

Shenzhen VITE Technology Co., Ltd
Tel: +86-755-89486194 Fax: +86-755-89486187

FCC PART 15 SUBPART B TEST REPORT

FCC Part 15B

Report Reference No......: **VITE10016B1**

Compiled by

(position+printed name+signature)..
File administrators Andy Zhang

Andy Zhang

Name of the organization performing
the tests

Test Engineer Kendy Wang

Kendy Wang

(position+printed name+signature)..
.....

Approved by

(position+printed name+signature)..
Manager Tracy Qi

Tracy Qi

Date of issue.....: Oct 18, 2010

Representative Laboratory Name ..: **Shenzhen VITE Technology Co., Ltd**

Address.....: Suite 2123, Building 4, Hongfa Centre, Central Area Baoan, Baoan
District, Shenzhen, Guangdong, 518101, P.R. China

Test Firm.....: **Bontek Compliance Testing Laboratory Ltd**

Address.....: 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East
Road, Nanshan, Shenzhen, China

Applicant's name.....: **Newport Wholesale**

Address.....: 11037 Warner AVE#201,Fountain Valley,CA92708,USA

Test specification:

Standard: FCC Part 15B: Unintentional Radiators

TRF Originator.....: Shenzhen VITE Technology CO., Ltd

Master TRF: Dated 2009-03

Shenzhen VITE Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the
Shenzhen VITE Technology Co., Ltd is acknowledged as copyright owner and source of the material.
Shenzhen VITE Technology Co., Ltd takes no responsibility for and will not assume liability for damages
resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Mobile Phone

Trade Mark: MAXWEST

Model/Type reference.....: WT8000

Listed Models: WT8001, WT8002

Difference description.....: Only the model name is difference

Modulation: /

Work Frequency Range.....: /

Antenna Type.....: /

FCC ID.....: YNFWT8000

Result.....: **Positive**

TEST REPORT

Test Report No. :	VITE10016B1	Oct 18, 2010
		Date of issue

Equipment under Test : Mobile Phone

Model /Type : WT8000

Listed Models : WT8001, WT8002

Applicant : Newport Wholesale

Address : 11037 Warner AVE#201,Fountain Valley,CA92708,USA

Manufacturer : Newport Wholesale

Address : 11037 Warner AVE#201,Fountain Valley,CA92708,USA

Test Result according to the standards on page 4:	Positive
--	-----------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	<u>TEST STANDARDS</u>	<u>4</u>
<u>2.</u>	<u>SUMMARY</u>	<u>5</u>
2.1.	General Remarks	5
2.2.	Equipment Under Test	5
2.3.	Short description of the Equipment under Test (EUT)	5
2.4.	EUT operation mode	5
2.5.	EUT configuration	5
2.6.	Related Submittal(s) / Grant (s)	6
2.7.	Modifications	6
<u>3.</u>	<u>TEST ENVIRONMENT</u>	<u>7</u>
3.1.	Address of the test laboratory	7
3.2.	Test Facility	7
3.3.	Environmental conditions	7
3.4.	Configuration of Tested System	7
3.5.	Statement of the measurement uncertainty	8
3.6.	Equipments Used during the Test	8
3.7.	Summary of Test Result	9
<u>4.</u>	<u>TEST CONDITIONS AND RESULTS</u>	<u>10</u>
4.1.	Conducted Emissions Test	10
4.2.	Radiated Emissions Test	14
<u>5.</u>	<u>TEST SETUP PHOTOS OF THE EUT</u>	<u>18</u>
<u>6.</u>	<u>EXTERNAL AND INTERNAL PHOTOS OF THE EUT</u>	<u>19</u>

1. TEST STANDARDS

The tests were performed according to following standards:

[FCC PartB: Unintentional Radiators](#)

[ANCI C63.4: 2003](#)

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample : Sep 16, 2010

Testing commenced on : Sep 18, 2010

Testing concluded on : Oct 17, 2010

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage : 120V / 60 Hz 115V / 60Hz
 12 V DC 24 V DC
 Other (specified in blank below)

DC 5V from USB

2.3. Short description of the Equipment under Test (EUT)

GSM mobile phone with Bluetooth and Wi-fi function.

For more details, refer to the user's manual of the EUT.

Serial number: Prototype

2.4. EUT operation mode

Test Mode:

1. The EUT has been tested under normal operating condition.
2. No test program used to control the EUT within testing.

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer

- supplied by the lab

Notebook Computer

Manufacturer : DELL

Model No. : PP26L

Manufacturer :

Model No. :

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: **YNFWT8000** filing to comply with of the FCC Part 15B Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Bontek Compliance Testing Laboratory Ltd
1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 7631A

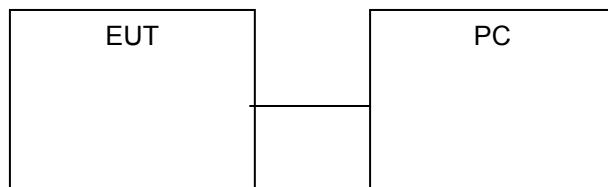
The 3m alternate test site of Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on March, 2008.

FCC-Registration No.: 338263

Bontek Compliance Testing Laboratory Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March 24, 2008.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:


Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 „Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements“ and is documented in the Bontek Compliance Testing Laboratory Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Bontek laboratory is reported:

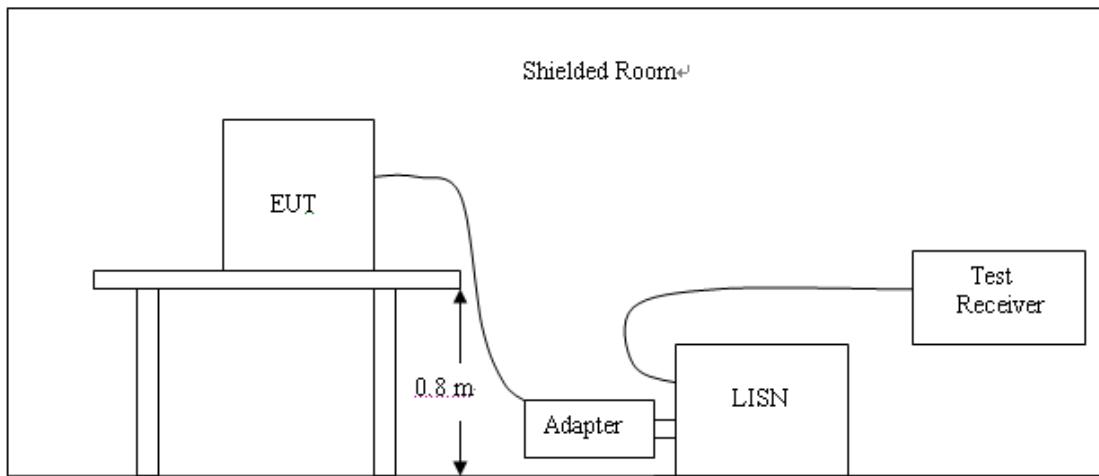
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	1~12.75GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Item	Test Equipment	Manufacturer	Model No.	Last Cal.	Due. Date
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	2010/04/15	2011/04/14
2	Radio Communication Tester	ROHDE & SCHWARZ	CMU200	2010/04/15	2011/04/14
3	Dual Directional Coupler	Agilent	778D	2010/04/15	2011/04/14
4	10dB attenuator	SCHWARZBECK	MTAIMP-136	2010/04/15	2011/04/14
5	Tunable Bandreject filter	K&L	3TNF-800	2010/04/15	2011/04/14
6	Tunable Bandreject filter	K&L	5TNF-1700	2010/04/15	2011/04/14
7	High-Pass Filter	K&L	9SH10-2700/X12750-O/O	2010/04/15	2011/04/14
8	High-Pass Filter	K&L	41H10-1375/U12750-O/O	2010/04/15	2011/04/14
9	Coaxial Cable	Huber+Suhner	AC4-RF-H	2010/04/15	2011/04/14
10	AC Power Supply	IDRC	CF-500TP	2010/04/15	2011/04/14
11	DC Power Supply	IDRC	CD-035-020PR	2010/04/15	2011/04/14
12	RF Current Probe	FCC	F-33-4	2010/04/15	2011/04/14
13	Temperature /Humidity Meter	zhicheng	ZC1-2	2010/04/15	2011/04/14
14	MICROWAVE AMPLIFIER	HP	8349B	2010/04/15	2011/04/14
15	Amplifier	HP	8447D	2010/04/15	2011/04/14
16	SIGNAL GENERATOR	HP	8647A	2010/04/15	2011/04/14
17	Log Periodic Antenna	ELECTRO-METRICS	EM-6950	2010/04/15	2011/04/14
18	Horn Antenna	Schwarzbeck	BBHA9120A	2010/04/15	2011/04/14
19	EMI Test Receiver	R&S	ESPI	2010/04/15	2011/04/14

3.7. Summary of Test Result


No deviations from the test standards

Test Item	Test Requirement	Standard Paragraph	Result
Radiated Emission	FCC PART 15	Section 15.109	PASS
Conducted Emission	FCC PART 15	Section 15.107	N/A

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test

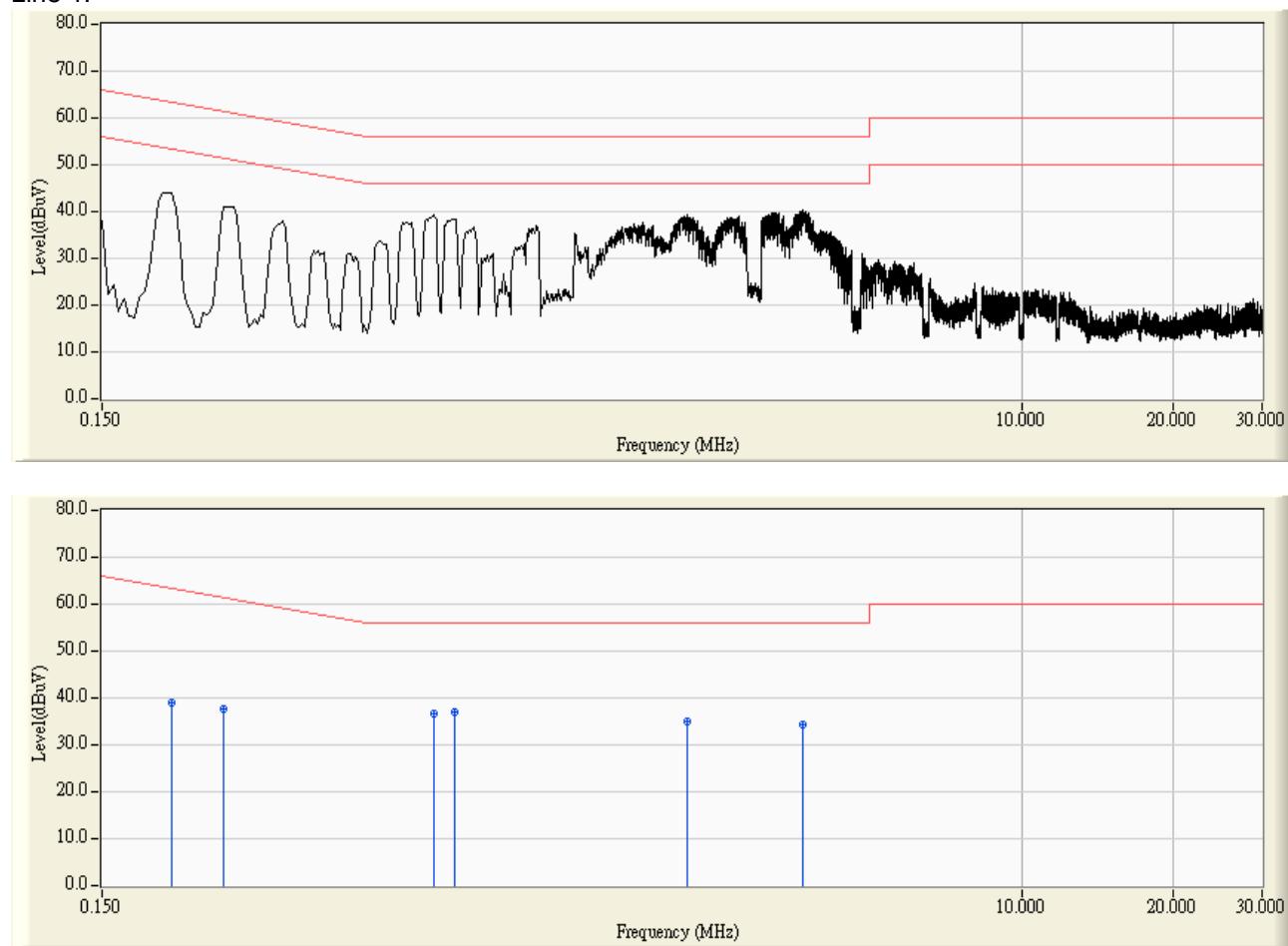
TEST CONFIGURATION

TEST PROCEDURE

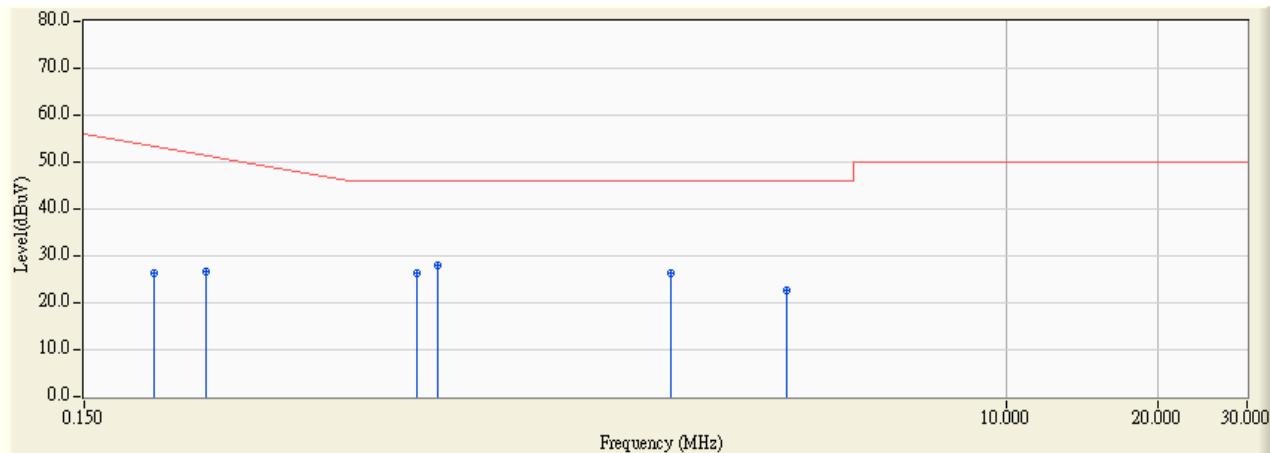
For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following:

Frequency (MHz)	Maximum RF Line Voltage (dB μ V)			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

* Decreasing linearly with the logarithm of the frequency


For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

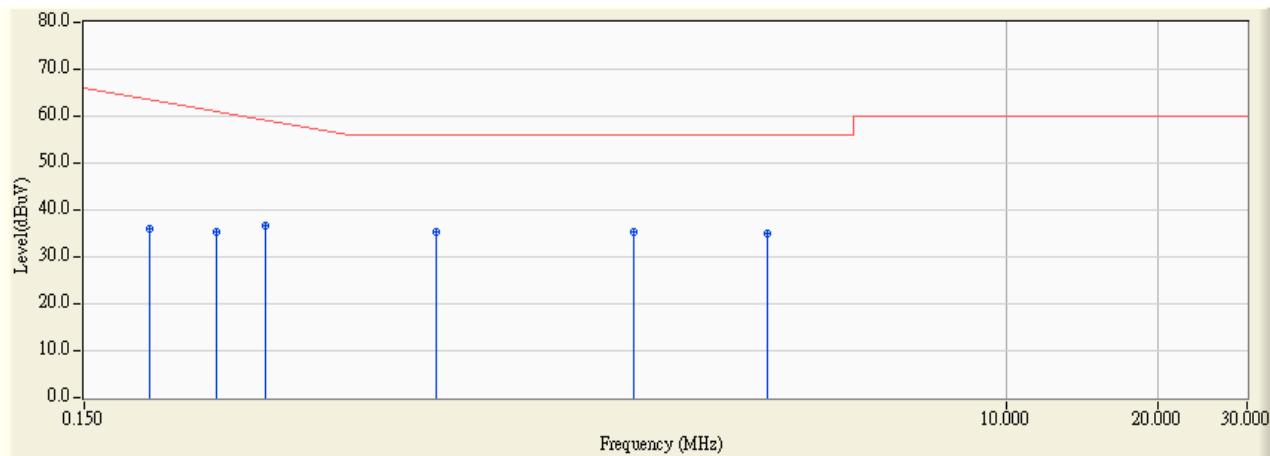
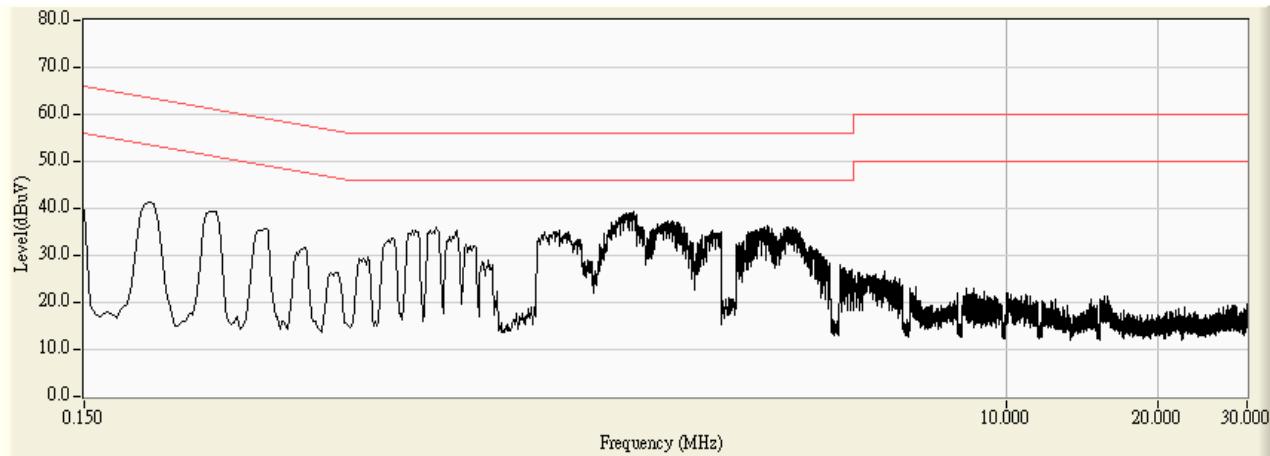
1. Please follow the guidelines in ANSI C63.4-2003.
2. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
4. All the support units are connecting to the other LISN.
5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
7. Both sides of AC line were checked for maximum conducted interference.
8. The frequency range from 150 kHz to 30 MHz was searched.
9. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.


The RBW/VBW for 150KHz to 30MHz: 9KHz

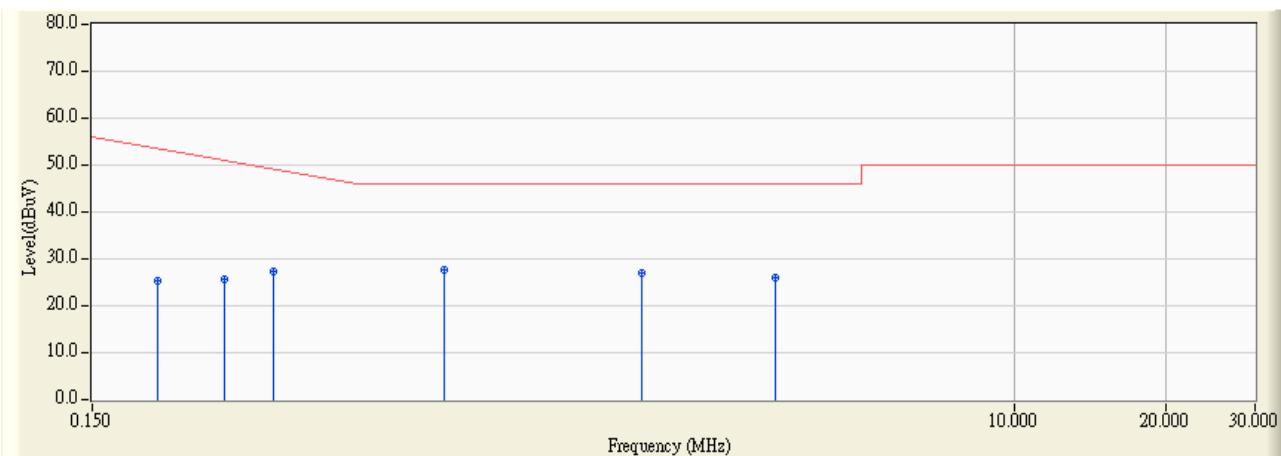
TEST RESULTS

Line 1:

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV)	Margin (dB)	Limit (dBuV)	Detector Type
1		0.206	9.526	29.500	39.026	-25.374	64.400	QUASIPEAK
2		0.262	9.469	28.200	37.669	-25.131	62.800	QUASIPEAK
3		0.682	9.674	26.900	36.574	-19.426	56.000	QUASIPEAK
4	*	0.750	9.687	27.300	36.987	-19.013	56.000	QUASIPEAK
5		2.170	9.690	25.300	34.990	-21.010	56.000	QUASIPEAK
6		3.678	9.790	24.500	34.290	-21.710	56.000	QUASIPEAK

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV)	Margin (dB)	Limit (dBuV)	Detector Type
1		0.206	9.526	16.800	26.326	-28.074	54.400	AVERAGE
2		0.262	9.469	17.300	26.769	-26.031	52.800	AVERAGE
3		0.682	9.674	16.800	26.474	-19.526	46.000	AVERAGE
4	*	0.750	9.687	18.400	28.087	-17.913	46.000	AVERAGE
5		2.170	9.690	16.500	26.190	-19.810	46.000	AVERAGE
6		3.678	9.790	12.900	22.690	-23.310	46.000	AVERAGE

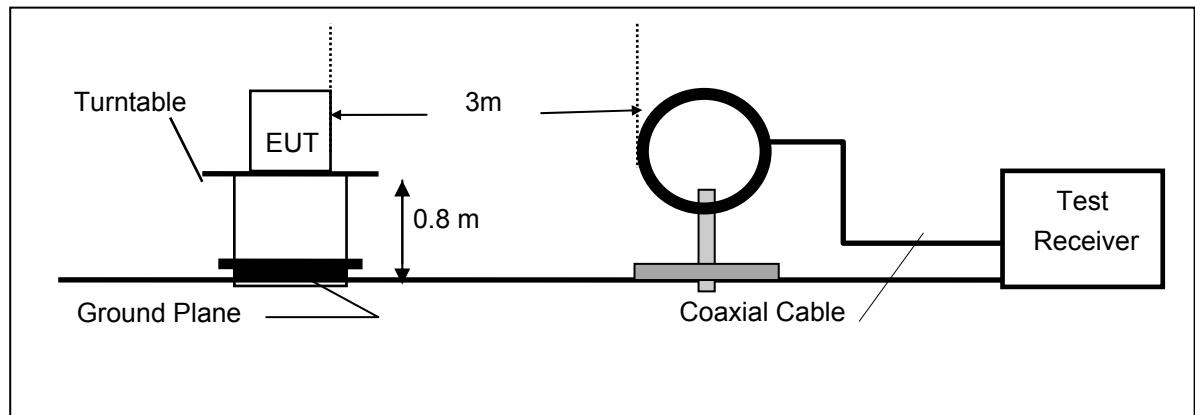

Note:

1. All Reading Levels are Quasi-Peak and average value.
2. "*", means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor

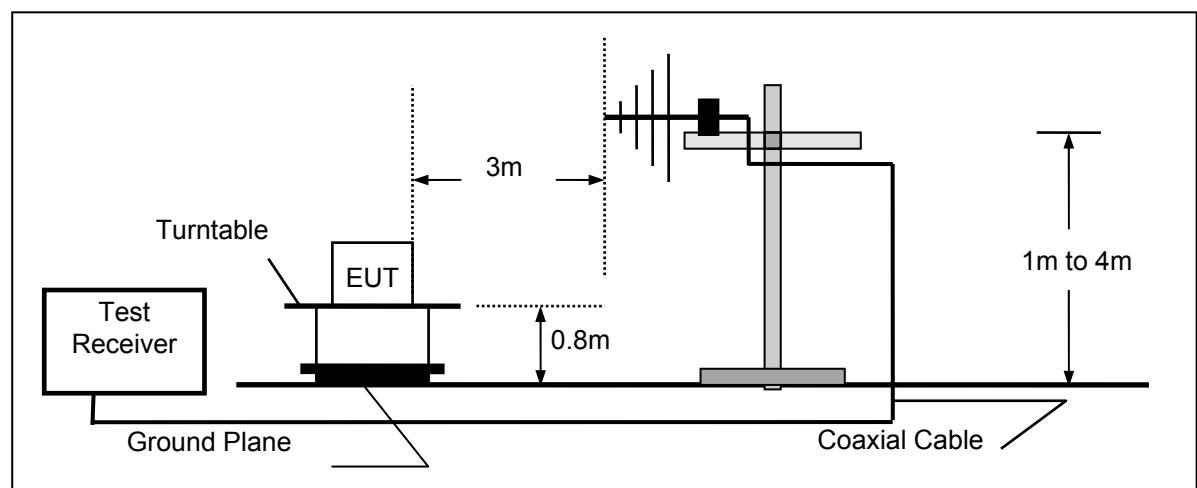
Line 2:

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV)	Margin (dB)	Limit (dBuV)	Detector Type
1		0.202	9.648	26.300	35.948	-28.566	64.514	QUASIPEAK
2		0.274	9.590	25.800	35.390	-27.067	62.457	QUASIPEAK
3		0.342	9.601	27.200	36.801	-23.713	60.514	QUASIPEAK
4	*	0.746	9.770	25.600	35.370	-20.630	56.000	QUASIPEAK
5		1.830	9.680	25.600	35.280	-20.720	56.000	QUASIPEAK
6		3.366	9.690	25.400	35.090	-20.910	56.000	QUASIPEAK

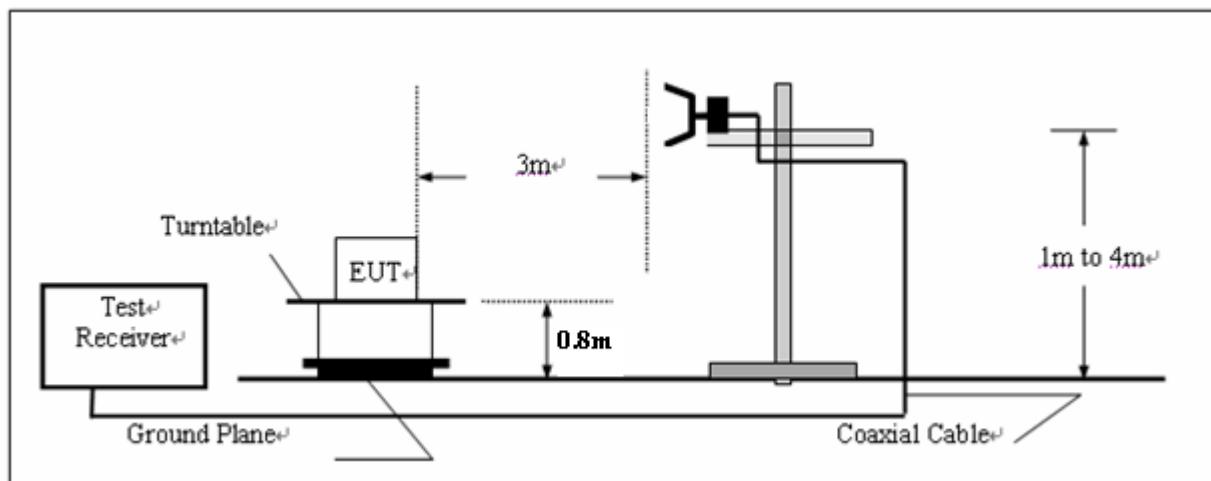
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV)	Margin (dB)	Limit (dBuV)	Detector Type
1		0.202	9.648	15.600	25.248	-29.266	54.514	AVERAGE
2		0.274	9.590	16.200	25.790	-26.667	52.457	AVERAGE
3		0.342	9.601	17.600	27.201	-23.313	50.514	AVERAGE
4	*	0.746	9.770	18.000	27.770	-18.230	46.000	AVERAGE
5		1.830	9.680	17.200	26.880	-19.120	46.000	AVERAGE
6		3.366	9.690	16.300	25.990	-20.010	46.000	AVERAGE


Note:

1. All Reading Levels are Quasi-Peak and average value.
2. " * ", means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor


4.2. Radiated Emissions Test

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

FIELD STRENGTH CALCULATION

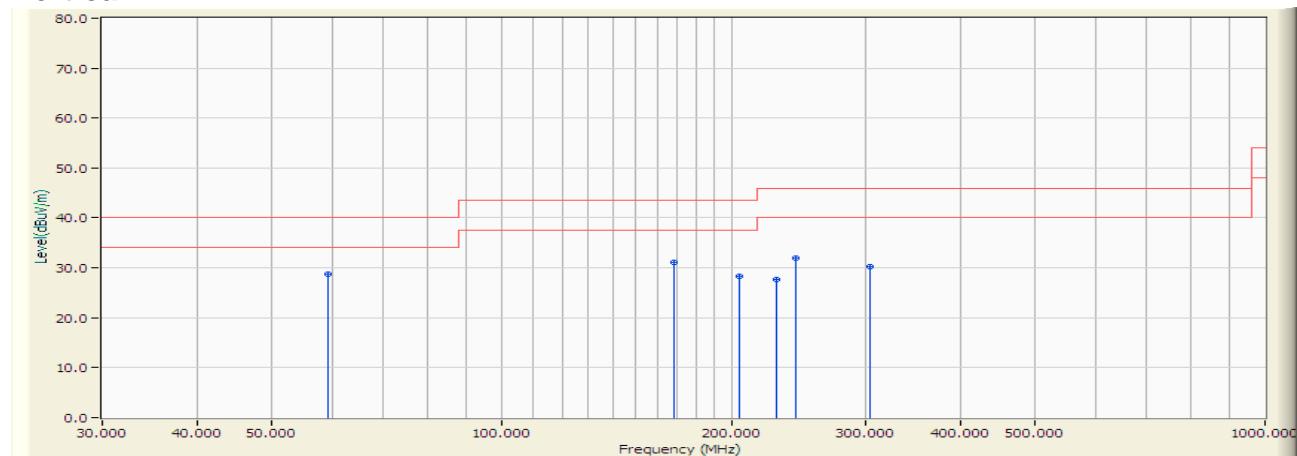
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

TEST PROCEDURE

1. The testing follows the guidelines in ANSI C63.4-200
2. The EUT was placed on a turn table which is 0.8m above ground plane.
3. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
5. Repeat above procedures until all frequency measurements have been completed.

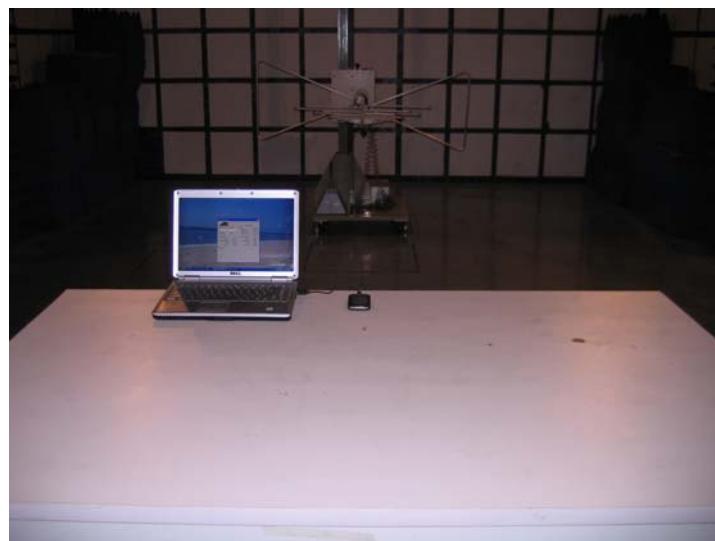

TEST RESULTS

Horizontal:

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		74.675	-15.248	36.200	20.953	-19.047	40.000	QUASIPEAK
2		118.700	-9.224	36.200	26.976	-16.524	43.500	QUASIPEAK
3		128.475	-9.119	35.600	26.481	-17.019	43.500	QUASIPEAK
4	*	136.700	-9.609	42.200	32.591	-10.909	43.500	QUASIPEAK
5		148.800	-10.553	40.300	29.747	-13.753	43.500	QUASIPEAK
6		221.500	-11.722	40.800	29.078	-16.922	46.000	QUASIPEAK

Note:

1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
2. " * ", means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor
4. The IF bandwidth of EMI Test Receiver was 120KHz for measuring from 30 MHz to 1 GHz and 1 MHz for measuring above 1 GHz.


Vertical:

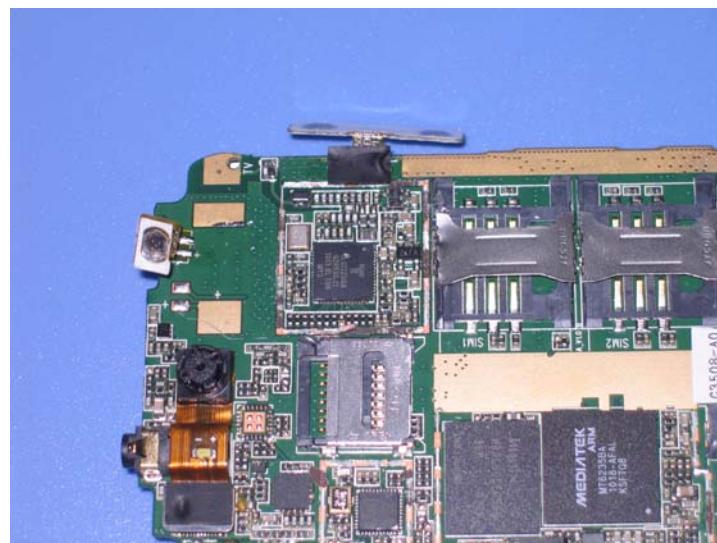
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1	*	59.200	-15.923	44.600	28.677	-11.323	40.000	QUASIPEAK
2	*	168.200	-11.392	42.500	31.108	-12.392	43.500	QUASIPEAK
3		204.600	-11.714	40.000	28.286	-15.214	43.500	QUASIPEAK
4		228.800	-10.792	38.400	27.608	-18.392	46.000	QUASIPEAK
5		243.400	-8.942	40.900	31.958	-14.042	46.000	QUASIPEAK
6		304.000	-6.678	37.000	30.322	-15.678	46.000	QUASIPEAK

Note:

1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.
2. " * ", means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor
4. The IF bandwidth of EMI Test Receiver was 120KHz for measuring from 30 MHz to 1 GHz and 1 MHz for measuring above 1 GHz

5. Test Setup Photos of the EUT




6. External and Internal Photos of the EUT

External Photos

Internal Photos

.....End of Report.....