



# GV75CG User Manual

## GSM/GPRS/LTE Cat1 GNSS Tracker

TRACGV75CGUM001

Version: 1.00



Driving Smarter IoT

[www.queclink.com](http://www.queclink.com)

|                            |                    |
|----------------------------|--------------------|
| <b>Document Title</b>      | GV75CG User Manual |
| <b>Revision</b>            | 1.00               |
| <b>Date</b>                | 2024-12-27         |
| <b>Status</b>              | Release            |
| <b>Document Control ID</b> | TRACGV75CGUM001    |

### General Notes

Queclink offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Queclink. The information provided is based upon requirements specifically provided to Queclink by the customers. Queclink has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by Queclink within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

### Copyright

This document contains proprietary technical information which is the property of Queclink Wireless Solutions Co., Ltd. The copying of this document, distribution to others, and communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of a patent grant or registration of a utility model or design. All specifications supplied herein are subject to change without notice at any time.

## Contents

|                                                 |    |
|-------------------------------------------------|----|
| Contents .....                                  | 2  |
| Table Index .....                               | 3  |
| Figure Index.....                               | 4  |
| 0. Revision History .....                       | 5  |
| 1. Introduction.....                            | 6  |
| 1.1. Reference .....                            | 6  |
| 1.2. Terms and Abbreviations .....              | 6  |
| 2. Product Overview .....                       | 7  |
| 2.1. Appearance.....                            | 7  |
| 2.2. Interface Definition.....                  | 7  |
| 2.3. Wiring Scheme.....                         | 8  |
| 2.4. LED Description.....                       | 8  |
| 2.5. Power Connection .....                     | 9  |
| 2.6. Ignition Detection.....                    | 9  |
| 2.7. Digital Output .....                       | 9  |
| 2.8. Digital Input/Digital Output .....         | 10 |
| 2.9. RS232 Interface.....                       | 10 |
| 3. Get Started .....                            | 11 |
| 3.1. Parts List .....                           | 11 |
| 3.2. External Cable Interface .....             | 12 |
| 3.3. Turn on/Turn off.....                      | 12 |
| 3.4. Open the Case.....                         | 13 |
| 3.5. Install a SIM Card .....                   | 13 |
| 3.6. Install the Internal Battery.....          | 14 |
| 3.7. Close the Case.....                        | 14 |
| 3.8. Motion Sensor Direction.....               | 14 |
| 4. Troubleshooting and Safety Information ..... | 16 |
| 4.1. Troubleshooting.....                       | 16 |
| 4.2. Safety Information .....                   | 16 |

## Table Index

|                                                                 |    |
|-----------------------------------------------------------------|----|
| Table 1: GV75CG Protocol Reference .....                        | 6  |
| Table 2: Terms and Abbreviations .....                          | 6  |
| Table 3: Description of 8-PIN Connections .....                 | 7  |
| Table 4: LED Description .....                                  | 8  |
| Table 5: Electrical Characteristics of Ignition Detection ..... | 9  |
| Table 6: Electrical Characteristics of Digital Output .....     | 10 |
| Table 7: Electrical Characteristics of Digital Input .....      | 10 |
| Table 8: Parts List .....                                       | 11 |
| Table 9: User Cable Color Definition .....                      | 12 |
| Table 10: Solutions to Possible Trouble .....                   | 16 |

## Figure Index

|                                                       |    |
|-------------------------------------------------------|----|
| Figure 1: Appearance of GV75CG .....                  | 7  |
| Figure 2: Digital Output Internal Drive Circuit ..... | 9  |
| Figure 3: Digital Output Internal Drive Circuit ..... | 10 |
| Figure 4: Open the Case .....                         | 13 |
| Figure 5: SIM Card Installation.....                  | 13 |
| Figure 6: Battery Installation .....                  | 14 |
| Figure 7: Close the Case.....                         | 14 |
| Figure 8: Motion Sensor Direction.....                | 15 |

## 0. Revision History

| Revision | Date       | Author       | Description of Change |
|----------|------------|--------------|-----------------------|
| 1.00     | 2024-12-27 | Daniel Cheng | Initial.              |

## 1. Introduction

The GV75CG is a compact GNSS tracker designed for a wide variety of vehicle tracking applications. It has multiple I/O interfaces that can be used for monitoring or controlling external devices. The GV75CG supports LTE CAT1/GSM. The built-in GNSS receiver has superior sensitivity and fast initial positioning. Its built-in 3-axis accelerometer allows motion detection and sophisticated power management algorithms extend battery life. System integration is straightforward as complete documentation is provided for the full featured @Track protocol. The @Track protocol supports a wide variety of reports including emergency alarm, Geo-fence boundary crossings, external power supply monitoring and position reports.

### 1.1. Reference

Table 1: GV75CG Protocol Reference

| SN  | Document Name                        | Remark                                                            |
|-----|--------------------------------------|-------------------------------------------------------------------|
| [1] | GV75CG @Track Air Interface Protocol | The air protocol interface between GV75CG and the backend server. |

### 1.2. Terms and Abbreviations

Table 2: Terms and Abbreviations

| Abbreviation | Description                      |
|--------------|----------------------------------|
| TXD          | Transmit Data                    |
| RXD          | Receive Data                     |
| OUT3/IN      | Digital output3/Digital input    |
| OUT2         | Digital output2                  |
| OUT1         | Digital output1                  |
| IGN          | Ignition input, positive trigger |
| GND          | Power and digital ground         |
| PWR          | External DC power input          |

## 2. Product Overview

### 2.1. Appearance

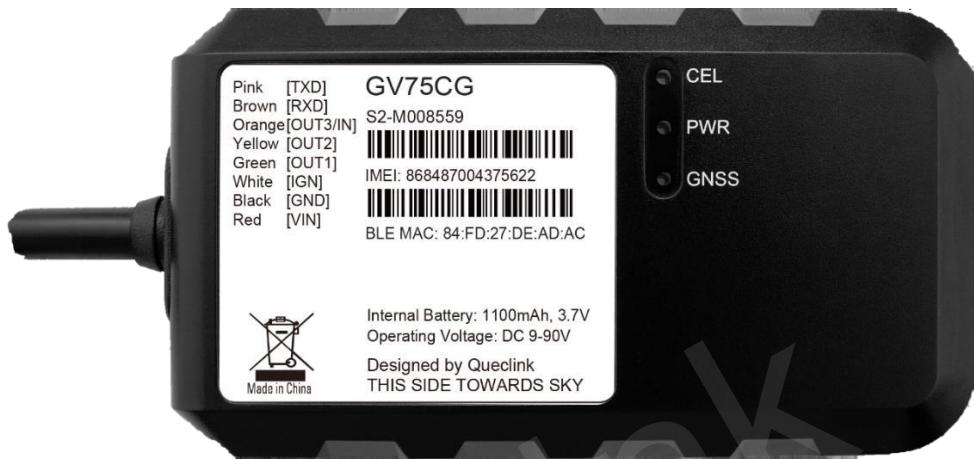
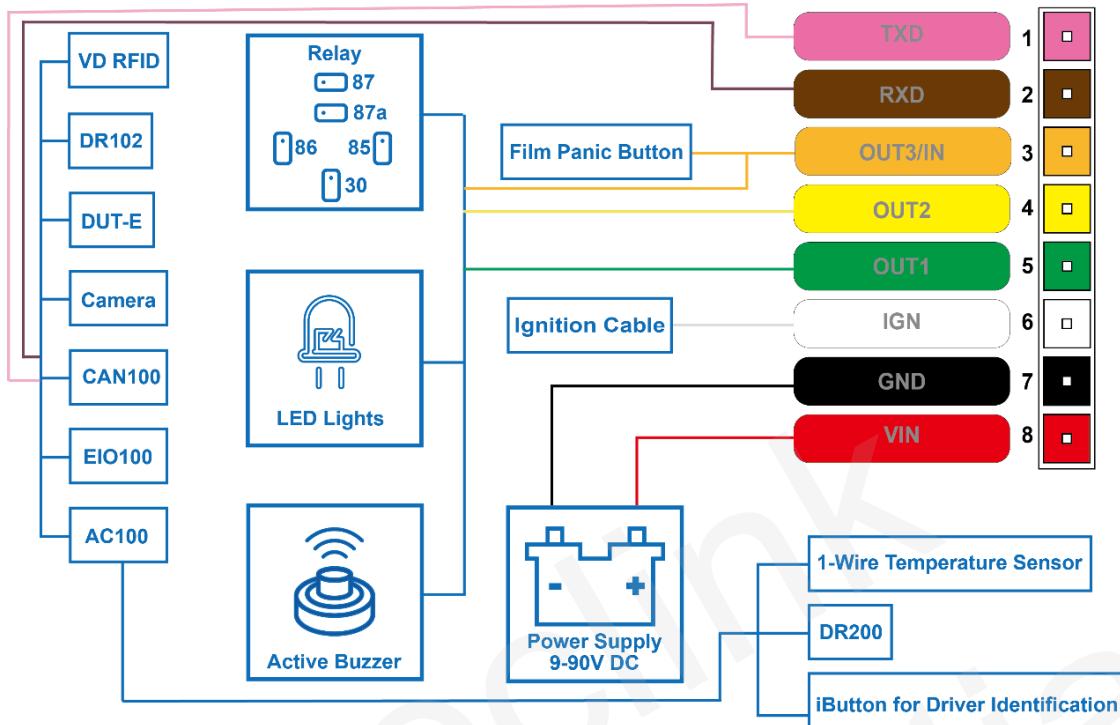



Figure 1: Appearance of GV75CG


### 2.2. Interface Definition

GV75CG has an 8-PIN interface connector. It contains the connections for power and I/O. The sequence and definition of the 8-PIN connector are shown in the following figure:

Table 3: Description of 8-PIN Connections

| Interface | PIN Number | PIN Name | Description                                                                                    |
|-----------|------------|----------|------------------------------------------------------------------------------------------------|
|           | 1          | TXD      | RS232_TXD                                                                                      |
|           | 2          | RXD      | RS232_RXD                                                                                      |
|           | 3          | OUT3/IN  | Negative trigger input or 1 digital output, open collector/drain, maximum output current 150mA |
|           | 4          | OUT2     | Digital Output, open drain, 150mA max                                                          |
|           | 5          | OUT1     | Digital output with internal latch circuit, Open drain, 150mA max                              |
|           | 6          | IGN      | Ignition input, positive trigger                                                               |
|           | 7          | GND      | Power and digital ground                                                                       |
|           | 8          | VIN      | External DC Power Input, 9-90V                                                                 |

## 2.3. Wiring Scheme



## 2.4. LED Description

GV75CG has three status LED lights, namely GNSS LED, CEL LED and PWR LED.

Table 4: LED Description

| LED  | Device Status                                                                                                       | LED Status    |
|------|---------------------------------------------------------------------------------------------------------------------|---------------|
| GNSS | GNSS chip is powered off.                                                                                           | OFF           |
|      | GNSS sends no data or data format error occurs.                                                                     | Slow flashing |
|      | GNSS chip is searching GNSS information.                                                                            | Fast flashing |
|      | GNSS chip has gotten GNSS information.                                                                              | ON            |
| CEL  | The device is searching network.                                                                                    | Fast flashing |
|      | The device has been registered on the network.                                                                      | Slow flashing |
|      | SIM card needs pin code to unlock.                                                                                  | ON            |
| PWR  | No external power and internal battery voltage is lower than 3.6V.                                                  | OFF           |
|      | No external power and internal battery voltage is lower than 3.7V.                                                  | Slow flashing |
|      | The external power supply has been connected to the device and the internal battery of the device is charging.      | Fast flashing |
|      | The external power supply has been connected to the device and the internal battery of the device is fully charged. | ON            |

**Note:**

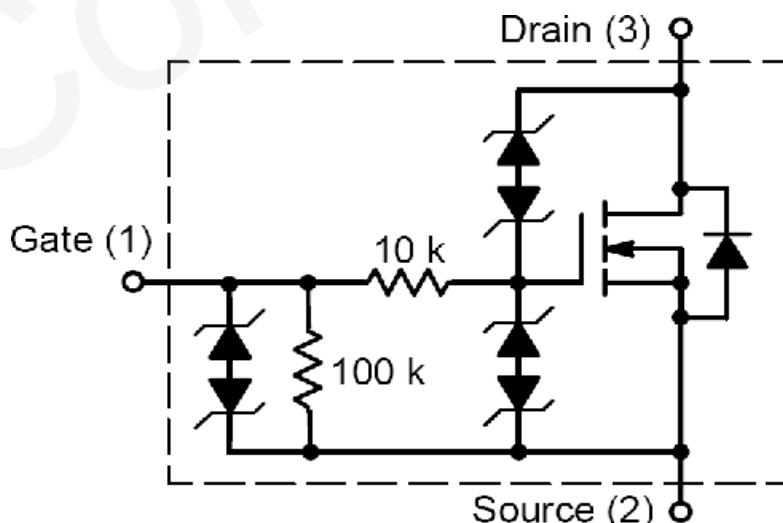
1. The three LED lights can be configured to be turned off after a period time by using the configuration tool.
2. Fast flashing: About 100ms ON/ 200ms OFF.
3. Slow flashing: About 200ms ON/ 1000ms OFF.

**2.5. Power Connection**

VIN(Red)/GND(Black) are the power input pins. The input voltage range for this device is from 9V to 90V. The device is designed to be installed in vehicles that operate on 9V to 90V vehicle without the need for external transformers.

**2.6. Ignition Detection**

**Table 5: Electrical Characteristics of Ignition Detection**


| Logical State | Electrical State |
|---------------|------------------|
| Active        | 5.0V to 32V      |
| Inactive      | 0V to 3V or Open |

IGN(White) is used for ignition detection. It is strongly recommended to connect this pin to ignition key RUN position.

An alternative to connecting to the ignition switch is to find a non-permanent power source that is only available when the vehicle is running, for example, the power source for the FM radio. IGN signal can be configured to start transmitting information to the backend server when the ignition is on, and enter power saving mode when the ignition is off.

**2.7. Digital Output**

There are two digital outputs on GV75CG. All two digital outputs are of open drain type and the maximum drain current is 150mA.



**Figure 2: Digital Output Internal Drive Circuit**

Table 6: Electrical Characteristics of Digital Output

| Logical State | Electrical Characteristics |
|---------------|----------------------------|
| Enable        | <1.5V @150mA               |
| Disable       | Open drain                 |

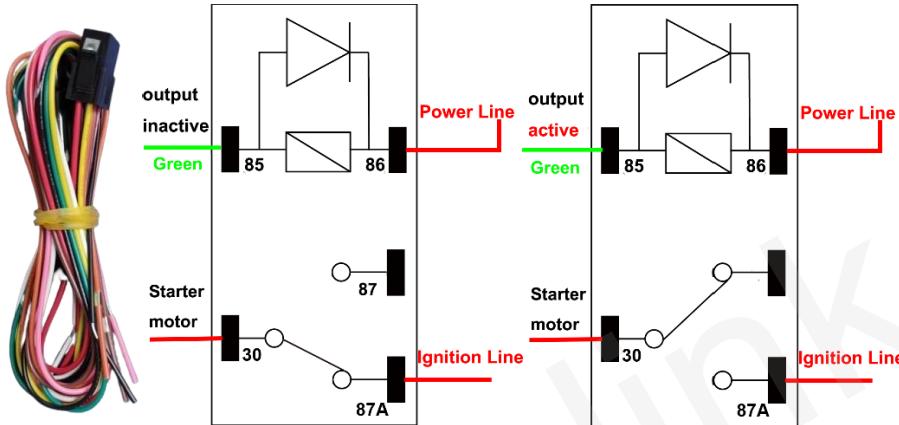



Figure 3: Digital Output Internal Drive Circuit

#### Note:

The above wiring diagram applies to Relay models MAH-112-C-4D2 and MAH-124-C-4D2.

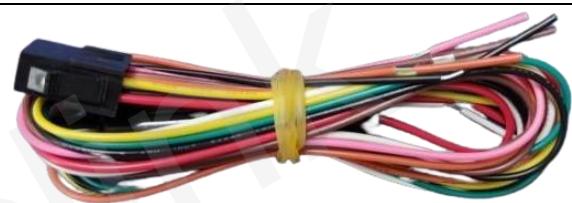
Ignition Line mentioned is an example only. Many modern relays already have the built-in freewheeling diodes. If the relay includes this diode, ensure that the polarity of the relay is connected correctly. If not, please add an external diode, such as a common 1N4004 diode, which is suitable for most applications.

## 2.8. Digital Input/Digital Output

There is one special I/O that can be configured as a digital input or a digital output with 150mA max drive current.

Table 7: Electrical Characteristics of Digital Input

| Logical State | Electrical Characteristics |
|---------------|----------------------------|
| Active        | 0V to 0.6V                 |
| Inactive      | Open                       |


## 2.9. RS232 Interface

There are two lines dedicated to the RS232 interface (TXD and RXD). TXD/RXD is standard RS232 signal.

### 3. Get Started

#### 3.1. Parts List

Table 8: Parts List

| Name                               | Picture                                                                                                |
|------------------------------------|--------------------------------------------------------------------------------------------------------|
| GV75CG Locator                     | 95mm*52mm*18.3mm<br> |
| User Cable                         |                      |
| USB-MICRO[C&D]-ST CABLE (Optional) |                     |

### 3.2. External Cable Interface

Table 9: User Cable Color Definition

| Definition | Color  | PIN No. | Cable          |   |
|------------|--------|---------|----------------|---|
| TXD        | Pink   | 1       | <b>TXD</b>     | 1 |
| RXD        | Brown  | 2       | <b>RXD</b>     | 2 |
| OUT3/IN    | Orange | 3       | <b>OUT3/IN</b> | 3 |
| OUT2       | Yellow | 4       | <b>OUT2</b>    | 4 |
| OUT1       | Green  | 5       | <b>OUT1</b>    | 5 |
| IGN        | White  | 6       | <b>IGN</b>     | 6 |
| GND        | Black  | 7       | <b>GND</b>     | 7 |
| VIN        | Red    | 8       | <b>VIN</b>     | 8 |

### 3.3. Turn on/Turn off

- Turn on: Connect the device to external power, and it will be turned on automatically. CEL LED light will be on.
- Turn off: Set *<Backup Battery On>* in **AT+GTCFG** to **0** to disable the backup battery, and then disconnect the device from the external power.

### 3.4. Open the Case



Figure 4: Open the Case

Use a screwdriver to unscrew the screws.

Insert the triangular-pry-opener into the gap of the case as shown in the figure, and push the opener up until the case is unsnapped.

When GV75CG is shipped, the case of GV75CG is not closed completely, which allows the user to open it relatively easily for SIM card and battery installation.

### 3.5. Install a SIM Card



Figure 5: SIM Card Installation

Open the case and ensure the unit is not powered. Slide the holder up to open the SIM card holder. Insert the SIM card into the holder as shown above with the gold-colored contact area facing down. Take care to align the cut mark. Close the SIM card holder. Close the case.

### 3.6. Install the Internal Battery



Figure 6: Battery Installation

### 3.7. Close the Case



Figure 7: Close the Case

Put the upper cover on the lower cover, and press the covers to make sure they are closed completely. Tighten the screws on the four corners with the screwdriver and insert rubber plugs to close the device.

### 3.8. Motion Sensor Direction

GV75CG has an internal 3-axis accelerometer supporting driving behavior monitoring, crash detection and motion detection. The following figure shows the directions of the motion sensor.



Figure 8: Motion Sensor Direction

**Note:**

1. The opposite direction of the cable bundle is the positive direction of the X-axis.
2. The Z-axis is in the positive direction above the front housing surface.
3. The positive directions of the three axes are perpendicular to each other, as shown in the figure above.

## 4. Troubleshooting and Safety Information

### 4.1. Troubleshooting

Table 10: Solutions to Possible Trouble

| Trouble                                                        | Possible Reason                                                         | Solution                                                                                                                           |
|----------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| After GV75CG is turned on, the CEL LED always flashes quickly. | The signal is too weak, and GV75CG cannot be registered on the network. | Please move GV75CG to places with good GSM coverage.                                                                               |
| Messages cannot be reported to the backend server.             | The IP address or port of the backend server is wrong.                  | Make sure the IP address for the backend server is an identified address on the Internet.                                          |
| Unable to power off GV75CG.                                    | Unable to power off GV75CG if charger is connected.                     | Disconnect charger, and try again.                                                                                                 |
| GV75CG cannot get successful GNSS fix.                         | The GNSS signal is weak.                                                | Please move GV75CG to a place with open sky.<br>It is better to let the top surface (the surface with LED indicator) face the sky. |

### 4.2. Safety Information

- Please do not disassemble the device by yourself.
- Please do not put the device on overheated or too humid place, and avoid exposure to direct sunlight. Too high temperature will damage the device or even cause battery explosion.
- Please do not use GV75CG on the airplane or near medical equipment.

## FCC Warning

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

## Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body.