

FCC Measurement/Technical Report on

BMW Keyless Ride ID device

HUF5794

FCC ID: YGOHUF5794
IC: 4008C-HUF5794

Report Reference: MDE_HUF_2107_FCC_02

Test Laboratory:

7layers GmbH
Borsigstrasse 11
40880 Ratingen
Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350

Geschäftsführer/

Managing Directors:
Frank Spiller
Bernhard Retka
Alexandre Norré-Oudard

Registergericht/registered:

Düsseldorf HRB 75554
USt-Id.-Nr./VAT-No. DE203159652
Steuer-Nr./TAX-No. 147/5869/0385

a Bureau Veritas

Group Company

www.7layers.com

TABLE OF CONTENTS

1 Applied Standards and Test Summary	3
1.1 Applied Standards	3
1.2 FCC-IC Correlation table	4
1.3 Measurement Summary /Signatures	5
1.4 Report version control	6
2 Administrative Data	7
2.1 Testing Laboratory	7
2.2 Project Data	7
2.3 Applicant Data	7
2.4 MANUFACTURER Data	7
3 Test object Data	8
3.1 General EUT Description	8
3.2 EUT Main components	9
3.3 General description of ancillary equipment	9
3.4 General description of auxiliary equipment	9
3.5 EUT Setups	9
3.6 Operating Modes	9
3.7 Product labelling	10
4 Test Results	11
4.1 Duty cycle measurement (based on dwell time measurement)	11
4.2 Spurious radiated emissions	14
4.3 Maximum radiated field strength at fundamental frequency	25
4.4 Occupied bandwidth	27
6 Antenna Factors, Cable Loss and Sample Calculations	31
6.1 Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	31
6.2 Antenna R&S HL562 (30 MHz – 1 GHz)	32
6.3 Antenna R&S HF907 (1 GHz – 18 GHz)	33
7 Photo Report	34

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Periodic operation in the band above 70 MHz)

Applicable FCC Rules

Edition of FCC Rules: October 1, 2020

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.231 Periodic operation in the band 40.66-40.70 MHz, above 70 MHz

Note: § 15.207 is not applicable because the EUT is DC powered and only used in vehicles. It will not be connected to the public AC mains network.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Momentarily (incl. Periodically) Operated Devices and Remote Control from FCC and IC

Radio equipment

Measurement	FCC reference	IC reference
Transmitter spurious radiated emissions	§ 15.231 (b) / (e)	RSS Gen Issue 5 & AMD1 & AMD2: 6.10/6.13/8.9/8.10; RSS-210 Issue 10 & AMD1: A1.2 Table 2
Duty cycle measurement (based on dwell time measurement)	§ 15.231 (a)	RSS-210 Issue 10 & AMD1: A1.1
Maximum radiated field strength at fundamental frequency	§ 15.231 (b) / (e)	RSS-210 Issue 10 & AMD1: A1.2 Table 2; RSS Gen Issue 5 & AMD1 & AMD2: 6.12
Occupied bandwidth	§ 15.231 (c)	RSS-210 Issue 10 & AMD1: A1.3
Antenna requirement	§ 15.203 / 15.204	RSS Gen Issue 5 & AMD1 & AMD2: 8.3
Receiver spurious emissions	–	RSS-210 Issue 10 & AMD1: 2.3 RSS Gen Issue 5 & AMD1 & AMD2: 5/7 *)

*) Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

1.3 MEASUREMENT SUMMARY /SIGNATURES

FCC Part 15, Subpart C		§ 15.207	
Conducted emissions (AC power line)			
OP-Mode	Setup	Port	2013
		AC Port (power line)	Final Result
			N/A
FCC Part 15, Subpart C		§ 15.231	
Duty cycle measurement (based on dwell time measurement)			
The measurement was performed according to ANSI C63.10		2013	
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_01	Enclosure	passed
FCC Part 15, Subpart C		§ 15.231	
Spurious Radiated Emissions			
The measurement was performed according to ANSI C63.10		2013	
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_02	Enclosure	passed
FCC Part 15, Subpart C		§ 15.231	
Maximum radiated field strength at fundamental frequency			
The measurement was performed according to ANSI C63.10		2013	
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_02	Enclosure	passed
FCC Part 15, Subpart C		§ 15.231	
Occupied Bandwidth			
The measurement was performed according to ANSI C63.10		2013	
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_01	Enclosure	passed
N/A not applicable (the EUT is powered by 3 V coin cell CR2032).)			

1.4 REPORT VERSION CONTROL

Report version control			
Version	Release date	Change Description	Version validity
initial	2022-01-12	---	valid

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
M.Sc. Joel Asongwe

7 layers GmbH, Borsigstr. 11
40880 Ratingen, Germany
Phone +49 (0)2102 749 0

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11
40880 Ratingen
Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-00

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier: DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2020-02-12

2.2 PROJECT DATA

Responsible for testing and report: M.Sc. Joel Asongwe

Date of Report: 2022-01-12

Testing Period: 2021-11-09 to 2021-12-17

2.3 APPLICANT DATA

Company Name: Huf Hülsbeck & Fürst GmbH & Co. KG

Address: Steeger Straße 17
42551 Velbert
Germany

Contact Person: Dipl.-Ing. Thomas Herzog

2.4 MANUFACTURER DATA

Company Name: Please see applicant data

Address:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	The BMW Keyless Ride ID device is used for transmitting the information for locking/unlocking the vehicle's central locking system and arm/disarm the anti-theft alarm system, respectively, via RF transmission for normal remote keyless entry function by pushing a button. Short Range Device (SRD) immobilizer system for BMW motorcycle. UHF transmitter in 433.92 MHz
Product name	BMW Keyless Ride ID device
Type	HUF5794
Declared EUT data by the supplier	
Voltage Type	DC (Lithium Battery. Coin cell, CR2032)
Normal Voltage	3.0 V
Low Voltage	2.2 V
High Voltage	3.2 V
Normal Temperature	25 °C
Low Temperature	-20 °C
High Temperature	+60 °C
Operating frequency	433.92 MHz
The EUT provides the following ports:	Enclosure
Special software used for testing	Test software which provides required OP-modes for testing, based on serial SW.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT B (BMW Keyless Ride Key)	DE1068023ab01	Conducted sample
Sample Parameter	Value	
HW Version	Rev. 001	
SW Version	Rev. 002 (SW02.05)	
Serial No.	-	
Comment	Sample with temporary external antenna connector	

Sample Name	Sample Code	Description
EUT C (BMW Keyless Ride Key)	DE1068023ac01	Radiated sample
Sample Parameter	Value	
HW Version	Rev. 001	
SW Version	Rev. 002 (SW02.05)	
Serial No.	-	
Comment	Sample with integral Antenna	

3.3 GENERAL DESCRIPTION OF ANCILLARY EQUIPMENT

Device	Details (Manufacturer, Type Model, OUT Code)	Reason for using
-	-	-

3.4 GENERAL DESCRIPTION OF AUXILIARY EQUIPMENT

Device	Details (Manufacturer, HW, SW, S/N)	Description
-	-	-

3.5 EUT SETUPS

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_01	EUT B	Setup for conducted measurements
Setup_02	EUT C	Setup for radiated measurements

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	Continuous transmission	Transmitter sends continuously unmodulated signal
op-mode 2	Continuous transmission	Transmitter sends continuously modulated signal

3.7 PRODUCT LABELLING

3.7.1 FCC ID label

Please refer to the documentation of the applicant.

3.7.2 IC Label

Please refer to the documentation of the applicant.

3.7.3 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 DUTY CYCLE MEASUREMENT (BASED ON DWELL TIME MEASUREMENT)

Standard **FCC Part 15 Subpart C**

The test was performed according to:

ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the dwell time measurements. For analyzer settings please see measurement plots.

4.1.2 TEST REQUIREMENTS / LIMITS

Depending on the function of the EUT different paragraphs of FCC §15.231 apply:

Either

(a)(1): A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Or

(a)(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

And

(a)(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Otherwise

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation [...]. In addition, [...] the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

This test is also performed to determine the pulse train of the transmitter and calculate the correction factor for pulse modulated transmitters according to FCC §15.35. This factor is used as a correction factor for the field strength measurements, both for Spurious radiated emissions and Maximum radiated field strength at fundamental frequency.

4.1.3 TEST PROTOCOL

Temperature: 23 °C
 Air Pressure: 1009 hPa
 Humidity: 32 %

Op. Mode	Setup	Port
op-mode 2	Setup_01	Enclosure

a) Determine the total duration of a transmission within 100 ms:

Duty cycle = $((L1*N1) + (L2*N2) + \dots + (Ln*Nn)) / 100 \text{ ms}$ or T , whichever is less
 Correction factor = $20 * \text{LOG}(\text{Duty cycle})$ [dB]

Step 1	Holdover time	Less than 5s
Step 2	Cycle to determine the on/off ratio within a cycle (period T)	100 ms
Step 3	Sweep of a data word to determine the on time within a data word ($L1-LN$)	$L1 = 52.52 \text{ ms}$

PKE mode - Calculation of Duty Cycle / Correction Factor:

If $T > 100 \text{ ms} \Rightarrow T = 100 \text{ ms}$; $L1 = 52.52 \text{ ms}$; $N1 = 1$;

In 100 ms $T_{on} = 52.52 \text{ ms}$

Duty cycle = $52.52 / 100 = 0.5252$

CORRECTION FACTOR = $20 * \text{log}(0.5252) \approx -5.59 \text{ dB}$

b) Determine the period of periodic re-transmission, if any, or cease (deactivation) time:

The period of retransmission depends on how much LF interrogations are sent. Normally, after the answer (0.05252 s), there are no more transmissions from the EUT.

Deactivation after **Tc = 0.0 s, Limit: ≤ 5 s**

c) Determine the total duration of periodic transmissions within 1 hour, if any:

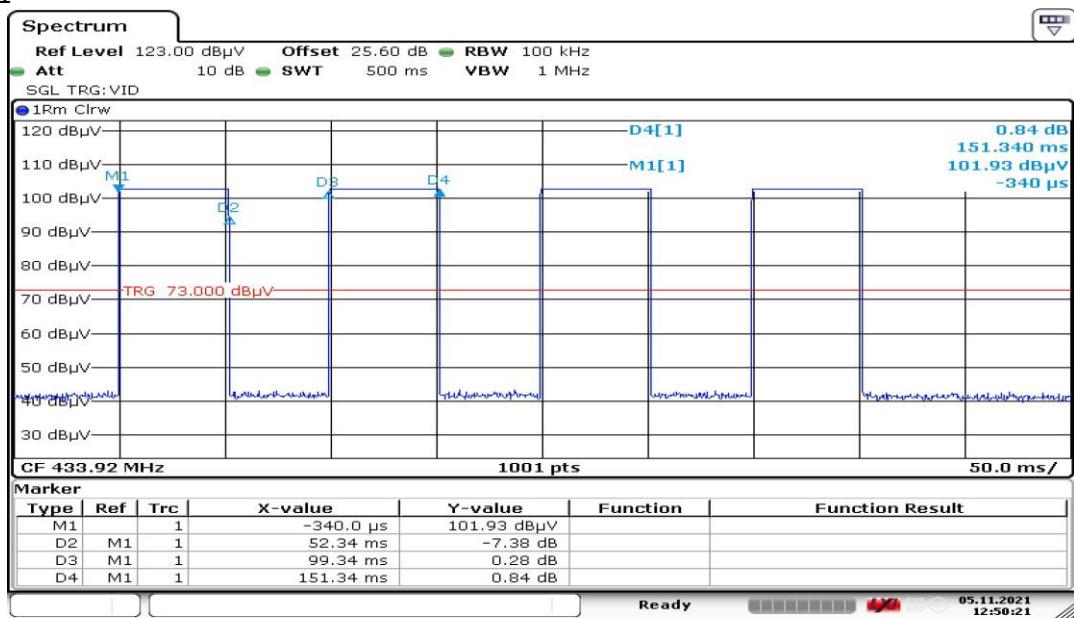
Duration t_d of all pulses/bursts during T_R ("on-time"):

d) If the result of c) exceeds 2 seconds/hour then paragraph (e) applies:

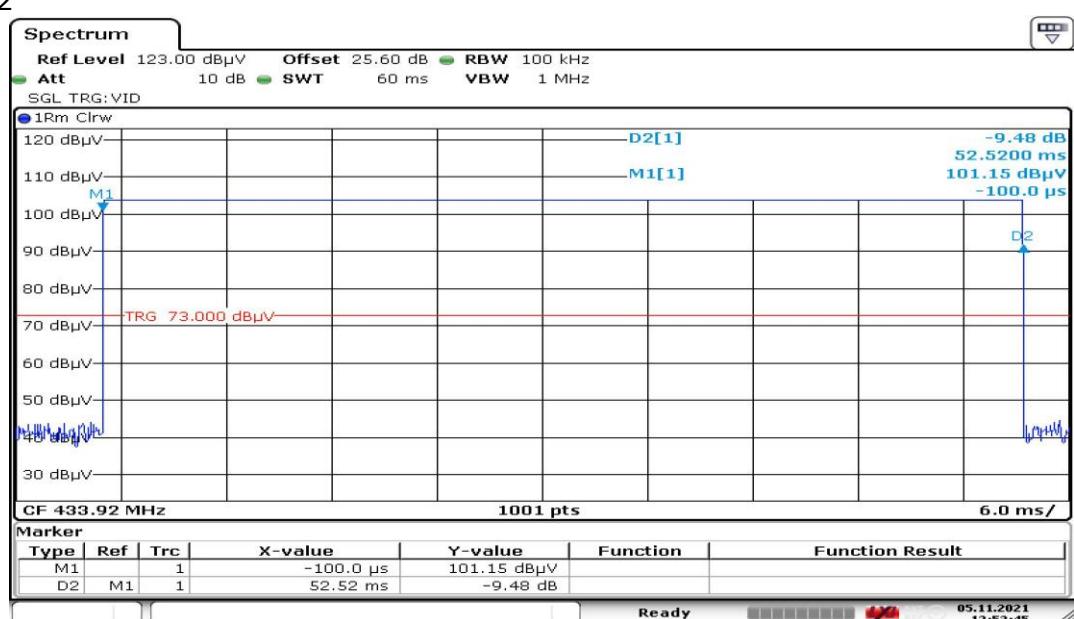
Determine the duration of each transmission (one complete pulse train) and silent time:
 Duration t_{PT} , Limit: $\leq 1 \text{ s}$ (Remark: t_{PT} is identical to t_d if $T \leq 100 \text{ ms}$).

The duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

$t_{PT} = 0.05252 \text{ s} (\leq 1 \text{ s})$


Silent time between transmissions: After the answer, there are no more transmissions.
 Limit: \leq Maximum ($>10 \text{ s}$ and $>30 * t_{PT}$).

Note:


On Plot 2 is the EUT pulse, used for the calculation of the Duty Cycle correction factor.

4.1.4 MEASUREMENT PLOTS DUTY CYCLE

Plot 1

Plot 2

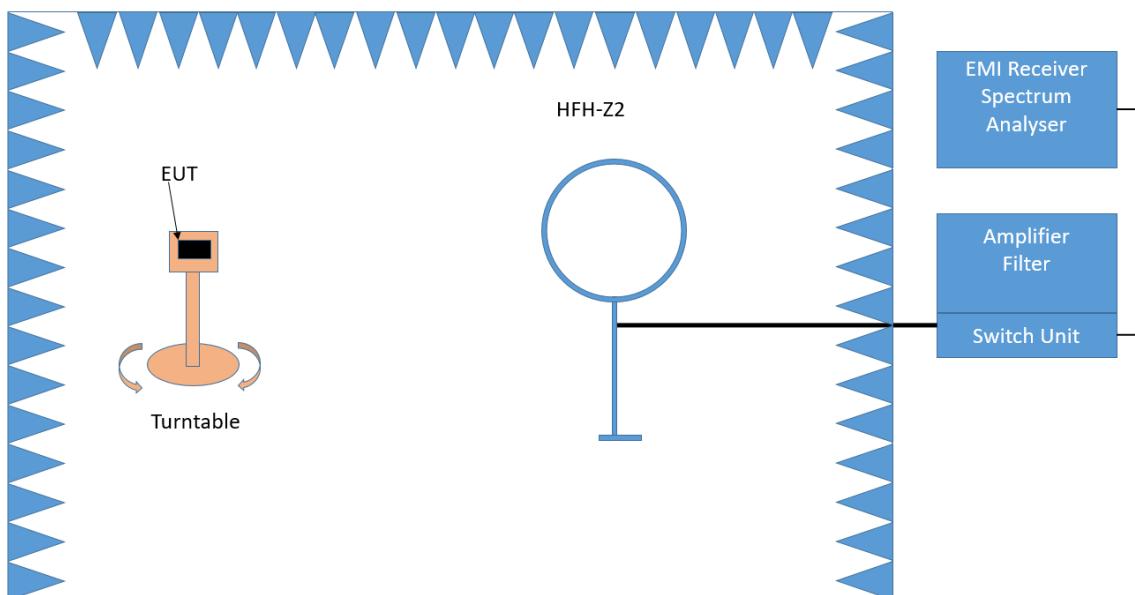
4.1.5 Test Equipment used

- Radio Lab

4.2 SPURIOUS RADIATED EMISSIONS

Standard **FCC Part 15 Subpart C**

The test was performed according to:


ANSI C63.10-2013

4.2.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m² in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. (Exploratory) Tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from DC (battery) power in order to find the worst-case operating condition.

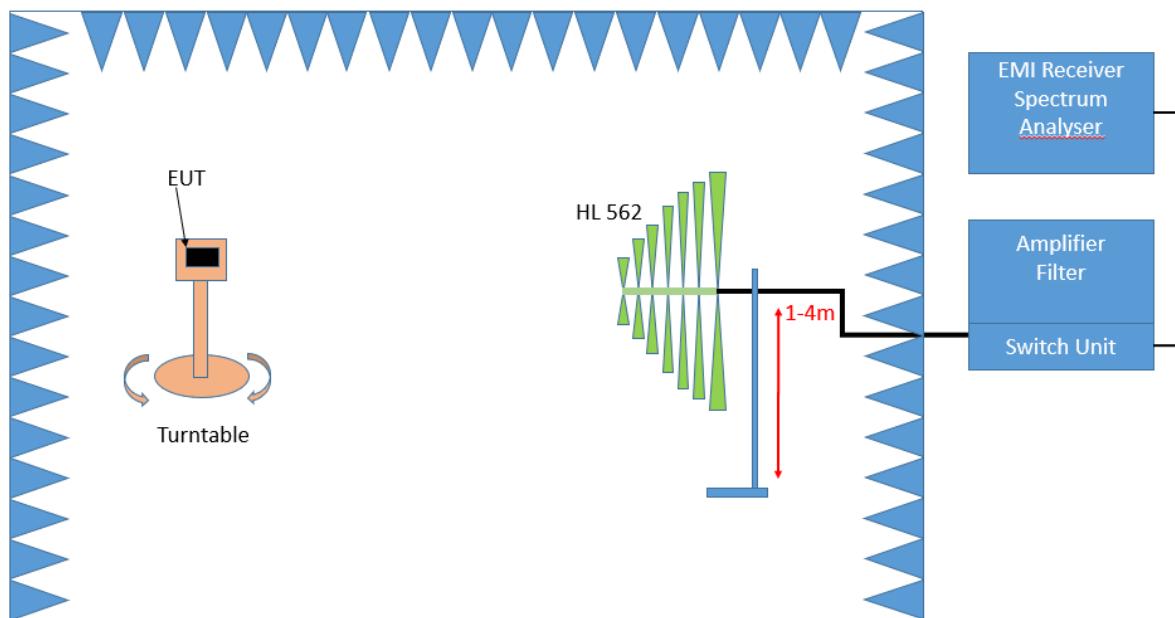
1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: premeasurement

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m (lowest part to ground)
- Antenna polarisation: 3 axis
- Detector: Peak-Maxhold
- Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement will be performed with the following changed settings. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak besides 9–90 kHz and 110–490 kHz: Average and Peak
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 – 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 – 4 m
- Height variation step size: 1.5 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved.

This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: 360°
- Height variation range: 1 – 4 m
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement, a plot will be generated. It contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

Above 1 GHz:

The following changes apply to the measurement procedure for the frequency range > 1 GHz:

Step 1:

- Turntable step size: 45°
- Detector: Peak, Average (Maxhold)
- IF – Bandwidth: 1 MHz
- Frequency steps: 250 kHz
- Measuring time: 500 ms / GHz

Step 2:

- IF – Bandwidth: 1 MHz

Step 3:

- Detector: Peak / CISPR Average
- IF – Bandwidth: 1 MHz

After every measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

Floor absorbers are placed between test volume and measurement antenna.

4.1.4 Test Requirements / Limits

1) FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limit (dB μ V/m)
0.009 – 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 – 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according to FCC §15.31 (2).

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limit (dB μ V/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 – 26000	500@3m	3	54.0@3m
26000 – 40000	500@3m	1	54.0@3m

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = $20 \log (\text{Limit} (\mu\text{V}/\text{m})/1\mu\text{V}/\text{m})$

2) RSS-216, 6.2.2.2, Radiated Emission Limits

The raw values obtained at the measurement distance are extrapolated to the FCC's definition distance. The limits defined in RSS-216 are calculated for these FCC's distances in order to include the limits directly in one measurement plot and to demonstrate if compliance is achieved. The verdict related to RSS-216 is basing on the margin which is constant for different distances and i.e. is not altered by these linear transformations.

Limits ICES-001, 3.3.4.1, table 2 (quasi-peak limits) of magnetic field strength:

Frequency in MHz	Limit (RSS-216) (dB μ A/m) @3m	Measurement distance (m)	Limit (dB μ V/m) @ FCC distance	Comment
0.009 – 0.070	69	3	(40.5)@300m	–
0.07 – 0.15	69 – 39 *)	3	(40.5 – 10.5)@300m	–
0.15 – 0.49	39 – 31.9 ***)	3	(10.5 – 3.4)@300m	intermediate step
0.49 – 30.0	31.9 – 7 ***)	3	(43.4 – 18.5)@30m	intermediate step

*) Decreasing linearly with logarithm of frequency between 0.07 and 0.15 MHz

***) Decreasing linearly with logarithm of frequency between 0.15 and 30.0 MHz

The alternate 60 cm loop test method and corresponding limits for small residential WPT devices is used for the tests in the frequency range 9 kHz – 30 MHz.

The measured field strength is extrapolated to the distance specified using the formula indicating that the field strength varies as the inverse distance square (40 dB per decade of distance), according to RSS-Gen, 6.5.

For fractal values of definition and reference distance the factor of $40 * \text{LOG}_{10}(d_{\text{ref}}/d_{\text{def}})$ applies.

Relation between electrical and magnetic field strength: $\text{dB}\mu\text{V} = \text{dB}\mu\text{A} + 51.5 \text{ dB}$.

Limits ICES-001, 3.3.4.2, table 4 (quasi-peak limits) of electric field strength:

Frequency in MHz	Limit (dB μ V/m) OATS or SAC @10m	Limit (dB μ V/m) OATS or SAC @3m	Limit (dB μ V/m) FAR @3m	SAC Limit (dB μ V/m) @ FCC distance
30 – 230	30	40	42 – 35 **)	(40)@3m
230 – 1000	37	47	42	(47)@3m

**) The limit level in dB μ V/m decreases linearly with the logarithm of frequency.

Note: OATS = open-area test site, SAC = semi-anechoic chamber, FAR = fully anechoic room

4.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.231 (b)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Calculate Limit ($\text{dB}\mu$ V/m @10m)	Limit ($\text{dB}\mu$ V/m @10m)
0.009 – 0.49	2400/F (kHz)	300	(48.5 – 13.8) + 59.1 dB	107.6 – 72.9
0.49 – 1.705	24000/F (kHz)	30	(33.8 – 23.0) + 19.1 dB	52.9 – 42.1
1.705 – 30	30	30	29.5 + 19.1 dB	39.5

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limit ($\text{dB}\mu$ V/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit ($\text{dB}\mu$ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit ...

Used conversion factor: Limit ($\text{dB}\mu$ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

§15.35(c):

[...] when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted [...].

§15.231 (b) emissions table

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolations.

§15.231(b)(3)

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator.

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Interpretation of the test laboratory:

The last subordinate clause of §15.231(b)(3) is overruled by §15.205/209, therefore within the restricted bands the limits defined at §15.205/209 and outside the restricted bands the limits defined at §15.231(b) resp. §15.231(e) are applied.

§15.231 (e) emissions table

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

¹Linear interpolations.

4.2.3 Test Protocol

4.2.3.1 Measurement up to 30 MHz

Temperature: 24 °C

Air Pressure: 1009 hPa

Humidity: 35 %

Op. Mode	Setup	Port
op-mode 2	Setup_02	Enclosure

Measuring Antenna Polarisation	Spurious Emission Frequency [MHz]	Corrected value [dB μ V/m]			Limit [dB μ V/m]	Limit [dB μ V/m]	Limit [dB μ V/m]	Margin to limit [dB]	Margin to limit [dB]
		QP	Peak	AV					
0°	---	---	---	---	---	---	---	---	---
90°	---	---	---	---	---	---	---	---	---

Remark: In step 1 no spurious emissions in the range 20 below the limit were found, using a peak detector, therefore step 2 (using a QP-detector) was not performed. For this test, the EUT was sending a continuously modulated signal. Please see the measurement plot.

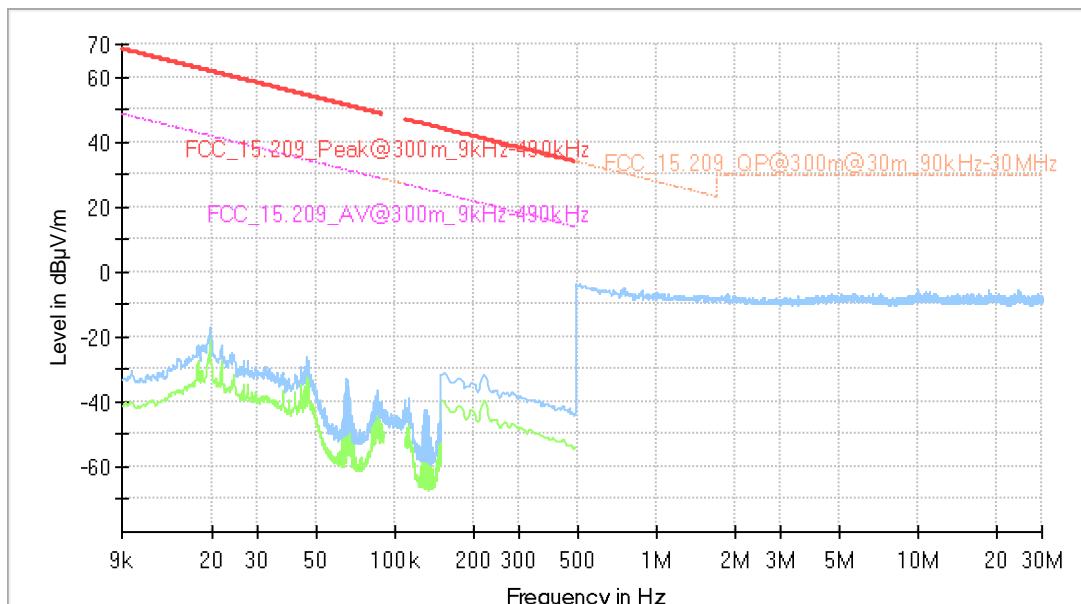
4.2.3.2 MEASUREMENT ABOVE 30 MHz TO 6 GHz

Temperature: 24 °C

Air Pressure: 1009 hPa

Humidity: 35 %

Op. Mode	Setup	Port
op-mode 2	Setup_02	Enclosure


Polarisation of the antenna and the EUT	Spurious Emission Frequency [MHz]	Corrected value [dB μ V/m]			Limit [dB μ V/m]	Limit [dB μ V/m]	Limit [dB μ V/m]	Margin to limit [dB]	Margin to limit [dB]
		QP	Peak	AV					
0°	---	---	---	---	---	---	---	---	---
90°	---	---	---	---	---	---	---	---	---

Remarks: No other spurious emissions in the range 15 dB below the limit were found.

4.2.4 MEASUREMENT PLOT

4.2.4.1 RADIATED EMISSIONS (f < 30 MHz)

Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m
 Test Standard: FCC 15c.209
 EUT / Setup Code: DE1068023ac01
 Operating Conditions: Modulated TX on 433.92 MHz
 Operator Name: DOB
 Comment: -
 Legend: Trace: blue = Peak; green = AV, Star: = critical frequency; Rhombus: blue = final QP

Final_Result

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)
---	---	---	---	---	---	---	---	---	---

4.2.4.2 RADIATED EMISSIONS (30 MHz < f < 1 GHz)

Test Standard:

FCC 15c.231

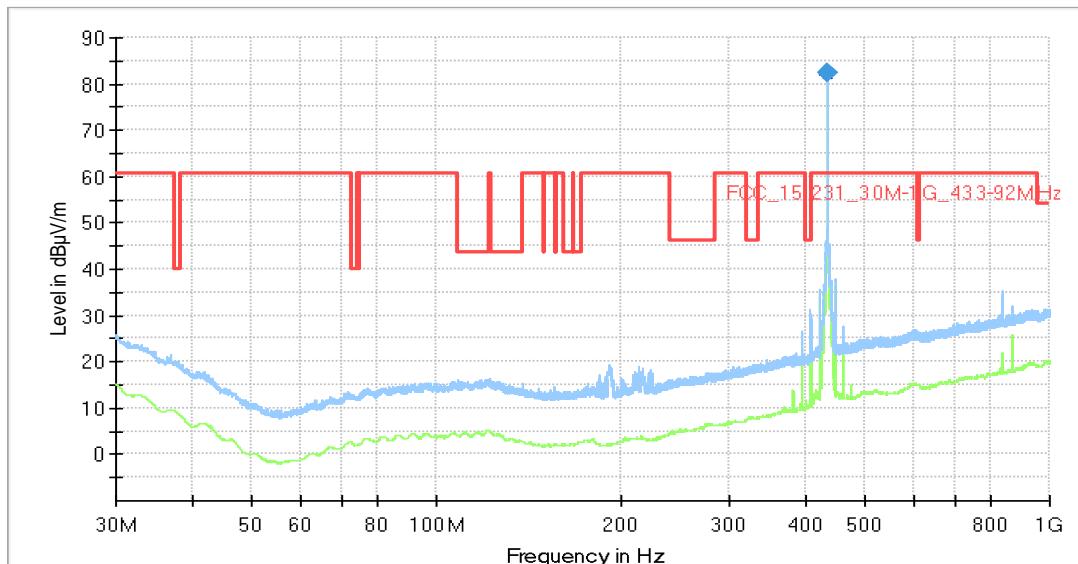
EUT / Setup Code:

DE1068023ac01

Operating Conditions:

Modulated TX on 433.92 MHz

Operator Name:


DOB

Comment:

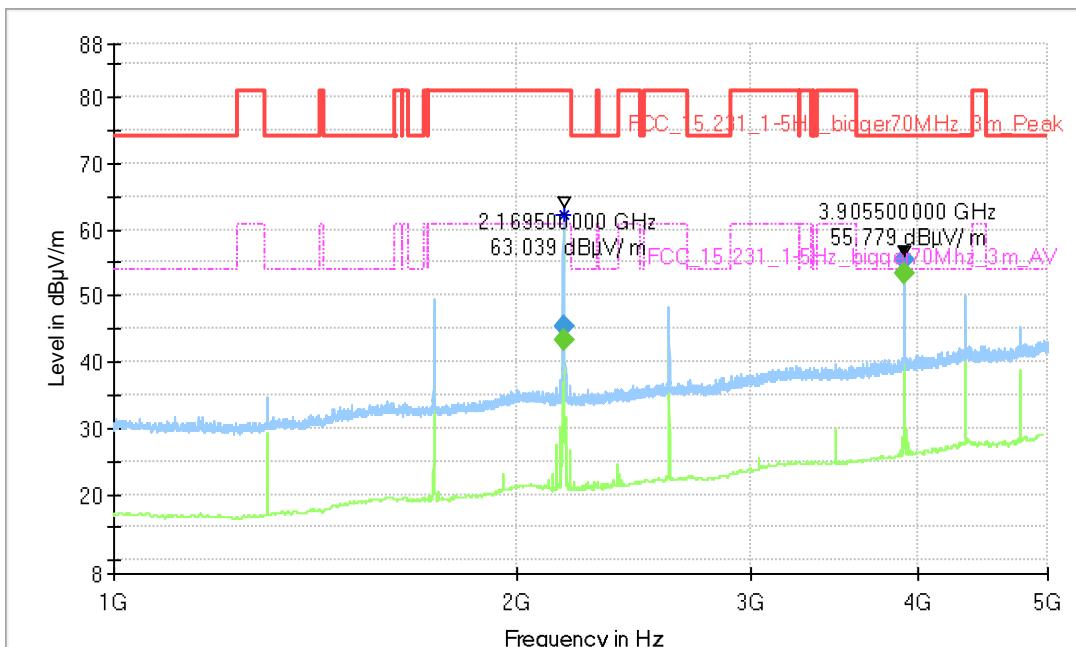
-

Legend:


Trace (preview): blue = PK, green = QP; Star: red or blue = critical frequency; Rhombus: blue = final QP

Final Result

Frequency (MHz)	QuasiPeak (dBμV/m)	DET 2 (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
-	-	-	-	-	-	-	-	-	-	-


Note: The peak value over the limit line is the modulated wanted carrier at 433 MHz.

Zoomed plot

4.2.4.3 RADIATED EMISSIONS (1 GHz < f < 5 GHz)

Test Description: Radiated Emissions @ 3 m, SAC + mobile floor absorber
 Test Standard: FCC 15c.231
 EUT / Setup Code: DE1068023ac01
 Operating Conditions: Modulated TX on 433.92 MHz
 Operator Name: DOB
 Comment: Test script FCC_15c.231_Radiated_Emissions-1GHz to 5 GHz
 Legend: loop plane vertical, vector in measurement axis directed to EUT

Final_Result

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2169.50000	---	43.30	60.79	17.49	200.0	1000.000	360.0	V	-140.0	5.0
2169.50000	45.27	---	80.79	35.52	200.0	1000.000	145.0	H	-156.0	5.0
3905.25000	---	53.46	54.00	0.54	200.0	1000.000	360.0	V	-140.0	11.9
3905.25000	55.52	---	74.00	18.48	200.0	1000.000	360.0	V	-140.0	11.9

4.2.5 Test Equipment used

- Radiated Emissions

4.3 MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Standard FCC Part 15, Subpart C

The test was performed according to:

ANSI C63.10-2013

4.3.1 Test Description

Please refer to sub-clause 4.1.1

4.3.2 TEST LIMITS

Please refer to sub-clause 4.1.2 FCC 15.231 b) applies.

4.3.3 TEST PROTOCOL

Temperature: 24 °C

Air Pressure: 1009 hPa

Humidity: 38 %

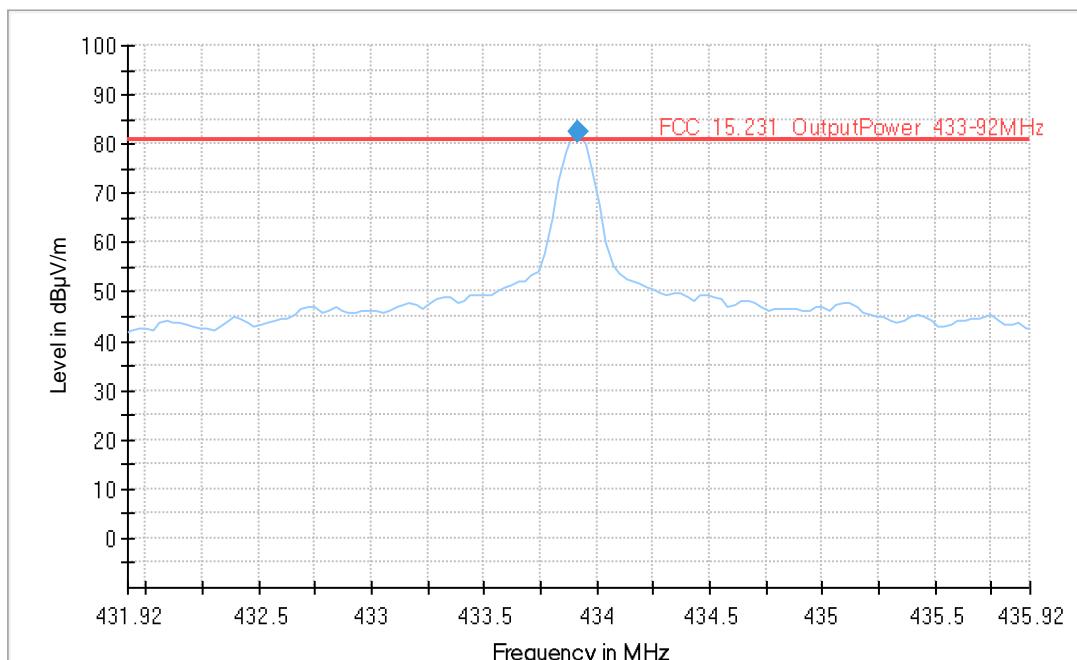
Op. Mode	Setup	Port
op-mode 1	Setup_02	Enclosure

Frequency [MHz]	Output power [dB μ V/m]	Limit [dB μ V/m]	Margin to Limit [dB]	Remarks
433.92	76.91	80.83	3.92	Maximum radiated field strength

Notes: The values shown in the table above are corrected by using the corresponding Duty Cycle Correction Factors, calculated in 4.1.3
 The EUT transmitted continuously modulated carrier.

4.3.4 TEST RESULT

MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY


FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

4.3.5 MEASUREMENT PLOTS

4.3.5.1 MAXIMUM RADIATED FIELD STRENGTH AT FUNDAMENTAL FREQUENCY

Common Information

Test Description:	Output Power
Test Standard:	FCC 15c.231
EUT / Setup Code:	DE1068023ac01
Operating Conditions:	CW_TX on 433.92MHz
Operator Name:	DOB
Comment:	-
Legend:	Trace (preview): blue = PK, green = QP; Star: red or blue = critical frequency; Rhombus: blue = final QP

Final Result – without Duty Cycle correction

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
433.92	82.5	80.83	-1.67	1000.0	120.000	102.0	H	57.0	17.5

Final Result – with Duty Cycle correction

Frequency (MHz)	QuasiPeak (dB μ V/m)	DC Corr. (dB)	QuasiPeak (dB μ V/m) corrected	Limit (dB μ V/m)	Margin (dB)
433.92	82.5	-5.59	76.91	80.83	3.92

Note: Duty Cycle correction factor, calculated in 4.1.3 is **-5.59 dB**.

4.3.6 Test Equipment used

- Radiated Emissions

4.4 OCCUPIED BANDWIDTH

Standard **FCC Part 15 Subpart C**

The test was performed according to:

ANSI C63.10-2013

4.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

For analyzer settings please see the measurement plots.

4.4.2 TEST LIMITS

FCC Part 15, Subpart C, §15.231(c)

The maximum 20 dB bandwidth of a transmitter operating at a frequency range:

70 to 900 MHz is 0.25% of the centre frequency

above 900 MHz is 0.5% of the centre frequency

4.4.3 TEST PROTOCOL

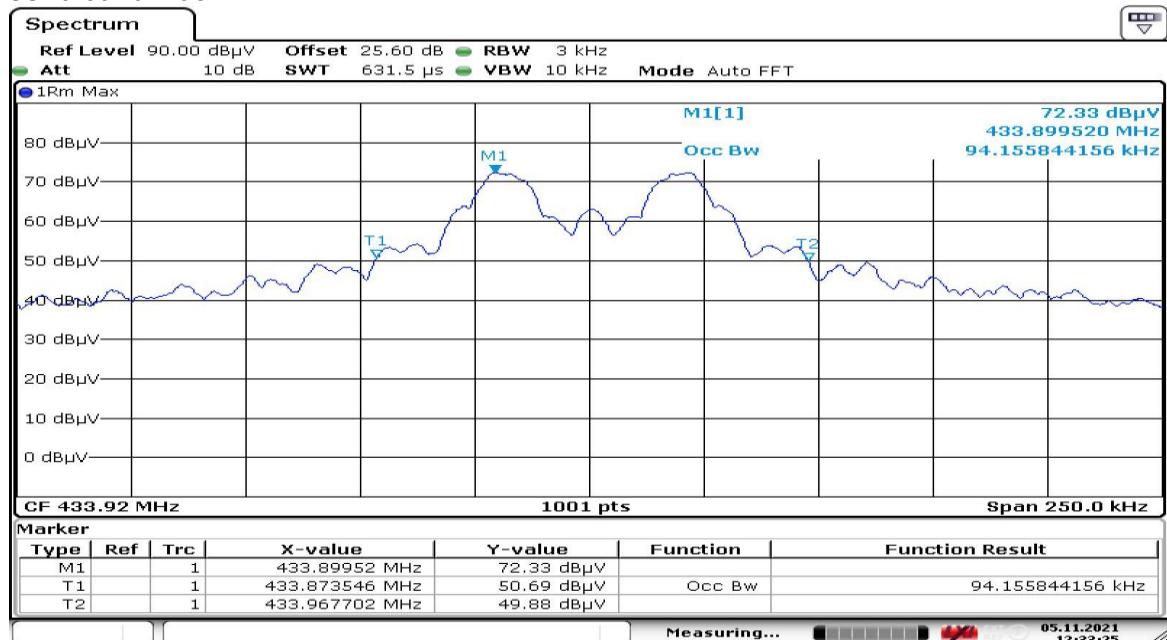
Temperature: 23 °C

Air Pressure: 1009 hPa

Humidity: 42 %

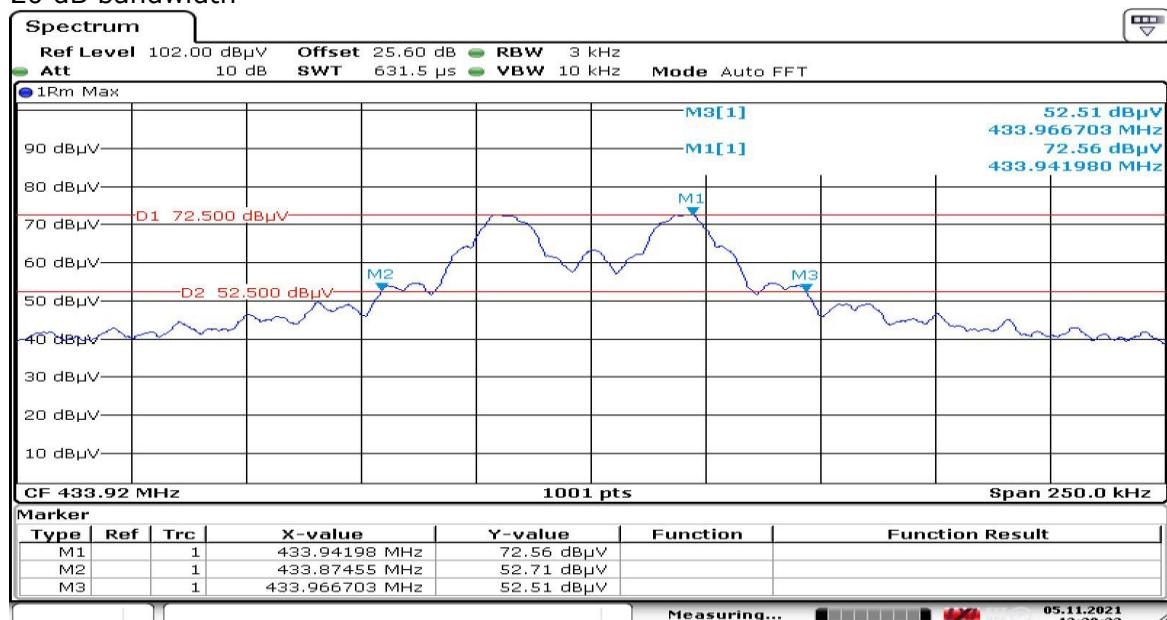
Op. Mode	Setup	Port
op-mode 2	Setup_01	Enclosure

Channel Frequency [MHz]	20 dB bandwidth [kHz]	99% bandwidth [kHz]	Limit [kHz]	Remarks
433.92	92.153	94.155	1084.8	Limit calculated as: 433.92 MHz (declared by applicant) * 0.25% = 1084.8 kHz.


Remark: Please see the measurement plots.

4.4.4 TEST RESULT: OCCUPIED BANDWIDTH

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed


4.4.5 MEASUREMENT PLOTS OCCUPIED BANDWIDTH

99% bandwidth

Date: 5.NOV.2021 12:33:26

20 dB bandwidth

Date: 5.NOV.2021 12:38:23

4.4.6 Test Equipment used

- Radio Lab

5 Test Equipment
 1 Radiated Emissions
 Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
1.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
1.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
1.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	2021-04	2023-04
1.5	FS-Z220	Harmonic Mixer 140 - 220 GHz	Rohde & Schwarz Messgerätebau GmbH	101005	2020-03	2023-03
1.6	AMF-7D00101800-30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
1.7	5HC2700/12750-1.5-KK	High Pass Filter	Trilithic	9942012		
1.8	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.9	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001-PRB	2021-04	2023-04
1.10	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
1.11	PONTIS Con4101	PONTIS Camera Controller		6061510370		
1.12	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
1.13	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
1.14	WHKX 7.0/18G-8SS	High Pass Filter	Wainwright Instruments GmbH	09		
1.15	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
1.16	4HC1600/12750-1.5-KK	High Pass Filter	Trilithic	9942011		
1.17	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2020-05	2022-05
1.18	JS4-00102600-42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		

1.19	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.20	HL 562 ULTRALOG	Biconical-log- per Antenna (30 MHz - 3 GHz)	Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05
1.21	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001		
1.22	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
1.23	MA4985-XP-ET	Bore Sight Antenna Mast	innco systems GmbH	none		
1.24	VLFX-650+	Low Pass Filter DC650 MHz	Mini-Circuits	15542		
1.25	JUN-AIR Mod. 6- 15	Air Compressor	JUN-AIR Deutschland GmbH	612582		
1.26	5HC3500/18000- 1.2-KK	High Pass Filter	Trilithic	200035008		
1.27	HFH2-Z2	Loop Antenna + 3 Axis Tripod	Rohde & Schwarz GmbH & Co. KG	829324/006	2021-01	2024-01
1.28	Voltcraft M- 3860M	Digital Multimeter 01 (Multimeter)	Conrad	IJ096055		
1.29	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2021-01	2023-01
1.30	SB4-100.OLD20- 3T/10 Airwin 2 x 1.5 kW	Air compressor (oil-free)	airWin Kompressoren UG	901/00503		
1.31	UNI-T UT195E	True RMS Digital Multimeter	UNI-T UNI- TREND TECHNOLOGY (CHINA) CO., LTD.	C190729561		
1.32	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.33	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
1.34	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/3790709		
1.35	Innco Systems CO3000	Controller for bore sight mast SAC	innco systems GmbH	CO3000/967/39371016/L		
1.36	HF 907-2	Double-ridged horn	Rohde & Schwarz	102817	2019-04	2022-04
1.37	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.38	AFS42- 00101800-25-S- 42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
1.39	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/11920513		

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Frequency	AF HFH-Z2)	Corr.	cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-40 dB/ decade)	d_{Limit} (meas. distance (limit))	d_{used} (meas. distance (used))
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

distance correction = $-40 * \text{LOG} (d_{\text{Limit}}/ d_{\text{used}})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.2 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

 (d_{Limit} = 3 m)

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit))	d _{used} (meas. distance (used))
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 (d_{Limit} = 10 m)

30	18.6	-9.9
50	6.0	-9.6
100	9.7	-9.2
150	7.9	-8.8
200	7.6	-8.6
250	9.5	-8.3
300	11.0	-8.1
350	12.4	-7.9
400	13.6	-7.6
450	14.7	-7.4
500	15.6	-7.2
550	16.3	-7.0
600	17.2	-6.9
650	18.1	-6.9
700	18.5	-6.8
750	19.1	-6.3
800	19.6	-6.3
850	20.1	-6.0
900	20.8	-5.8
950	21.1	-5.6
1000	21.6	-5.6

0.29	0.04	0.23	0.02	-10.5	10	3
0.39	0.09	0.32	0.08	-10.5	10	3
0.56	0.14	0.47	0.08	-10.5	10	3
0.73	0.20	0.59	0.12	-10.5	10	3
0.84	0.21	0.70	0.11	-10.5	10	3
0.98	0.24	0.80	0.13	-10.5	10	3
1.04	0.26	0.89	0.15	-10.5	10	3
1.18	0.31	0.96	0.13	-10.5	10	3
1.28	0.35	1.03	0.19	-10.5	10	3
1.39	0.38	1.11	0.22	-10.5	10	3
1.44	0.39	1.20	0.19	-10.5	10	3
1.55	0.46	1.24	0.23	-10.5	10	3
1.59	0.43	1.29	0.23	-10.5	10	3
1.67	0.34	1.35	0.22	-10.5	10	3
1.67	0.42	1.41	0.15	-10.5	10	3
1.87	0.54	1.46	0.25	-10.5	10	3
1.90	0.46	1.51	0.25	-10.5	10	3
1.99	0.60	1.56	0.27	-10.5	10	3
2.14	0.60	1.63	0.29	-10.5	10	3
2.22	0.60	1.66	0.33	-10.5	10	3
2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

 Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)
 distance correction = $-20 * \text{LOG} (\frac{d_{\text{Limit}}}{d_{\text{used}}})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.3 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

cable loss 1 (relay + cable inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit, attenuator & pre-amp)	cable loss 4 (to receiver)		
dB	dB	dB	dB		
0.99	0.31	-21.51	0.79		
1.44	0.44	-20.63	1.38		
1.87	0.53	-19.85	1.33		
2.41	0.67	-19.13	1.31		
2.78	0.86	-18.71	1.40		
2.74	0.90	-17.83	1.47		
2.82	0.86	-16.19	1.46		

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, attenuator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable loss 1 (relay inside chamber)	cable loss 2 (High Pass)	cable loss 3 (pre-amp)	cable loss 4 (inside chamber)	cable loss 5 (outside chamber)	cable loss 6 (to receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

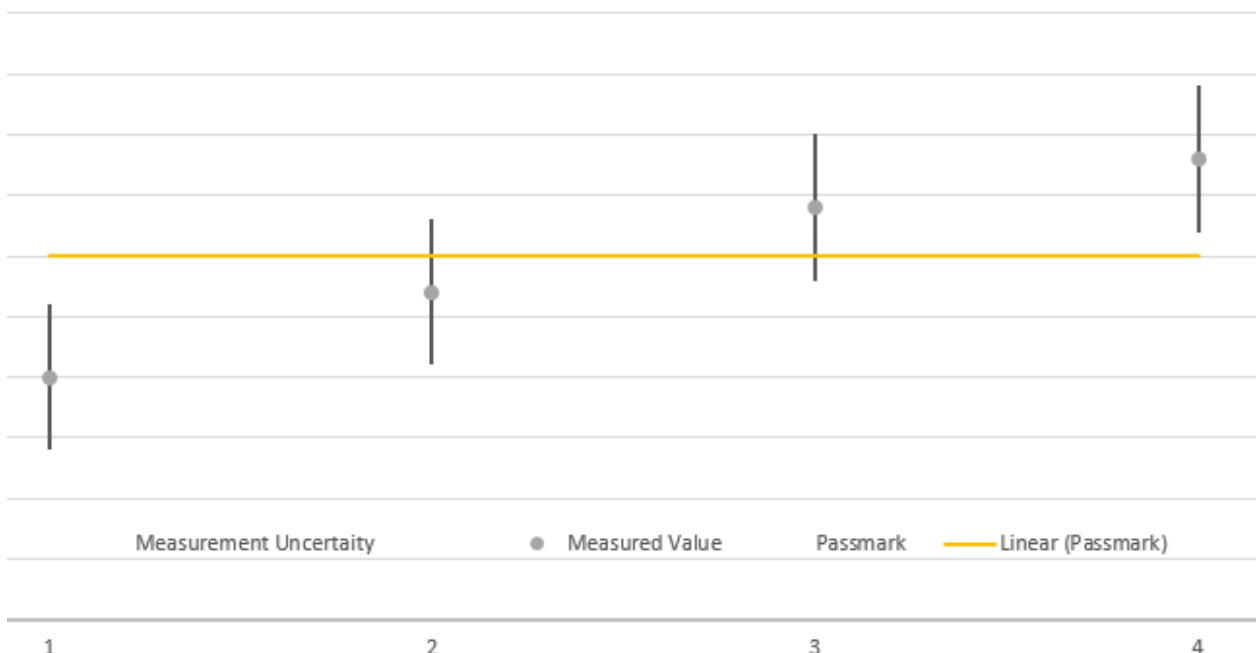
$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

 Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)
 Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.


7 PHOTO REPORT

Photos are included in an external report.

MEASUREMENT UNCERTAINTIES

Parameter	Uncertainty
Radio frequency	± 0.5 ppm
RF Power, conducted	± 1.5 dB
Unwanted Emissions, conducted	± 3.0 dB
All emissions, radiated	± 4.5 dB
Temperature	± 0.3 °C
Humidity	$\pm 3\%$
DC and low frequency voltages	$\pm 1.5\% + 2$ digits
Time	$\pm 5\%$
Duty Cycle	$\pm 5\%$
RF level uncertainty for a given BER	± 1.5 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) $k = 1.96$. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according to the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.