

**** MPE Calculations ******802.11g**

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

$EIRP = P + G$	Where,
$EIRP = 16.65\text{dBm} + 2\text{dBi}$	$P = \text{Power input to the antenna (mW)}$
$EIRP = 18.65 \text{ dBm}$	$G = \text{Power gain of the antenna (dBi)}$

Power density at the specific separation:

$S = PG/(4R^2 \pi)$	Where,
$S = (46.24 * 1.58) / (4 * 20^2 * \pi)$	$S = \text{Maximum power density (mW/cm}^2\text{)}$ $P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)
$S = 0.0146 \text{ mW/cm}^2$	

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG / 4\pi)}$	Where,
$R = \sqrt{(46.24 * 1.58 / 4\pi)}$	$P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)
$R = 2.42\text{Cm}$	

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = \text{Log}^{-1} (\text{dB antenna gain} / 10)$$

$$G = \text{Log}^{-1} (2 / 10)$$

$$G = 1.58$$

**** MPE Calculations ******Zigbee-SPI**

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

$EIRP = P + G$	Where,
$EIRP = 22.80\text{dBm} + 2\text{dBi}$	$P = \text{Power input to the antenna (mW)}$
$EIRP = 24.8 \text{ dBm}$	$G = \text{Power gain of the antenna (dBi)}$

Power density at the specific separation:

$S = PG/(4R^2 \pi)$	Where,
$S = (190.55 * 1.58) / (4 * 20^2 * \pi)$	$S = \text{Maximum power density (mW/cm}^2\text{)}$ $P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)
$S = 0.0601 \text{ mW/cm}^2$	

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG / 4\pi)}$	Where,
$R = \sqrt{(190.55 * 1.58 / 4\pi)}$	$P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)
$R = 4.9\text{Cm}$	

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = \text{Log}^{-1} (\text{dB antenna gain} / 10)$$

$$G = \text{Log}^{-1} (2 / 10)$$

$$G = 1.58$$

**** MPE Calculations ******Zigbee-UART**

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

$EIRP = P + G$	Where,
$EIRP = 21.41 \text{ dBm} + 2 \text{ dBi}$	$P = \text{Power input to the antenna (mW)}$
$EIRP = 23.41 \text{ dBm}$	$G = \text{Power gain of the antenna (dBi)}$

Power density at the specific separation:

$S = PG/(4R^2 \pi)$	Where,
$S = (138.36 * 1.58) / (4 * 20^2 * \pi)$	$S = \text{Maximum power density (mW/cm}^2\text{)}$ $P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)
$S = 0.0436 \text{ mW/cm}^2$	

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG / 4\pi)}$	Where,
$R = \sqrt{(138.36 * 1.58 / 4\pi)}$	$P = \text{Power input to the antenna (mW)}$ $G = \text{Numeric power gain of the antenna}$ $R = \text{Distance to the center of the radiation of the antenna}$ (20cm = limit for MPE)
$R = 4.18 \text{ Cm}$	

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = \log^{-1} (\text{dB antenna gain} / 10)$$

$$G = \log^{-1} (2 / 10)$$

$$G = 1.58$$