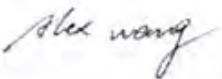


T-max (Hangzhou) Industrial Co.,Ltd

wireless remote winch control


Model: WR433-30 WR433-30I

22 Jun 2010
Report No.: 1005009
(This report supersedes NONE)

Modifications made to the product : None

This Test Report is Issued Under the Authority of:

	Jackson. chen
Alex Wang Compliance Engineer	Jackson Chen Technical Manager

This test report may be reproduced in full only.
Test result presented in this test report is applicable to the representative sample only.

RF Test Report
TO: FCC 15.231:2009

SIEMIC, INC.
Accessing global markets

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 2 of 38
www.siemic.com.cn

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to [testing](#) and [certification](#), SIEMIC provides initial design reviews and [compliance management](#) through out a project. Our extensive experience with [China](#), [Asia Pacific](#), [North America](#), [European](#), and [international](#) compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the [global markets](#).

Accreditations for Conformity Assessment

Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC , RF/Wireless , Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless , Telecom
Taiwan	BSMI , NCC , NIST	EMC, RF, Telecom , Safety
Hong Kong	OFTA , NIST	RF/Wireless , Telecom
Australia	NATA, NIST	EMC, RF, Telecom , Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF , Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC , RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom , Safety

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC , RF , Telecom
Canada	IC FCB , NIST	EMC , RF , Telecom
Singapore	iDA, NIST	EMC , RF , Telecom

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch **control**
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun 2010
Page 3 of 38
www.siemic.com.cn

This page has been left blank intentionally.

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch **control**
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun.2010
Page 4 of 38
www.siemic.com.cn

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
2	TECHNICAL DETAILS	6
3	MODIFICATION	7
4	TEST SUMMARY	8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
	ANNEX A. TEST INSTRUMENT & METHOD.....	18
	ANNEX B. EUT AND TEST SETUP PHOTOGRAPHS.....	22
	ANNEX C. TEST SETUP AND SUPPORTING EQUIPMENT.....	26
	ANNEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	29
	ANNEX E. SIEMIC ACCREDITATION CERTIFICATES	30

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231:2009

Serial#: 1005009
Issue Date: 22 Jun 2010
Page 5 of 38
www.siemic.com.cn

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the T-max (Hangzhou) Industrial Co.,Ltd , wireless remote winch control , and model: WR433-30 WR433-30I against the current Stipulated Standards. The wireless remote winch control have demonstrated compliance with the FCC 15.231:2009.

EUT Information

EUT
Description
wireless remote winch control
Model No
WR433-30 WR433-30I
Input Power
12VDC
Classification
DSC
Per Stipulated
Test Standard

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun 2010
Page 6 of 38
www.siemic.com.cn

2 TECHNICAL DETAILS

Purpose	Compliance testing of wireless remote winch control with stipulated standard
Applicant / Client	T-max (Hangzhou) Industrial Co.,Ltd
Manufacturer	T-max (Hangzhou) Industrial Co.,Ltd NO.5,Road 5,Dongzhou Industrial Area,Fuyang City,Hangzhou,China
Laboratory performing the tests	SIEMIC Nanjing (China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email:info@siemic.com
Test report reference number	1005009
Date EUT received	07 Jun2010
Standard applied	FCC 15.231:2009
Dates of test (from – to)	08~21 Jun 2010
No of Units:	2
Equipment Category:	DSC
RF Operating Frequency (ies)	433.983MHz
Number of Channels :	1
Modulation :	ASK
FCC ID:	YHKWR433-30

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch **control**
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 7 of 38
www.siemic.com.cn

3 MODIFICATION

NONE

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun.2010
Page 8 of 38
www.siemic.com.cn

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All Testing has been performed according to below product classification:

Test Results Summary

Test Standard	Description	Pass / Fail
CFR 47 Part 15.231: 2008		
15.203	Antenna Requirement	Pass
15.207	Conducted Emissions Voltage	N/A
15.231(b)	Fundamental & Radiated Spurious Emission	Pass
15.231(c)	20dB & 99% Bandwidth	Pass
15.231(a)1	Deactivation	Pass
ANSI C63.4: 2003		
PS: All measurement uncertainties are not taken into consideration for all presented test result. Preliminary AC line and radiated emissions testing has been performed on all models, only worst case test result is presented in this test report.		

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch **control**
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun 2010
Page 9 of 38
www.siemic.com.cn

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The antenna is permanently attached to the device which meet the requirement.

5.2 Conducted Emissions Voltage

Requirement:

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

*Decreases with the logarithm of the frequency.

Procedures:

1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
3. Conducted Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ± 3.5 dB.
4. Environmental Conditions Temperature 23°C
 Relative Humidity 50%
 Atmospheric Pressure 1019mbar
5. Test date : 08~21 Jun 2010
 Tested By : Alex Wang

Test result: N/A (Batteries operated)

SIEMIC, INC.

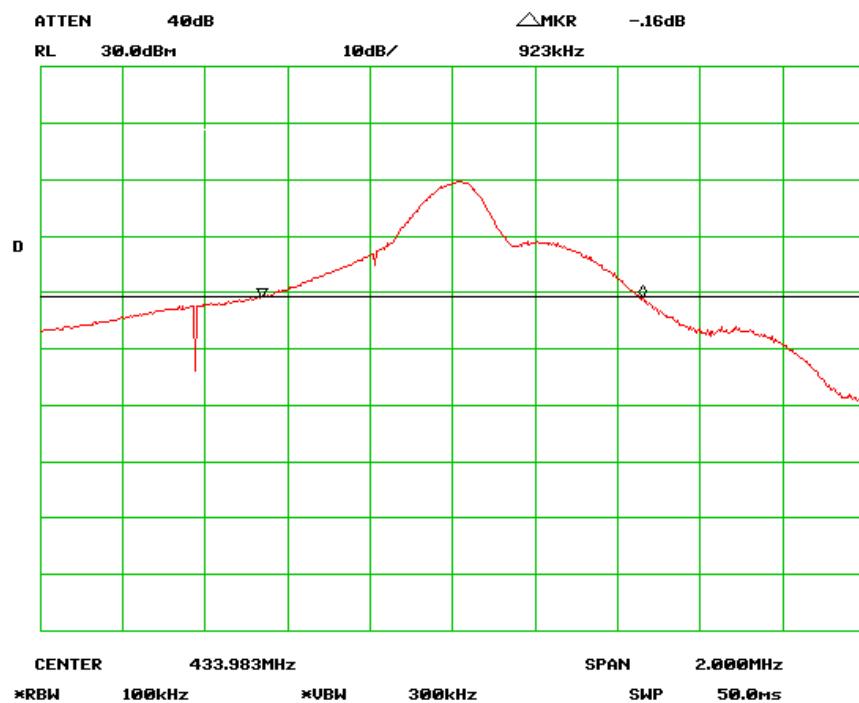
Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun.2010
Page 11 of 38
www.siemic.com.cn

5.3 Occupied Bandwidth

1. 20dB bandwidth was measured by conducted method using a spectrum analyzer.


2. Environmental Conditions Temperature 12°C
 Relative Humidity 51%
 Atmospheric Pressure 1009mbar

3. Test Date: 08~21 Jun 2010

Test By: Alex Wang

Test Result:

Fundamental Frequency (MHz)	Measured 20dB Bandwidth (KHz)	FCC 15.231 Limit (KHz)	Result
433.983MHz	400KHz	1084.96KHz	Pass

5.4 Radiated Fundamental and Spurious Emission

1. Radiated emissions were measured according to ANSI C63.4. The EUT was set 3 meter away from the measuring antenna. The loop antenna was positioned 1meter above the ground from the center of the loop. The measuring bandwidth was set to 10KHz. All possible modes of operation were investigated. Only the worst case emissions measured, All other emissions were relatively insignificant.
2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
3. Sample Calculation: Corrected Amplitude=Raw Amplitude(dBuV/m)+ACF(dB)+Cable Loss(dB)-Distance Correction Factor.
Sample Calculation:
 - 1) Corrected Amplitude= Raw Amplitude(dBuV/m)+ACF(dB)+Cable Loss(dB)-Distance Correction Factor
 - 2)Pulse average reading=Peak reading+20log(Duty cycle)
4. Radiated Emissions Measurement Uncertainty
All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz(QP only3m & 10m) is +5.6-4.5dB(for EUTs<0.5m × 0.5m × 0.5m).In range of 1-40GHz) is ± 3.6 dB.
5. Environmental Conditions

Temperature	12°C
Relative Humidity	51%
Atmospheric Pressure	1009mbar
6. Test date : 08~21 Jun 2010
Tested By : Alex Wang

Standard Requirement:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750	125 to 375
174-260	3750	375
260-470	3750-12500	375 to 1250
Above 470	12500	1250

Note: All 3 axes have been investigated. Only worst case is presented in the test report.

Test Result: Pass

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

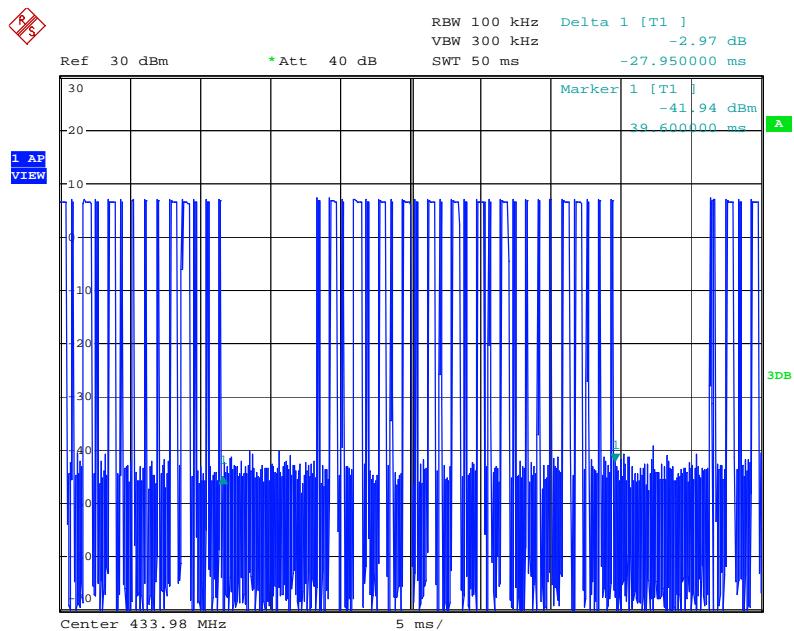
Serial#: 1005009
Issue Date: 22 Jun 2010
Page 13 of 38
www.siemic.com.cn

Fundamental Measurement @ 433.732MHz @3 Meter FCC 15.231(a)

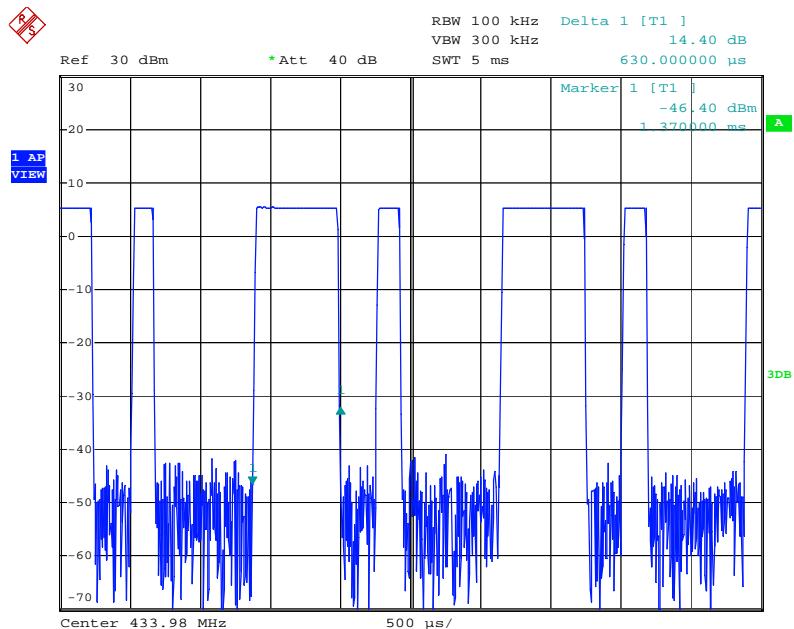
Frequency (MHz)	Reading (dBuV/m)	Azimuth	Polarity	Height(m)	Factors(dB)	FCC 15.231(a) Limit (dBuV)	Margin(dB)	Comments
433.983	82.83	15	V	1.25	27.85	100.83	-18.00	Peak
433.983	73.41	15	V	1.25	27.85	80.83	-7.42	Ave
433.983	84.25	23	H	1.76	27.85	100.83	-16.58	Peak
433.983	74.83	23	H	1.76	27.85	80.83	-6.00	Ave

Spurious Emissions (<1GHz) Measurement @ 3 Meter FCC 15.231(a)

Frequency (MHz)	Reading (dBuV/m)	Azimuth	Polarity	Height(m)	Factors(dB)	FCC 15.231(a) Limit (dBuV)	Margin(dB)	Comments
867.966	65.20	41	V	1.48	21.15	80.83	-15.63	Peak
867.966	55.78	41	V	1.48	21.15	60.83	-5.05	Ave
867.966	64.85	346	H	1.67	21.15	80.83	-15.98	Peak
867.966	55.43	346	H	1.67	21.15	60.83	-5.40	Ave


Note: Duty cycle is 33.8%. A -9.42dB correction was used to determine the average level from the peak reading.

Spurious Emissions (>1GHz) Measurement @ 3 Meter FCC 15.231(a)

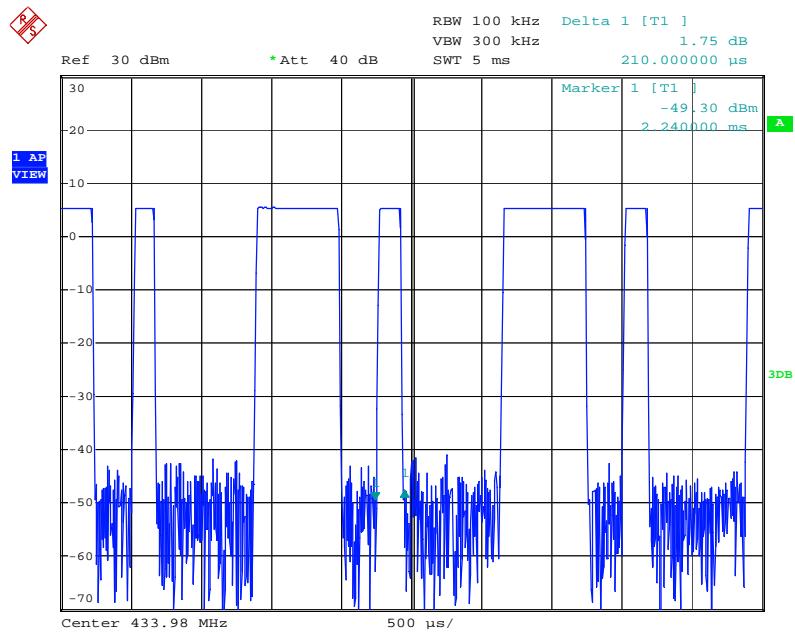

Frequency	Direction	Height	Polar	Antenna Loss	Cable Loss	Amplifier	Reading	FCC 15.231		
GHz	Degree	Meter	H/V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
1.3	15	1.36	H	25.33	5.2	55	62.89	80.83	-17.94	Peak
1.3	15	1.36	H	25.33	5.2	55	53.47	60.83	-7.36	Avg
1.74	24	1.42	H	25.16	5.5	55	61.74	80.83	-19.09	Peak
1.74	24	1.42	H	25.16	5.5	55	52.32	60.83	-8.51	Avg
2.17	10	1.26	H	24.52	6.1	55	59.91	80.83	-20.92	Peak
2.17	10	1.26	H	24.52	6.1	55	50.49	60.83	-10.34	Avg
2.6	3	1.15	H	24.24	6.3	55	58.24	80.83	-22.59	Peak
2.6	3	1.15	H	24.24	6.3	55	48.82	60.83	-12.01	Avg
3.04	26	1.08	H	23.90	6.7	55	57.12	80.83	-23.71	Peak
3.04	26	1.08	H	23.90	6.7	55	47.7	60.83	-13.13	Avg
3.47	19	1.32	H	28.51	6.9	55	56.01	80.83	-24.82	Peak
3.47	19	1.32	H	28.51	6.9	55	46.59	60.83	-14.24	Avg
3.91	27	1.28	H	31.43	7.1	55	52.88	80.83	-27.95	Peak
3.91	27	1.28	H	31.43	7.1	55	43.46	60.83	-17.37	Avg
4.34	15	1.37	H	33.27	7.5	55	47.60	80.83	-33.23	Peak
4.34	15	1.37	H	33.27	7.5	55	38.18	60.83	-22.65	Avg
1.3	348	1.20	V	25.33	5.2	55	63.61	80.83	-17.22	Peak
1.3	348	1.20	V	25.33	5.2	55	54.19	60.83	-6.64	Avg
1.74	11	1.34	V	25.16	5.5	55	62.64	80.83	-18.19	Peak
1.74	11	1.34	V	25.16	5.5	55	53.22	60.83	-7.61	Avg
2.17	20	1.06	V	24.52	6.1	55	62.38	80.83	-27.04	Peak
2.17	20	1.06	V	24.52	6.1	55	52.96	60.83	-7.87	Avg
2.6	6	1.20	V	24.24	6.3	55	59.36	80.83	-21.47	Peak
2.6	6	1.20	V	24.24	6.3	55	49.94	60.83	-10.89	Avg
3.04	32	1.18	V	23.90	6.7	55	57.67	80.83	-23.16	Peak
3.04	32	1.18	V	23.90	6.7	55	48.25	60.83	-12.58	Avg
3.47	29	1.07	V	28.51	6.9	55	55.56	80.83	-25.27	Peak
3.47	29	1.07	V	28.51	6.9	55	46.14	60.83	-14.69	Avg
3.91	41	1.07	V	31.43	7.1	55	53.00	80.83	-27.83	Peak
3.91	41	1.07	V	31.43	7.1	55	43.58	60.83	-17.25	Avg
4.34	22	1.01	V	33.27	7.5	55	45.41	80.83	-35.42	Peak
4.34	22	1.01	V	33.27	7.5	55	35.99	60.83	-24.84	Avg

Note: Duty cycle is 33.8%.A-9.42dB correction was used to determine the average level from the peak reading.

Pulse Duty Cycle:
 Wide Pulse*10=6.3ms
 Narrow Pulse*15=3.15ms
 Average Duty Factor: $20 * \log(9.45/27.95) = -9.42 \text{ dBi}$

Date: 21.JUN.2010 06:45:26

Date: 21.JUN.2010 06:42:23



SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch **control**
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun 2010
Page 16 of 38
www.siemic.com.cn

Date: 21.JUN.2010 06:43:54

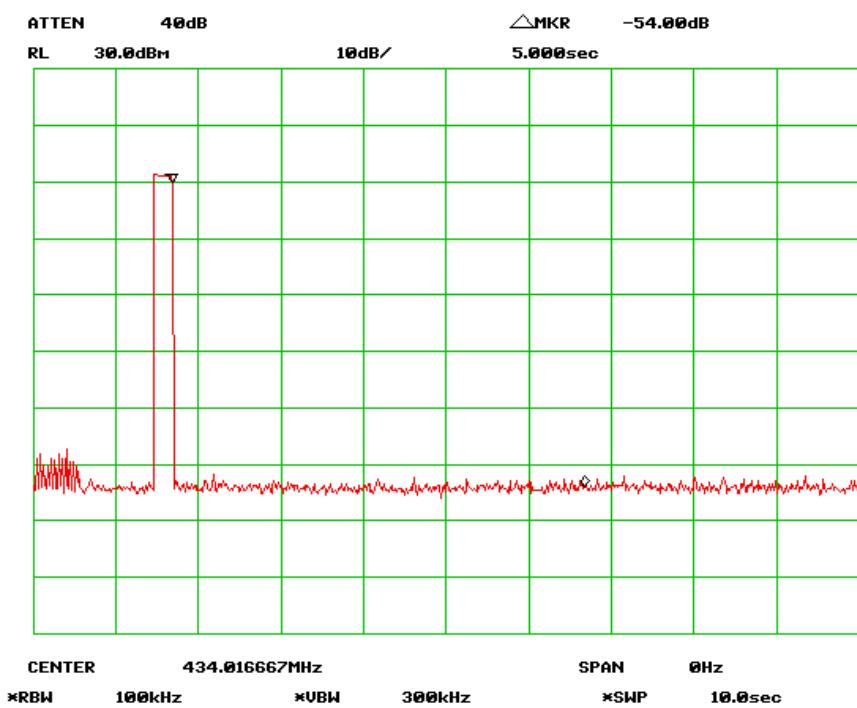
SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 17 of 38
www.siemic.com.cn

5.5 Deactivation


1. Deactivation was measured by conducted method using a spectrum analyzer.
2. Environmental Conditions

Temperature	12°C
Relative Humidity	51%
Atmospheric Pressure	1009mbar
3. Test Data: 08~21 Jun 2010
Test By: Alex Wang

Standard requirement: 47 CFR §15.231 (a)

Release Time <5 seconds

Test Result: Pass

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch **control**
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 18 of 38
www.siemic.com.cn

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Manufacturer	Model	CAL Due Date
Spectrum Analyzer	HP	8564 E	2011.04.26
EMI Receiver	Rohde & Schwarz	ESPI 3	2011.02.19
Antenna (30MHz~2GHz)	Sunol Sciences	JB1	2010.10.04
Horn Antenna (1~18GHz)	A-INFOMW	JXTXLB-10180	2010.11.18
Horn Antenna (1~18GHz)	N/A	N/A	2010.10.04
Pre-Amplifier(0.01 ~ 1.3GHz)	HP	8447F	2011.04.24
Pre-Amplifier(0.1 ~ 18GHz)	MITEQ	AMF-7D-00101800-30- 10P	2011.03.05
Horn Antenna (18~40GHz)	Com Power	AH-840	2011.05.21
Microwave Pre-Amp (18~40GHz)	Com Power	PA-840	2011.05.21

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 19 of 38
www.siemic.com.cn

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
2. The power supply for the EUT was fed through a $50\Omega/50\mu\text{H}$ EUT LISN, connected to filtered mains.
3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
4. All other supporting equipments were powered separately from another main supply.

Test Method

1. The EUT was switched on and allowed to warm up to its normal operating condition.
2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
3. High peaks, relative to the limit line, were then selected.
4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz

limit = $250 \mu\text{V} = 47.96 \text{ dB}\mu\text{V}$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$
(Calibrated for system losses)

Therefore, Q-P margin = $47.96 - 40.00 = 7.96$

i.e. **7.96 dB below limit**

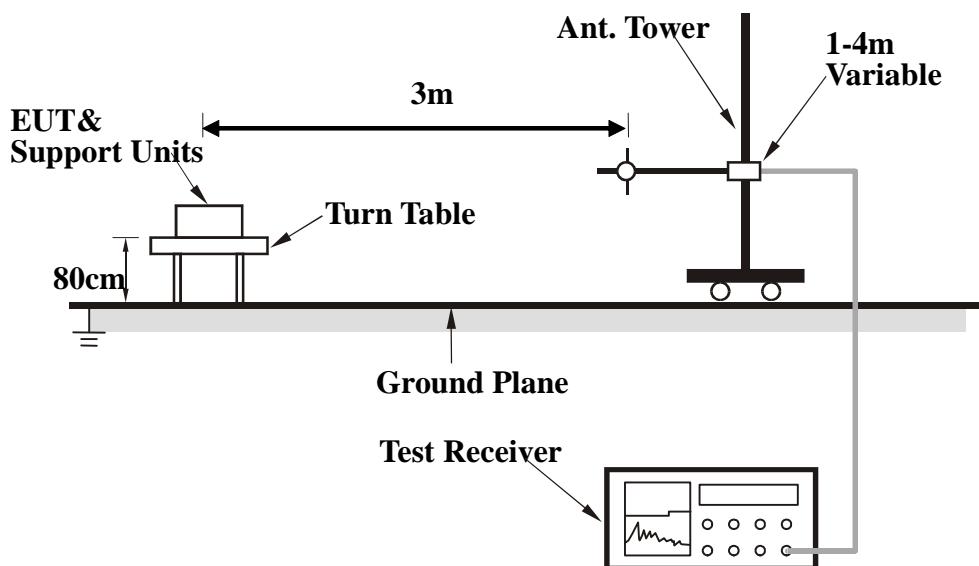
SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun.2010
Page 20 of 38
www.siemic.com.cn

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
5. Repeat step 4 until all frequencies need to be measured were complete.
6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

$$\text{Peak} = \text{Reading} + \text{Corrected Factor}$$

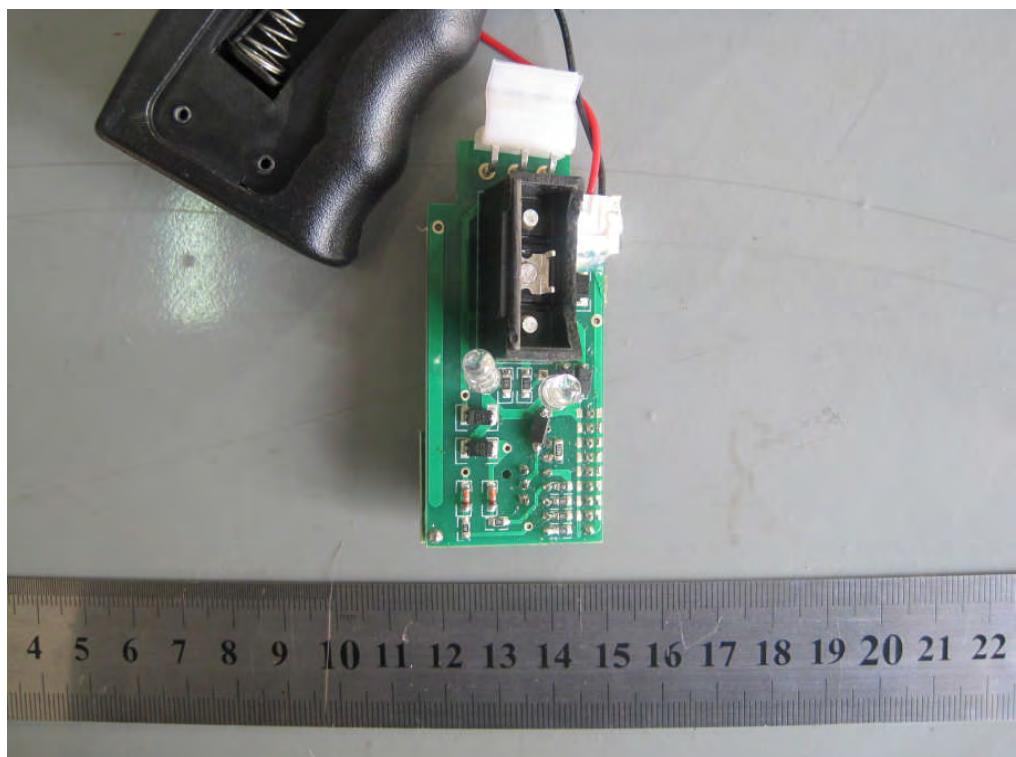
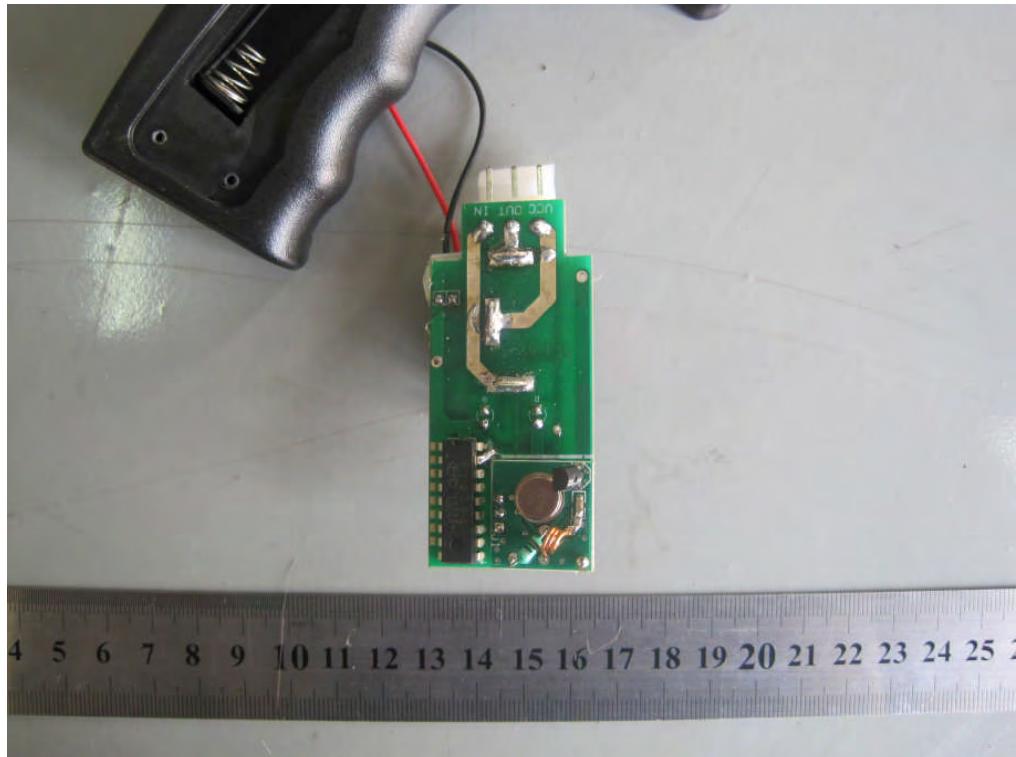
where

$$\text{Corr. Factor} = \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain (if any)}$$

And the average value is

$$\text{Average} = \text{Peak Value} + \text{Duty Factor} \text{ or}$$
$$\text{Set RBW} = 1\text{MHz}, \text{VBW} = 10\text{Hz}.$$

Note :



If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph : EUT External Photo


SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 25 of 38
www.siemic.com.cn

Annex B.iii. Photograph: Test Setup Photo

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 26 of 38
www.siemic.com.cn

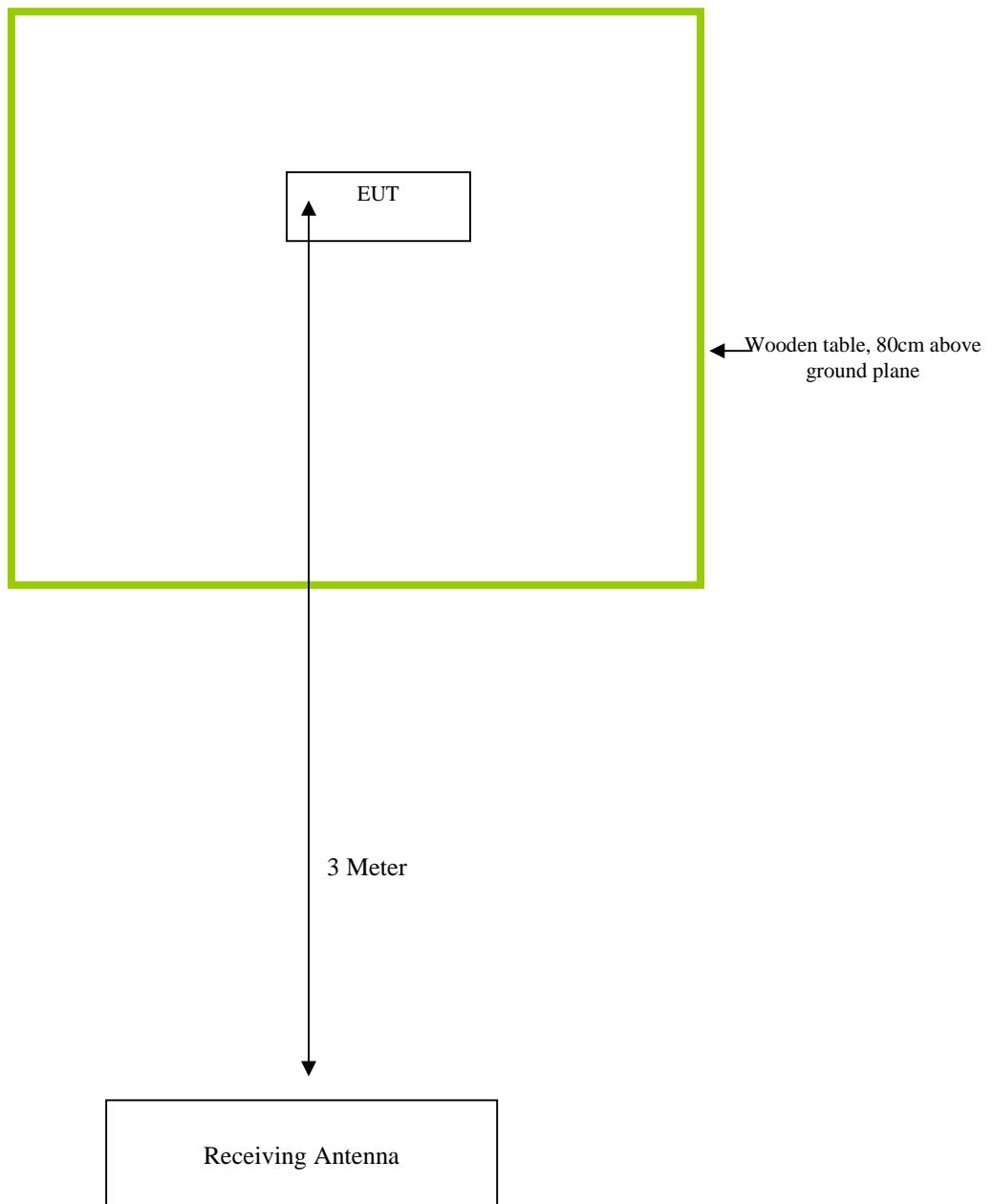
Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
N/A	N/A	N/A


SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch **control**
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 27 of 38
www.siemic.com.cn

Block Configuration Diagram for Radiated Emission

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 28 of 38
www.siemic.com.cn

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	TX mode is normal mode with full power.

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch **control**
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun. 2010
Page 29 of 38
www.siemic.com.cn

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch **control**
Model: WR433-301 WR433-301
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun 2010
Page 30 of 38
www.siemic.com.cn

Annex E. SIEMIC ACCREDITATION CERTIFICATES

SIEMIC ACCREDITATION DETAILS: A2LA Certificate Number: 2742.01

THE AMERICAN ASSOCIATION FOR
LABORATORY ACCREDITATION

ACCREDITED LABORATORY

A2LA has accredited

SIEMIC LABORATORIES

San Jose, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 *General Requirements for the Competence of Testing and Calibration Laboratories*. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 18 June 2005).

Presented this 11th day of July 2008.

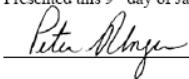
President
For the Accreditation Council
Certificate Number 2742.01
Valid to September 30, 2010

For the tests or types of tests to which this accreditation applies,
please refer to the laboratory's Electrical Scope of Accreditation.

THE AMERICAN ASSOCIATION FOR
LABORATORY ACCREDITATION

ACCREDITED PRODUCT CERTIFICATION BODY

A2LA has accredited


SIEMIC INC.

San Jose, CA

for technical competence as a
Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996 *General requirements for bodies operating product certification systems*. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system for a Telecommunications Certification Body (TCB) meeting FCC (U.S.), IDA (Singapore) and IC (Canada) requirements.

Presented this 9th day of January 2009.

President
For the Accreditation Council
Certificate Number 2742.02
Valid to: September 30, 2010

For the product certification schemes to which this accreditation applies,
please refer to the certification body's Scope of Accreditation.

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun.2010
Page 31 of 38
www.siemic.com.cn

SIEMIC ACCREDITATION DETAILS: Japan RFT Accreditation No. MRF050927

RFT

Certificate

This is to certify that the
Quality Management System
of

SIEMIC , Inc.
2206 Ringwood Avenue
San Jose, California 95131 U.S.A

has been authorized to carry out Japan Specified Radio Equipment test by
order and under supervision of RF Technologies Co., Ltd. according to
Notification No.88 of Radio Law.

An assessment of the laboratory was conducted according to the "Procedure and
Conditions for Appointments of 2.4GHz Band Low power data communications system
that Bluetooth and Wireless LAN test with reference to ISO/IEC 17025
by an RF Technologies Co., Ltd. auditor.

Audit Report No. MRF050927

Kazuyuki Sarashina

Auditor

RF Technologies Co., Ltd.

Toshihiro Ikegami

President

RF Technologies Co., Ltd.

Audit Date
September 27th, 2005

Issued Date
October 5th, 2005

This Certificate is valid until **September 26th 2006 or next schedule audit.**

No:006 Registered Certification Body
RF Technologies Co., Ltd.
472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

SIEMIC ACCREDITATION DETAILS: Korea CAB from NIST: US0160

UNITED STATES DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
 Gaithersburg, Maryland 20899

October 1, 2008

Mr. Leslie Bai
 SIEMIC, Inc.
 2206 Ringwood Avenue
 San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Radio Research Agency (RRA) Korea Communications Commission (KCC) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: SIEMIC, Inc.
 Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131
 Identification No.: US0160
 Recognized Scope: **EMI:** KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI
 KN22: Test Method for EMI
EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS
 KN24, KN-61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
Wireless: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
Wired: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6
 President Notice 20664, RRL Notice 2008-7 with attachment 4

You may submit test data to RRA/KCC to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at <http://ts.nist.gov/mra>. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

David F. Alderman

David F. Alderman
 Group Leader, Standards Coordination and Conformity Group
 Standards Services Division

Enclosure

cc: Ramona Saar

NIST

SIEMIC ACCREDITATION DETAILS: Taiwan BSMI CAB Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
Gaithersburg, Maryland 20899-

May 3, 2006

Mr. Leslie Bai
SIEMIC Laboratories
2206 Ringwood Avenue
San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows:

- BSMI number: **SL2-IN-E-1130R** (Must be applied to the test reports)
- U.S Identification No: **US0160**
- Scope of Designation: **CNS 13438**
- Authorized signatory: **Mr. Leslie Bai**

The names of all recognized CABs will be posted on the NIST website at <http://ts.nist.gov/mra>. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman
Group Leader, Standards Coordination and Conformity Group

cc: Jogindar Dhillon

SIEMIC ACCREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
Gaithersburg, Maryland 20899

March 16, 2009

Mr. LeslieBai
SIEMIC, Inc.
2206 Ringwood Avenue
San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the National Communications Commission (NCC) for the requested scope expansion under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: SIEMIC, Inc.
Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131
Identification No.: US0160
Current Scope: LP0002, PSTN01, ADSL01, ID0002, IS6100 and CNS 14336
Additional Scope: PLMN07

You may submit test data to NCC to verify that the equipment to be imported into China satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at <http://ts.nist.gov/mra>. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

David F. Alderman
Group Leader, Standards Coordination and Conformity Group
Standards Services Division

Enclosure

cc: Ramona Saar

SIEMIC ACCREDITATION DETAILS: Mexico NOM Recognition

CAMARA NACIONAL
DE LA INDUSTRIA
ELECTRONICA DE
TELÉCOMUNICACIONES
E INFORMATICA

Laboratorio Valentín V. Rivero

México D.F. a 16 de octubre de 2006.

LESLIE BAI
DIRECTOR OF CERTIFICATION
SIEMIC LABORATORIES, INC.
ACCESSING GLOBAL MARKETS
P R E S E N T E

En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su intención de firmar un Acuerdo de Reconocimiento Mutuo, para lo cual adjunto a este escrito encontrara el Acuerdo en idioma inglés y español preliminar de los cuales le pido sea revisado y en su caso corregido, para que si esta de acuerdo poder firmarlo para mandarlo con las autoridades Mexicanas para su visto bueno y así poder ejercer dicho acuerdo.

Aprovecha este escrito para mencionarle que nuestro intermediario gestor será la empresa Isatel de México, S. A. de C. V., empresa que ha colaborado durante mucho tiempo con nosotros en lo relacionado a la evaluación de la conformidad y que cuenta con amplia experiencia en la gestoría de la certificación de cumplimiento con Normas Oficiales Mexicanas de producto en México.

Mi deseo de usted enviándole un cordial saludo y esperando sus comentarios al Acuerdo que nos ocupa.

Atentamente:

Ing. Faustino Sánchez González
Gerente Técnico del Laboratorio de
CANIETI

Callejón 71
Mártires Constitución
Coyoacán, D.F.
Tel: 52894.0000 con 12 líneas
Fax: 5284.6442
www.canieti.org

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun 2010
Page 36 of 38
www.siemic.com.cn

SIEMIC ACCREDITATION DETAILS: Hong Kong OFTA Recognition No. D23/16V

Your Ref 來函檔號 : D23/16 V

Our Ref 本局檔號 :

Telephone 電話 : (852) 2961 6320
(852) 2838 5004
Fax No 圖文傳真 :
E-mail 電郵地址 : 20 July 2005

Mr. Leslie Bai
Director of Certification,
SIEMIC Laboratories
2206 Ringwood Avenue
San Jose, California 95131
USA

Dear Mr. Bai,

Application of Recognised Testing Agency (RTA)

Referring your submission of 28 June 2005 in relation to the application of RTA, I am pleased to inform you that OFTA has appointed SIEMIC Laboratories (SIEMIC) as a Recognised Testing Agency (RTA) :

Please note that, under the Hong Kong Telecommunications Equipment Evaluation and Certification (HKTEC) Scheme, SIEMIC is authorized to conduct evaluation tests on telecommunications equipment against the following HKTA specifications :

Scope of recognition (HKTA Specifications) :

1001, 1002, 1004, 1006, 1007, 1008
1010, 1015, 1016
1022, 1026, 1027, 1029
1030, 1031, 1032, 1033, 1034, 1035, 1039
1041, 1042, 1043, 1045, 1047, 1048
2001

You are requested to refer to and comply with the code of practice and guidelines for RTA as given in the Information Note OFTA I 411 "Recognised Testing Agency (RTA) for Conducting Evaluation Test of Telecommunications Equipment", which can be downloaded from OFTA's homepage at <http://www.ofta.gov.hk/tec/information-notes.html>.

If you have any queries, please do not hesitate to contact me.

Yours sincerely,

(K K Sin)
for Director-General
of Telecommunications

Office of the Telecommunications Authority
29/F Wu Chung House 213 Queen's Road East Wan Chai Hong Kong
電訊管理局
香港灣仔皇后大道東 213 號胡忠大廈 29 字樓

<http://www.ofta.gov.hk>

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun 2010
Page 37 of 38
www.siemic.com.cn

SIEMIC ACCREDITATION DETAILS: OFTA CAB from NIST: US0160

UNITED STATES DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
Gaithersburg, Maryland 20899

December 8, 2008

Mr. Leslie Bai
SIEMIC, Inc.
2206 Ringwood Avenue
San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Office of the Telecommunications Authority (OFTA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, California 95131 USA
Identification No.:	US0160
Recognized Scope:	Radio: HKTA 1002, 1007, 1008, 1010, 1015, 1016, 1020, 1022, 1026, 1027, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1039, 1041, 1042, 1043, 1044, 1046, 1047, 1048, 1049, 1051 Telecom: HKTA 2011, 2012, 2013, 2014, 2017, 2018, 2022, 2024, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033

You may submit test data to OFTA to verify that the equipment to be imported into Hong Kong satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at <http://ts.nist.gov/mra>. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

David F. Alderman
Group Leader, Standards Coordination and Conformity Group
Standards Services Division

Enclosure

cc: Ramona Saar

SIEMIC, INC.

Accessing global markets

Title: RF Test Report for wireless remote winch control
Model: WR433-30 WR433-30I
To: FCC 15.231.2009

Serial#: 1005009
Issue Date: 22 Jun 2010
Page 38 of 38
www.siemic.com.cn

SIEMIC ACCREDITATION DETAILS: Australia NATA Recognition

Leslie Bai
SIEMIC, Inc.
2208 Ringwood Avenue
San Jose, CA 95131

November 4, 2008

Under Australian government legislation, the Australian Communications and Media Authority (ACMA) has determined the National Association of Testing Authorities, Australia (NATA) as an accreditation body as per Section 409(1) of the Telecommunications Act 1997 (Cth). Pursuant to Section 409(2) of the Telecommunications Act 1997 (Cth), I am pleased to advise that your laboratory has been determined as a Recognised Testing Authority (RTA).

This determination has been made on the basis of your accreditation by A2LA accreditation no. 2742.01 and the Mutual Recognition Agreement between NATA and A2LA. It is effective from 11 July 2008. RTA status applies only to the following standards and is contingent upon their continued inclusion in your laboratory's scope of accreditation.

AS/ACIF S002, AS/ACIF S003, AS/ACIF S004,
AS/ACIF S006, AS/ACIF S016, AS/ACIF S031,
AS/ACIF S038, AS/ACIF S041 and
AS/ACIF S043.2

As an RTA, your laboratory has the following obligations:

1. the laboratory shall continue to meet all of the accreditation criteria of A2LA;
2. the authorised representative of the laboratory shall notify NATA of changes to the staff or operations of the laboratory which would affect the performance of the tests for which the laboratory has been determined;
3. compliance of equipment shall be reported on test reports bearing the A2LA logo/endorsement.

Current information on the Australian Communications and Media Authority and regulatory requirements for telecommunications products within Australia can be obtained from the ACMA's web-site at "<http://www.acma.gov.au>". Further information about NATA may be gained by visiting "<http://www.nata.asn.au>".

Please note that AS/ACIF S040 and New Zealand standards do not form part of the RTA scheme.

Your RTA listing will appear on the NATA website shortly.

Kind Regards

Chris Norton,
Senior Scientific Officer
Measurement Science and Technology
National Association of Testing Authorities (NATA)
71-73 Flemington Road
North Melbourne Vic 3051
Australia
Ph: +61 3 9329 1633 Fx: +61 3 9326 5148
E-Mail: Christopher.Norton@nata.asn.au
Internet: www.nata.asn.au