

TEST REPORT

Report No.: HK10120775-1

Reinbacher International Limited

Application
For
Certification
(Original Grant)
(FCC ID: YGU-TS03RC)

Transmitter

Prepared and Checked by:

Signed On File
Kenneth Wong /cl
Engineer

Approved by:

Chan Chi Hung, Terry
Assistant Supervisor
Date: January 05, 2011

INTERTEK TESTING SERVICES

GENERAL INFORMATION

Reinbacher International Limited
BRAND NAME: THERMO SOLES, MODEL: TS03RC

FCC ID: YGU-TS03RC

Grantee:	Reinbacher International Limited
Grantee Address:	Room 1603 Citicorp Centre, 18 Whitfield Road, North Point, Hong Kong
Contact Person:	Albert Au
Tel:	2895 2401
Fax:	2571 9216
e-mail:	info@reinbacherintl.com
Manufacturer:	Dongguan Jing Cheng Electronic Co. Ltd.
Manufacturer Address:	Chung Hang, Shek Pai District, Dongguan, Guangdong Province, China (Postal Code: 523332)
Brand Name:	THERMO SOLES
Model:	TS03RC
Type of EUT:	Transmitter
Description of EUT:	Heated Insoles With Rechargeable Batteries
Serial Number:	N/A
FCC ID:	YGU-TS03RC
Date of Sample Submitted:	December 21, 2010
Date of Test:	January 04, 2011
Report No.:	HK10120775-1
Report Date:	January 05, 2011
Environmental Conditions:	Temperature: +10 to 40°C Humidity: 10 to 90%

INTERTEK TESTING SERVICES

SUMMARY OF TEST RESULT

Reinbacher International Limited
BRAND NAME: THERMO SOLES, MODEL: TS03RC

FCC ID: YGU-TS03RC

TEST SPECIFICATION	REFERENCE	RESULTS
Maximum Peak Output Power	15.247(b), (c) / RSS-210 A8.4	N/A
Hopping Channel Carrier Frequencies Separation	15.247(e) / RSS-210 A8.1	N/A
20dB Bandwidth of the Hopping Channel	15.247(a) / RSS-210 A8.1	N/A
Number of Hopping Frequencies	15.247(e) / RSS-210 A8.1	N/A
Average Time of Occupancy of Hopping Frequency	15.247(e) / RSS-210 A8.1	N/A
Antenna Conducted Spurious Emissions	15.247(d) / RSS-210 A8.5	N/A
Radiated Spurious Emissions	15.247(d) / RSS-210 A8.5	N/A
RF Exposure Compliance	15.247(i) / RSS-Gen 5.5	N/A
Transmitter Power Line Conducted Emissions	15.207 / RSS-Gen 7.2.2	N/A
Transmitter Field Strength	15.227 / RSS-310 3.8	N/A
Transmitter Field Strength	15.229 / RSS-210 A2.7	N/A
Transmitter Field Strength, Bandwidth and Timing Requirement	15.231(a) / RSS-210 A1.1.1	Pass
Transmitter Field Strength, Bandwidth and Timing Requirement	15.231(e) / RSS-210 A1.1.5	N/A
Transmitter Field Strength and Bandwidth Requirement	15.239 / RSS-210 A2.8	N/A
Transmitter Field Strength and Bandwidth Requirement	15.249 / RSS-210 A2.9	N/A
Transmitter Field Strength and Bandwidth Requirement	15.235 / RSS-310 3.9	N/A
Receiver / Digital Device Radiated Emissions	15.109 / ICES-003	N/A
Digital Device Conducted Emissions	15.107 / ICES-003	N/A

Note: 1. The EUT uses a permanently attached antenna which, in accordance to section 15.203, is considered sufficient to comply with the provisions of this section.

2. Pursuant to FCC part 15 Section 15.215(c), the 20 dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered.

INTERTEK TESTING SERVICES

Table of Contents

1.0	<u>General Description</u>	1
1.1	Product Description	1
1.2	Related Submittal(s) Grants	1
1.3	Test Methodology	1
1.4	Test Facility	1
2.0	<u>System Test Configuration</u>	2
2.1	Justification	2
2.2	EUT Exercising Software	2
2.3	Special Accessories	2
2.4	Equipment Modification	2
2.5	Measurement Uncertainty	2
2.6	Support Equipment List and Description	2
3.0	<u>Emission Results</u>	3
3.1	Field Strength Calculation	3
3.2	Radiated Emission Configuration Photograph	4
3.3	Radiated Emission Data	4
4.0	<u>Equipment Photographs</u>	6
5.0	<u>Product Labelling</u>	6
6.0	<u>Technical Specifications</u>	6
7.0	<u>Instruction Manual</u>	6
8.0	<u>Miscellaneous Information</u>	6
8.1	Measured Bandwidth / RF Output Signal	6
8.1	Stabilization Waveform	6
8.2	Discussion of Pulse Desensitization	6
8.3	Calculation of Average Factor	7
8.4	Emissions Test Procedures	7
9.0	<u>Equipment List</u>	8

INTERTEK TESTING SERVICES

1.0 General Description

1.1 Product Description

The Equipment under test (EUT) is a transmitter for a radio control thermo insole operating at 433.920MHz which is controlled by a crystal. The EUT is powered by a CR2032 3.0V battery. The EUT has a button on it. The user can press the button to move through the required temperature settings (Standby 5°C – Medium 38°C – High 44°C) to control the temperature of insole. The cycle of the setting is Standby – Medium – High – Standby, etc. The transmission will be stopped within 3.92 seconds of being released.

Antenna Type : Internal, Integral

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

1.2 Related Submittal(s) Grants

Certification procedure of receiver for this transmitter (with FCC ID: YGU-TS03S) is being processed as the same time of this application.

1.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). All radiated measurements were performed in an Open Area Test Site. Preliminary scans were performed in the Open Area Test Site only to determine worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **“Justification Section”** of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been placed on file with the FCC.

INTERTEK TESTING SERVICES

2.0 System Test Configuration

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2003).

The device was powered by 1 x 3.0V "CR2032" battery.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was operated standalone and placed in the center of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the wooden turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it transmits the RF signal continuously.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

2.4 Equipment Modification

Any modifications installed previous to testing by Reinbacher International Limited will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services Hong Kong Ltd.

2.5 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

2.6 Support Equipment List and Description

N/A.

INTERTEK TESTING SERVICES

3.0 Emission Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + CF - AG - AV$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

$$FS = RR + LF$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RR = $RA - AG - AV$ in $\text{dB}\mu\text{V}$

LF = $CF + AF$ in dB

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$$RA = 52.0 \text{ dB}\mu\text{V}/\text{m}$$

$$AF = 7.4 \text{ dB}$$

$$RR = 18.0 \text{ dB}\mu\text{V}$$

$$CF = 1.6 \text{ dB}$$

$$LF = 9.0 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$AV = 5.0 \text{ dB}$$

$$FS = RR + LF$$

$$FS = 18 + 9 = 27 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(27 \text{ dB}\mu\text{V}/\text{m})/20] = 22.4 \mu\text{V}/\text{m}$$

INTERTEK TESTING SERVICES

3.2 Radiated Emission Configuration Photograph

The worst case in radiated emission was found at 1301.940 MHz

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgment: Passed by 7.6 dB

INTERTEK TESTING SERVICES

Applicant: Reinbacher International Limited

Date of Test: January 04, 2011

Model: TS03RC

Worst-Case Operating Mode: Transmitting

Table 1

Radiated Emissions Pursuant to FCC Part 15 Section 15.231(a) Requirement

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp (dB)	Antenna factor (dB)	Average Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
H	433.980	62.7	16	25.0	13.6	58.1	80.8	-22.7
H	867.960	50.6	16	31.0	13.6	52.0	60.8	-8.8
H	1301.940	67.9	34	26.1	13.6	46.4	54.0	-7.6
H	1735.920	55.2	34	27.2	13.6	34.8	60.8	-26.0
H	2169.900	39.2	34	29.4	13.6	21.0	60.8	-39.8
H	2603.880	48.2	34	30.4	13.6	31.0	60.8	-29.8
H	3037.860	56.7	34	31.9	13.6	41.0	60.8	-19.8
H	3471.840	45.7	34	31.9	13.6	30.0	60.8	-30.8
H	3905.820	44.1	34	33.3	13.6	29.8	60.8	-31.0

NOTES: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative sign in the column shows value below limit.
4. Horn antenna is used for the emission over 1000MHz.

INTERTEK TESTING SERVICES

4.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.pdf and internal photos.pdf.

5.0 Product Labelling

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

6.0 Technical Specifications

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

7.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

8.0 Miscellaneous Information

The miscellaneous information includes details of the test procedure and measured bandwidth / calculation of factor such as pulse desensitization and averaging factor (calculation and timing diagram).

8.1 Measured Bandwidth

For electronic filing, the plot shows the fundamental emission when modulated is saved with filename: bw.pdf. From the plot, the bandwidth is observed to be 428.0kHz, at 20dBc where the bandwidth limit is 1085.0kHz.

8.2 Discussion Pulse Desensitivity

Pulse desensitivity is not applicable for this device. The effective period (Teff) is approximately 840 μ s for a digital “1” bit which is illustrated on technical specification, with a resolution bandwidth (3dB) of 100kHz, so the pulse desensitivity factor is 0dB.

INTERTEK TESTING SERVICES

8.3 Calculation of Average Factor

The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 45.48 ms

Effective period of the cycle = $840\mu\text{s} \times 7 + 1.80\text{ms} \times 2 = 9.48\text{ms}$

DC = $9.48\text{ms} / 45.48\text{ms}$

Therefore, the averaging factor is found by $20\log 0.2084 = -13.6\text{dB}$.

8.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services Hong Kong Ltd. in the measurements of transmitter operating under the Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 2003. A typical or an unmodulated CW signal at the operating frequency of the EUT has been supplied to the EUT for all measurements. Such a signal is supplied by a signal generator and an antenna in close proximity to the EUT. The signal level is sufficient to stabilize the local oscillator of the EUT.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axis to obtain maximum emission levels. The antenna height and polarization are also varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 8.3.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

INTERTEK TESTING SERVICES

8.4 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements were made as described in ANSI C63.4 - 2003.

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater when frequency is below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.1). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the forbidden bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.

9.0 Equipment List

1) Radiated Emissions Test

Equipment	EMI Test Receiver	Biconical Antenna	Log Periodic Antenna
Registration No.	EW-2251	EW-0954	EW-0446
Manufacturer	R&S	EMCO	EMCO
Model No.	ESCI	3104C	3146
Calibration Date	Oct. 22, 2009	Apr. 14, 2010	Apr. 26, 2010
Calibration Due Date	Jan. 22, 2011	Apr. 14, 2011	Oct. 26, 2011

Equipment	Spectrum Analyzer	Double Ridged Guide Antenna
Registration No.	EW-2249	EW-1015
Manufacturer	ROHDE SCHWARZ	EMCO
Model No.	FSP30	3115
Calibration Date	Oct. 22, 2010	Feb. 09, 2010
Calibration Due Date	Oct. 22, 2011	Aug. 09, 2011