



## MPE TEST REPORT

for the

**STANLEY BLACK & DECKER, INC**

**FCC ID: YJ7DCR010B**

**IC ID: 9082A-DCR010B**

**WLL REPORT# 18285-01 REV 0**

Prepared for:

**Stanley Black & Decker, Inc**  
**701 East Joppa Road**  
**Towson, Maryland 21286**

Prepared By:

**Washington Laboratories, Ltd.**  
**4840 Winchester Boulevard. Suite #5.**  
**Frederick, Maryland 21703**



Testing Certificate AT-1448



## MPE Test Report

for the  
Stanley Black & Decker, Inc  
BT Speaker: DCR010

FCC ID: YJ7DCR010B  
ISED ID: 9082A-DCR010B

August 14, 2023  
WLL Report# 18285-01 Rev 0

Prepared by:

A handwritten signature in blue ink that reads "Ryan Mascaro".  
\_\_\_\_\_  
Ryan Mascaro  
RF Test Engineer

Reviewed by:

A handwritten signature in blue ink that reads "Sam B. Violette".  
\_\_\_\_\_  
Samuel Violette  
Vice President



## Abstract

This report has been prepared on behalf of Stanley Black & Decker, Inc to document the findings of the maximum permissible exposure evaluation on the Stanley Black & Decker, Inc BT Speaker: DCR010. The information provided on this report is only applicable to device herein documented.

The purpose of this evaluation is to establish a minimum safe distance as per the RF exposure requirements as defined in FCC §1.1307 & §1.1310 and in RSS-102.

This report documents the results of testing to the requirements of:

- CFR Title 47 Volume 1 Practice and Procedure; (1.1307) Environmental Assessments
- RSS-102 Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

This evaluation was performed by Washington Laboratories, Ltd, 4840 Winchester Blvd., Suite 5, Frederick, MD 21703. Washington Laboratories, Ltd. has been accepted as an EMC Conformity Assessment Body (CAB) under the United States/European Union Memorandum of Agreement. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Testing Certificate AT-1448 as an independent FCC test laboratory.

| Revision History | Description of Change                   | Date             |
|------------------|-----------------------------------------|------------------|
| Rev 0            | Initial Release                         | August 14, 2023  |
| Rev 1            | Update Antenna Gain from .76 to .45 dBi | November 8, 2023 |

## Table of Contents

|                                                            |     |
|------------------------------------------------------------|-----|
| Abstract .....                                             | iii |
| Table of Contents .....                                    | iv  |
| List of Tables .....                                       | iv  |
| 1      Introduction.....                                   | 5   |
| 2      Requirements .....                                  | 6   |
| 2.1     Transmitter Categories.....                        | 6   |
| 2.1.1    Fixed Installations .....                         | 6   |
| 2.1.2    Mobile Devices .....                              | 6   |
| 2.1.3    Portable Devices .....                            | 6   |
| 2.2     Exposure Categories .....                          | 7   |
| 2.2.1    Occupational/Controlled Exposure.....             | 7   |
| 2.2.2    General Population/Uncontrolled Exposure .....    | 7   |
| 3      Device Summary.....                                 | 10  |
| 4      Radio Frequency Radiation Exposure Evaluation ..... | 11  |

## List of Tables

|                                                          |    |
|----------------------------------------------------------|----|
| Table 1: MPE Limits – FCC .....                          | 8  |
| Table 2: MPE Limits – ISED .....                         | 9  |
| Table 3: Device Summary – BT Speaker: DCR010 .....       | 10 |
| Table 4: Transmitter MPE Calculation Summary (FCC) ..... | 12 |
| Table 5: Transmitter MPE Calculation Summary (ISED)..... | 13 |

## 1 Introduction

This report has been prepared on behalf of Stanley Black & Decker, Inc for the BT Speaker: DCR010 (FCC ID: YJ7DCR010B) to show compliance with the RF exposure requirements as defined in FCC §1.1307 & §1.1310 and in RSS-102.

The testing in-support of this evaluation was performed at Washington Laboratories, Ltd, 4840 Winchester Blvd., Frederick, MD 21703.

Washington Laboratories, Ltd. has been accepted as an EMC Conformity Assessment Body (CAB) under the United States/European Union Memorandum of Agreement. Washington Laboratories, Ltd. is accredited with ANAB under Testing Certificate AT-1448.

## 2 Requirements

### 2.1 Transmitter Categories

#### 2.1.1 Fixed Installations

A fixed location means that the device, including its antenna, is physically secured at a permanent location and is not able to be easily moved to another location. Additionally, distance to humans from the antenna is maintained to at least 2 meters.

#### 2.1.2 Mobile Devices

A mobile device is defined as a transmitting device designed to be used in other than fixed locations and to be generally used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structures and the body of the user or nearby persons. Transmitters designed to be used by consumers or workers that can be easily re-located, such as a wireless modem operating in a laptop computer, are considered mobile devices if they meet the 20-centimeter separation requirement. The FCC rules for evaluating mobile devices for RF compliance are found in 47 CFR §2.1091.

#### 2.1.3 Portable Devices

A portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user. Portable device requirements are found in Section 2.1093 of the FCC's Rules (47 CFR§2.1093).

## 2.2 Exposure Categories

The limits for exposure are determined by the type of situation in which the individual is exposed.

Table 1 lists the limits for the particular environment.

### 2.2.1 Occupational/Controlled Exposure

In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Awareness of the potential for RF exposure in a workplace or similar environment can be provided through specific training as part of a RF safety program. If appropriate, warning signs and labels can also be used to establish such awareness by providing prominent information on the risk of potential exposure and instructions on methods to minimize such exposure risks.

### 2.2.2 General Population/Uncontrolled Exposure

The general population / uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general-public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category and the general population/uncontrolled exposure limits apply to these devices.



Table 1: MPE Limits – FCC

| Frequency Range (MHz)                                          | Electric Field Strength (V/m) | Magnetic Field Strength (A/m) | Power Density (mW/cm <sup>2</sup> ) | Averaging Time (minutes) |
|----------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------|--------------------------|
| <b>(A) Limits for Occupational/Controlled Exposures</b>        |                               |                               |                                     |                          |
| 0.3 – 3.0                                                      | 614                           | 1.63                          | *(100)                              | 6                        |
| 3.0 – 30                                                       | 1842/f                        | 4.89/f                        | *(900/f <sup>2</sup> )              | 6                        |
| 30 – 300                                                       | 61.4                          | 0.163                         | 1                                   | 6                        |
| 300 – 1500                                                     | N/A                           | N/A                           | f/300                               | 6                        |
| 1500 – 100,000                                                 | N/A                           | N/A                           | 5                                   | 6                        |
| <b>(B) Limits for General Population/Uncontrolled Exposure</b> |                               |                               |                                     |                          |
| 0.3 – 1.34                                                     | 614                           | 1.63                          | *(100)                              | 30                       |
| 1.34 – 30                                                      | 824/f                         | 2.19/f                        | *(180/f <sup>2</sup> )              | 30                       |
| 30 – 300                                                       | 27.5                          | 0.073                         | 0.2                                 | 30                       |
| 300 – 1500                                                     | N/A                           | N/A                           | f/1500                              | 30                       |
| 1500 – 100,000                                                 | N/A                           | N/A                           | 1                                   | 30                       |

Table 2: MPE Limits – ISED

| Frequency Range (MHz)                                                                | Electric Field (V/m rms) | Magnetic Field (A/m rms) | Power Density (W/m <sup>2</sup> ) | Reference Period (minutes) |
|--------------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------------------|----------------------------|
| <b>Limits for General Population/Uncontrolled Exposure</b>                           |                          |                          |                                   |                            |
| 0.003 – 10                                                                           | 83                       | 90                       | -                                 | Instantaneous *            |
| 0.1 – 10                                                                             | -                        | 0.73/ $f$                | -                                 | 6**                        |
| 1.1 – 10                                                                             | 87/ $f^{0.5}$            | -                        | -                                 | 6**                        |
| 10 – 20                                                                              | 27.46                    | 0.0728                   | 2                                 | 6                          |
| 20 – 48                                                                              | 58.07/ $f^{0.25}$        | 0.1540/ $f^{0.25}$       | 8.944/ $f^{0.5}$                  | 6                          |
| 48 – 300                                                                             | 22.06                    | 0.05852                  | 1.291                             | 6                          |
| 300 – 6000                                                                           | 3.142 $f^{0.3417}$       | 0.008335 $f^{0.3417}$    | 0.02619 $f^{0.6834}$              | 6                          |
| 6000 – 15000                                                                         | 61.4                     | 0.163                    | 10                                | 6                          |
| 15000 – 150000                                                                       | 61.4                     | 0.163                    | 10                                | 616000/ $f^{1.2}$          |
| 150000 – 300000                                                                      | 0.158 $f^{0.5}$          | 4.21 x 10-4 $f^{0.5}$    | 6.67 x 10 <sup>-5</sup> $f$       | 616000/ $f^{1.2}$          |
| $f$ in MHz, * Based on nerve stimulation, ** Based on specific absorption rate (SAR) |                          |                          |                                   |                            |
| Frequency Range (MHz)                                                                | Electric Field (V/m rms) | Magnetic Field (A/m rms) | Power Density (W/m <sup>2</sup> ) | Reference Period (minutes) |
| <b>Limits for Occupational/Controlled Exposures</b>                                  |                          |                          |                                   |                            |
| 0.003 – 1023                                                                         | 170                      | 180                      | -                                 | Instantaneous *            |
| 0.1 – 10                                                                             | -                        | 1.6/ $f$                 | -                                 | 6 **                       |
| 1.29 – 10                                                                            | 193/ $f^{0.5}$           | -                        | -                                 | 6 **                       |
| 10 – 20                                                                              | 61.4                     | 0.163                    | 10                                | 6                          |
| 20 – 48                                                                              | 129.8/ $f^{0.25}$        | 0.3444/ $f^{0.25}$       | 44.72/ $f^{0.5}$                  | 6                          |
| 48 – 100                                                                             | 49.33                    | 0.1309                   | 6.455                             | 6                          |
| 100 – 6000                                                                           | 15.60 $f^{0.25}$         | 0.04138 $f^{0.25}$       | 0.6455 $f^{0.5}$                  | 6                          |
| 6000 – 15000                                                                         | 137                      | 0.364                    | 50                                | 6                          |
| 15000 – 150000                                                                       | 137                      | 0.364                    | 50                                | 616000/ $f^{1.2}$          |
| 150000 – 300000                                                                      | 0.354 $f^{0.5}$          | 9.40 x 10-4 $f^{0.5}$    | 3.33 x 10-4 $f$                   | 616000/ $f^{1.2}$          |
| $f$ in MHz, * Based on nerve stimulation, ** Based on specific absorption rate (SAR) |                          |                          |                                   |                            |

### 3 Device Summary

The table below summarizes the criteria used to evaluate the EUT.

Table 3: Device Summary – BT Speaker: DCR010

|                              |                                |
|------------------------------|--------------------------------|
| <b>Transmitter Category:</b> | Fixed and/or Mobile            |
| <b>Exposure Category:</b>    | General (Unlicensed, Part 15C) |
| <b>Antenna Gain:</b>         | +0.45 dBi                      |
| <b>Power Output (dBm):</b>   | +4.70 dBm (3.0 mW)             |
| <b>Evaluation Distance:</b>  | 20 cm                          |
| <b>Frequency Range:</b>      | 2402 – 2480 MHz (DSS)          |
| <b>FCC Limit:</b>            | 1.0 mW/cm <sup>2</sup>         |
| <b>ISED Limit:</b>           | 0.535 mW/cm <sup>2</sup>       |

The power output, shown above, is from antenna port conducted emissions testing of the Bluetooth transmitter. (Reference Test Report # 18284-01).



## 4 Radio Frequency Radiation Exposure Evaluation

The highest RF output power of the unit was measured and recorded. This level shall be compared to the appropriate power density limits for General Population/Uncontrolled Exposure and/or Occupational/Controlled Exposure, according to FCC Rule Part §1.1310.

The MPE shall be calculated at 20 cm to show compliance with the power density limit.

The following formula was used to calculate the Power Density:

$$S = \frac{PG}{4\pi R^2}$$

where

S = Power Density

P = Output Power at the Antenna Terminals

G = Gain of Transmit Antenna (linear gain-isotropic)

R = Distance from Transmitting Antenna

Table 4: Transmitter MPE Calculation Summary (FCC)

| One Transmitter        |                            |
|------------------------|----------------------------|
| Frequency              | 2402 MHz                   |
| Limit                  | 1.000 mW/cm <sup>2</sup>   |
| Distance (cm), R =     | 20 cm                      |
| Power (dBm), P =       | 4.7 dBm                    |
| TX Ant Gain (dBi), G = | 0.45 dB                    |
| Power Density:         | 0.00065 mW/cm <sup>2</sup> |
| Minimum Distance:      | <b>0.51 cm</b>             |



Table 5: Transmitter MPE Calculation Summary (ISED)

| <b>One Transmitter</b>   |                            |
|--------------------------|----------------------------|
| Frequency                | 2402 MHz                   |
| Limit                    | 0.535 mW/cm <sup>2</sup>   |
| Distance (cm), R =       | 20 cm                      |
| Power (dBm), P =         | 4.7 dBm                    |
| TX Ant Gain (dBi), G =   | 0.45 dB                    |
| <b>Power Density:</b>    | 0.00065 mW/cm <sup>2</sup> |
| <b>Minimum Distance:</b> | <b>0.70 cm</b>             |