FCC and IC Test Report

Vesper Marine Ltd

AIS/VHF/Monitoring Transceiver, Model: Cortex M1

VHF Handset, Model: Cortex H1

In accordance with FCC 47 CFR Part 80, FCC 47 CFR Part 2, Industry Canada RSS-182 and ISED RSS-GEN

Prepared for: Vesper Marine Ltd

45 Sale Street Freemans Bay Auckland New Zealand

FCC ID: Cortex VHF SYSTEM M1: YJDVESPM1

Cortex VHF SYSTEM H1: YJDVESPH1

IC: Cortex VHF SYSTEM M1: 9118A-M1

Cortex VHF SYSTEM H1: 9118A-H1

COMMERCIAL-IN-CONFIDENCE

Document 75943855-19 Issue 01

SIGNATURE			
Taxsell			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Matthew Russell	RF Team Leader	Authorised Signatory	28 May 2020

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 80, FCC 47 CFR Part 2, Industry Canada RSS-182 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Neil Rousell	28 May 2020	James James
Testing	Graeme Lawler	28 May 2020	GNawler ·

FCC Accreditation ISED Accreditation

90987 Octagon House, Fareham Test Laboratory 12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 80: 2019, FCC 47 CFR Part 2: 2019, ISED RSS-182: Issue 5 (2012-01) and ISED RSS-GEN: Issue 5 (04-2018) + A1 (03-2019) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2020 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Application Form	4
1.5	Product Information	8
1.6	Deviations from the Standard	8
1.7	EUT Modification Record	
1.8	Test Location	9
2	Test Details	10
2.1	Transmitter Power	10
2.2	Bandwidths	
2.3	Modulation Requirements	15
2.4	Spurious Emissions at Antenna Terminals	23
2.5	Radiated Spurious Emissions	30
3	Photographs	38
3.1	Test Setup Photographs	38
4	Measurement Uncertainty	44

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	28 May 2020

Table 1

1.2 Introduction

Applicant Vesper Marine Ltd

Manufacturer Vesper Marine Ltd

Model Number(s) 1) Cortex M1

2) Cortex H1

Serial Number(s) M1.0000006D

M1.0000006B M1.0000006F H1.0000000A

Hardware Version(s) 1) B

2) C

Software Version(s) 1) 0.2

2) 0.9

Number of Samples Tested 3 Cortex M1, 1 Cortex H1.

Test Specification/Issue/Date FCC 47 CFR Part 80: 2019 FCC 47 CFR Part 2: 2019

Industry Canada RSS-182: Issue 5 (2012-01) ISED RSS-GEN: Issue 5 (04-2018) + A1 (03-2019)

Order Number 13976

Date 20-September-2018

Date of Receipt of EUT 07-August-2019, 09-September-2019, 12-December-2019

and 03-February-2020

Start of Test 13-December-2019

Finish of Test 06-May-2020

Name of Engineer(s) Neil Rousell, and Graeme Lawler

Related Document(s) ANSI C63.26: 2015

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 80, FCC 47 CFR Part 2, Industry Canada RSS-182 and ISED RSS-GEN is shown below.

Section		Specificati	on Clause		Test Description	Result	Comments/Base Standard
Section	Part 80	Part 2	RSS-182	RSS-GEN	rest Description	Result	Comments/base Standard
Configuration and Mode: DC Powered - VHF Tx							
2.1	80.215	2.1046	7.5	6.12	Transmitter Power	Pass	ANSI C63.26: 2015
2.2	80.205	2.1049	7.3	6.7	Bandwidths	Pass	ANSI C63.26: 2015
2.3	80.213	2.1047	7.3	-	Modulation Requirements	Pass	ANSI C63.26: 2015
2.4	80.211	2.1051	7.9	6.13	Spurious Emissions at Antenna Terminals	Pass	ANSI C63.26: 2015
2.5	80.211	2.1053	7.9	6.13	Radiated Spurious Emissions	Pass	ANSI C63.26: 2015

Table 2

COMMERCIAL-IN-CONFIDENCE Page 3 of 44

1.4 Application Form

EQUIPMENT DESCRIPTION				
Model Name/Number	Cortex M1			
Part Number	CM1			
Hardware Version C				
Software Version	0.21			
FCC ID (if applicable)		YJDVESPM1		
Industry Canada ID (if applicable)		9118A-M1		
Technical Description (Please provide a brief description of the intended use of the equipment)		VHF and Class B AIS transponder with integrated Wifi and cellular connectivity.		

	INTENTIONAL RADIATORS								
Technology	Frequency Band	Conducted Declared Output	Antenna Gain	Supported Bandwidth (s)	Modulation	ITU Emission	Test Channels (MHz)		
recrinology	(MHz)	Power (dBm)	(dBi)	(MHz)	Scheme(s)	Designator	Bottom	Middle	Тор
3G (WCDMA)	FDD V (824-849)	23	2.5	5	QPSK	5M00GD	826.6	836.4	846.4
WiFI	2400-2480	20	2.5	20	DSSS, OFDM	20M0GD	2412	2437	2462
VHF	156-163	44	2.5	0.025	FM	16K0GD	156	-	162
DSC	156.525	44	-	0.025	FSK	16K0GD	-	156.52 5	-
AIS	156-162	37	-	0.025	GMSK	16K0GD	156	-	162

UN-INTENTIONAL RADIATOR						
Highest frequency generated or used in the device or on which the device operates or tunes 2.4 GHz						
Lowest frequency generated or used in the device or on which the device operates or tunes 0.5 Hz						
Class A Digital Device (Use in commercial, industrial or business environment) ☐ Class B Digital Device (Use in residential environment only) ☒						

Power Source							
AC	S	single Phase	Three Phase	Nominal Volt	age		
AC							
External Do		Nominal Voltage		Maximum Current			
External Do		12		6A			
Dettem		Nominal Voltage	Ва	attery Operating End Point Vo	ltage		
Battery							
Can EUT tr	ransmit whilst being	g charged?	Yes ☐ No [
		E	EXTREME CONDITIONS				
Maximum temperature +55.0 °C Minimum temperature -25.0 °C							
			Ancillaries				
Please list	all ancillaries which	n will be used with the de	evice.				
GPS Anten	ina						
		ANT	ENNA CHARACTERISTICS				
	nna connector		State impedance	ce Ohm			
☐ Temp	oorary antenna con	nector	State impedance	ce Ohm			
☐ Integ	ral antenna	Туре					
	nal antenna	Type					

Name: Carl Omundsen

Position held: Director Date: 01 April 2019

	EQUIPMENT DESCRIPTION			
Model Name/Number	Cortex H1	/H1P		
Part Number	H1			
Hardware Version				
Software Version	0.9			
FCC ID (if applicable)		YJDVESPH1		
Industry Canada ID (if applicable)		9118A-H1		
Technical Description (Please provide a brief description of the intended use of the equipment)		Handset for use within Cortex a VHF/DSC/AIS system		

	INTENTIONAL RADIATORS								
Technology	Conducted Frequency Declared Antenna Supported Modulation Frequency Band Output Gain Bandwidth (s) Saharas (s)			Modulation ITU	Test Channels (MHz)				
realifology	Band (MHz)	Power (dBm)	Gain (dBi)	Bandwidth (s) (MHz)		e(s) Emission Designator	Bottom	Middle	Тор
WiFi	2400-2480	20	2.5	20	DSSS / OFDM	20M0GD	2412	2437	2462

UN-INTENTION	AL RADIATOR				
Highest frequency generated or used in the device or on which the device operates or tunes					
Lowest frequency generated or used in the device or on which the device operates or tunes					
Class A Digital Device (Use in commercial, industrial or business environment)					
Class B Digital Device (Use in residential environment only)					

Power Source					
4.0	Single Phase Three Pf		Phase	Nominal Voltage	
AC					
Estamal DC	Nominal Voltage		Maximum Current		
External DC	12V		0.5A		
D-#	Nominal Voltage		Batte	ery Operating End Point Voltage	
Battery 3.6V		3.2V			
Can EUT transmi	t whilst being charged?		Yes 🛛 No 🔲		

EXTREME CONDITIONS						
Maximum temperature	55	°C	Minimum temperature		-15	°C
			Ancillaries			
Please list all ancillaries	which will be used	with the device.				
		ANTENNA	CHARACTERISTICS			
Antenna connecto	r		State impedance		Ohm	
■ Temporary antenn	a connector		State impedance		Ohm	
Integral antenna	Туре	Stripline				
■ External antenna	Type					

I hereby declare that the information supplied is correct and complete.

Name: Carl Omundsen

Position held: CTO Date: 03/02/2020

1.5 Product Information

1.5.1 Technical Description

VHF and Class B AIS transponder with integrated Wifi and cellular connectivity.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted				
Model: Cortex M1, S	Model: Cortex M1, Serial Number: M1.0000006B						
0	As supplied by the customer	Not Applicable	Not Applicable				
1	Handset Firmware updated for cold temp	Manufacturer	11-October-2019				
2	R1306 100 k -> 1 M (Cold Temp Issue – Audio Codec)	Manufacturer	25-November-2019				
3	Replaced component capacitor C800 value 36 pF	Manufacturer	11-February-2020				
4	Shielding can was missing on the device and has now been added	Manufacturer	21-April-2020				
Model: Cortex M1, S	Serial Number: M1.0000006D						
0	As supplied by the customer	Not Applicable	Not Applicable				
Model: Cortex H1, S	Model: Cortex H1, Serial Number: H1.0000000A						
0	As supplied by the customer	Not Applicable	Not Applicable				
Model: Cortex M1, S	Model: Cortex M1, Serial Number: M1.0000006F						
0	As supplied by the customer	Not Applicable	Not Applicable				

Table 3

1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation		
Configuration and Mode: DC Powered - VHF Tx				
Transmitter Power	Neil Rousell	UKAS		
Bandwidths	Neil Rousell	UKAS		
Modulation Requirements	Neil Rousell	UKAS		
Spurious Emissions at Antenna Terminals	Neil Rousell	UKAS		
Radiated Spurious Emissions	Graeme Lawler	UKAS		

Table 4

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Transmitter Power

2.1.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.215 FCC 47 CFR Part 2, Clause 2.1046 ISED RSS-182, Clause 7.5 ISED RSS-GEN, Clause 6.12

2.1.2 Equipment Under Test and Modification State

Cortex M1, S/N:M1.0000006B - Modification State 0

2.1.3 Date of Test

13-December-2019

2.1.4 Test Method

The test was applied in accordance with ANSI C63.26, clause 5.2.3.3.

The EUT was configured to transmit on maximum power on the bottom and top channels with an unmodulated carrier. The EUT was connected to a spectrum analyser via a cable and attenuator. The path loss was measured using a network analyser and entered as a reference level offset in the spectrum analyser. The RBW of the spectrum analyser was set to 100 kHz and the video bandwidth to 300 kHz with the trace set to max hold using a peak detector and the result was recorded.

2.1.5 Environmental Conditions

Ambient Temperature 24.2 °C Relative Humidity 27.6 %

2.1.6 Test Results

DC Powered - VHF Tx

Power Setting	156.025 MHz		162.02	5 MHz
	Result (dBm)	Result (W)	Result (dBm)	Result (W)
High – 25 W	43.09	20.40	43.30	21.40
Low – 1 W	29.29	0.85	29.96	0.99

Table 5 - Transmitter Power Results

FCC 47 CFR Part 80, Limit Clause 80.215 (e)

Ship station frequencies above 27500 kHz. The maximum power must not exceed the values listed below:

- Ships Stations: 156 to 162 MHz 25 W
- Marine Utility Stations and Handheld Portable Transmitters: 156 to 162 MHz 10 W

ISED RSS-182, Limit Clause 7.5

The output power shall be within ±1.0 dB of the manufacturer's rated power and not exceed the limits listed in the table below:

Stations	Typical Power
Coast Station	50 W
Ship Stations	
Minimum	6 W
Maximum	25 W
Hand-held portable transmitters	5 W
Survival two-way radiotelephones	Should have a minimum e.i.r.p of 0.25 W

Table 6

2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	16-Apr-2020
Hygromer	Rotronic	A1	2138	12	05-Mar-2020
Multimeter	Iso-tech	IDM101	2424	12	12-Dec-2020
Attenuator (20 dB, 150 W)	Narda	769-20	3367	12	17-Jul-2020
Attenuator (30dB, 150W)	Narda	769-30	3369	12	17-Jul-2020
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	16-Apr-2020
PXA Signal Analyser	Keysight Technologies	N9030A	4653	12	10-Feb-2021
Quad Power Supply	Rohde & Schwarz	HMP4040	4955	-	O/P Mon
Network Analyser	Keysight Technologies	E5063A	5018	12	20-May-2020
Cable (18 GHz)	Rosenberger	LU7-071-1000	5098	12	06-Oct-2020
Cable (18 GHz)	Rosenberger	LU7-071-2000	5107	12	06-Oct-2020
Electronic Calibration Module	Keysight Technologies	85093C	5188	12	21-May-2020

Table 7

O/P Mon – Output Monitored using calibrated equipment

2.2 Bandwidths

2.2.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.205 FCC 47 CFR Part 2, Clause 2.1049, Industry Canada RSS-182, Clause 7.3 ISED RSS-GEN, Clause 6.7

2.2.2 Equipment Under Test and Modification State

Cortex M1, S/N: M1.0000006F - Modification State 0

2.2.3 Date of Test

17-March-2020

2.2.4 Test Method

The test was applied in accordance with ANSI C63.26 clause 5.4.4.

The EUT was transmitting at maximum power, with normal modulation as described in FCC CFR 47 Part 2, clause 2.1049. The EUT was connected to a spectrum analyser via a cable and attenuator, the RBW of the spectrum analyser was set to at least 1 % of the emission bandwidth and a video bandwidth of 3 times RBW, the occupied bandwidth measurement function of the analyser was used and the 99 % bandwidth recorded.

The plots on the following pages show the resultant display from the Spectrum Analyser.

2.2.5 Environmental Conditions

Ambient Temperature 23.9 °C Relative Humidity 35.3 %

2.2.6 Test Results

DC Powered - VHF Tx

156.025 MHz	162.025 MHz
13.79	15.43

Table 8 - 99% Occupied Bandwidth Results

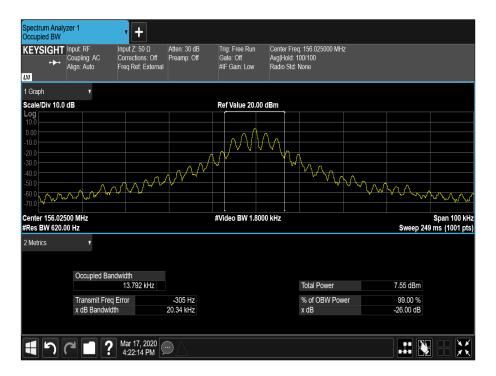


Figure 1 - 156.025 MHz Occupied Bandwidth

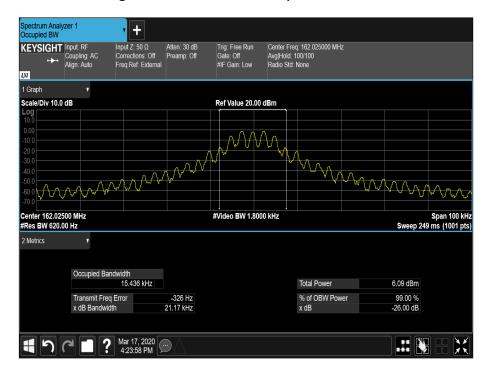


Figure 2 - 162.025 MHz Occupied Bandwidth

FCC 47 CFR Part 80, Limit Clause 80.205

< 20 kHz for G3E class of emission

ISED RSS-GEN, Limit Clause

< 20 kHz for data and < 16 kHz for data.

2.2.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Attenuator (30 dB, 50 W)	Bird	8321	494	12	24-Oct-2020
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	16-Apr-2020
Audio Analyser	Hewlett Packard	8903B	2212	12	01-Nov-2020
Multimeter	Fluke	79 Series II	3057	12	19-Aug-2020
Attenuator (10dB, 50W)	Aeroflex / Weinschel	47-10-34	3166	12	12-Sep-2020
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	16-Apr-2020
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4509	12	06-Dec-2020
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4511	12	18-Jul-2020
Quad Power Supply	Rohde & Schwarz	HMP4040	4955	-	O/P Mon
Hygrometer	Rotronic	HP21	5004	12	02-Oct-2020
MXA Signal Analyser	Keysight Technologies	N9020B	5529	24	04-Mar-2022

Table 9

O/P Mon – Output Monitored using calibrated equipment

2.3 Modulation Requirements

2.3.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.213, FCC 47 CFR Part 2, Clause 2.1047, ISED RSS-182, Clause 7.3

2.3.2 Equipment Under Test and Modification State

Cortex M1, S/N: M1.0000006B - Modification State 2 Cortex H1, S/N: H1.0000000A - Modification State 0

2.3.3 Date of Test

06-May-2020

2.3.4 Test Method

This test was carried out in accordance with the requirements of FCC CFR 47 Part 80, clause 80.213, FCC CFR 47 Part 2, clause 2.1047 (a) and ISED RSS 182 clause 7.3, using the test methods described in ANSI C63.26, clause 5.3.

The EUT was connected to a modulation analyser via a cable and attenuator. The EUT was configured to transmit at maximum power. The results are shown on the graph below.

2.3.5 Environmental Conditions

Ambient Temperature 22.3 °C Relative Humidity 36.7 %

2.3.6 Test Results

DC Powered - VHF Tx

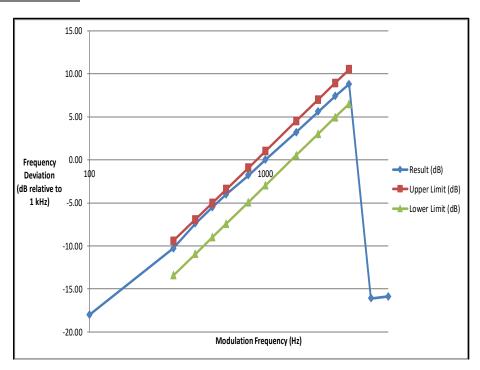


Figure 3 Modulation Requirement - Frequency Response (156.025 MHz)

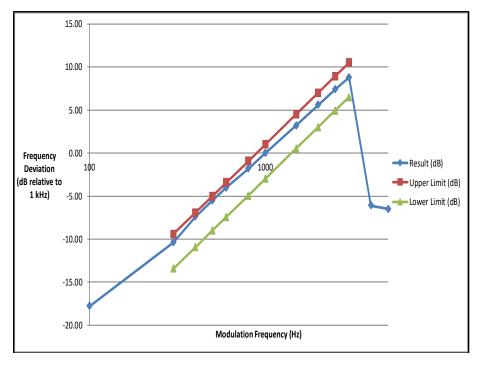


Figure 4 Modulation Requirement - Frequency Response (162.025 MHz)

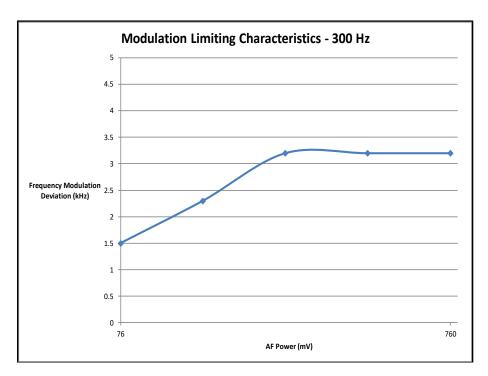


Figure 5 Modulation Limiting Capability - 300 Hz AF (156.025 MHz)

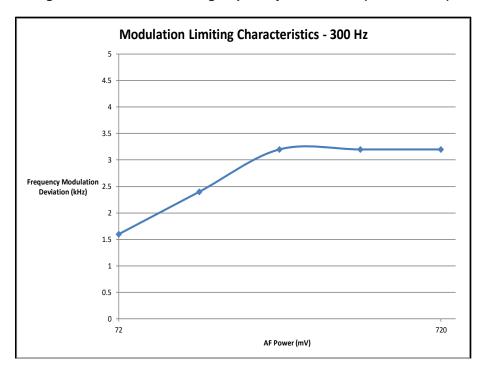


Figure 6 Modulation Limiting Capability - 300 Hz AF (162.025 MHz)

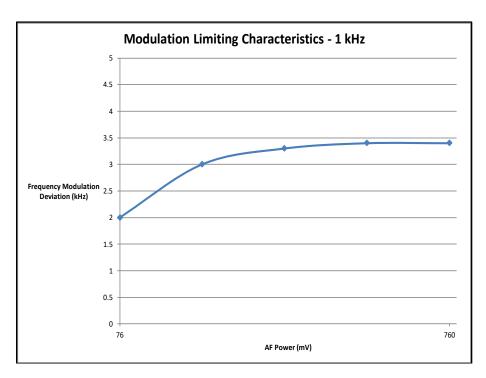


Figure 7 Modulation Limiting Capability - 1 kHz AF (156.025 MHz)

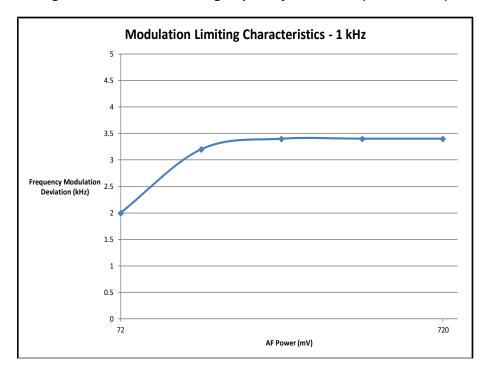


Figure 8 Modulation Limiting Capability - 1 kHz AF (162.025 MHz)

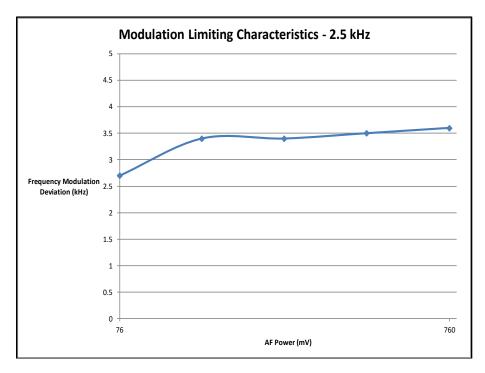


Figure 9 Modulation Limiting Capability - 2.5 kHz AF (156.025 MHz)

Figure 10 Modulation Limiting Capability - 2.5 kHz AF (162.025 MHz)

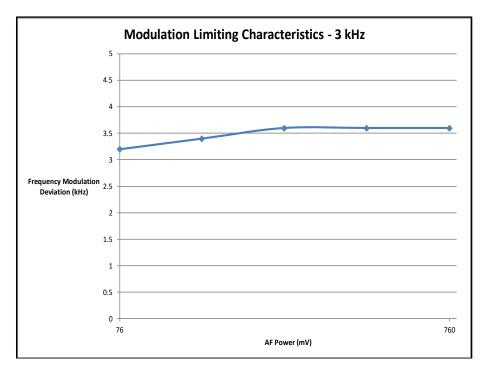


Figure 11 Modulation Limiting Capability - 3 kHz AF (156.025 MHz)

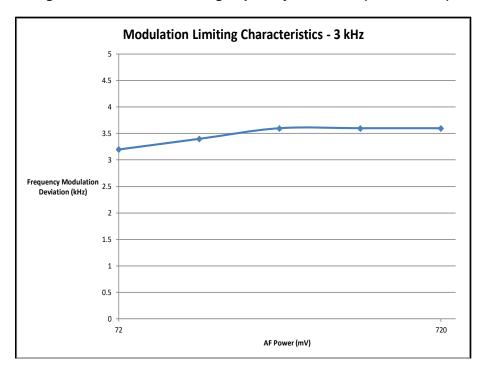


Figure 12 Modulation Limiting Capability - 3 kHz AF (162.025 MHz)

FCC 47 CFR Part 80, Limit Clause 80.213

Radiotelephone transmitters using A3E, F3E and G3E emission must have a modulation limiter to prevent any modulation over 100 percent.

FCC 47 CFR Part 2, Limit Clause 2.1047

Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

ISED RSS-182, Limit Clause 7.3

VHF radiocommunication shall employ G3E or F3E modulation for voice communication and G2B for DSC signals.

Maritime VHF transceivers shall have the following characteristics:

- (a) 25 kHz channel spacing;
- (b) frequency modulation with a pre-emphasis of 6 dB/octave (phase modulation (PM)) shall be used:
- (c) the frequency deviation corresponding to 100% modulation shall approach "5 kHz as nearly as practicable and in no event shall the frequency deviation exceed "5 kHz;
- (d) the audio-frequency band shall be 3000 Hz;
- (e) the authorized channel bandwidth for voice shall be 16 kHz; and
- (f) the authorized channel bandwidth for data shall be 20 kHz.

2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Modulation Analyser	Hewlett Packard	8901B	773	12	28-Jun-2020
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	05-May-2020
Power Supply Unit	Farnell	TSV-70	2043	12	O/P Mon
Audio Analyser	Hewlett Packard	8903B	2212	12	01-Nov-2020
Attenuator (20 dB, 150 W)	Narda	769-20	3367	12	17-Jul-2020
Attenuator (30dB, 150W)	Narda	769-30	3369	12	17-Jul-2020
Multimeter	Fluke	177	3813	12	09-Oct-2020
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	05-May-2020
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4511	12	18-Jul-2020
4 Channel PSU	Rohde & Schwarz	HMP4040	4736	-	O/P Mon
Cable (18GHz	Rosenberger	LU7-036-2000	5038	-	O/P Mon
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5480	12	18-Mar-2021

Table 10

O/P Mon – Output Monitored using calibrated equipment

2.4 Spurious Emissions at Antenna Terminals

2.4.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.211, FCC 47 CFR Part 2, Clause 2.1051, ISED RSS-182, Clause 7.9 ISED RSS-GEN, Clause 6.13.

2.4.2 Equipment Under Test and Modification State

Cortex M1, S/N:M1.0000006B - Modification State 2 Cortex H1, S/N: H1.0000000A - Modification State 0

2.4.3 Date of Test

04-May-2020 to 05-May-2020

2.4.4 Test Method

For emissions where the frequency is removed less than 250 % of the authorized bandwidth measurements were performed conducted as follows:

The EUT was connected to a spectrum analyser via a cable and attenuator. The path loss between the EUT and analyser was calibrated using a network analyser and entered into the spectrum analyser as a reference level offset. The reference level for the mask was established with a RBW 300 Hz. The mask as per FCC CFR 47 Part 80, clause 80.211 (f) was applied.

For emissions where the frequency is removed more than 250 % of the authorized bandwidth measurements were performed as follows:

A network analyser was used to measure the path loss and the worst case was entered as a reference level offset into the spectrum analyser. The EUT was connected to a spectrum analyser via attenuators and cable. The spectrum analyser was configured with an RBW of 30 kHz with the trace set to max hold using a peak detector. Between 9 kHz and 150 kHz the limit was adjusted for a measurement bandwidth of 1 kHz. Between 300 MHz and 2 GHz a 300 MHz high pass filter was used.

The EUT was modulated with a test signal as described in FCC 47 CFR Part 2.1047.

2.4.5 Environmental Conditions

Ambient Temperature 22.5 - 24.3 °C Relative Humidity 39.4 - 43.2 %

2.4.6 Test Results

DC Powered - VHF Tx

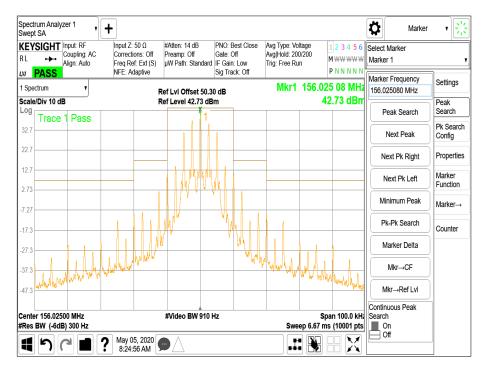


Figure 13 - 156.025 MHz - Transmitter Spectrum Mask

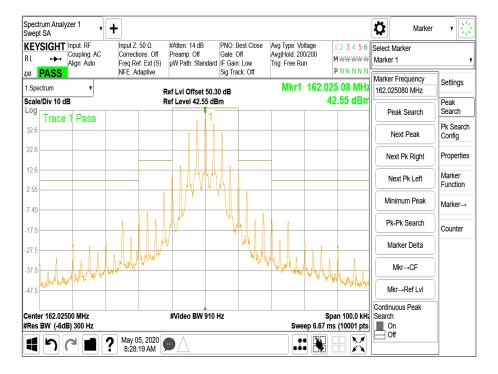


Figure 14 - 162.025 MHz - Transmitter Spectrum Mask



Figure 15 - 156.025 MHz - 9 kHz to 150 kHz



Figure 16 - 162.025 MHz - 9 kHz to 150 kHz

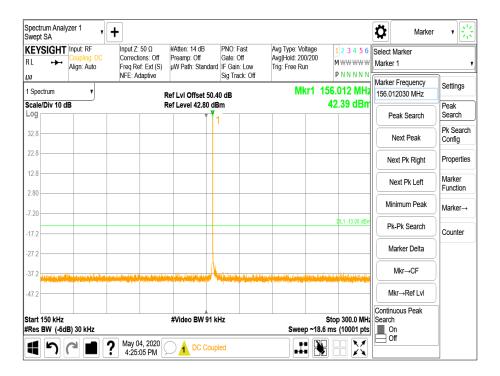


Figure 17 - 156.025 MHz - 150 kHz to 300 MHz

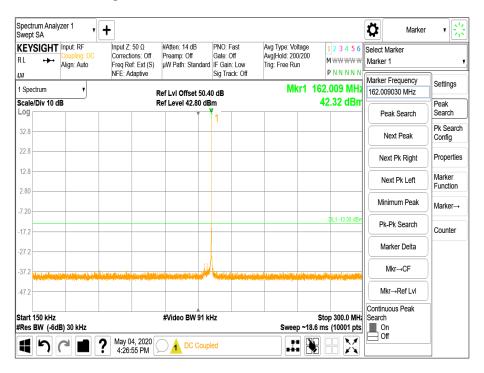


Figure 18 - 162.025 MHz - 150 kHz to 300 MHz

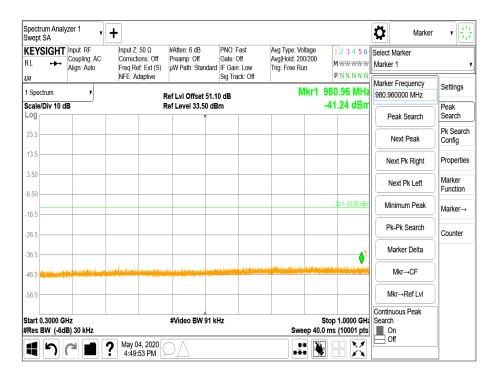


Figure 19 - 156.025 MHz - 300 MHz to 1 GHz



Figure 20 - 162.025 MHz - 300 MHz to 1 GHz

Figure 21 - 156.025 MHz - 1 GHz to 2 GHz

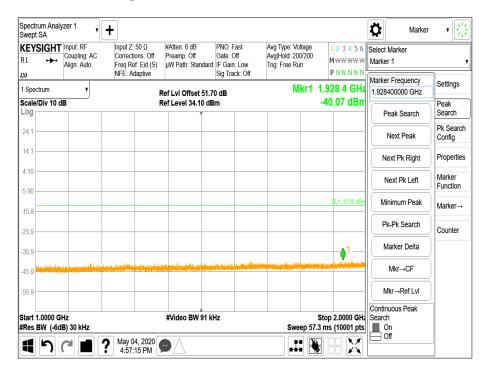


Figure 22 - 162.025 MHz - 1 GHz to 2 GHz

2.4.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Modulation Analyser	Hewlett Packard	8901B	773	12	28-Jun-2020
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	05-May-2020
Power Supply Unit	Farnell	TSV-70	2043	12	O/P Mon
Audio Analyser	Hewlett Packard	8903B	2212	12	01-Nov-2020
Attenuator (20 dB, 150 W)	Narda	769-20	3367	12	17-Jul-2020
Attenuator (30dB, 150W)	Narda	769-30	3369	12	17-Jul-2020
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	11-Dec-2020
Multimeter	Fluke	177	3813	12	09-Oct-2020
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	28-Nov-2020
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	05-May-2020
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4511	12	18-Jul-2020
4 Channel PSU	Rohde & Schwarz	HMP4040	4736	-	O/P Mon
Cable (18GHz	Rosenberger	LU7-036-2000	5038	-	O/P Mon
Signal Analyzer	Keysight Technologies	PXA N9030B	5432	12	05-Dec-2020
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5480	12	18-Mar-2021
300 MHz High Pass Filter	Mini-Circuits	NHP-300	5532	12	25-Mar-2021

Table 11

O/P Mon – Output Monitored using calibrated equipment

2.5 Radiated Spurious Emissions

2.5.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.211 FCC 47 CFR Part 2, Clause 2.1053 Industry Canada RSS-182, Clause 7.9 ISED RSS-GEN, Clause 6.13.

2.5.2 Equipment Under Test and Modification State

Cortex M1, S/N: M1.0000006D - Modification State 0

2.5.3 Date of Test

10-February-2020

2.5.4 Test Method

A preliminary profile of the Spurious Radiated Emissions was obtained up to the 10th harmonic by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber.

Measurements of emissions from the EUT were obtained with the Measurement Antenna in both horizontal and vertical polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Testing was performed in accordance with ANSI C63.26, clause 5.5.

Prescans and final measurements were performed using the direct field strength method.

The Regulatory limit of -13 dBm/MHz has been converted to a field strength limit in accordance with ANSI C63.26, clause 5.2.7 equation c)

This is the limit line shown on the plots.

Example calculation

E (dBuV/m) = EIRP (dBm) - 20log(d) + 104.8 where (d) is the measurement distance.

E (dBuV/m) = -13 - 20log(3) + 104.8

E (dBuV/m) = 82.26

2.5.5 Environmental Conditions

Ambient Temperature 19.7 °C Relative Humidity 33.1 %

2.5.6 Test Results

DC Powered - VHF Tx

Frequency (MHz)	Level (dBµV/m at 3m)
312.089	72.57

Table 12 - 156.025 MHz - Emissions Results

No other emissions were detected within 10 dB of the limit.

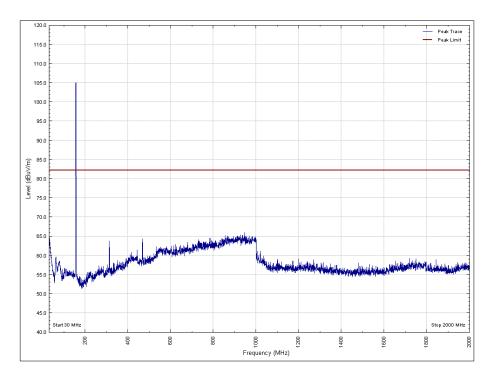


Figure 23 - 156.025 MHz - 30 MHz to 2 GHz, X - Orientation, Vertical

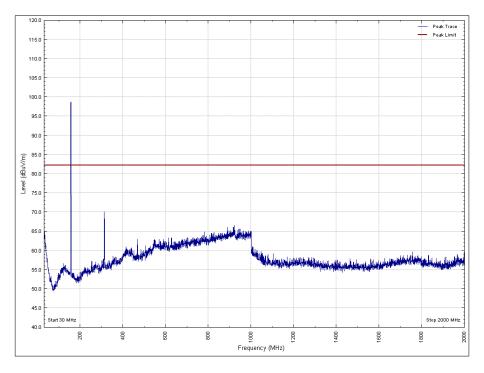


Figure 24 - 156.025 MHz - 30 MHz to 2 GHz, X - Orientation, Horizontal

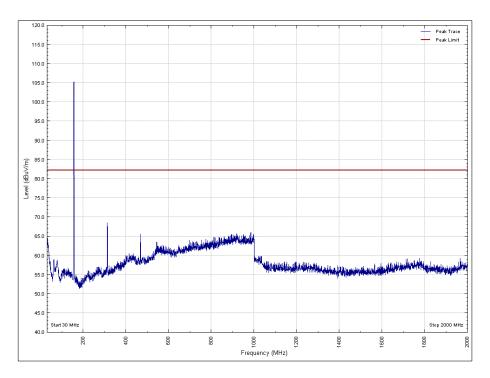


Figure 25 - 156.025 MHz - 30 MHz to 2 GHz, Y - Orientation, Vertical

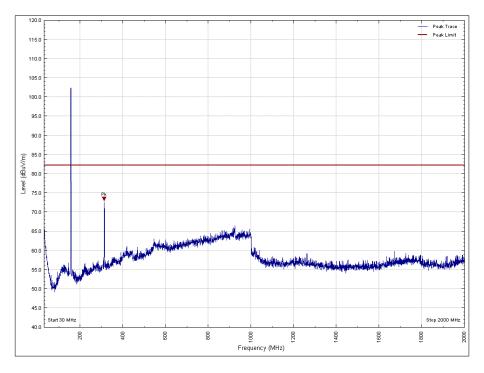


Figure 26 - 156.025 MHz - 30 MHz to 2 GHz, Y - Orientation, Horizontal

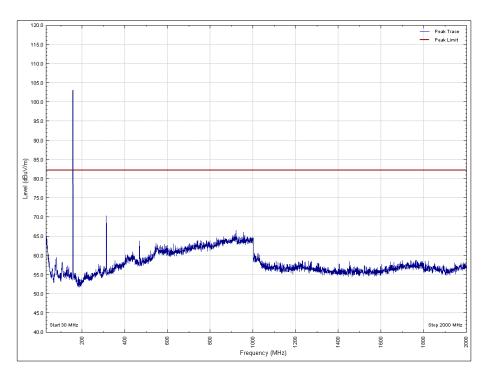


Figure 27 - 156.025 MHz - 30 MHz to 2 GHz, Z - Orientation, Vertical

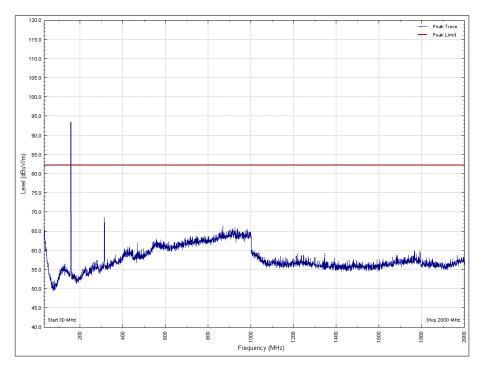


Figure 28 - 156.025 MHz - 30 MHz to 2 GHz, Z - Orientation, Horizontal

Frequency (MHz)	Level (dBµV/m at 3m)
*	

Table 13 - 162.025 MHz - Emissions Results

*No emissions were detected within 10 dB of the limit.

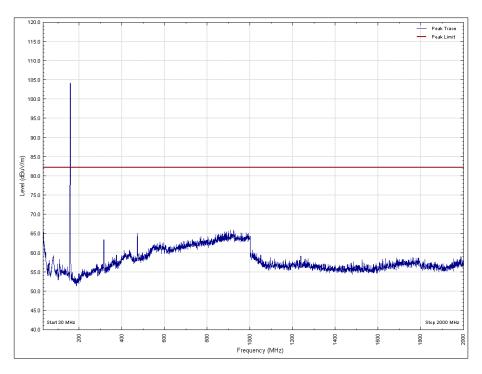


Figure 29 - 162.025 MHz - 30 MHz to 2 GHz, X - Orientation, Vertical

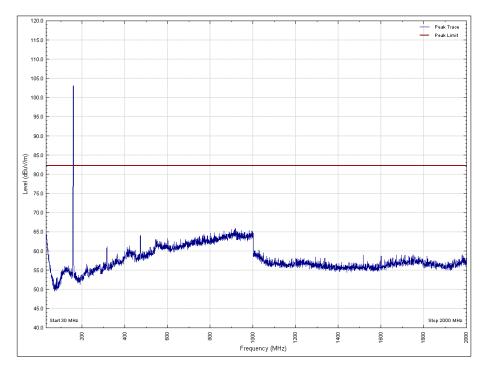


Figure 30 - 162.025 MHz - 30 MHz to 2 GHz, X - Orientation, Horizontal

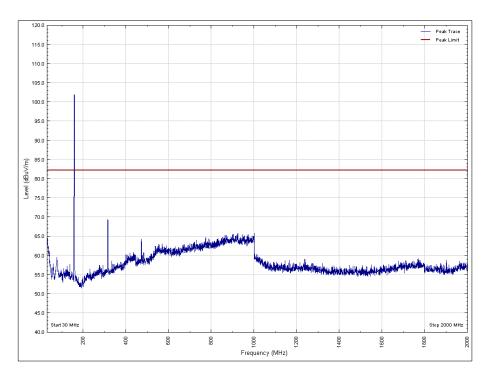


Figure 31 - 162.025 MHz - 30 MHz to 2 GHz, Y - Orientation, Vertical

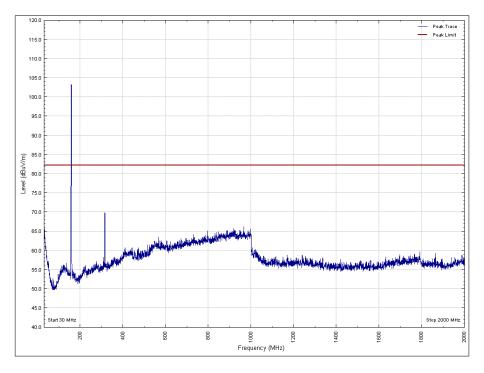


Figure 32 - 162.025 MHz - 30 MHz to 2 GHz, Y - Orientation, Horizontal

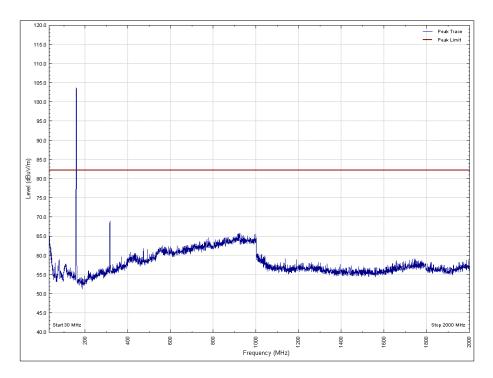


Figure 33 - 162.025 MHz - 30 MHz to 2 GHz, Z - Orientation, Vertical

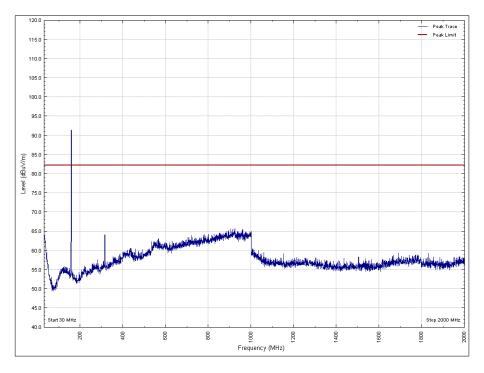


Figure 34 - 162.025 MHz - 30 MHz to 2 GHz, Z - Orientation, Horizontal

2.5.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Screened Room (5)	Rainford	Rainford	1545	36	23-Jan-2021
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
DC Power Supply	Hewlett Packard	6269B	1909	-	TU
Antenna with permanent attenuator (Bilog)	Chase	CBL6143	2904	24	30-Sep-2021
Comb Generator	Schaffner	RSG1000	3034	-	TU
'2.92mm' - '2.92mm' RF Cable (2m)	Rhophase	KPS-1503-2000- KPS	3695	12	11-Jun-2020
True RMS Multimeter	Fluke	179	4007	12	31-Oct-2020
Mast Controller	Maturo Gmbh	NCD	4810	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	4811	-	TU
Double Ridge Broadband Horn Antenna	Schwarzbeck	BBHA 9120 B	4848	12	11-Mar-2020
4dB Attenuator	Pasternack	PE7047-4	4935	24	30-Sep-2021
Hygrometer	Rotronic	HP21	4989	12	02-May-2020
8 Meter Cable	Teledyne	PR90-088-8MTR	5212	12	30-Aug-2020
EMI Test Receiver	Rohde & Schwarz	ESW44	5382	12	08-Oct-2020

Table 14

TU - Traceability Unscheduled

3 Photographs

3.1 Test Setup Photographs

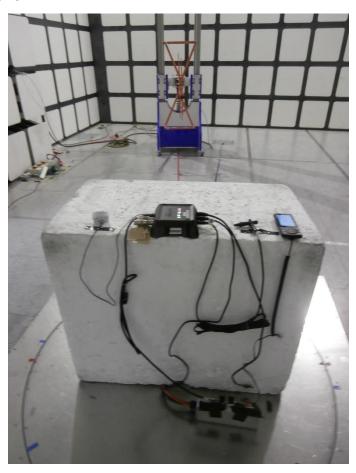


Figure 35 – Radiated Emissions, 30 MHz to 1 GHz, Orientation X

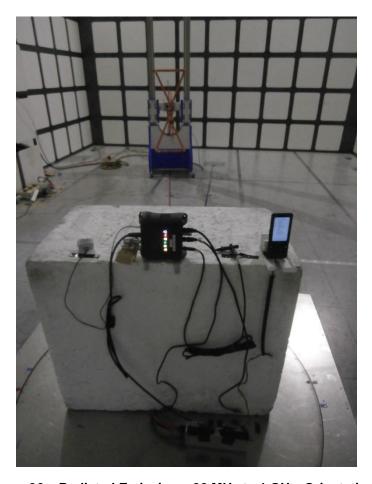


Figure 36 – Radiated Emissions, 30 MHz to 1 GHz, Orientation Y

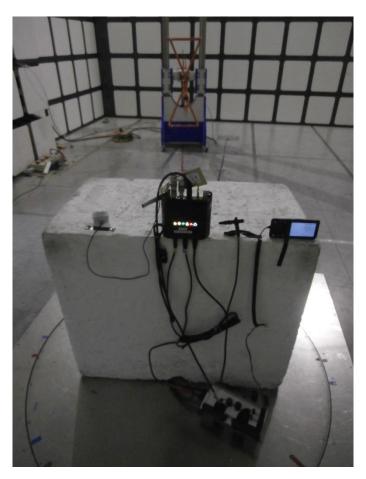


Figure 37 – Radiated Emissions, 30 MHz to 1 GHz, Orientation Z

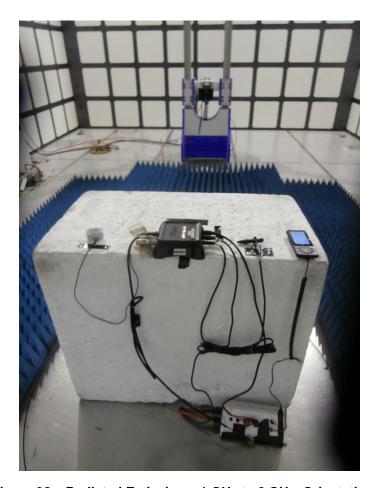


Figure 38 – Radiated Emissions, 1 GHz to 2 GHz, Orientation X

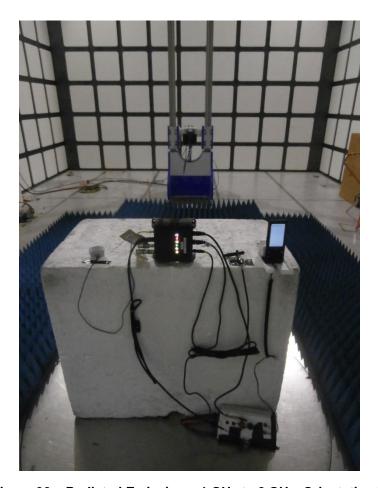


Figure 39 – Radiated Emissions, 1 GHz to 2 GHz, Orientation Y

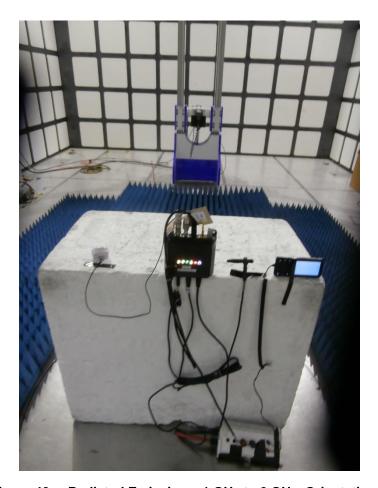


Figure 40 - Radiated Emissions, 1 GHz to 2 GHz, Orientation Z

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Transmitter Power	± 3.2 dB
Bandwidths	± 58.05 Hz
Modulation Requirements	-
Spurious Emissions at Antenna Terminals	± 3.45 dB
Radiated Spurious Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 18 GHz: ± 6.3 dB

Table 15

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.