
TEST REPORT FOR SRD TESTING

Report No: SRTC2018-9004(F)-18082703(N)

Product Name: Passive Car Key

Product Model: HUF2725

Applicant: Huf Hülsbeck & Fürst GmbH & Co. KG

Manufacturer: Huf Hülsbeck & Fürst GmbH & Co. KG

Specification: FCC Part 15 Subpart C § 15.231

FCC ID: YGOHUF2725

The State Radio_monitoring_center Testing Center (SRTC)

15th Building, No.30, Shixing Street, Shijingshan District, Beijing, P.R.China

Tel: 86-10-57996183 Fax: 86-10-57996388

CONTENTS

1. GENERAL INFORMATION.....	2
1.1 Notes of the test report.....	2
1.2 Information about the testing laboratory.....	2
1.3 Applicant's details.....	2
1.4 Manufacturer's details.....	2
1.5 Test environment.....	3
2. DETAILS OF EQUIPMENT UNDER TEST.....	4
2.1 Final equipment builds status.....	4
2.2 Support equipment.....	4
2.3 Test Mode Applicability and Tested Channel Detail.....	4
2.4 Duty Cycle of Test Signal.....	7
3. REFERENCE SPECIFICATION.....	8
4. KEY TO NOTES AND RESULT CODES.....	8
5. RESULT SUMMARY.....	9
6. TEST RESULTS.....	10
6.1 Deactivation time measurement.....	10
6.2 Field Strength of Emissions.....	12
6.3 Bandwidth Requirement.....	18
7. MEASUREMENT UNCERTAINTIES.....	20
8. TEST EQUIPMENT.....	21

1. GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC).

The test results relate only to individual items of the samples which have been tested.

1.2 Information about the testing laboratory

Company:	The State Radio_monitoring_center Testing Center (SRTC)
Address:	15th Building, No.30 Shixing Street, Shijingshan District
City:	Beijing
Country or Region:	P.R.China
Contacted person:	Liu Jia
Tel:	+86 10 57996183
Fax:	+86 10 57996388
Email:	liujiaf@srtc.org.cn

1.3 Applicant's details

Company:	Huf Hüsbeck & Fürst GmbH & Co. KG
Address:	Steeger Straße 17 42551 Velbert
City:	Velbert
Country or Region:	Germany
Contacted person:	Thomas Herzog
Tel:	+49 (0)2051 272-877
Fax:	+49 (0)2051 272-700-877
Email:	Thomas.Herzog@huf-group.com

1.4 Manufacturer's details

Company:	Huf Hüsbeck & Fürst GmbH & Co. KG
Address:	Steeger Straße 17 42551 Velbert
City:	Velbert
Country or Region:	Germany
Contacted person:	Thomas Herzog
Tel:	+49 (0)2051 272-877
Fax:	+49 (0)2051 272-700-877
Email:	Thomas.Herzog@huf-group.com

1.5 Test environment

Date of Receipt of test sample at SRTC:	2018-08-27
Testing Start Date:	2018-08-28
Testing End Date:	2018-08-31

Environmental Data:	Temperature (°C)	Humidity (%)
Ambient	22-25	30-45

Normal Supply Voltage (V d.c.):	3.30
---------------------------------	------

2. DETAILS OF EQUIPMENT UNDER TEST

2.1 Final equipment builds status

Equipment Number	1
Operating Frequency	433.92MHz (TX) 125KHz (receiver)
Antenna Type	PCB Printed loop Antenna 3D coil antenna(receiver)
Antenna Gain	-15dBi
Modulation Type	FSK(TX) ASK(receiver)
Power Supply	Battery
Software Revision	1.08
Hardware Revision	004
SN	Sample1: 1#

Note: This model contains two styles, one is 3 buttons and the other is 2 buttons. The PCB, antenna, chip and modulation are all the same except for the quantity of button.

2.2 Support equipment

The following support equipment was used to exercise the EUT during testing:

Equipment	Battery / Button cell			
Manufacturer	Panasonic			
Model Number	CR 2032			
Serial Number	---			

2.3 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO					DESCRIPTION
	RE \geq 1G	RE < 1G	PLC	EB	DT	
-	✓	✓	-	✓	✓	Power by New Battery

Where: RE \geq 1G: Radiated Emission above 1GHz

RE < 1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

EB: 20dB Bandwidth measurement

DT: Deactivation Time measurement

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	FSK

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	FSK

Emission Band Width Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations.

Following channel(s) was (were) selected for the final test as listed below.

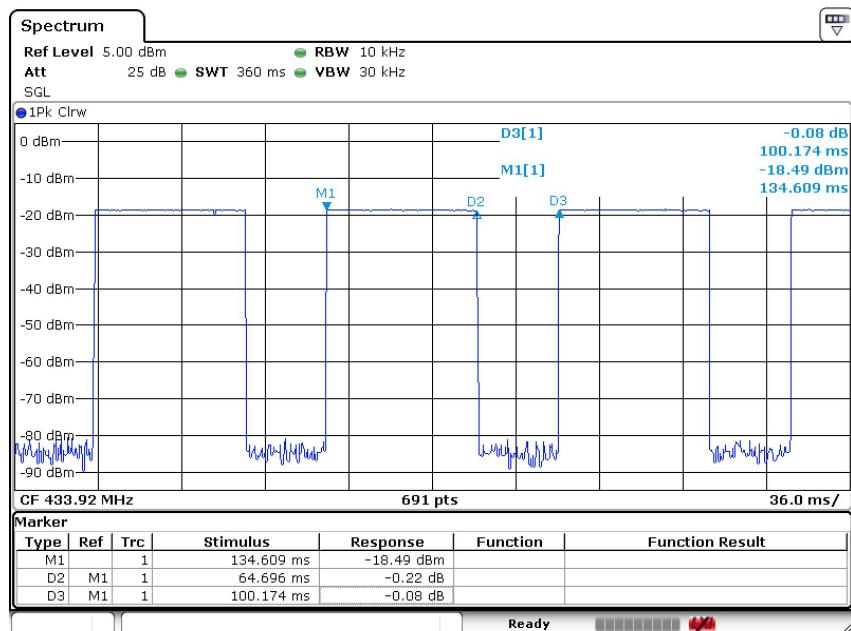
AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	FSK

Deactivation Time Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	FSK


2.4 Duty Cycle of Test Signal

FSK:

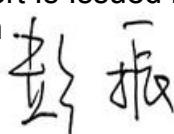
Duty cycle of test signal is < 98 %, duty factor shall be considered.

Duty cycle = 64 ms/100 ms = 0.64 * 100 % = 64%

Factor = $20 * \log(\text{duty cycle}) = 20 * \log(0.64) = -3.87 \text{ dB}$

3. REFERENCE SPECIFICATION

Specification	Version	Title
15.203	2018	Antenna Requirement
15.231(a)	2018	Deactivation time measurement
15.231(b)	2018	Field Strength Of Emissions
15.231(c)	2018	Bandwidth Requirement
ANSI C63.10	2013	Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices



4. KEY TO NOTES AND RESULT CODES

Code	Meaning
PASS	Test result shows that the requirements of the relevant specification have been met.
FAIL	Test result shows that the requirements of the relevant specification have not been met.
N/A	Test case is not applicable.
N/T	Test case is not tested.

5. RESULT SUMMARY

The following tables reflect the requirements of the relevant specification and show the tests performed. Result files verifying these verdicts are available for inspection at SRTC.

NO.	Item	Results
1	Antenna Requirement	PASS (No antenna connector is used)
2	Deactivation time measurement	PASS
3	Field Strength of Emissions	PASS
4	Bandwidth Requirement	PASS
5	Antenna Requirement	PASS

This Test Report Is Issued by: Mr. Peng Zhen 	Checked by: Mr. Li Bin
Tested by: Mr. Chang Taosha 	Issued date: 20180907

6. TEST RESULTS

6.1 Deactivation time measurement

6.1.1 Ambient condition

Temperature	Relative humidity	Pressure
23.0°C	32.0%	101.5kPa

6.1.2 Test conditions and test configuration

(a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:

- (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
- (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

6.1.3 Test limit

≤5s

6.1.4 Test data

The EUT is a remote switch without audio or video transmitted.

The EUT meets the requirements of this section (a).

Deactivation time:

Modulation Type	Frequency (MHz)	Transmission Time (Second)	Limit (Second)	Results
FSK	433.92	0.34	5.0	Pass

FSK

6.2 Field Strength of Emissions

6.2.1 Ambient condition

Temperature	Relative humidity	Pressure
24.8°C	42.4%	100.9kPa

6.2.2 Test conditions and test configuration

This is a radiated test. The spectrum was searched from 30MHz to the 10th harmonic (4.34GHz), up to 6GHz presented.

The EUT was evaluated in 3 Axis (X, Y, Z) being the “Z” Axis the worst test configuration and presented in this test report.

There are no emissions found that do not comply with the restricted bands defined in FCC Part 15 Subpart C, 15.205.

Only the considered worst case configuration presented for radiated emissions above 1GHz. Measurement was done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in.

The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter far distance for test. The table was rotated 360 degrees to determine the position of the highest radiation.

For the radiated emission test below 30MHz:

- The EUT was set 10 meters away from the interference-receiving antenna, which was Loop antenna with 1m height above the metal ground.
- For each suspected emission, the EUT was arranged to its worst case the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 30MHz.

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200Hz for frequency 9kHz-150kHz and 10kHz for the frequency 150KHz-30MHz with Quasi-peak detection (QP) at frequency below 30MHz.

For the radiated emission test below 1GHz:

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to quasi-peak detect function and specified bandwidth

with maximum hold mode when the test frequency is below 1 GHz.

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1GHz.

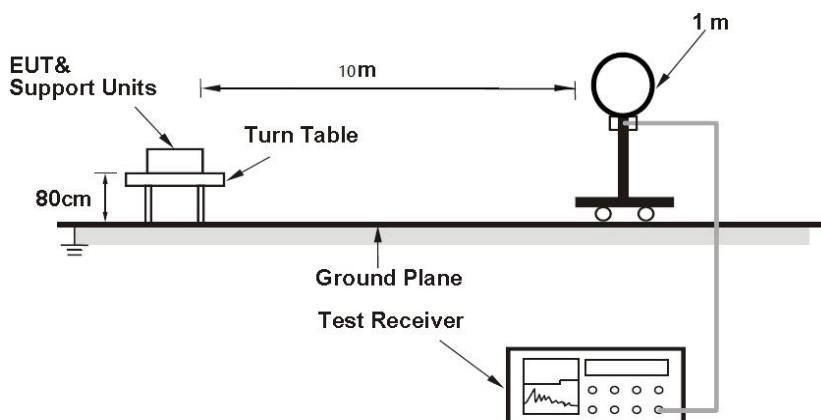
For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

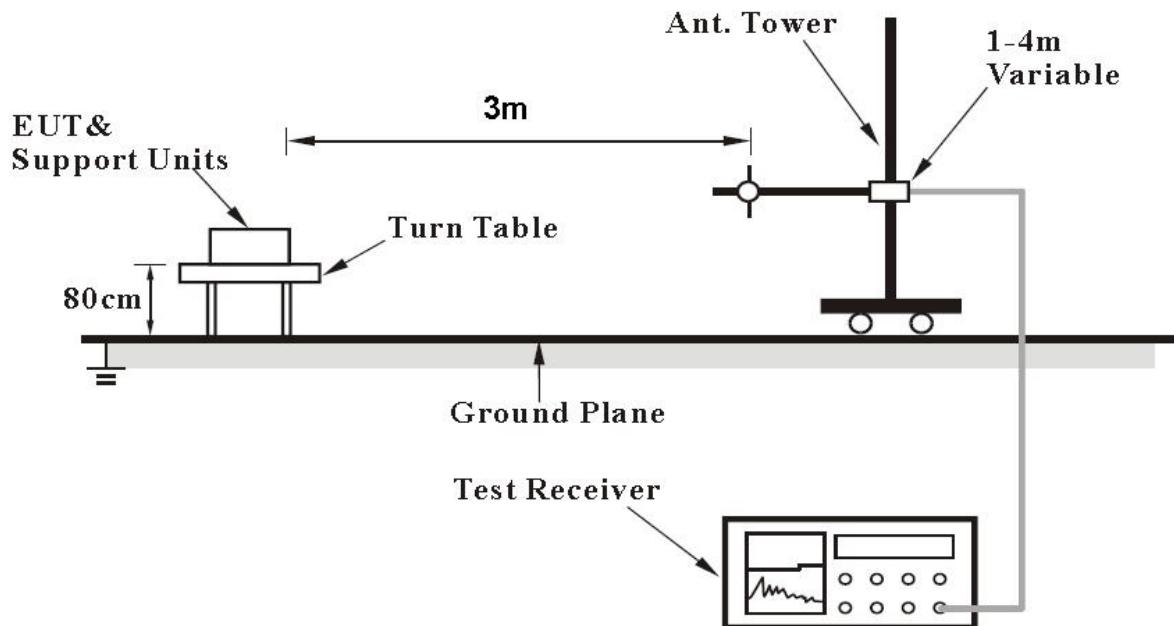
NOTE:

The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.

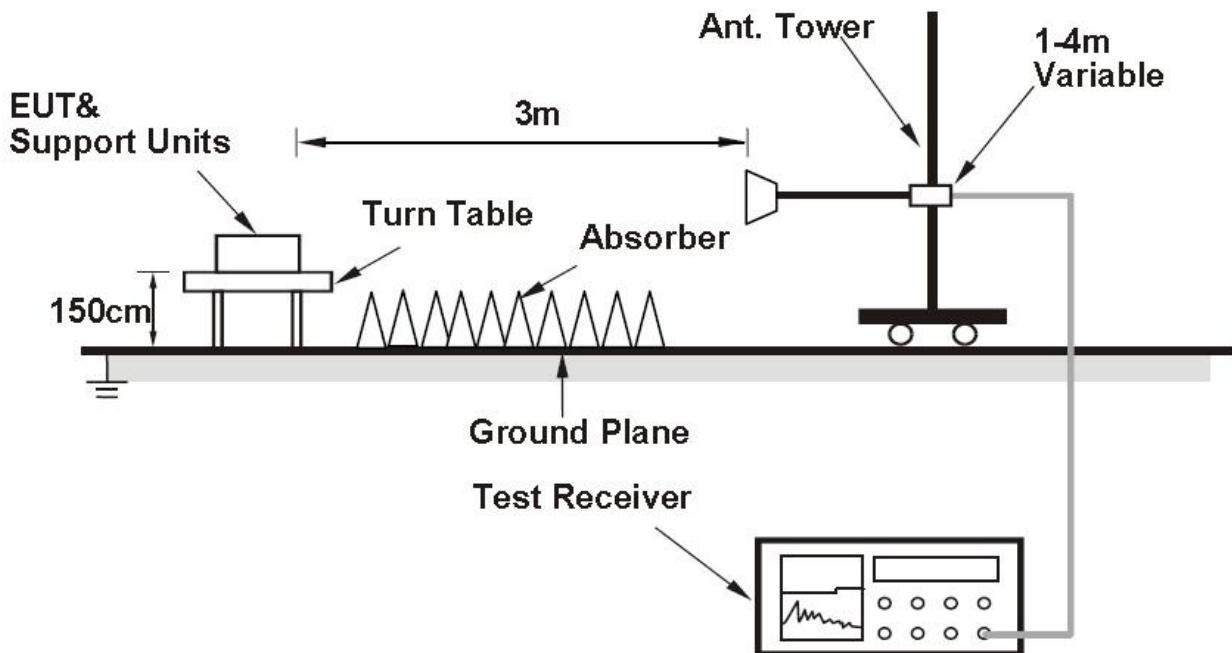
The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz. If duty cycle of test signal is < 98%, the duty factor need added to measured value.


AVERAGE: Peak Level + Duty Factor

All modes of operation were investigated and the worst-case emissions are reported.


The test-receiver system was set to peak and average detection function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

A “reference path loss” is established and the ARpl is the attenuation of “reference path loss”, and including the gain of receive antenna, the gain of the preamplifier, the cable loss. The measurement results are obtained as described below: Result= Pmea + ARpl


For radiated emission test below 30MHz

For radiated emission test below 1GHz

For radiated emission test above 1GHz

6.2.3 Test limit

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

For the fundamental emission and harmonic spurious emission

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹Linear interpolations.

Others emission Limit:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Frequency of Emission(MHz)	Limits	
	Detector	Unit (dB μ V/m)
0.009~0.490	Quasi-peak	107.6-72.9
0.490~1.705	Quasi-peak	52.9-42
1.705~30	Quasi-peak	48.5

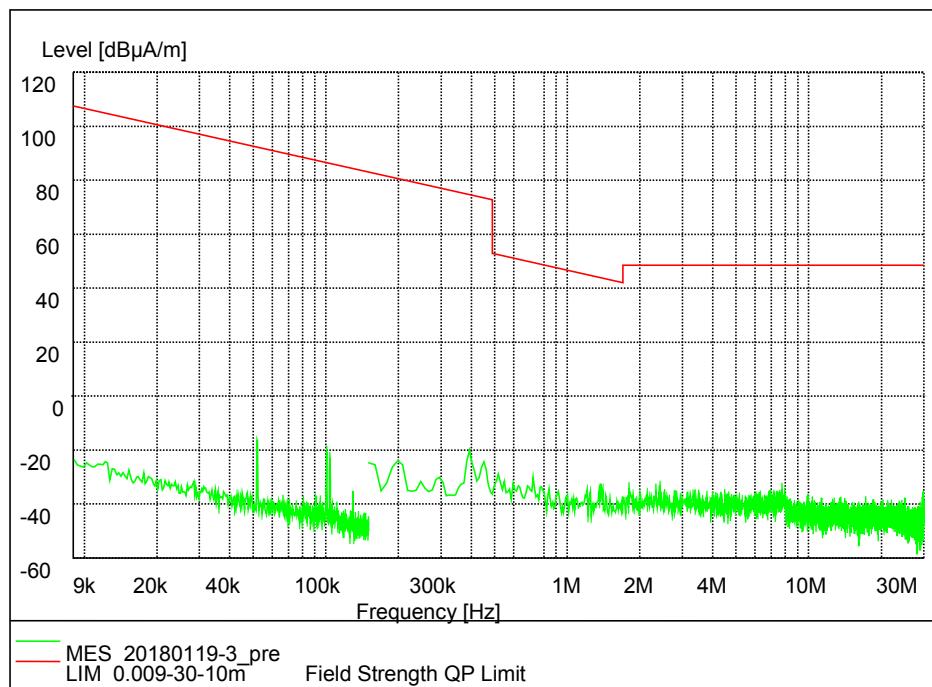
Note: The above field strength limits are specified at a distance of 10 meters.

RF Voltage (dB μ V) = 20 log RF Voltage (uV)

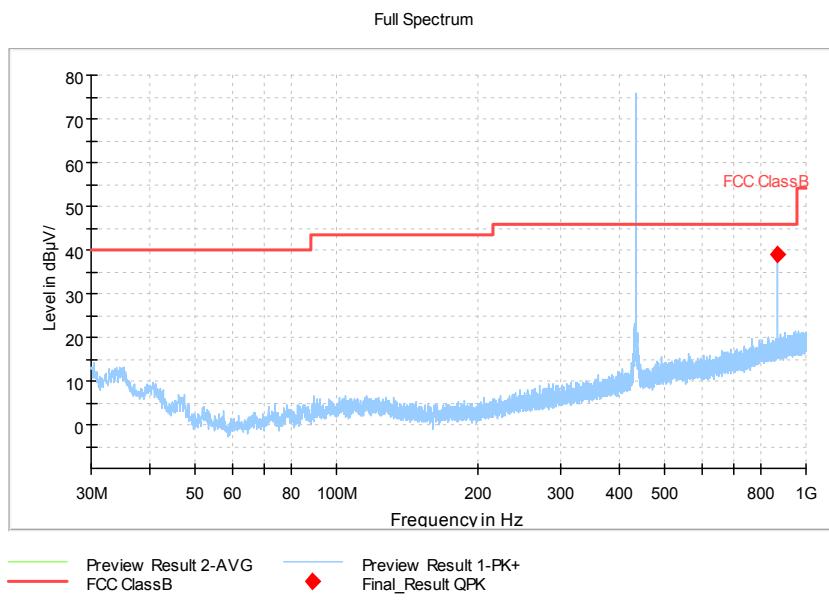
30~88	Quasi-peak	40
88~216	Quasi-peak	43.5
216~960	Quasi-peak	46
960~1000	Quasi-peak	54
1000~5th harmonic of the highest frequency or	Average	54

Note: The above field strength limits are specified at a distance of 3 meters.

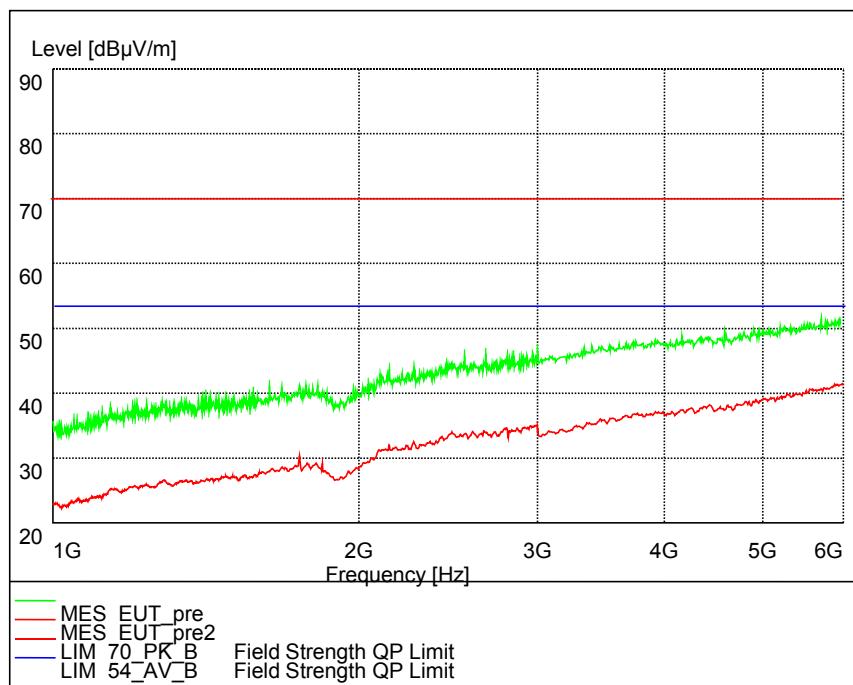
RF Voltage (dB μ V) = 20 log RF Voltage (uV)


Average (dB μ V/m) = Peak (dB μ V/m) – Duty Cycle Factor (dB)

6.2.4 Test data


FSK

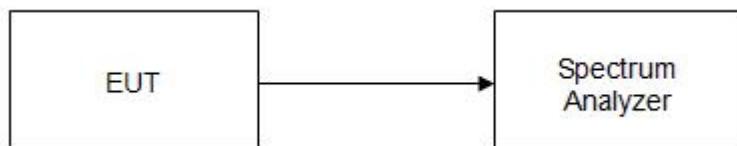
Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	Pmea (dBuV/m)	Polarity
433.92	76.64	-3.50	80.14	Vertical
867.89	39.14	-6.10	45.24	Vertical


FSK

Radiated emission (0.009MHz – 30MHz)

Radiated emission (30MHz – 1GHz)

Radiated emission (1GHz – 6GHz)


6.3 Bandwidth Requirement

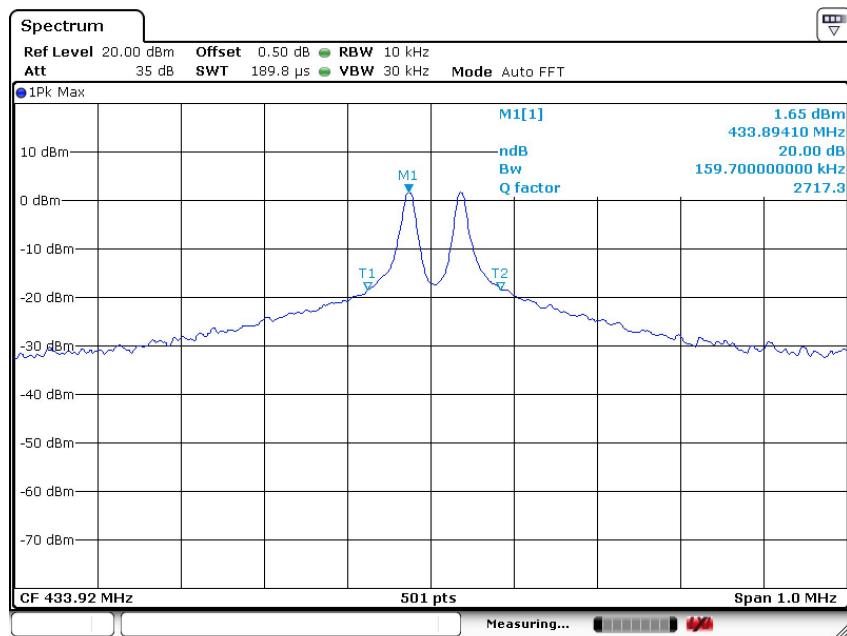
6.3.1 Ambient condition

Temperature	Relative humidity	Pressure
23.0°C	32.0%	101.5kPa

6.3.2 Test conditions and test configuration

(c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz for devices operating above 900 MHz; the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

6.3.3 Test limit


The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz

Bandwidth limit: $433.92\text{MHz} \times 0.25\% = 1.0848\text{MHz}$

6.3.4 Test data

Modulation Type	Transmitter Frequency (MHz)	Measured 20dB Bandwidth (kHz)	0.25% of the centre frequency requirement (kHz)	Results
FSK	433.92	159.70	1084.8	Pass

FSK

7. MEASUREMENT UNCERTAINTIES

Item	Uncertainty
Deactivation time measurement	0.045 ms
Modulation bandwidth	0.30 kHz
Radiated Emission Measurements 30MHz~1GHz	4.88 dB
Radiated Emission Measurements 1GHz~18GHz	4.86 dB

Uncertainty figures are valid to a confidence level of 95%, k=2

8. TEST EQUIPMENT

Conformance testing was performed using test equipment calibrated in accordance with CNAS accreditation requirements. Calibration, configuration records and equipment details used for conformance testing are available for inspection at SRTC if required.

No.	Equipment Name Model	Manufacturer	Serial Number	Calibration Date	Calibration Due Date
1.	FSV-SIGNAL ANALYZER	R&S	101065	2018.08.20	2019.08.19
2.	Cable 104EA	SUCOFLEX	9272/4EA	2018.08.20	2019.08.19
3.	23.18m×16.88m×9.60m Semi-Anechoic Chamber	FRANKONIA	---	----	----
4.	Turn table Diameter:5m	HD	----	----	----
5.	Antenna master SAC(MA4.0)	MATURO	----	----	----
6.	9.080m×5.255m×3.525m Shielding room	FRANKONIA	----	----	----
7.	HF 906 Double-Ridged Waveguide Horn Antenna	R&S	100030	2018.08.20	2019.08.19
8.	HL562 Ultra log antenna	R&S	100016	2018.08.20	2019.08.19
9.	3160-09 Receive antenna	SCHWARZ-BECK	002058-002	2018.08.20	2019.08.19
10.	ESI 40 EMI test receiver	R&S	100015	2018.08.20	2019.08.19
11.	ESCS30 EMI test receiver	R&S	100029	2018.08.20	2019.08.19
12.	ESH3-Z5 LISN	R&S	100020	2018.08.20	2019.08.19
13.	HFH2-Z2	R&S	100340	2018.08.20	2019.08.19

---End of Test Report---