

RF-TEST REPORT

- FCC Part 15.249, RSS210 -

Type / Model Name : SE 660

Product Description: Transceiver unit, 2.4 GHz

Applicant: Dr. Johannes Heidenhain GmbH

Address : Dr.-Johannes-Heidenhain-Str. 5

83301 Traunreut, Germany

Manufacturer: Dr. Johannes Heidenhain GmbH

Address : Dr.-Johannes-Heidenhain-Str. 5

83301 Traunreut, Germany

Test Result according to the standards listed in clause 1 test standards:

POSITIVE

Test Report No. : 80146498-04 Rev_2

23. August 2023

Date of issue

Contents

1 <u>1</u>	TEST STANDARDS	3
2 <u>E</u>	EQUIPMENT UNDER TEST	4
2.1	Information provided by the Client	4
2.2	Sampling	4
2.3	Photo documentation of the EUT – Detailed photos see attachment A	4
2.4	Equipment category	4
2.5	Short description of the equipment under test (EUT)	4
2.6	Variants of the EUT	4
2.7	Operation frequency and channel plan	4
2.8	Transmit operating modes	5
2.9	Antenna	5
2.10	Power supply system utilised	5
2.11	Peripheral devices and interface cables	5
2.12	Determination of worst-case conditions for final measurement	5
3 <u>1</u>	TEST RESULT SUMMARY	6
3.1	Revision history of test report	6
3.2	Final assessment	6
4 <u>1</u>	TEST ENVIRONMENT	7
4.1	Address of the test laboratory	7
4.2	Environmental conditions	7
4.3	Statement of the measurement uncertainty	7
4.4	Conformity Decision Rule	8
4.5	Measurement protocol for FCC and ISED	8
5 <u>1</u>	TEST CONDITIONS AND RESULTS	11
5.1	AC power line conducted emissions	11
5.2	Field strength of fundamental	16
5.3	Out-of-band emission, radiated	19
5.4	Correction for pulse operation (duty cycle)	23
5.5	Antenna application	24
6 <u>L</u>	JSED TEST EQUIPMENT AND ACCESSORIES	25

ATTACHMENT A as separate supplement

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart A - General (December 2021)

Part 15, Subpart A, Section 15.31 Measurement standards

Part 15, Subpart A, Section 15.33 Frequency range of radiated measurements

Part 15, Subpart A, Section 15.35 Measurement detector functions and bandwidths

FCC Rules and Regulations Part 15, Subpart C - Intentional Radiators (December 2021)

Part 15, Subpart C, Section 15.203 Antenna requirement

Part 15, Subpart C, Section 15.204 External radio frequency power amplifiers and antenna modifications

Part 15, Subpart C, Section 15.205 Restricted bands of operation

Part 15, Subpart C, Section 15.207 Conducted limits

Part 15, Subpart C, Section 15.209 Radiated emission limits, general requirements

Part 15, Subpart C, Section 15.215 Additional provisions to the general radiated emission limitations

Part 15, Subpart C, Section 15.249 Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz,

5725 - 5875 MHz, and 24.0 - 24.25 GHz

ANSI C63.10: 2013 Testing Unlicensed Wireless Devices

2 EQUIPMENT UNDER TEST

2.1 Information provided by the Client

Please note, we do not take any responsibility for information provided by the client or his representative which may have an influence on the validity of the test results.

2.2 Sampling

The customer is responsible for the choice of sample. Sample configuration, start-up and operation is carried out by the customer or according his/her instructions.

2.3 Photo documentation of the EUT – Detailed photos see attachment A

2.4 Equipment category

EUT is a short-range device.

2.5 Short description of the equipment under test (EUT)

The EUT is a 2.4 GHz transceiver system for low power data transmission in 16 channels of the operating band. The system consists of a touch probe and a transceiver unit SE 660. The transceiver unit use for diversity four parallel transceiver trees with RF part, 2 PCB antennas and 2 dedicated antennas. The EUT is tested as a system near a real application.

Number of tested samples:

Serial number: SE 640 088 308

2.6 Variants of the EUT

There are no variants.

2.7 Operation frequency and channel plan

The operating frequency band is 2400 MHz to 2483.5 MHz.

Channel	Frequency (MHz)
0	2405
1	2410
2	2415
3	2420
4	2425
5	2430
6	2435
7	2440

Channel	Frequency (MHz)
8	2445
9	2450
10	2455
11	2460
12	2465
13	2470
14	2475
15	2480

File No. 80146498-04 Rev_2, page 4 of 25

2.8 Transmit operating modes

The EUT allows free selection of channel and antenna in any combination.

TX continuous, modulated

TX continuous, unmodulated

2.9 Antenna

The following antennas shall be used with the EUT:

The EUT has only integrated antennas with no user access.

Antenna	Type
0	PCB
1	PCB
2	Flagpole
3	Flagpole

2.10 Power supply system utilised

Power supply voltage, V_{nom} : 15 V to 30 V DC

2.11 Peripheral devices and interface cables

The following peripheral devices and interface cables are connected during the measurements:

-	Interface Cable	Model:	Cable 663631-03
-	Touch probe	Model:	TT460
_	AC/DC Adapter	Model :	FW75550/12

2.12 Determination of worst-case conditions for final measurement

Preliminary tests were performed to find the worst-case mode where the maximum emissions occur. The maximum output power is set while testing.

For the final test, the following channels and test modes are selected:

	Test antennas	Test channels	Power setting	Modulation	Modulation type	Data rate
proprietary radio	1, 3	0, 7, 15	default	O-QPSK	digital	250 kBps

2.12.1 Test jig

No test jig is used.

2.12.2 Test software

Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

EUT is provided with special software to set test modes with buttons at the device.

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY

Rev. No. 6.5, 202111--05

3 TEST RESULT SUMMARY

FCC Rule Part	RSS Rule Part	Description	Result
15.205(a)	RSS-Gen, 8.10	Emissions in restricted bands	passed
15.207(a)	RSS-Gen, 8.8	AC power line conducted emissions	passed
15.215(c)	-	EBW	Not tested
-	RSS-Gen, 6.6	OBW	Not tested
15.249(a)	RSS-210, B10(a)	Field strength of fundamental	passed
15.249(d)	RSS-210, B10(b)	Out-of-band emission, radiated	passed
15.215	RSS-Gen, 8.11	Transmitter frequency stability	not applicable

The mentioned RSS Rule Parts in the above table are related to: RSS-Gen, Issue 5 + Amendment 1 + Amendment 2, March 2019 RSS-210, Issue 10 + Amendment (April 2020), December 2019

3.1 Revision history of test report

Test report No	Rev.	Issue Date	Changes
80146498-04	0	20 January 2023	Initial test report
80146498-04	1	23 May 2023	Remeasured second harmonic at 4.87972 GHz and clarified plot in 5.3.7
80146498-04	2	23 August 2023	Updated 5.3.7 to show only SE 660 Data

The test report with the highest revision number replaces the previous test reports.

3.2 Final assessment

The equipment under test fulfills the	equirements	cited in clause 1 tes	st standards.	
Date of receipt of test sample	: acc. to s	storage records		
Testing commenced on	: <u>14 Dece</u>	ember 2022		
Testing concluded on	: <u>13 Janu</u>	ary 2023		
Checked by:			Tested by:	
Klaus Gegenfurtner Teamleader Radio				Lukas Scheuermann Radio Team

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440 File No. **80146498-04 Rev_2**, page **6** of 25

Rev. No. 6.5, 202111--05

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

CSA Group Bayern GmbH Ohmstrasse 1-4 94342 STRASSKIRCHEN GERMANY

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15 - 35 ° C

Humidity: 30 - 60 %

Atmospheric pressure: 86 - 106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. It is noted that the expanded measurement uncertainty corresponds to the measurement results from the standard measurement uncertainty multiplied by the coverage factor k = 2. The true value is located in the corresponding interval with a probability of 95 %. The measurement uncertainty was calculated for all measurements listed in this test report on basis of the ETSI Technical Report TR 100 028 Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1 and Part 2. The results are documented in the quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Measurement Type	Range	Confidence Level	Calculated Uncertainty
AC power line conducted emissions	0.15 MHz to 30 MHz	95%	± 3.29 dB
EBW and OBW	2400 MHz to 30000 MHz	95%	± 2.5 x 10 ⁻⁷
Output power ERP, radiated	1000 MHz to 7000 MHz	95%	± 2.71 dB
Field strength of the fundamental	1000 MHz to 7000 MHz	95%	± 2.71 dB
Power spectral density	2400 MHz to 3000 MHz	95%	± 0.62 dB
Spurious Emissions, conducted	9 kHz to 10000 MHz	95%	± 2.15 dB
Spurious Emissions, conducted	10000 MHz to 40000 MHz	95%	± 3.47 dB
Spurious Emissions, radiated	9 kHz to 30 MHz	95%	± 3.53 dB
Spurious Emissions, radiated	30 MHz to 1000 MHz	95%	± 4.44 dB
Spurious Emissions, radiated	1000 MHz to 30000 MHz	95%	± 2.34 dB
Spurious Emissions, radiated	30000 MHz to 40000 MHz	95%	± 5.13 dB

File No. **80146498-04 Rev_2**, page **7** of 25

4.4 Conformity Decision Rule

The applied conformity decision rule is based on ILAC G8:09/2019 clause 4.2.1 Binary Statement for Simple Acceptance Rule (w = 0).

Details can be found in the procedure CSA_B_V50_29.

4.5 Measurement protocol for FCC and ISED

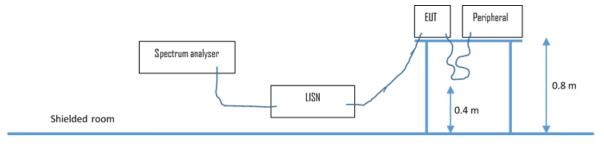
4.5.1 General information

CSA Group Bayern GmbH is recognized as wireless testing laboratory under the CAB identifier:

FCC: DE 0011 ISED: DE0009

4.5.2 General Standard information

The test methods used comply with ANSI C63.10 - "Testing Unlicensed Wireless Devices".


4.5.2.1 Justification

The equipment under test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions.

4.5.3 Details of test procedures

4.5.3.1 Conducted emission

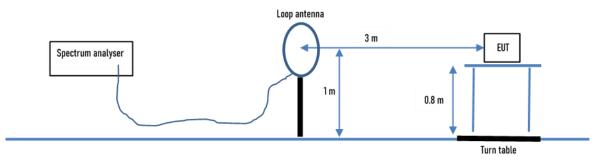
Test setup according ANSI C63.10

Non-conducted support

The final level, expressed in $dB_{\mu}V$, is arrived at by taking the reading directly from the Spectrum analyser. This level is compared to the limit.

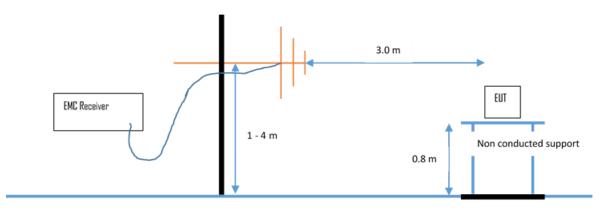
To convert between $dB\mu V$ and μV , the following conversions apply:

 $dB\mu V = 20(log \mu V)$ $\mu V = log(dB\mu V/20)$


Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a Line Impedance Stabilization Network (LISN) with 50 Ω / 50 μ H (CISPR 16) characteristics. The receiver is protected by means of an impedance matched pulse limiter connected directly to the RF input. Table top equipment is placed on a non-conducting table 80 centimetres above the floor and is positioned 40 centimetres from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emission is re-measured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

4.5.3.2 Radiated emission

4.5.3.2.1 OATS1 test site (9 kHz - 30 MHz):


Test setup according ANSI C63.10

Emissions from the EUT are measured in the frequency range of 9 MHz to 30 MHz using a tuned receiver and a calibrated loop antenna. Table top equipment is placed on a 1.0 X 1.5 m non-conducting table 80 centimetres above the ground plane. Cables to simulators/testers (if used in this test) are routed through the centre of the table and to a screened room located outside the test area. The antenna is positioned 3, 10 or 30 metres horizontally from the EUT and is repeated vertically. To locate maximum emissions from the test sample the antenna is varied along the site axis and the EUT is rotated 360 degrees.

4.5.3.2.2 OATS1 test site (30 MHz - 1 GHz):

Test setup according ANSI C63.10.

Spurious emissions from the EUT are measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarised antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 m non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Cables to simulators/testers (if used in this test) are routed through the centre of the table and to a screened room located outside the test area. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 metres and the EUT is rotated 360 degrees. The final level in dB μ V/m is calculated by taking the reading from the EMI receiver (Level dB μ V) and adding the correction factors and cable loss factor (dB). The FCC limit is subtracted from this result in order to provide the limit margin listed in the measurement protocol.

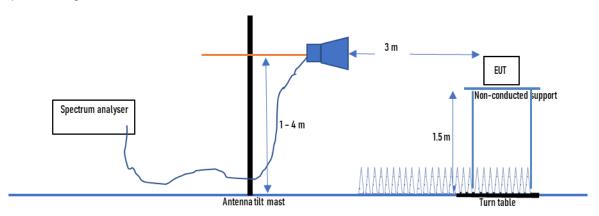
The resolution bandwidth setting:

30 MHz - 1000 MHz: RBW: 120 kHz

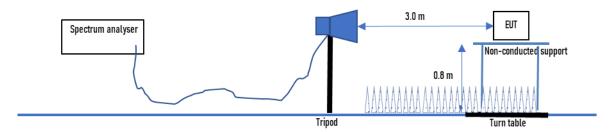
Example:

Frequency Factor Limit Delta Level Level (MHz) (dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 719.0 75.0 107.6 110.0 32.6 -2.4

CSA Group Bayern GmbH


Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY
Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

File No. **80146498-04 Rev_2**, page **9** of 25


4.5.3.2.3 Anechoic chamber 1 (1000 MHz - 18000 MHz)

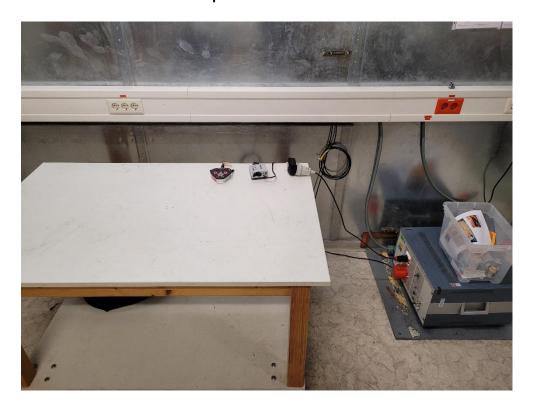
Test setup according ANSI C63.10.

Radiated emissions from the EUT are measured in the frequency range 1 GHz up to 18 GHz as specified in 47 CFR Part 15, Subpart A, Section 15.33, using a spectrum analyser and appropriate linearly polarized antennas. Table top equipment is placed on a non-conducting table, 1.5 metre above the ground plane. The turntable is fully covered with the appropriate absorber (Type VHP-12). Any controlling device is positioned such that it does not significantly influence the measurement results. Interconnecting cables that hang closer than 40 cm to the ground plane are folded back and forth in the centre, forming a bundle 30 cm to 40 cm long. Measurements are made in in three orientations of the EUT and the horizontal and vertical polarization planes of measurement antenna in a fully anechoic room. The measurement antenna is adjusted and the EUT orientated to permit the measurement of the maximum emission from the EUT. The conditions determined as worst-case will then be used for the final measurements.

4.5.3.2.4 Anechoic chamber 1 (18 GHz - 40 GHz)

Emissions from the EUT are measured in the frequency range 18 GHz up to 40 GHz as specified in 47 CFR Part 15, Subpart A, Section 15.33, using a spectrum analyser and appropriate linearly polarized antennas. Table top equipment is placed on a non-conducting table, 0.8 metre above the ground plane. The turntable is fully covered with the appropriate absorber (Type VHP-12). Any controlling device is positioned such that it does not significantly influence the measurement results. Interconnecting cables that hang closer than 40 cm to the ground plane are folded back and forth in the centre, forming a bundle 30 cm to 40 cm long. Measurements are made in in three orientations of the EUT and the horizontal and vertical polarization planes of measurement antenna in a fully anechoic room. The measurement antenna is adjusted and the EUT orientated to permit the measurement of the maximum emission from the EUT. The conditions determined as worst-case will then be used for the final measurements. Where appropriate, the test distance may be reduced in order to detect emissions under better uncertainty. The limit is adopted.

5 TEST CONDITIONS AND RESULTS


5.1 AC power line conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location: Shielded Room S2

5.1.2 Photo documentation of the test set-up

5.1.3 Applicable standard

According to FCC Part 15, Section 15.207(a):

Except as shown in paragraphs (b) and (c) of this Section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the given limits.

5.1.4 Description of Measurement

The measurements are performed following the procedures set out in ANSI C63.10 described under item 4.4.3. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

5.1.5 Test result

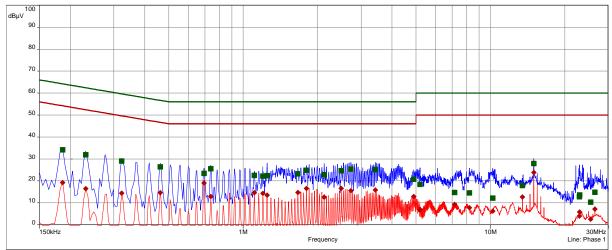
Frequency range: 0.15 MHz - 30 MHz

Min. limit margin -26.13 dB at 14.973 MHz

Limit according to FCC Part 15, Section 15.207(a):

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency


Th	ne	requi	iremer	its a	are	Fι	JLF	FIL	LEC).
----	----	-------	--------	-------	-----	----	-----	-----	-----	----

Remarks:	For detailed test result please refer to following test protocols

5.1.6 Test protocol

freq	SR	QP	margin	limit	AV	margin	limit	line	corr
MHz		dB(μV)	dB	dB	dB(μV)	dB	dB		dB
0.186	1	34.17	-30.04	64.2	19.28	-34.93	54.2	Phase 1	10.23
0.231	1	31.92	-30.49	62.4	16.47	-35.94	52.4	Phase 1	10.17
0.3225	2	29.04	-30.6	59.6	14.38	-35.26	49.6	Phase 1	10.16
0.462	2	26.37	-30.28	56.7	14.59	-32.07	46.7	Phase 1	10.13
0.6945	3	23.38	-32.62	56	19.01	-26.99	46	Phase 1	10.12
0.7395	3	25.57	-30.43	56	12.85	-33.15	46	Phase 1	10.12
1.1085	3	22.47	-33.53	56	14.68	-31.32	46	Phase 1	10.13
1.2	3	22.17	-33.83	56	14.37	-31.63	46	Phase 1	10.14
1.2495	4	22.36	-33.64	56	13.53	-32.47	46	Phase 1	10.14
1.6635	4	23.22	-32.78	56	14.7	-31.3	46	Phase 1	10.17
1.803	4	24.84	-31.16	56	16.62	-29.38	46	Phase 1	10.17
2.127	4	22.79	-33.21	56	12.62	-33.38	46	Phase 1	10.18
2.4945	5	24.69	-31.31	56	16.6	-29.4	46	Phase 1	10.22
2.7285	5	25.32	-30.68	56	15.55	-30.45	46	Phase 1	10.22
3.4215	5	25.19	-30.81	56	15.87	-30.13	46	Phase 1	10.19
4.899	6	20.74	-35.26	56	12.94	-33.06	46	Phase 1	10.25
5.187	6	18.36	-41.64	60	6.93	-43.07	50	Phase 1	10.26
7.167	6	14.73	-45.27	60	9.34	-40.66	50	Phase 1	10.34
8.2245	6	14.48	-45.52	60	7.82	-42.18	50	Phase 1	10.37
10.221	7	12.16	-47.84	60	6.23	-43.77	50	Phase 1	10.40
13.475	7	17.94	-42.06	60	12.68	-37.32	50	Phase 1	10.51
14.973	7	27.93	-32.07	60	23.87	-26.13	50	Phase 1	10.55

22.913	8	12.76	-47.24	60	4.01	-45.99	50	Phase 1	10.72
22.958	8	13.56	-46.44	60	5.81	-44.19	50	Phase 1	10.72
25.41	8	10.36	-49.64	60	2.56	-47.44	50	Phase 1	10.78
26.45	8	14.87	-45.13	60	7.13	-42.87	50	Phase 1	10.80

FCC/FCC Part 15C (15.207) B - Avg/ FCC/FCC Part 15C (15.207) B - Q-Peak/ Peak (Neutral)

- CISPR.AVG (Neutral)

QuasiPeak (Finals) (Neutral)

CISPR AV (Finals) (Neutral)

FCC/FCC Part 15C (15.207)B

freq	SR	QP	margin	limit	AV	margin	limit	line	corr
MHz		dB(μV)	dB	dB	dB(μV)	dB	dB		dB
0.186	9	34.54	-29.68	64.2	19.18	-35.03	54.2	Neutral	10.23
0.231	9	33.29	-29.12	62.4	18.24	-34.17	52.4	Neutral	10.17
0.3225	10	30.57	-29.07	59.6	15.9	-33.74	49.6	Neutral	10.16
0.417	10	29.31	-28.19	57.5	15.78	-31.73	47.5	Neutral	10.14
0.462	10	28.89	-27.76	56.7	15.96	-30.7	46.7	Neutral	10.13
0.6945	11	26.95	-29.05	56	20.85	-25.15	46	Neutral	10.12
1.158	11	24.75	-31.25	56	16.59	-29.41	46	Neutral	10.13
1.2045	12	23.71	-32.29	56	15.23	-30.77	46	Neutral	10.14
1.8525	12	23.24	-32.76	56	16.22	-29.78	46	Neutral	10.17
1.9425	12	22.34	-33.66	56	15.67	-30.33	46	Neutral	10.16
2.6385	13	21.65	-34.35	56	16.75	-29.25	46	Neutral	10.22
3.3315	13	18.79	-37.21	56	14.19	-31.81	46	Neutral	10.20
3.426	13	19.2	-36.8	56	15.27	-30.73	46	Neutral	10.19
4.0245	13	17.66	-38.34	56	11.93	-34.07	46	Neutral	10.21
4.8135	14	17.72	-38.28	56	12.73	-33.27	46	Neutral	10.25
5.097	14	16.03	-43.97	60	10.36	-39.64	50	Neutral	10.25
7.1535	14	16.06	-43.94	60	7.7	-42.3	50	Neutral	10.34
7.266	14	16.82	-43.18	60	10	-40	50	Neutral	10.34

12.467	15	14.96	-45.04	60	8.86	-41.14	50	Neutral	10.48
13.475	15	15.66	-44.34	60	12.08	-37.92	50	Neutral	10.51
14.969	15	25.89	-34.11	60	23.37	-26.63	50	Neutral	10.55
14.973	15	25.47	-34.53	60	22.82	-27.18	50	Neutral	10.55
22.886	16	9.74	-50.26	60	2.32	-47.68	50	Neutral	10.72
23.453	16	11.34	-48.66	60	4.53	-45.47	50	Neutral	10.73
26.45	16	11.53	-48.47	60	5.83	-44.17	50	Neutral	10.80
26.679	16	10.47	-49.53	60	2.71	-47.29	50	Neutral	10.80

5.2 Field strength of fundamental

For test instruments and accessories used see section 6 Part CPR 3.

5.2.1 Description of the test location

Test location: Anechoic chamber 1

Test distance: 3 m

5.2.2 Photo documentation of the test set-up

5.2.3 Applicable standard

According to FCC Part 15C, Section 15.249(a):

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the effective limits.

5.2.4 Description of Measurement

The radiated emission of the fundamental wave from the EUT is measured using a spectrum analyser and appropriate linear polarized antennas. The setup of the EUT and the measurement procedure is in accordance to ANSI C63.10, Item 6.5. The EUT is measured in TX continuous mode unmodulated under normal conditions.

Analyser settings:

Peak measurement: RBW: 5 MHz VBW: 20 MHz Detector: Max peak

5.2.5 Test result

SE 660: Antenna 3, CH7

Frequency	Level PK	Limit PK	Margin PK	Level AV	Limit AV	Margin AV
MHz	dB(μV/m)	dB(μV/m)	dB	dB(μV/m)	dB(μV/m)	dB
2440	102.7	114	-11.3	89.0	94	-5.0

Note: The correction factor of 13.7 dB is used to calculate the AV from the PK level.

SE 661: Antenna 3, CH7

Frequency	Level PK	Limit PK	Margin PK	Level AV	Limit AV	Margin AV
MHz	dB(μV/m)	dB(μV/m)	dB	dB(μV/m)	dB(μV/m)	dB
2440	100.9	114	-13.1	87.2	94	-6.8

Note: The correction factor of 13.7 dB is used to calculate the AV from the PK level.

Limit according to FCC Part 15C, Section 15.249(a):

The requirements are **FULFILLED.**

Frequency	Field strength of fundamental				
(MHz)	(mV/m)	dB(μV/m)			
902 - 928	50	94			
2400 - 2483.5	50	94			
5725-5875	50	94			
24000 - 24250	250	108			

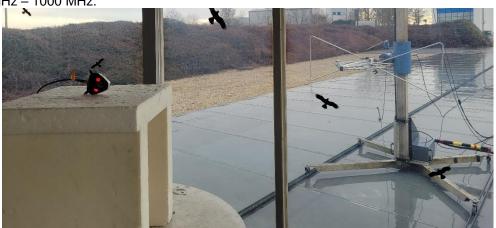
Peak-Limit according to FCC Part 15C, Section 15.249(e): However, the peak fieldstrength shall not exceed the maximum permitted average limit by more than 20 dB.

Remarks: None.

5.3 Out-of-band emission, radiated

For test instruments and accessories used see section 6 Part SER1, SER 2, SER 3.

5.3.1 Description of the test location


Test location: OATS 1

Test location: Anechoic chamber 1

Test distance: 3 m

5.3.2 Photo documentation of the test set-up

Test setup 30 MHz – 1000 MHz:

Test setup 1 GHz – 18 GHz:

Test setup 18 GHz - 25 GHz:

5.3.3 Applicable standard

According to FCC Part 15C, Section 15.249 (d):

Emission radiated outside of the specified frequency bands, except harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated limit in FCC Part 15C, Section 15.209, whichever is the lesser attenuation.

5.3.4 Description of Measurement

The radiated emissions from the EUT are measured in the frequency range of 9 kHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. The setup of the EUT and the measurement procedure is in accordance to ANSI C63.10, Item 6.3. In the frequency range above 1 GHz a spectrum analyser is used with appropriate linear polarized antennas. If the emission level in peak mode complies with the average limit testing is stopped and peak values will be reported, otherwise, the emission is measured in average mode again and reported. The EUT is measured in TX continuous mode unmodulated under normal conditions.

Instrument settings:

30 MHz – 1000 MHz: RBW: 120 kHz 1000 MHz – 25 GHz RBW: 1 MHz

5.3.5 Test result f < 1 GHz

Frequency (MHz)	Reading Vert. (dBµV)	Reading Hor. (dBµV)	Correct. Vert. (dB)	Correct. Hor. (dB)	Level Vert. (dBµV/m)	Level Hor. (dBµV/m)	Limit (dBµV/m)	Dlimit (dB)
39.00	7.5	7.7	16.7	17.8	24.2	25.5	40.0	-14.5
280.00	8.0	9.3	19.6	19.9	27.6	29.2	46.0	-16.8
600.00	7.0	9.3	28.0	28.4	35.0	37.7	46.0	-8.3
760.00	7.7	6.4	30.6	31.1	38.3	37.5	46.0	-7.7
600.00	7.0	9.3	28.0	28.4	35.0	37.7	46.0	-8.3
920.00	8.3	8.2	32.8	33.4	41.1	41.6	46.0	-4.4

Note: No Emission from the EUT was identified. Values show noise from the measurement site.

5.3.6 Test result f > 1 GHz

Average value determined by Duty Cycle Correction (5.4) applied to Peak Level.

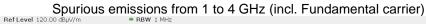
I	Frequency	Level PK	Limit PK	Margin PK	Level AV	Limit AV	Margin AV
	GHz	dB(μV/m)	dB(μV/m)	dB	dB(μV/m)	dB(μV/m)	dB
	4.87972	63.3	74	-10.7	49.6	54	-4.4

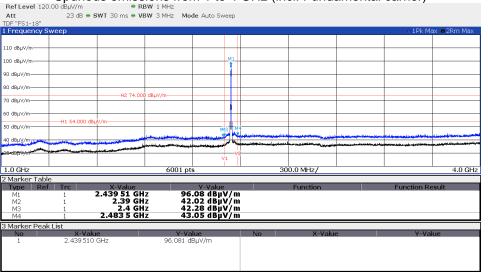
Limit according to FCC Part 15C, Section 15.209:

Frequency (MHz)	15.209 Limits (μV/m)	Measurement distance (m)
0.0090.49	2400/f(kHz)	300
0.49 – 1.705	24000/f(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

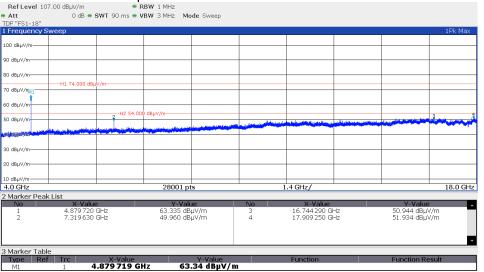
Average limit according to FCC Part 15C, Section 15.249(a):

Fundamental frequency	Field strength of harmonics			
(MHz)	(µV/m)	dB(μV/m)		
902 - 928	500	54		
2400 - 2483.5	500	54		
5725 - 5875	500	54		
24000 - 24250	2500	68		

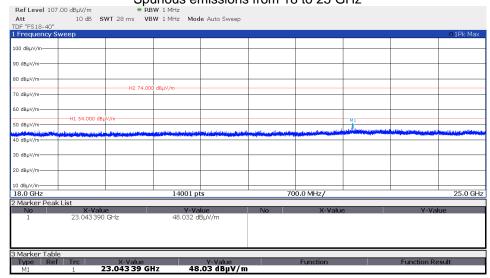

The requirements are **FULFILLED**.


Remarks:

The measurement was performed up to the 10th harmonic (25000 MHz). For detailed test result please refer to following test protocols. As of the small dimensions of the EUT no measurement was carried out below 30 MHz.



5.3.7 Test protocols



Spurious emissions from 4 to 18 GHz

Spurious emissions from 18 to 25 GHz

5.4 Correction for pulse operation (duty cycle)

5.4.1 Applicable standard

According to FCC Part 15A, Section 15.35(c):

When the radiated emission limits are expressed in terms of average value and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete puls train, including blanking intervals, as long as the pulse train does not exceed 0.1s. In cases where the puls train exceeds 0.1s, the measured field strength shall be determined from the average absolute voltage during a 0.1s interval during which the field strength is at its maximum. The exact method of calculating the average field strength shall be submitted.

5.4.2 Description of Measurement

The duty cycle factor (dB) is calculated applying the following formula:

 $KE = 20 \log ((tiw/Tw) * (tiB/TB))$

KE: pulse operation correction factor

tiw pulse duration for one complete pulse track

tiB pulse duration for one pulse T_W a period of the pulse track T_B a period of one pulse

5.4.3 Test result

Total length of period	3.038 ms
Max. On time Port4	0.627 ms
DC	0.21
Correction factor	-13.7 dB

Remarks: Manufacturer stated Duty Cycle Correction has not changed since

measurement of Test Report T36611-00. Therefore, data of named Report is used.

5.5 Antenna application

5.5.1 Applicable standard

According to FCC Part 15C, Section 15.203(a):

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

5.5.2 **Result**

User has no access to the antennas.

The antenna of the EUT meets the requirement of FCC Part 15C, Section 15.203 and 15.204.

The requirements are **FULFILLED**.

Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

Remarks:	None.

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID A 4	Model Type BAT-EMC 2022.0.21.0	Equipment No. 01-02/68-13-001	Next Calib.	Last Calib.	Next Verif.	Last Verif.
11 1	ESCI	02-02/03-15-001	17/06/2023	17/06/2022		
	ESH 2 - Z 5	02-02/20-05-004	13/10/2025	13/10/2022	13/04/2023	13/10/2022
	N-4000-BNC	02-02/50-05-138				,,
	ESH 3 - Z 2	02-02/50-05-155	09/11/2025	09/11/2022	09/05/2023	09/11/2022
	SP 103 /3.5-60	02-02/50-05-182				
CPR 3	FSW43	02-02/11-15-001	22/04/2023	22/04/2022		
CI IC 3	AMF-6D-01002000-22-10P	02-02/17-15-004	22/01/2023	22, 0 1, 2022		
	3117	02-02/24-05-009	23/06/2023	23/06/2022		
	BAM 4.5-P	02-02/50-17-024	23/00/2023	23/00/2022		
	NCD	02-02/50-17-025				
	KK-SF106-2X11N-6,5M	02-02/50-18-016				
	BAT-EMC 2022.0.21.0	02-02/68-13-001				
SER 2	ESVS 30	02-02/03-05-006	27/07/2023	27/07/2022		
22112	VULB 9168	02-02/24-05-005	20/12/2022	20/12/2021	03/07/2023	03/07/2022
	NW-2000-NB	02-02/50-05-113				
	KK-EF393/U-16N-21N20 m	02-02/50-12-018				
	KK-SD 7/8-2X21N-33,0M	02-02/50-15-028				
	50F-003 N 3 dB	02-02/50-21-010				
SER 3	FSW43	02-02/11-15-001	22/04/2023	22/04/2022		
	AMF-6D-01002000-22-10P	02-02/17-15-004				
	LNA-40-18004000-33-5P	02-02/17-20-002				
	3117	02-02/24-05-009	23/06/2023	23/06/2022		
	BBHA 9170	02-02/24-05-013	19/05/2023	19/05/2020	10/03/2023	10/03/2022
	BAM 4.5-P	02-02/50-17-024				
	NCD	02-02/50-17-025				
	KK-SF106-2X11N-6,5M	02-02/50-18-016				
	KMS116-GL140SE-KMS116-	02-02/50-20-026				
	BAT-EMC 2022.0.21.0	02-02/68-13-001				