

Appendix B. Maximum Permissible Exposure

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.25 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 \times P \times G}}{d}$$

$$\text{Power Density: } Pd \text{ (W/m}^2\text{)} = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

For 5GHz UNII Band: (15.407)

For Ant. 3:

Antenna Type : Omni- directional

Max Conducted Power for IEEE 802.11a Connector 1 + Connector 3 : 20.98 dBm

Directional Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
9.01	7.9621	20.9796	125.3033	0.198583	1	Complies

For Ant. 4:

Antenna Type : Parabolic

Max Conducted Power for IEEE 802.1111n MCS8 20MHz Connector 1 + Connector 3 : 13.88 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
16.10	40.7380	13.8839	24.4562	0.198308	1	Complies

For 5GHz ISM Band: (15.247)

For Ant. 3:

Antenna Type : Omni- directional

Max Conducted Power for IEEE 802.11n MCS8 20MHz Connector 1 + Connector 3 : 26.86 dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
6.00	3.9811	26.8646	485.8022	0.384955	1	Complies

For Ant. 4:

Antenna Type : Parabolic

Max Conducted Power for IEEE 802.11a Connector 1 + Connector 3 : 7.89 dBm

Directional Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
19.11	81.4761	7.8903	6.1521	0.099771	1	Complies

For 2.4GHz Band:

For Ant. 1:

Antenna Type : Omni- directional

Max Conducted Power for IEEE 802.11b/g Connector 1 + Connector 3 : 24.21 dBm

Directional Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
8.01	6.3246	24.2103	263.6485	0.331899	1	Complies

For Ant. 2:

Antenna Type : Panel

Max Conducted Power for IEEE 802.11b/g Connector 1 + Connector 3 : 23.34 dBm

Directional Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
10.51	11.2468	23.3405	215.7985	0.483091	1	Complies

For Ant. 3:

Antenna Type : Omni- directional

Max Conducted Power for IEEE 802.11b/g Connector 1 + Connector 3 : 22.31 dBm

Directional Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
8.01	6.3246	22.3070	170.1002	0.214134	1	Complies

CONCLUSION:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

$$CPD1 / LPD1 + CPD2 / LPD2 + \dots \text{etc.} < 1$$

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is $0.483091 / 1 + 0.384955 / 1 = 0.868046$, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.