System Check H835 24dBm

DUT: Dipole 835 MHz

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: H835 Medium parameters used: f = 835 MHz; $\sigma = 0.925$ S/m; $\varepsilon_r = 40.773$; $\rho = 1000$ kg/m³

Date: 2025/8/5

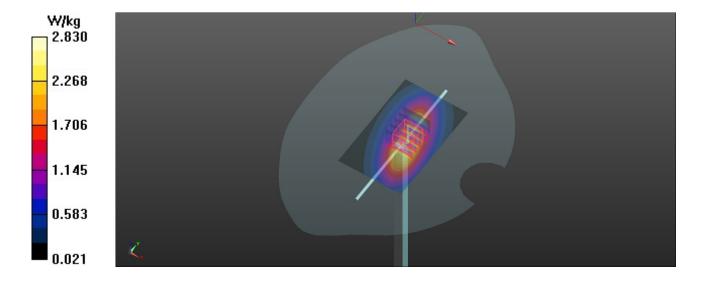
DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(9.12, 9.72, 9.05) @ 835 MHz; Calibrated: 2024/11/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 2024/10/8
- Phantom: SAM 1; Type: QD 000 P40 CB; Serial: TP/1378
- Postprocessing SW: SEMCAD, V1.8 Build 186

System check/Area Scan (51x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.83 W/kg

System check/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.20 V/m; Power Drift = -0.17 dB


Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg

Smallest distance from peaks to all points 3 dB below = 17.2 mm

Ratio of SAR at M2 to SAR at M1 = 67.6%

Maximum value of SAR (measured) = 2.81 W/kg

System Check H1750 24dBm

DUT: Dipole 1750 MHz

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: H1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.382$ S/m; $\epsilon_r = 39.471$; $\rho = 1000$ kg/m³

Date: 2025/8/16

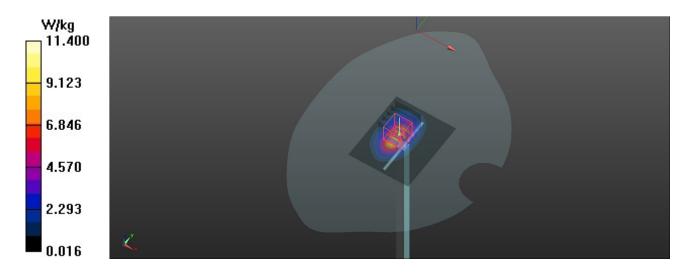
DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(7.7, 8.21, 7.64) @ 1750 MHz; Calibrated: 2024/11/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 2024/10/8
- Phantom: SAM 1; Type: QD 000 P40 CB; Serial: TP/1378
- Postprocessing SW: SEMCAD, V1.8 Build 186

System check/Area Scan (51x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.4 W/kg

System check/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.06 V/m; Power Drift = 0.18 dB


Peak SAR (extrapolated) = 14.7 W/kg

SAR(1 g) = 8.65 W/kg; SAR(10 g) = 4.81 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 60.1%

Maximum value of SAR (measured) = 10.6 W/kg

System Check_H1900_24dBm

DUT: Dipole 1900 MHz

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: H1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.388$ S/m; $\epsilon_r = 39.821$; $\rho = 1000$ kg/m³

Date: 2025/8/11

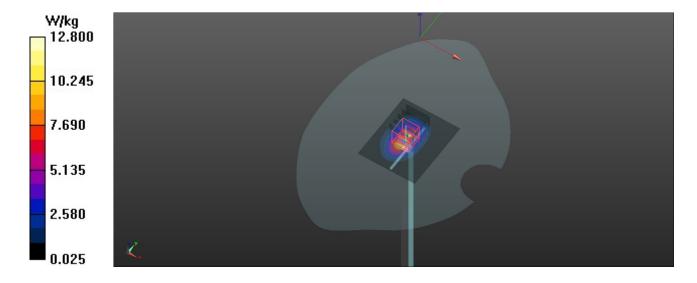
DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(7.37, 7.85, 7.31) @ 1900 MHz; Calibrated: 2024/11/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 2024/10/8
- Phantom: SAM 1; Type: QD 000 P40 CB; Serial: TP/1378
- Postprocessing SW: SEMCAD, V1.8 Build 186

System check/Area Scan (51x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.8 W/kg

System check/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 92.67 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.1 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 58.3%

Maximum value of SAR (measured) = 11.7 W/kg

System Check_H2450_24dBm

DUT: Dipole 2450 MHz

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: H2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.843$ S/m; $\epsilon_r = 38.054$; $\rho = 1000$ kg/m³

Date: 2025/7/28

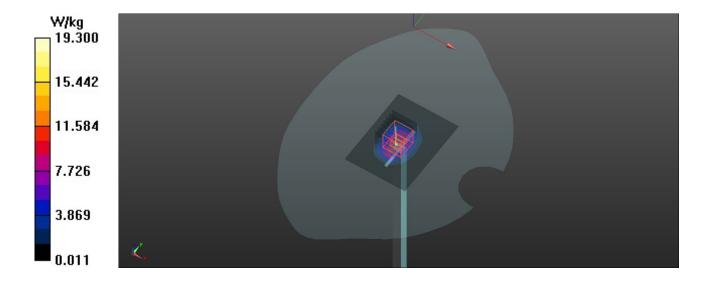
DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(6.78, 7.22, 6.73) @ 2450 MHz; Calibrated: 2024/11/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 2024/10/8
- Phantom: SAM 1; Type: QD 000 P40 CB; Serial: TP/1378
- Postprocessing SW: SEMCAD, V1.8 Build 186

System check/Area Scan (61x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 19.3 W/kg

System check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.55 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.53 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 51.4%

Maximum value of SAR (measured) = 17.6 W/kg

System Check_H2600_24dBm

DUT: Dipole 2600 MHz

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: H2600 Medium parameters used: f = 2600 MHz; $\sigma = 1.98$ S/m; $\varepsilon_r = 38.076$; $\rho = 1000$ kg/m³

Date: 2025/8/18

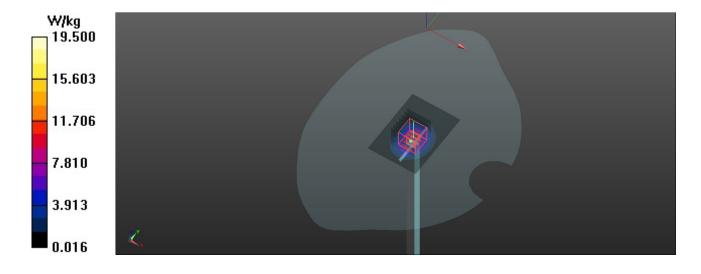
DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(6.7, 7.14, 6.64) @ 2600 MHz; Calibrated: 2024/11/12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 2024/10/8
- Phantom: SAM 1; Type: QD 000 P40 CB; Serial: TP/1378
- Postprocessing SW: SEMCAD, V1.8 Build 186

System check/Area Scan (51x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 19.5 W/kg

System check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.62 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.24 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 48%

Maximum value of SAR (measured) = 17.7 W/kg

