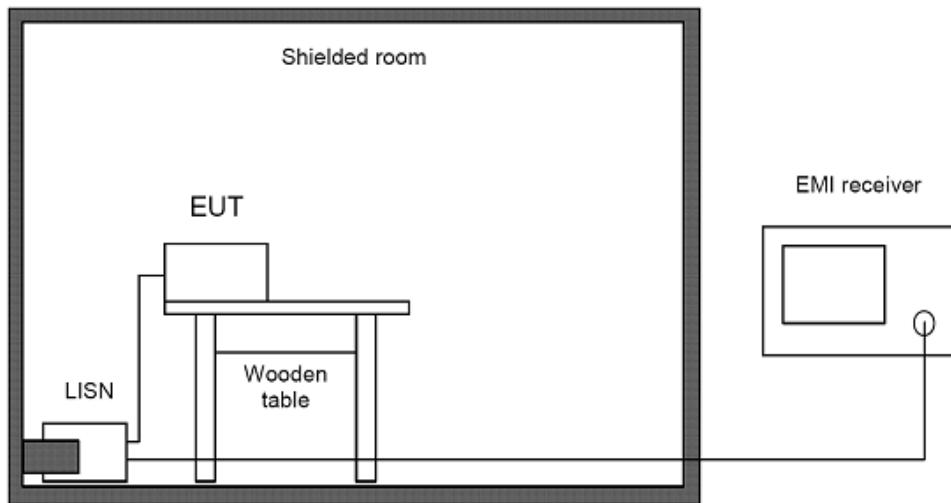
3.1 Test location

Description	Manufacturer	Inventory No.
Shielded chamber	Siemens - Matsushita	E00107

3.2 Test instruments

	Description	Manufacturer	Inventory No.
<input checked="" type="checkbox"/>	ESCS 30	Rohde & Schwarz	E00003
<input type="checkbox"/>	ESCI	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/>	ESH3 Z2	Rohde & Schwarz	E00028
<input checked="" type="checkbox"/>	ESH 2-Z5	Rohde & Schwarz	E00004
<input checked="" type="checkbox"/>	ESH 2-Z5	Rohde & Schwarz	E00005

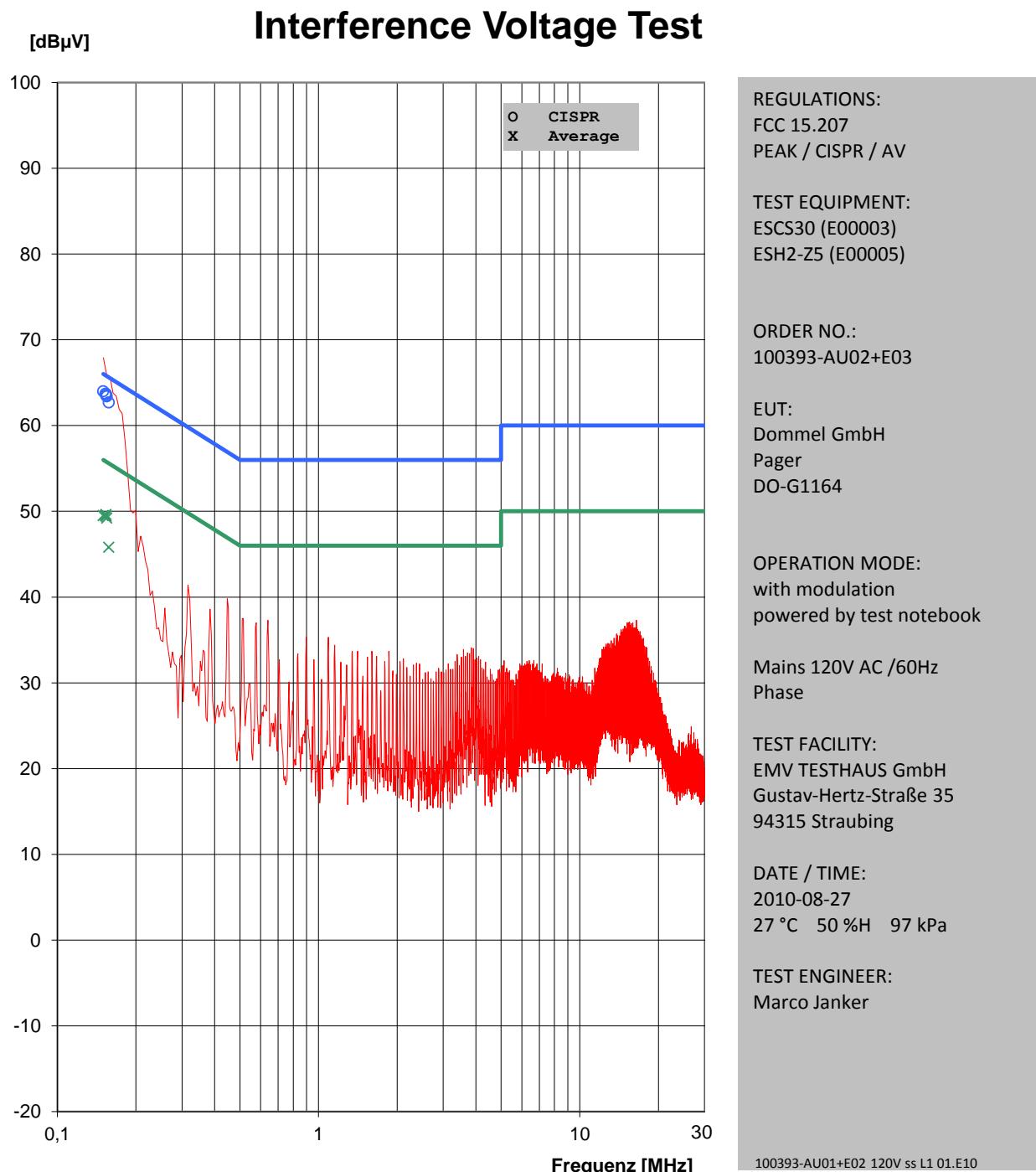
3.3 Limits


Frequency [MHz]	Quasi-peak [dB μ V]	Average [dB μ V]
0.15 – 0.5	66 - 56	56 – 46
0.5 – 5.0	56	46
5 – 30	60	50

3.4 Test procedure

1. The tests of conducted emission were carried out in a shielded room using a line impedance stabilization network (LISN) 50 μ H/50 Ohms and an EMI test receiver.
2. The EMI test receiver was connected to the LISN and set to a measurement bandwidth of 9 kHz in the frequency range from 0.15 MHz to 30 MHz.
3. The EUT was placed on a wooden table and connected via USB to a test notebook. This notebook was connected to the LISN.
4. To accelerate the measurement the detector of the EMI test receiver was set to peak and the whole frequency range from 0.15 MHz to 30 MHz were scanned.
5. After that all peaks values with fewer margins than 10 dB to quasi-peak limit or exceeding the limit were marked and re-measured with quasi-peak detector.
6. If after that all values are under the average limit no addition measurement is necessary. In case there are still values between quasi-peak and average limit than these values were re-measured again with an average detector.
7. These measurements were done on all current carrying conductors.

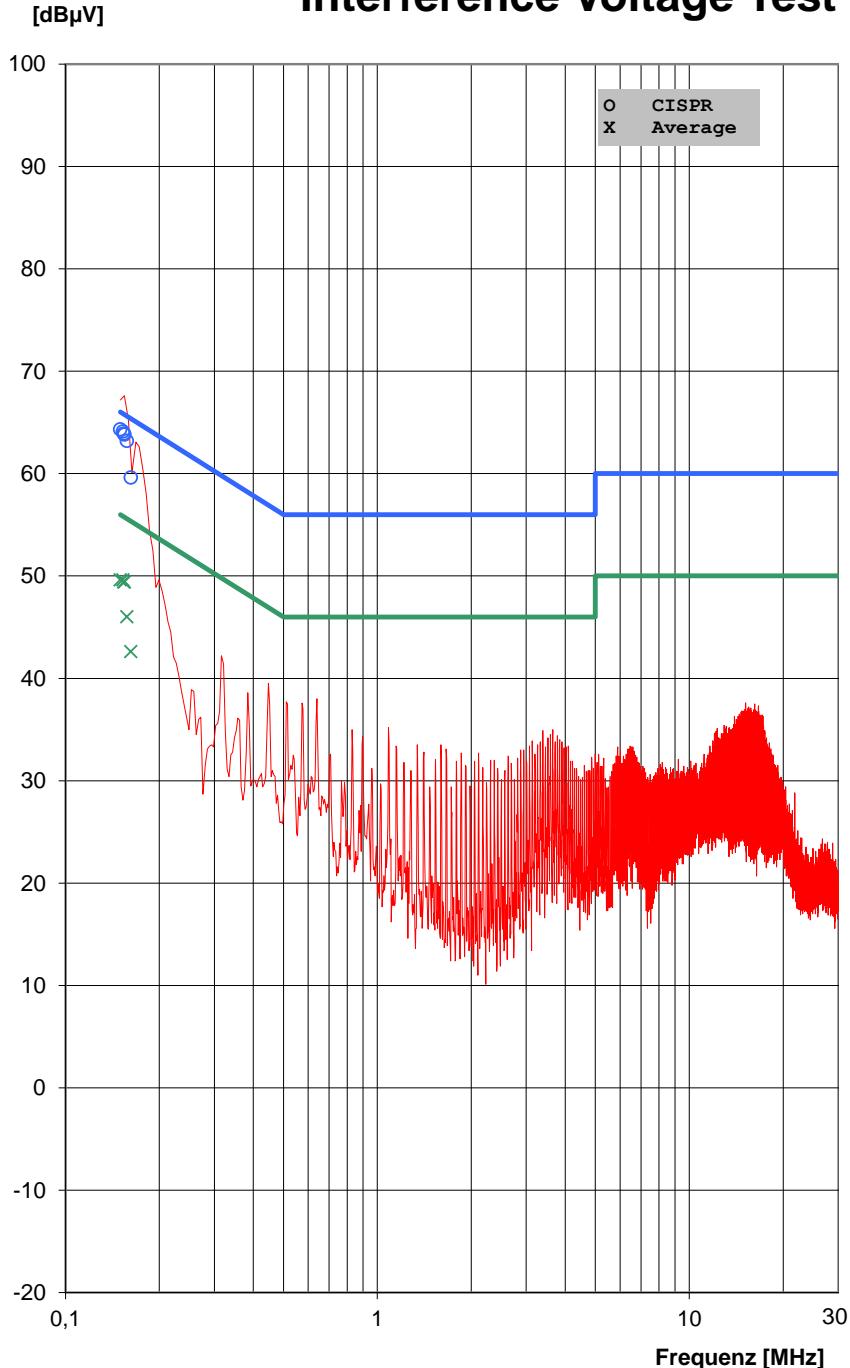
According to ANSI C63.4, section 13.1.3.1 testing of intentional radiators with detachable antennas shall be done with a dummy load otherwise the tests should be done with connected antenna and if adjustable fully extended.


3.5 Test setup

Picture 1: Outline of conducted emission test setup

Comments: All peripheral devices were additionally decoupled by means of a line stabilization network.

3.6 Test result


Picture 2: Conducted emission on mains, phase 1 (Chart)

Interference Voltage Test

Freq. [MHz]	U_CISPR [dB μ V]	Limit [dB μ V]	delta_U [dB]	U_AV [dB μ V]	Limit [dB μ V]	delta_U [dB]	Corr. [dB]	Remark
0,15	64,0	66,0	2,0	49,5	56,0	6,5	0,0	
0,15	63,4	65,8	2,4	49,2	55,8	6,6	0,0	
0,15	63,5	65,8	2,3	49,4	55,8	6,4	0,0	
0,15	63,7	65,8	2,1	49,6	55,8	6,2	0,0	
0,15	63,7	65,8	2,1	49,5	55,8	6,3	0,0	
0,16	62,7	65,6	2,9	45,8	55,6	9,8	0,0	

Picture 3: Conducted emission on mains, phase 1 (Table)

Interference Voltage Test

REGULATIONS:
FCC 15.207
PEAK / CISPR / AV

TEST EQUIPMENT:
ESCS30 (E00003)
ESH2-Z5 (E00005)

ORDER NO.:
100393-AU02+E02

EUT:
Dommel GmbH
Pager
DO-G1164

OPERATION MODE:
with modulation
powered by test notebook

Mains 120V AC /60Hz
Phase

TEST FACILITY:
EMV TESTHAUS GmbH
Gustav-Hertz-Straße 35
94315 Straubing

DATE / TIME:
2010-08-27
27 °C 50 %H 97 kPa

TEST ENGINEER:
Marco Janker

100393-AU01+E02 120V ss N 01.E10

Picture 4: Conducted emission on mains, neutral (Chart)

Interference Voltage Test

Freq. [MHz]	U_CISPR [dB μ V]	Limit [dB μ V]	delta_U [dB]	U_AV [dB μ V]	Limit [dB μ V]	delta_U [dB]	Corr. [dB]	Remark
0,15	64,3	66,0	1,7	49,6	56,0	6,4	0,0	
0,15	63,8	65,8	2,0	49,4	55,8	6,4	0,0	
0,15	63,9	65,8	1,9	49,4	55,8	6,4	0,0	
0,15	64,1	65,8	1,7	49,6	55,8	6,2	0,0	
0,16	63,2	65,6	2,4	46,0	55,6	9,6	0,0	
0,16	59,6	65,4	5,8	42,6	55,4	12,8	0,0	

Picture 5: Conducted emission on mains, neutral (Table)

4 Maximum output power

according to CFR 47 Part 15, section 15.247(b)

4.1 Test location

- Conducted measurement
- Radiated measurement

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026
Anechoic chamber	EMV TESTHAUS GmbH	E00100
Open area test site	EMV TESTHAUS GmbH	E00354

4.2 Test instruments

	Description	Manufacturer	Inventory No.
<input type="checkbox"/>	ESCS 30 (FF)	Rohde & Schwarz	E00003
<input checked="" type="checkbox"/>	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/>	ESCI (CDC)	Rohde & Schwarz	E00001
<input type="checkbox"/>	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/>	VULB 9163 (FF)	Schwarzbeck	E00013
<input checked="" type="checkbox"/>	VULB 9163 (Anechoic)	Schwarzbeck	E00012
<input type="checkbox"/>	VULB 9160 (CDC)	Schwarzbeck	E00011

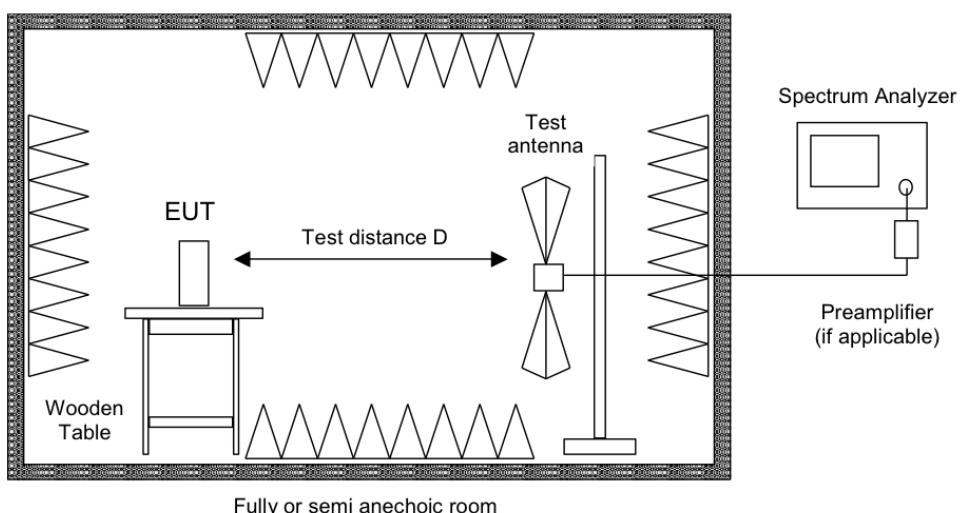
4.3 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands is 1 Watt (30dBm). The conducted output power limit is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.4 Test procedure

1. The unit was placed on a non conductive table inside an anechoic chamber at a distance of 3 m.
2. The unit was turned on and the transmitter was set to continuous transmit mode.
3. Test was performed in accordance with Measurement of Digital Transmission Systems Operating under Section 15.247 and FCC Public Notice KBD 558074 (Alternative test procedure).
4. To measure the maximum field strength the unit was rotated by 360° and the receiving antenna was set to vertical and horizontal polarization. In addition the unit was rotated around its 3 axis of rotation.
5. The maximum power was calculated with following formula:

$$P = \frac{(E \cdot d)^2}{(30 \cdot G)}$$


E = the measured maximum field strength in V/m

G = numeric gain of transmitting antenna over an isotropic radiator (assumed to be 1)

d = the distance in meters from which the field strength was measured (3 m)

P = the power in watts

4.5 Test setup

Picture 6: Test setup for output power measurement

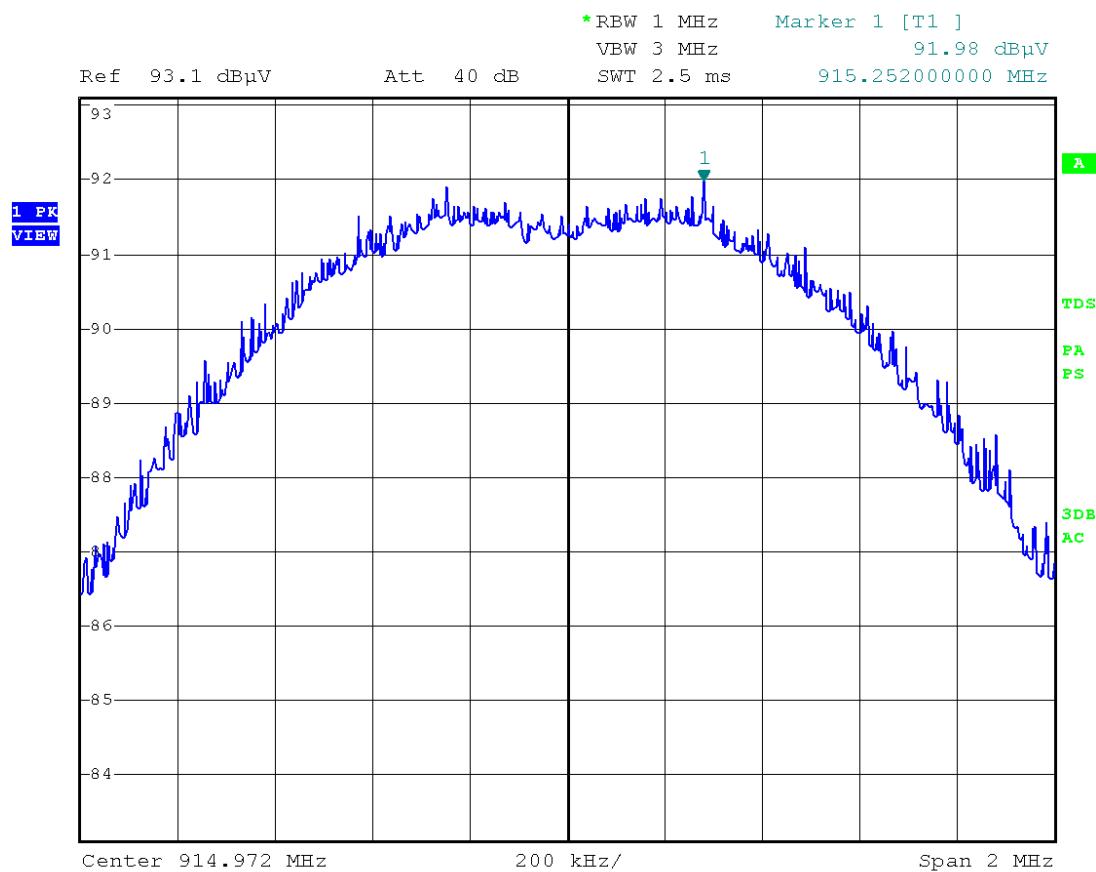
4.6 Test deviation

There is no deviation with the original standard.

4.7 EUT operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.8 Test result of maximum output power


$$P = \frac{(E \cdot d)^2}{(30 \cdot G)}$$

$$P = \frac{(0.03972 \frac{V}{m} \cdot 3m)^2}{30}$$

$$P = 0.4733mW$$

$$P = -3.25dBm$$

Channel	Frequency (MHz)	Calculated power (dBm)	Max. power (dBm)	Result
1	915.25	-3.25	30	Passed

26.Aug 10 11:40

Picture 7: Spectrum graph of field strength measurement

5 Power spectral density measurement

according to CFR 47 Part 15 section 2.247(e)

5.1 Test location

- Conducted measurement
- Radiated measurement

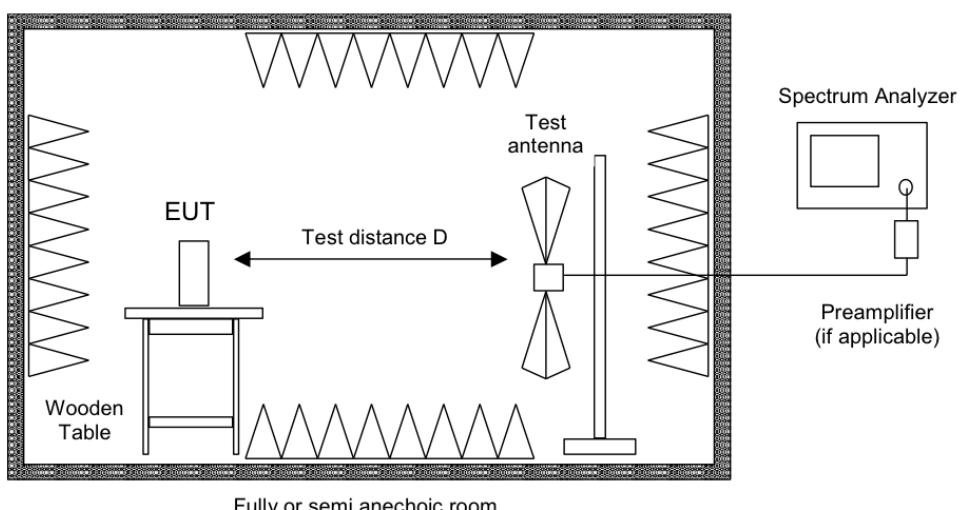
Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026
Anechoic chamber	EMV TESTHAUS GmbH	E00100
Open area test site	EMV TESTHAUS GmbH	E00354

5.2 Test instruments

	Description	Manufacturer	Inventory No.
<input type="checkbox"/>	ESCS 30 (FF)	Rohde & Schwarz	E00003
<input checked="" type="checkbox"/>	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/>	ESCI (CDC)	Rohde & Schwarz	E00001
<input type="checkbox"/>	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/>	VULB 9163 (FF)	Schwarzbeck	E00013
<input checked="" type="checkbox"/>	VULB 9163 (Anechoic)	Schwarzbeck	E00012
<input type="checkbox"/>	VULB 9160 (CDC)	Schwarzbeck	E00011

5.3 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


5.4 Test procedure

1. The unit was placed on a non conductive table inside an anechoic chamber at a distance of 3 m.
2. The unit was turned on and the transmitter was set to continuous transmit mode.
3. Test was performed in accordance with Measurement of Digital Transmission Systems Operating under Section 15.247 and FCC Public Notice KBD 558074 (Alternative test procedure).
4. To measure the maximum field strength the unit was rotated by 360° and the receiving antenna was set to vertical and horizontal polarization. In addition the unit was rotated around its 3 axis of rotation.
5. Set RBW of spectrum analyzer to 3kHz and VBW to 10kHz. Set Detector to Peak, Trace to Max Hold.
6. Set the span to 300 kHz and the sweep time to 100s and record the maximum peak value.
7. Mark the frequency with highest point of the maximized fundamental emission.
8. From the peak level obtained in (7), derive the field strength E. Using the equation

$$P = \frac{(E \cdot d)^2}{(30 \cdot G)}$$

calculate the power level for comparison to the +8 dBm limit.

5.5 Test setup

Picture 8: Test setup for spectral density measurement

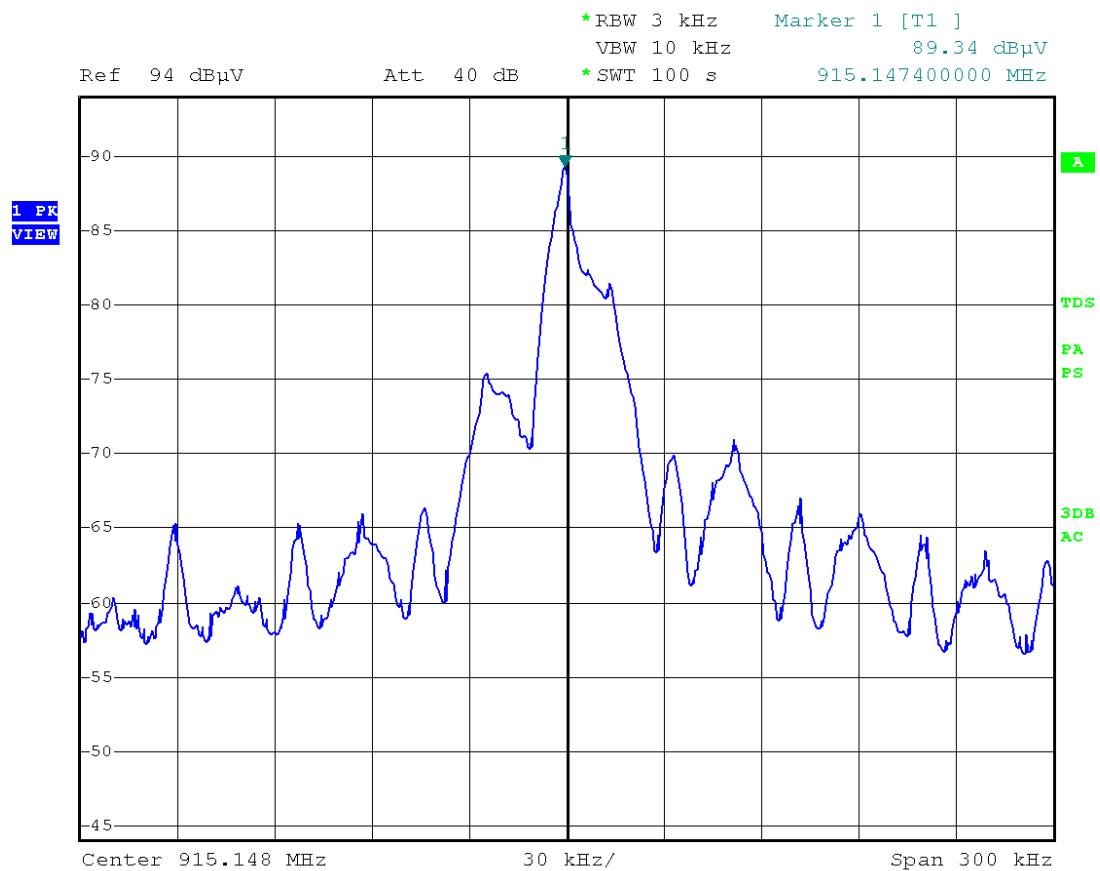
5.6 Test Deviation

There is no deviation with the original standard.

5.7 EUT operation during test

The EUT was programmed to be in continuously transmitting mode.

5.8 Test result of power spectral density


$$P = \frac{(E \cdot d)^2}{(30 \cdot G)}$$

$$P = \frac{(0.02931 \frac{V}{m} \cdot 3m)^2}{(30 \cdot G)}$$

$$P = 0.2577mW$$

$$\Rightarrow P = -5.89dBm$$

Channel	Frequency (MHz)	Power density (dBm)	Max. limit (dBm)	Result
1	915.1474	-5.89	+8	Passed

26.Aug 10 11:56

Picture 9: Spectrum graph of power spectral density measurement

6 6dB spectrum bandwidth measurement

according to CFR 47 Part 15 section 2.247(a)(2)

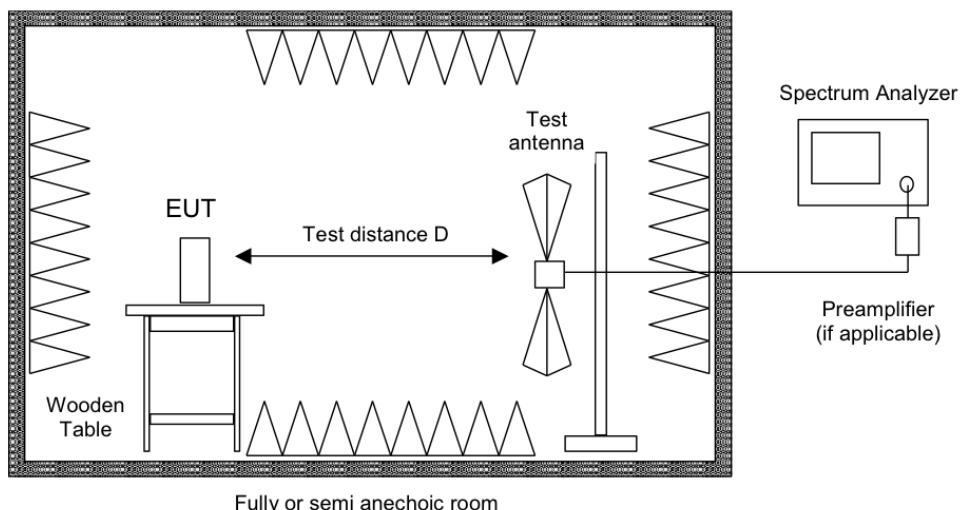
6.1 Test location

- Conducted measurement
- Radiated measurement

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026
Anechoic chamber	EMV TESTHAUS GmbH	E00100
Open area test site	EMV TESTHAUS GmbH	E00354

6.2 Test instruments

	Description	Manufacturer	Inventory No.
<input type="checkbox"/>	ESCS 30 (FF)	Rohde & Schwarz	E00003
<input checked="" type="checkbox"/>	ESU 26	Rohde & Schwarz	W00002
<input type="checkbox"/>	ESCI (CDC)	Rohde & Schwarz	E00001
<input type="checkbox"/>	HFH2-Z2	Rohde & Schwarz	E00060
<input type="checkbox"/>	VULB 9163 (FF)	Schwarzbeck	E00013
<input checked="" type="checkbox"/>	VULB 9163 (Anechoic)	Schwarzbeck	E00012
<input type="checkbox"/>	VULB 9160 (CDC)	Schwarzbeck	E00011


6.3 Limit

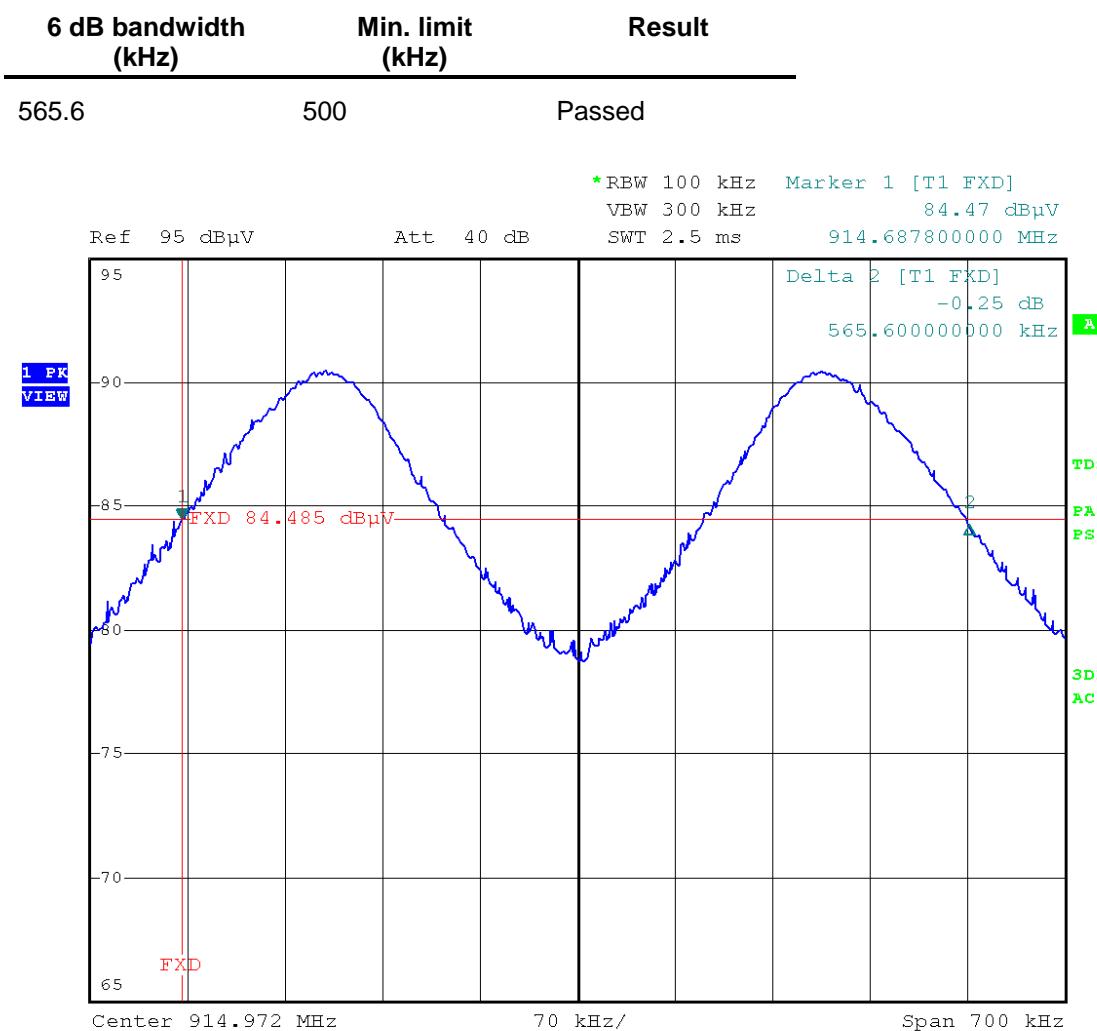
Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.4 Test procedure

1. The unit was placed on a non conductive table inside an anechoic chamber at a distance of 3 m.
2. The unit was turned on and the transmitter was set to continuous transmit mode.
3. Test was performed in accordance with Measurement of Digital Transmission Systems Operating under Section 15.247 and FCC Public Notice KBD 558074.
4. To measure the maximum bandwidth the unit was rotated by 360° and the receiving antenna was set to vertical and horizontal polarization. In addition the unit was rotated around its 3 axis of rotation.
5. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were used.
6. To derive the 6 dB bandwidth the marker of the spectrum analyzer was set to 6 dB below the carrier and the value was recorded.

6.5 Test setup

Picture 10: Test setup for 6dB spectrum bandwidth measurement


6.6 Test deviation

There is no deviation with the original standard.

6.7 EUT operation during test

The EUT was programmed to be in continuously transmitting mode.

6.8 Test result of 6dB spectrum bandwidth

26.Aug 10 11:24

Picture 11: Spectrum graph of 6dB spectrum bandwidth measurement

7 Radiated emission measurement (<1 GHz)

according to CFR 47 Part 15, section 15.205(a), 15.209(a), 15.247(d)

7.1 Test Location

- Scan with peak detector in 3 m CDC.
- Final CISPR measurement with quasi peak detector on 3 m open area test site.

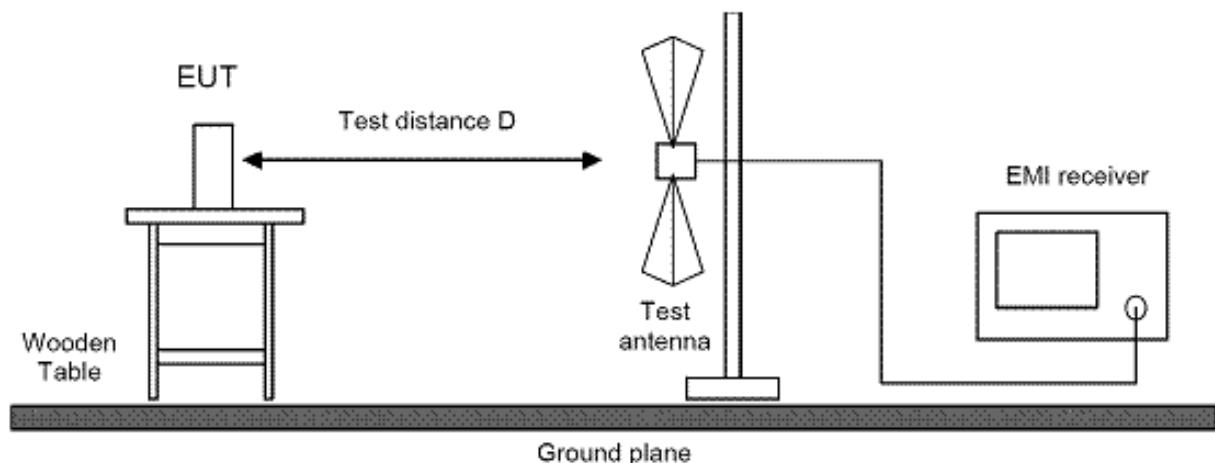
Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026
Open site area	EMV TESTHAUS GmbH	E00354

7.2 Test instruments

	Description	Manufacturer	Inventory No.
<input checked="" type="checkbox"/>	ESCS 30 (FF)	Rohde & Schwarz	E00003
<input type="checkbox"/>	ESU 26	Rohde & Schwarz	W00002
<input checked="" type="checkbox"/>	ESCI (CDC)	Rohde & Schwarz	E00001
<input checked="" type="checkbox"/>	VULB 9163 (FF)	Schwarzbeck	E00013
<input checked="" type="checkbox"/>	VULB 9160 (CDC)	Schwarzbeck	E00011
<input type="checkbox"/>	HFH2-Z2	Rohde & Schwarz	E00060
<input checked="" type="checkbox"/>	Feedline OATS	Huber & Suhner	200024

7.3 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.


In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency [MHz]	Field strength F_s [μ V/m]	Field strength [dB μ V/m]	Measurement distance d [m]
30 – 88	100	40	3
88 – 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

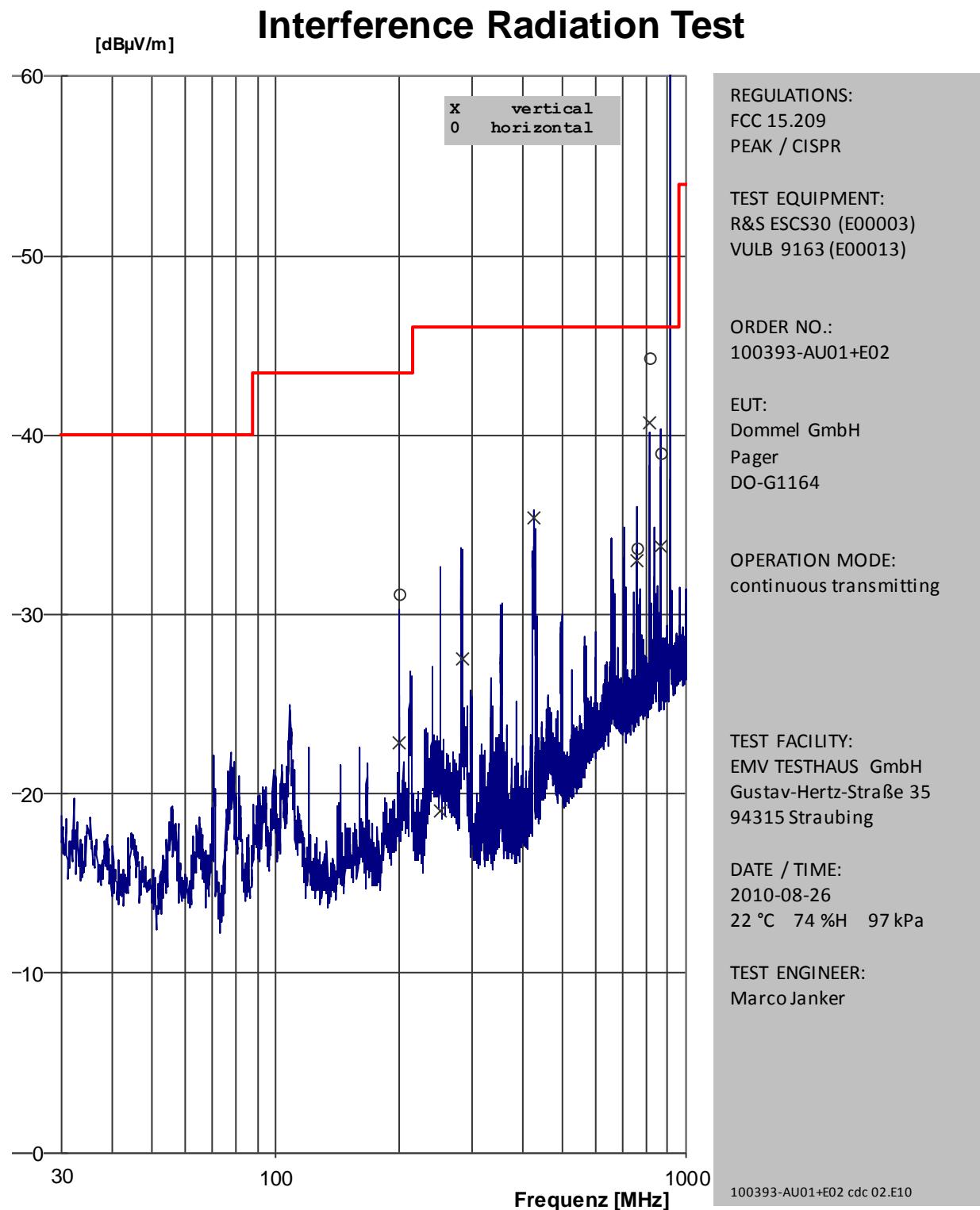
7.4 Test procedure

1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The receiving antenna was placed 3 meters from the turntable. The test setup was placed inside a compact diagnostic chamber.
2. Power on the EUT and all peripherals.
3. The broadband antenna was set to vertical polarization.
4. The EMI receiver performed a scan from 30MHz to 1000MHz with the detector set to peak and the measurement bandwidth to 120 kHz.
5. The turn table was rotated to 6 different positions (360° / 6) and the antenna polarization was changed to horizontal.
6. Repeat the test procedure at step 4 and 5.
7. The test setup was then placed in an OATS at 3 m distance and all peak values over or with less distance to limit then 6dB were marked and re-measured with a quasi-peak detector.
8. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
9. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. The highest value was recorded.

7.5 Test setup

Picture 12: Test setup for radiated emission measurement (< 1 GHz)

7.6 Test deviation

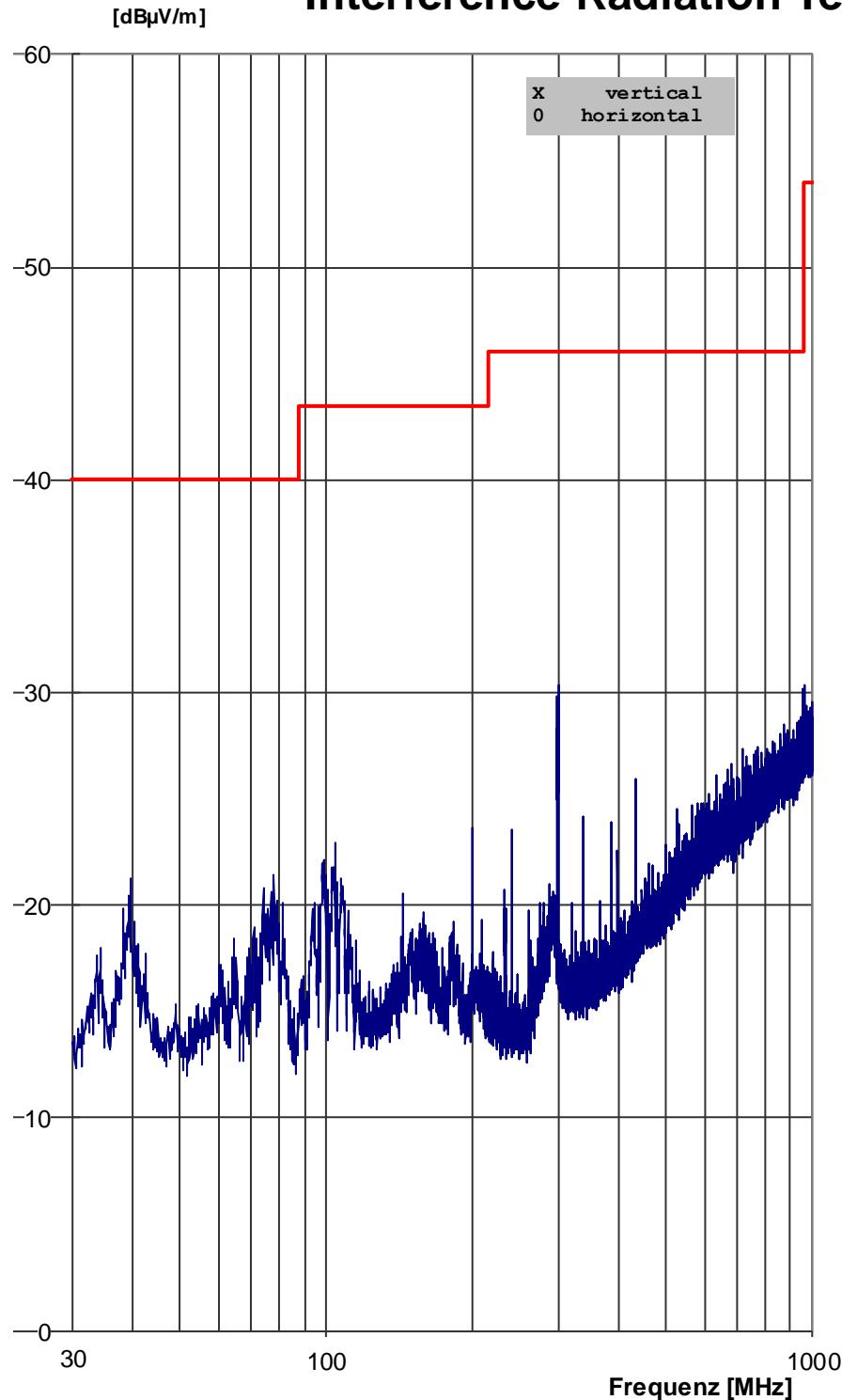

There is no deviation with the original standard.

7.7 EUT operation during test

The EUT was programmed to be in continuously transmitting mode.

Comments: The disturbance at 915MHz is the fundamental frequency which is excluded from the measurement result.

7.8 Test result


Picture 13: Radiated emission 30 MHz – 1000MHz

Interference Radiation Test

Freq. [MHz]	U_Rec [dB μ V/m]	Limit [dB μ V/m]	Corr. [dB]	U_Ant. [dB μ V]	delta_U [dB]	Turn- table	Antenna	Pol.	Remark
200,00	22,8	43,5	12,0	10,8	20,7	117°	100 cm	V	
200,00	31,1	43,5	12,0	19,1	12,4	141°	138 cm	H	
251,60	19,0	46,0	13,7	5,3	27,0	6°	100 cm	V	
284,70	27,5	46,0	14,5	13,0	18,5	214°	100 cm	V	
426,80	35,4	46,0	17,5	17,9	10,6	263°	100 cm	V	
758,80	33,0	46,0	22,5	10,5	13,0	60°	100 cm	V	
758,80	33,7	46,0	22,5	11,2	12,3	166°	156 cm	H	
810,80	40,7	46,0	23,3	17,3	5,3	232°	100 cm	V	
810,80	44,3	46,0	23,3	21,0	1,7	186°	124 cm	H	
862,80	33,8	46,0	24,0	9,8	12,2	247°	100 cm	V	
862,80	39,0	46,0	24,0	15,1	7,0	222°	175 cm	H	

Picture 14: Radiated emission 30 MHz – 1000MHz (Table)

Interference Radiation Test

REGULATIONS:
FCC 15.209
PEAK / CISPR

TEST EQUIPMENT:
R&S ESCS30 (E00003)
VULB 9163 (E00013)

ORDER NO.:
100393-AU01+E02

EUT:
Dommel GmbH
Pager
DO-G1164

OPERATION MODE:
receive mode

TEST FACILITY:
EMV TESTHAUS GmbH
Gustav-Hertz-Straße 35
94315 Straubing

DATE / TIME:
2010-09-01
22 °C 51 %H 98 kPa

TEST ENGINEER:
Marco Janker

100393-AU01+E02 cdc
01_Kanada.E10

Picture 15: Radiated emission 30 MHz – 1000MHz (RX mode)

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany
Revision: 1.0

Inventory Systems GmbH

Pager

100393-AU02+W02

Page 31 of 40

8 Radiated emission measurement (>1 GHz)

according to CFR 47 Part 15, section 15.205(a), 15.209(a), 15.247(d)

8.1 Test location

- Scan with peak detector in 3 m anechoic chamber
- Final measurement with average and max peak detector.

8.1.1 Location of measurement

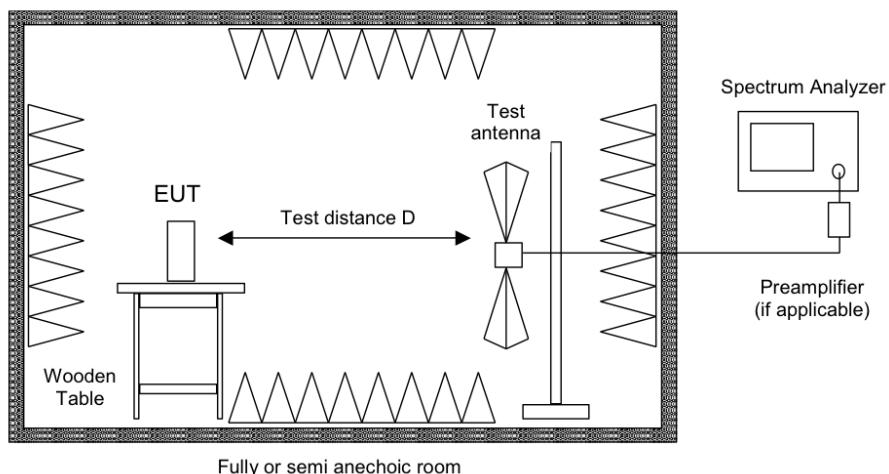
Description	Manufacturer	Inventory No.
Anechoic chamber	EMV TESTHAUS GmbH	E00100

8.1.2 Measurement equipment

	Description	Manufacturer	Inventory No.
<input checked="" type="checkbox"/>	ESU26	Rohde & Schwarz	W00002
<input checked="" type="checkbox"/>	AMF-5D-00501800-28-13P	Parzich	W00089
<input type="checkbox"/>	AMF-6F-16002650-25-10P	Parzich	W00090
<input checked="" type="checkbox"/>	BBHA 9170	Schwarzbeck	W00054
<input type="checkbox"/>	BBHA 9170	Schwarzbeck	W00055
<input checked="" type="checkbox"/>	COSB 4-1-26	Conformitas	W00091

8.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.


In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency [MHz]	Field strength F_s [μ V/m]	Field strength [dB μ V/m]	Measurement distance d [m]
30 – 88	100	40	3
88 – 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

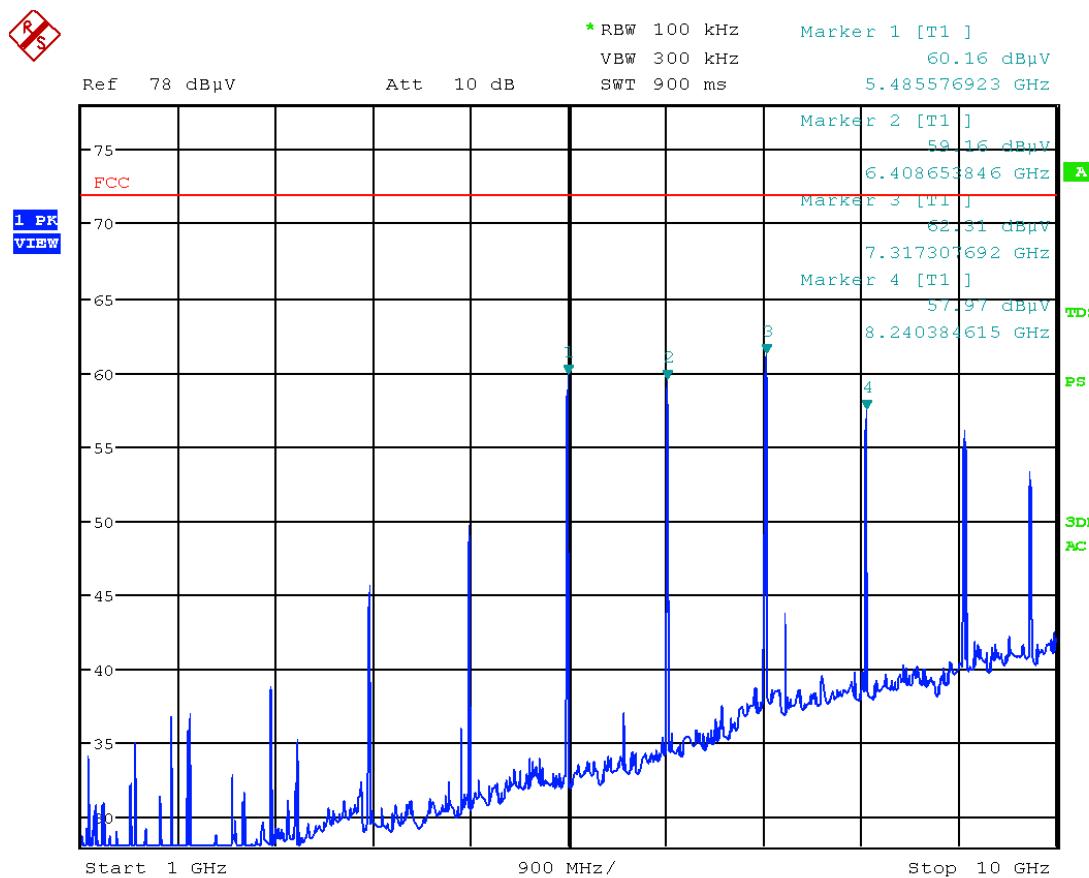
8.3 Test procedure

1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The receiving antenna was placed 3 meters from the turntable. The test setup was placed inside a fully anechoic chamber.
2. Power on the EUT and all peripherals.
3. The broadband antenna was set to vertical polarization.
4. The EMI receiver performed a scan from 1000 MHz to 10th harmonic of the fundamental frequency with the detector set to peak and the measurement bandwidth set to 100 kHz (VBW \geq 300 kHz). The trace data was recorded with the receiver Max Hold function.
5. The turn table was rotated in intervals of 15°.
6. After a full 360°-turn the antenna polarization was changed to horizontal and the test was repeated at step 4 and 5.
7. After the scan suspicious frequencies were selected and the RBW was set to 1 MHz and the VBW was set to 10Hz and the detector was changed to average reading.
8. The receiving antenna was set to vertical polarization.
9. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
10. The receiving antenna was then set to horizontal polarization and the measurement was repeated at step 9.
11. The highest recorded level was noted.

8.4 Test setup

Picture 16: Test setup for radiated emission measurement (> 1 GHz)

8.5 Test deviation

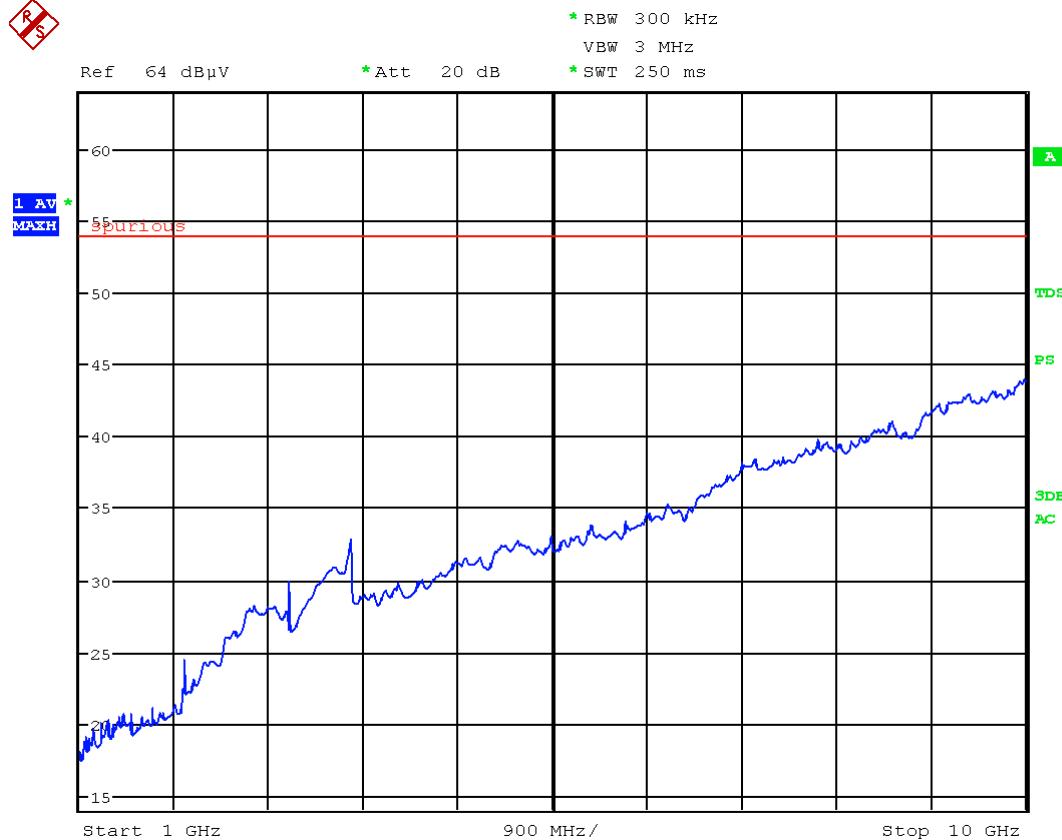

There is no deviation with the original standard.

8.6 EUT operation during test

The EUT was programmed to be in continuously transmitting mode.

8.7 Test result of radiated emission measurement (> 1 GHz) Transmit mode

Frequency (GHz)	Reading (dB μ V/m)	Detector	Reading (dB μ V/m)	Detector	Limit (dB μ V/m)	Margin (dB)	Result
3.6538	46,01	Peak	40,23	Average	54	13,77	Passed
4.5769	49,90	Peak	43,57	Average	54	10,43	Passed
5.4855	59,97	Peak	51,27	Average	71,98	20,71	Passed
6.4086	58,80	Peak	52,68	Average	71,98	19,3	Passed
7.3173	62,15	Peak	53,80	Average	54	0,2	Passed
8.2403	57,11	Peak	52,13	Average	54	1,87	Passed
9.1634	56,23	Peak	49,87	Average	54	4,13	Passed



26.Aug 10 19:45

Picture 17: Radiated emission: Spectrum of radiated emission > 1GHz (pre-scan)

8.8 Test result of radiated emission measurement (> 1 GHz) Receive mode

There were no significant disturbances above noise level!

02.Sep 10 09:25

Picture 18: Radiated emission: Spectrum of radiated emission > 1GHz (RX mode)

9 Exposure of humans to RF fields

according to RSS-Gen Issue 2, section 5.5 and
RSS-102 Issue 2, section 2.5

9.1 Antenna type and power calculation

Antenna detachable

$$EIRP = G \cdot CP$$

G: numerical antenna gain
CP: conducted output power [W]

Antenna not detachable

$$EIRP = \frac{(F_s \cdot D)^2}{30}$$

F_s: field strength [V/m]
D: distance between antennas [m]

$$EIRP = \frac{(0.03972 \cdot 3)^2}{30} = 0.4733 \text{ mW}$$

$$60 / f [\text{GHz}]$$

$$= 60 / 0.915$$

Limit:

$$= \underline{\underline{65.6 \text{ mW}}}$$

Output power is less than 65.6 mW, therefore no MPE necessary.

10 Equipment calibration status

Inventory Number	Model Number	Manufacturer	Last calibration	Next calibration	Cycle of calibration
W00002	ESU26	Rohde & Schwarz	Sep 09	Sep 11	2 Years
E00001	ESCI	Rohde & Schwarz	Sep 09	Mar 11	2 Years
E00003	ESCS 30	Rohde & Schwarz	Aug 10	Aug 12	2 Year
E00004	ESH 2-Z5	Rohde & Schwarz	Oct. 08	Oct. 10	2 Years
E00005	ESH 2-Z5	Rohde & Schwarz	Sep 09	Sep 11	2 Years
E00060	HFH2-Z2	Rohde & Schwarz	Oct 08	Oct 11	2 Years
E00012	VULB 9163	Schwarzbeck	Apr. 09	Apr. 11	2 Years
E00013	VULB 9163	Schwarzbeck	Apr. 08	Apr. 10	2 Years
E00011	VULB 9160	Schwarzbeck	Sep. 09	Sep. 11	2 Years
C00015	VC34034	Vötsch	Jan 08	Jan 12	4 Years
C00014	VC4100	Vötsch	Jan 07	Jan 11	4 Years

Table 1: Equipment Calibration status

11 Measurement uncertainty

Standard	Description	Max. deviation	k=
DIN EN 55022	Conducted emission AMN (9kHz to 30 MHz)	+/- 4,0 dB	2
DIN EN 55022	Conducted emission ISN LAN (9kHz to 30 MHz)	+/- 4,1 dB	2
DIN EN 55022	Radiated emission open field (30 MHz to 1 GHz)	+/- 4,5 dB	2
DIN EN 55022	Radiated emission absorber chamber (> 1000 MHz)	+/- 5,4 dB	2
DIN EN 61000-4-2	ESD	inside specification *	
DIN EN 61000-4-3	Radiated immunity	+/- 2,7 dB ^{a.)}	1,64
DIN EN 61000-4-4	Burst	inside specification *	
DIN EN 61000-4-5	Surge	inside specification *	
DIN EN 61000-4-6	Conducted immunity with CDN (150 kHz to 230 MHz)	+/- 2,6 dB ^{b.)}	1,64
DIN EN 61000-4-6	Conducted immunity with BCI (150 kHz to 230 MHz)	+/- 2,8 dB ^{c.)}	1,64
DIN EN 61000-4-8	Magnetic field	+/- 1,5 dB	2
DIN EN 61000-4-11	Dips	inside specification *	2
DIN EN 61000-3-2	Harmonic currents	+/- 0,2 % ^{d.)}	1
DIN EN 61000-3-3	Flicker	annotation ^{e.)}	

Table 2: Measurement uncertainty

Comment: The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. If k=2 the value of the measurements lies within the assigned range of values with a probability of 95 %.

* The specific requirements regarding to the standard was kept

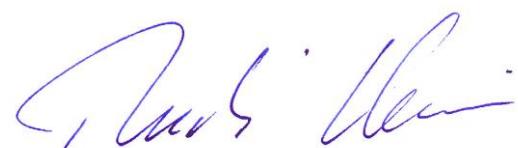
- a.) To maintain the claimed test level with a probability of 90 % an additional test level of 38 % percent must be added.
- b.) To maintain the claimed test level with a probability of 90 % an additional test level of 35 % percent must be added.
- c.) To maintain the claimed test level with a probability of 90 % an additional test level of 39 % percent must be added.
- d.) Measuring uncertainty (current): +/- 0,2% (fundamental oscillation), +/- 0,2% (rated current), voltage metering +/- 0,2% of the reading. Impacts on the measuring system by the EUT are not included.
- e.) Measuring uncertainty (flicker): dc and dmax +/- 5%, Pst +/- 8%. Impacts on the measuring system by the EUT are not included.

12 Summary

The EMC Regulations according to the marked specifications are

KEPT

The EUT does fulfill the general approval requirements mentioned.


NOT KEPT

The EUT does not fulfill the general approval requirements mentioned.

Place, Date: Straubing, September 26, 2010

Marco Janker
EMI / EMC Test Engineer

Rudolf Klein
GM / EMV **TESTHAUS** GmbH

EMV **TESTHAUS** GmbH
Gustav-Hertz-Straße 35
94315 Straubing
Germany
Revision: 1.0

Inventory Systems GmbH

Pager

100393-AU02+W02

Page 40 of 40