

TEST REPORT

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-12076-01-03

Test report no.: 1-5326/17-01-03-C

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Phoenix Contact GmbH & Co.KG

Flachsmarktstraße 8 32825 Blomberg / GERMANY Phone: +49 (0) 52 35 3-00 Fax: +49 (0) 52 35 3-30 99 9

Contact: Andreas Pape

e-mail: apape@phoenixcontact.com Phone: +49 (0) 5281 9 46-1545

Manufacturer

Silex Technology, Inc.

2-3-1 Hikaridai, Seika-cho Sourakugun

619-0237 Kyoto / JAPAN

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

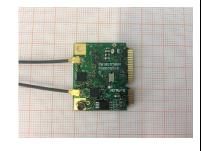
Kind of test item: WLAN module

Model name: SX-PCEAN2

FCC ID: YG3-SXPCEAN2

IC: 4720B-SXPCEAN2

Frequency: UNII bands:


5150MHz to 5250MHz & 5725MHz to 5850MHz

Technology tested: WLAN (OFDM/a-; n HT20- & n HT40-mode)

Antenna: 2 external antennas

Power supply: 2.805 V to 3.795 V DC, by Evaluation Board

Temperature range: 0°C to +60°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Marco Bertolino	David Lang

Lab Manager Radio Communications & EMC Lab Manager Radio Communications & EMC

Table of contents

1	Table of contents				
2	Genera	al information			
		Notes and disclaimer			
	2.2	Application details	3		
	2.3	Test laboratories sub-contracted	3		
3	Test st	andard/s and references	4		
4	Test e	nvironment			
5	Test it	em			
		General description			
		Additional information			
6	Descri	ption of the test setup			
	6.1	Shielded fully anechoic chamber			
		Conducted measurements with peak power meter & spectrum analyzer			
7	Measu	rement uncertainty			
8	Summ	ary of measurement results	10		
9	Additio	onal comments	11		
10	Mea	surement results	14		
	10.1	Testability check			
	10.2	Identify worst case data rate			
	10.3 10.4	Antenna gain Duty cycle			
	10.4	Maximum output power			
	10.5.1	Maximum output power according to FCC requirements			
	10.5.2	Maximum output power according to IC requirements			
	10.6	Emissions in restricted frequency bands < 30MHz (radiated)			
	10.7	Emissions in restricted frequency bands > 30 MHz (conducted)	68		
11	Obs	ervations	98		
Anr	nex A	Glossary	98		
Anr	nex B	Document history	99		
Anr	nex C	Accreditation Certificate	99		

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-5326/17-01-03-B and dated 2018-07-06.

2.2 Application details

Date of receipt of order: 2017-11-21
Date of receipt of test item: 2017-11-21
Start of test: 2017-11-21
End of test: 2018-05-16

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 99

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
UNII: KDB 789033 D02	v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American national standard for methods of measurement of radio-
ANSI C63.4-2014	-/-	noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices
KDB 662911 D01	v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
KDB 412172 D01	V01r01	Guidelines for determining the effective radiated power (erp) and equivalent isotopically radiated power (eirp) of an RF transmitting system

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests No testing under extreme conditions required! No testing under extreme conditions required!
Relative humidity content	:		42 %
Barometric pressure	:		Not relevant for testing
		V_{nom}	24.0 V DC by external power supply
Power supply	:	V_{max}	No testing under extreme conditions required!
		V_{min}	No testing under extreme conditions required!

© CTC advanced GmbH Page 4 of 99

5 Test item

5.1 General description

Kind of test item :	WLAN module					
Type identification :	SX-PCEAN2	SX-PCEAN2				
HMN :	-/-					
PMN :	SX-PCEAN2					
HVIN :	SX-PCEAN2					
FVIN :	1.0.3.0.2					
S/N serial number :	Rad. M7086839; Cond. M7086839					
HW hardware status :	ZXE03263 (separation of	of HW by changing of order	code)			
SW software status :	RF test software					
Frequency band :	UNII bands: 5150MHz to 5250MHz 8	& 5725MHz to 5850MHz				
Type of radio transmission: Use of frequency spectrum:	OFDM					
Type of modulation :	(D)BPSK, (D)QPSK, 16	– QAM, 64 – QAM				
Number of channels :	5 GHz 21 (802.11 a/n20	0), 9 (802.11 n40)				
	variant of Omni-directio	The device is equipped with two external antenna ports and will be sold with a variant of Omni-directional and Directional Antennas:				
	Antenna name	Туре	Gain [dBi]			
	ANT-OMNI-2459-02	Rod Antenna	2.5 @ 2.4 GHz 5 @ 5 GHz			
Antonno	ANT-OMNI-5900-01	Rod Antenna	5 @ 5 GHz			
Antenna :	ANT-DIR-2459-01	Directional	9 @ 2.4 GHz 9 @ 5 GHz			
	For the purpose of testing the antenna with the highest gain for any type of antenna is considered: Rod Antenna (5 dBi) Directional Antenna (9 dBi)					
Power supply :	2.805 V to 3.795 V DC,	2.805 V to 3.795 V DC, by Evaluation Board				
Temperature range :	0°C to +60°C					

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-5326/17-01-01_AnnexA

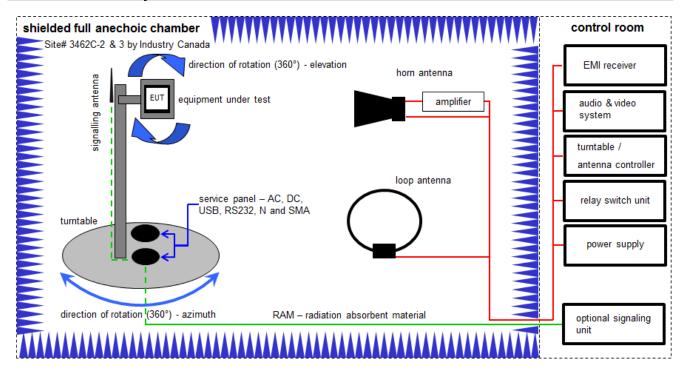
1-5326/17-01-01_AnnexB 1-5326/17-01-01_AnnexD

© CTC advanced GmbH Page 5 of 99

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 99

6.1 Shielded fully anechoic chamber

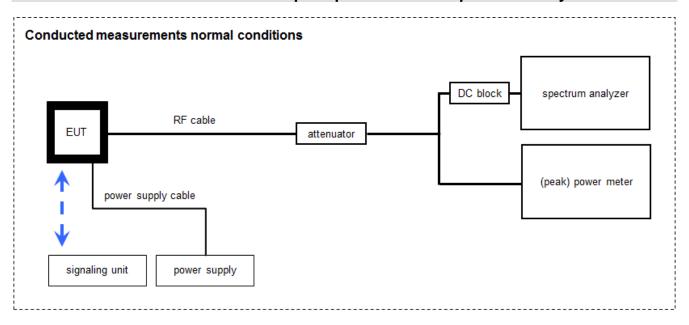
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	07.07.2017	06.07.2019
2	Α	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04590	300001041	vIKI!	14.12.2017	13.12.2020
3	А	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
4	Α	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
5	А	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
6	Α	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
7	Α	Anechoic chamber		TDK		300003726	ne	-/-	-/-
8	А	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	14.12.2017	13.12.2018
9	Α	RF Amplifier	AFS4-00100800-28- 20P-4-R	MITEQ	2008992	300005204	ne	-/-	-/-

© CTC advanced GmbH Page 7 of 99

6.2 Conducted measurements with peak power meter & spectrum analyzer

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Power Meter	NRP	R&S	101367	300003678	k	18.12.2017	17.12.2018
2	А	Leistungsmeßkopf + Dämpfungsglied 30 dB	NRP-Z22	R&S	100227	300003686	k	11.12.2017	10.12.2018
3	A,B,C	DC Power Supply 0 - 32V	1108-32	Heiden Elektronik	001702	300001392	vIKI!	26.01.2017	25.01.2020
4	В	PC-WLAN Tester	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A45 23	300004589	ne	-/-	-/-
5	В	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH		300004590	ne	-/-	-/-
6	В	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
7	B+C	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev	-/-	-/-
8	В	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits		400001186	ev	-/-	-/-
9	В	Signal Analyzer 40 GHz	FSV40	R&S	101353	300004819	k	12.12.2017	11.12.2019
10	В	RF-Cable WLAN- Tester Port 1	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 1273777	400001249	ev	-/-	-/-
11	С	PXA Spectrum Analyzer 3Hz to 50GHz	N9030A PXA Signal Analyzer	Agilent Technologies	US51350267	300004338	k	05.03.2018	04.03.2019

© CTC advanced GmbH Page 8 of 99

7 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Power spectral density	± 1.5 dB				
Spectrum bandwidth	± 100 kHz (depends on the used RBW)				
Occupied bandwidth	± 100 kHz (depends on the used RBW)				
Maximum output power	± 1.5 dB				
Minimum emissions bandwidth	± 100 kHz (depends on the used RBW)				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

© CTC advanced GmbH Page 9 of 99

Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 247, Issue 2	See table	2018-08-24	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
-/-	Output power verification (cond.)	Nominal	Nominal		-/-			-/-
-/-	Antenna gain	Nominal	Nominal		As per d	ata sheet!		-/-
U-NII Part 15	Duty cycle	Nominal	Nominal		-	/-		-/-
§15.407(a) RSS – 247 (6.2.1.1) RSS – 247 (6.2.2.1) RSS – 247 (6.2.3.1) RSS – 247 (6.2.4.1)	Maximum output power (conducted & radiated)	Nominal	Nominal	\boxtimes				-/-
§15.407(a) RSS – 247 (6.2.1.1) RSS – 247 (6.2.2.1) RSS – 247 (6.2.3.1) RSS – 247 (6.2.4.1)	Power spectral density	Nominal	Nominal				\boxtimes	-/-
RSS – 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth	Nominal	Nominal				\boxtimes	-/-
§15.407(a) RSS – 247 (6.2.1.2)	Spectrum bandwidth 26dB bandwidth	Nominal	Nominal				\boxtimes	-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth	Nominal	Nominal		-	/-		-/-
§15.205 RSS – 247 (6.2.1.2) RSS – 247 (6.2.2.2) RSS – 247 (6.2.3.2) RSS – 247 (6.2.4.2)	Band edge compliance	Nominal	Nominal	\boxtimes				*2
§15.407(b) RSS – 247 (6.2.1.2) RSS – 247 (6.2.2.2) RSS – 247 (6.2.3.2) RSS – 247 (6.2.4.2)	TX spurious emissions	Nominal	Nominal	\boxtimes				*2
§15.109 RSS-Gen	RX spurious emissions radiated	Nominal	Nominal				\boxtimes	*1
§15.209(a) RSS-Gen	Spurious emissions < 30 MHz	Nominal	Nominal	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions < 30 MHz	Nominal	Nominal				\boxtimes	*1
§15.407 RSS – 247 (6.3)	DFS	Nominal	Nominal				\boxtimes	*3

Notes:

_								
	C:	Compliant	NC:	Not compliant	NA:	Not applicable	NP:	Not performed

© CTC advanced GmbH Page 10 of 99

^{*1} As per module report
*2 Restricted band measurements are performed in a conducted way.
*3 Only non-DFS channels supported by the device.

9 Additional comments

Reference documents: Module Report: F161629E1 2ndVersion.pdf issued by Phoenix TESTLAB,

2017-04-18.

Antenna specification:

ANT-DIR-2459-01-2701186_expanded

ANT-OMNI-2459-02-2701408_Datasheet Radiation Pattern -

Preliminary

ANT-OMNI-5900-01-2701347_expanded RAD-ISM-2400-ANT-OMNI-2-1-RSMA-2701362 RAD-ISM-2400-ANT-OMNI-6-0-2885919

RAD-ISM-2400-ANT-VAN-3-0-RSMA - 2701358

Special test descriptions: For conducted measurements two operating modes are considered:

OP1: Single antenna operation (for 9dBi Directional-Antenna) OP2: Dual antenna operation (for two 5dBi Omni-Antennas)

For unwanted emission measurements a correction factor of 9dB is considered to account for both antenna configurations. Hence, with regards to OP2, the results correspond to an overestimation of 1dB (5 dBi + $10*\log(2) = 8 dBi$).

Radiated measurements were performed with the directional antenna (ANT-DIR-2459-01-2701186) and the omni-antenna (ANT-OMNI-5900-01-

2701347_expanded) to represent the worst case configuration for each antenna

type/structure with regards to the antenna gain.

Configuration descriptions: Power Settings vs. Data Rate vs. Frequency

Center Frequency [MHz]											
Mode	5180	5240	5260	5300	5320	5500	5580	5700	5745	5785	5825
a-mode	12.5	12.5	-/-	-/-	-/-	-/-	-/-	-/-	12.5	12.5	12.5
n20-mode	13.5	13.5	-/-	-/-	-/-	-/-	-/-	-/-	13	13	13
	5190	5230	5310	5510	5630	5670	5755	5795			
n40-mode	11.5	11.5	-/-	-/-	-/-	-/-	11.0	11.0			

© CTC advanced GmbH Page 11 of 99

Provided channels:

Channels with 20 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz) channel number & centre frequency							
channel	36	40	44	48			
f _c / MHz	5180	5200	5220	5240	- /-		

U-NII-3 (5725 MHz to 5850 MHz) channel number & centre frequency							
channel	149	153	157	161	165		
f _c / MHz	5745	5765	5785	5805	5825		

Channels with 40 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz) channel number & centre frequency						
channel	38	46	-/-			
f _c / MHz	5190	5230	-7-			

U-NII-3 (5725 MHz to 5850 MHz) channel number & centre frequency						
channel	151	159				
f _c / MHz	5755	5795				

© CTC advanced GmbH Page 12 of 99

Test mode:		No test mode available. Iperf was used to ping another device with the largest support packet size
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into consult when performing the contains the contains the statement of the contains the co

© CTC advanced GmbH Page 13 of 99

10 Measurement results

10.1 Testability check

Description:

Comparison of the first assessment with the current product based on the performance and decision of the test ability.

Measurement:

Measurement parameters				
AVG Power Meter				
Test setup	See chapter 6.2 – A			
Measurement uncertainty	See chapter 8			

Limits:

Main report value -2 dB / +1 dB

Results:

a-mode, 9Mbit/s, UNII Band 1, Antenna 0

T_nom	V_{nom}	lowest channel	middle channel	highest channel				
	OFDM (20MHz mode (Antenna 0)							
	oower / dBm 629E2 3 rd Version	10.8	10.9	10.3				
	oower / dBm k – delta sample	11.1	10.6	10.2				

a-mode, 9Mbit/s, UNII Band 3, Antenna 0

T _{nom}	V_{nom}	lowest channel	middle channel	highest channel				
	OFDM (20MHz mode (Antenna 0)							
Conducted power / dBm Main report F161629E2 3 rd Version		10.1	10.4	9.9				
Conducted power / dBm Test ability check – delta sample		10.0	10.0	9.5				

© CTC advanced GmbH Page 14 of 99

a-mode, 9Mbit/s, UNII Band 1, Antenna 1

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel
	OFD	M (20MHz mode (Ante	enna 1)	
Conducted power / dBm Main report F161629E2 3 rd Version		11.9	12.1	12.1
Conducted power / dBm Test ability check – delta sample		11.2	11.6	11.7

10.2 Identify worst case data rate

Worst case data rate as specified in referential test report (see section 9).

Results:

	Modulation scheme / bandwidth					
OFDM – mode	U-NII-1 & U-NII-2A		U-NII-2C		U-NII-3	
	Low channel	high channel	Low channel	high channel	Low channel	high channel
a – mode	9Mbit/s	9Mbit/s			9Mbit/s	9Mbit/s
n/ac HT20 – mode	13Mbit/s	13Mbit/s	· · · · ·		13Mbit/s	13Mbit/s
n/ac HT40 – mode	26Mbit/s	26Mbit/s			26Mbit/s	2Mbit/s

© CTC advanced GmbH Page 15 of 99

10.3 Antenna gain

As specified by the manufacturer (see section 5.1 & 9).

Limit:

Antenna Gain
6 dBi / > 6 dBi output power and power density reduction required

10.4 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

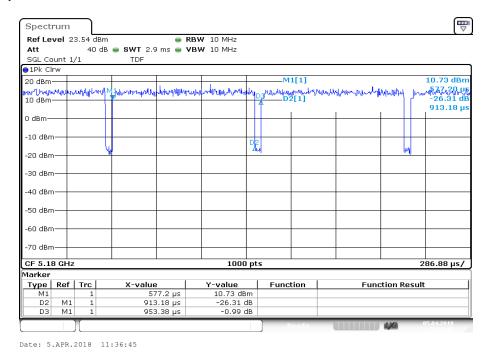
Measurement parameter			
According to: KDB789033 D02, B.			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	10 MHz		
Video bandwidth:	10 MHz		
Span:	Zero		
Trace mode:	Video trigger / view / single sweep		
Used test setup:	See chapter 6.2 – B		
Measurement uncertainty:	See chapter 8		

Results:

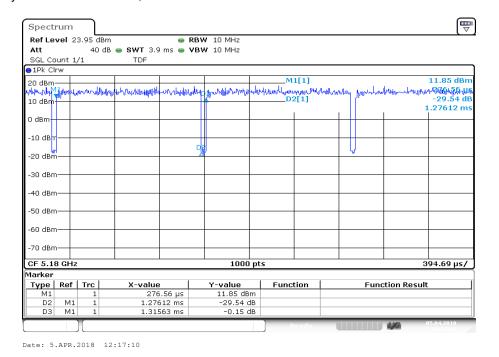
Duty cycle and correction factor:

Calculation method				n method		
	OFDM - mode	$T_{on} (D2_{plot}) * 100 / T_{complete} (D3_{plot}) = duty cycle$ $10 * log(duty cycle) = correction factor$ $T_{on} (D2_{plot})$ $T_{complete} (D3_{plot})$ $T_{complete} (D3_{plot})$ $T_{complete} (D3_{plot})$				
	a – mode	913 µs	954 µs	95.8 %	0.2 dB	
	n/ac HT20 – mode	1276 µs	1316 µs	97.0 %	0.1 dB	
	n/ac HT40 – mode	634.6 µs	664.5 µs	95.5 %	0.2 dB	

© CTC advanced GmbH Page 16 of 99

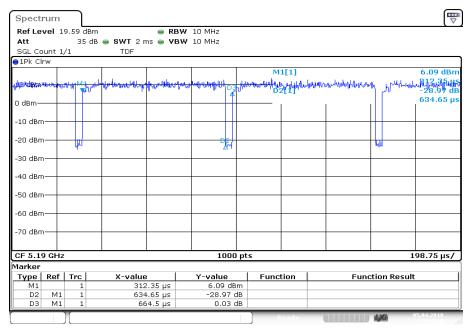


Plots:


Plot 2:

Duty cycle and correction factor (example for one channel & one antenna port):

Plot 1: duty cycle of the transmitter; a – mode


duty cycle of the transmitter; n/ac HT20 - mode

© CTC advanced GmbH Page 17 of 99

Plot 3: duty cycle of the transmitter; n/ac HT40 – mode

Date: 5.APR.2018 12:43:31

© CTC advanced GmbH Page 18 of 99

10.5 Maximum output power

10.5.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter			
According to: KDB789033 D02, E.2.e.			
Detector:	RMS		
Sweep time:	≥10*(swp points)*(total on/off time)		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	> EBW		
Trace mode:	Max hold		
Analyzer function	Band power / channel power Interval > 26 dB EBW		
Used test setup:	See chapter 6.2 – B		
Measurement uncertainty:	See chapter 8		

<u>Limits:</u> Single Chain Mode (9dBi Antenna consideration)

Radiated output power	Conducted output power for indoor/outdoor access point	
Conducted power + 6 dBi antenna gain	5.150-5.250 GHz: 1W or 30dBm (30dBm – 3 dB = 27dBm)	
Conducted power 1 o dBi differinta gain	5.725-5.85 GHz: 1W or 30dBm (30dBm – 3 dB = 27dBm)	

Note: Limit is reduced by 3 dB to consider a 9dBi antenna.

<u>Limits:</u> Dual Chain Mode (5dBi antenna consideration)

Radiated output power	Conducted output power for indoor/outdoor access point	
Conducted power + 6 dBi antenna gain	5.150-5.250 GHz: 1W or 30dBm	
Conducted power + 0 dbi antenna gain	5.725-5.85 GHz: 1W or 30dBm	

© CTC advanced GmbH Page 19 of 99

Results: a - mode / Antenna 0

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel	Highest channel		
	10.1	10.1	9.9		
	U	-NII-2A (5250 MHz to 5350 MHz	2)		
	Lowest channel	Middle channel	Highest channel		
а	-/-	-/-	-/-		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	-/-	-/-	-/-		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel		
	8.5	8.6	8.1		

Results: n/ac HT20 - mode / Antenna 0

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel	Highest channel		
	11.1	11.1	10.9		
	U	-NII-2A (5250 MHz to 5350 MHz	z)		
n/ac HT20	Lowest channel	Middle channel	Highest channel		
	-/-	-/-	-/-		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	-/-	-/-	-/-		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel		
	8.9	8.9	8.5		

Results: n/ac HT20 - mode / Antenna 0

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	9.5		9.6		
	U	-NII-2A (5250 M	IHz to 5350 MH	z)	
	Lowest channel		Highest channel		
n/ac HT40	-/-	-/-		-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			z)	
	Lowest channel	Middle channel		Highest channel	
	-/-	-,	/_	-/-	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel		Highest channel		
	6.7		6.8		

© CTC advanced GmbH Page 20 of 99

Results: a - mode / Antenna 1

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel	Highest channel		
	8.8	9.0	8.4		
	U	-NII-2A (5250 MHz to 5350 MHz	2)		
	Lowest channel	Middle channel	Highest channel		
а	-/-	-/-	-/-		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	-/-	-/-	-/-		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel		
	8.2 8.4		8.2		

Results: n/ac HT20 - mode / Antenna 1

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel	Highest channel		
	9.8	9.9 9.6			
	U-NII-2A (5250 MHz to 5350 MHz)				
	Lowest channel	Middle channel	Highest channel		
n/ac HT20	-/-	-/-	-/-		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	-/-	-/-	-/-		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel Highest chann			
	8.6	8.8	8.6		

Results: n/ac HT40 - mode / Antenna 1

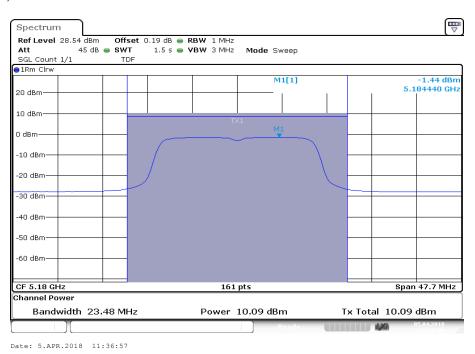
	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	8.6		7.4		
	U-NII-2A (5250 MHz to 5350 MHz)				
	Lowest channel		Highest channel		
n/ac HT40	-/-		-/-		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel		Highest channel	
	-/-	-/-		-/-	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel		Highest channel		
	7.1		6.8		

© CTC advanced GmbH Page 21 of 99

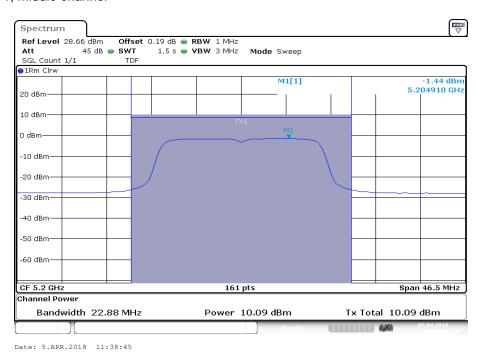
Results: n/ac HT20 - mode / Antenna 0&1 (Dual Chain Mode - Calculated Sum Power)

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel	Highest channel		
	13.5	13.6	13.3		
	U-NII-2A (5250 MHz to 5350 MHz)				
	Lowest channel	Middle channel	Highest channel		
n/ac HT20	-/-	-/-	-/-		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	-/-	-/-	-/-		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel Highest chann			
	11.8	11.9	11.6		

Results: n/ac HT40 - mode / Antenna 0&1 (Dual Chain Mode - Calculated Sum Power)

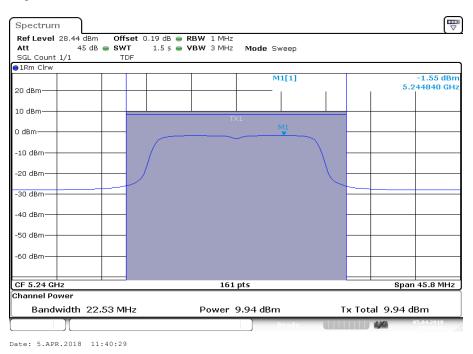

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	12.1		11.6		
	U-NII-2A (5250 MHz to 5350 MHz)				
	Lowest channel		Highest channel		
n/ac HT40	-/-		-/-		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle	channel	Highest channel	
	-/-	-/-		-/-	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel		Highest channel		
	9.9		9.8		

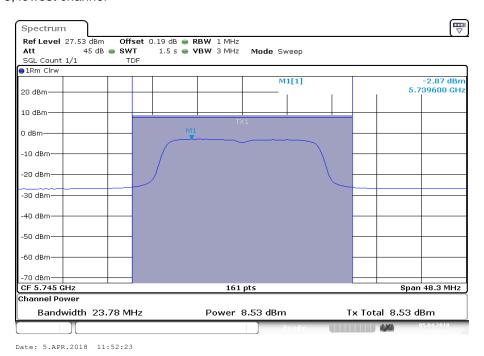
© CTC advanced GmbH Page 22 of 99



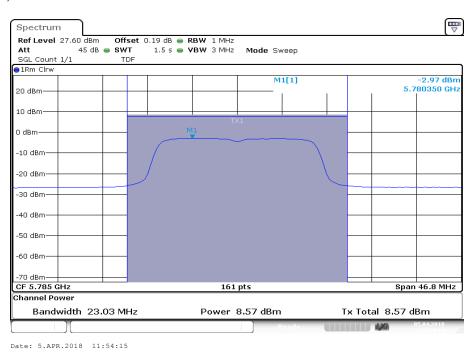
Plots: a - mode / Antenna 0

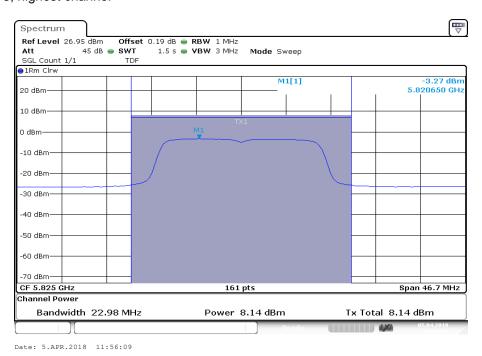
Plot 1: U-NII-1; lowest channel


Plot 2: U-NII-1; middle channel


© CTC advanced GmbH Page 23 of 99

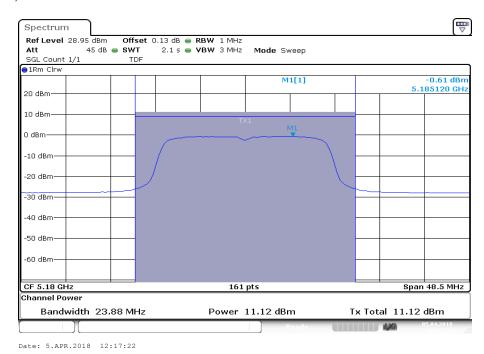
Plot 3: U-NII-1; highest channel


Plot 4: U-NII-3; lowest channel

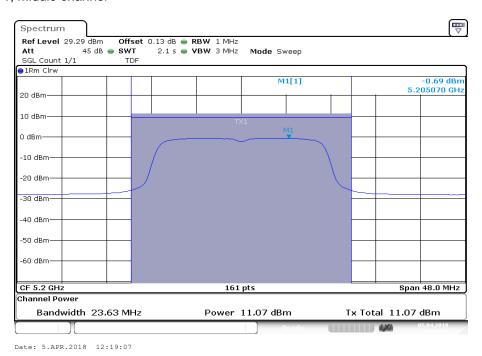

© CTC advanced GmbH Page 24 of 99

Plot 5: U-NII-3; middle channel

Plot 6: U-NII-3; highest channel

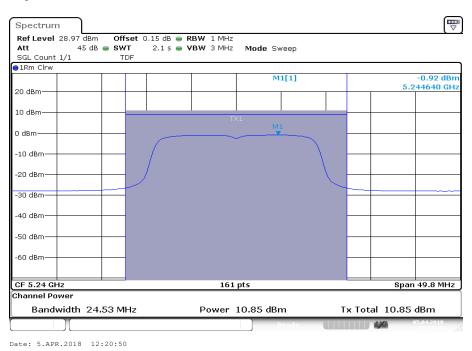


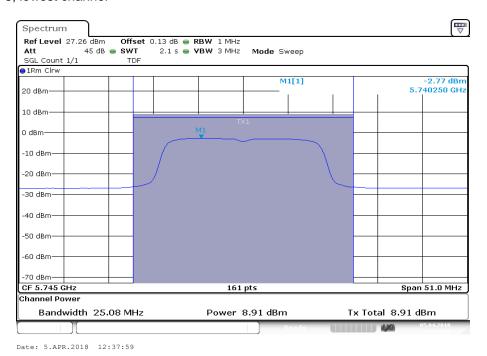
© CTC advanced GmbH Page 25 of 99



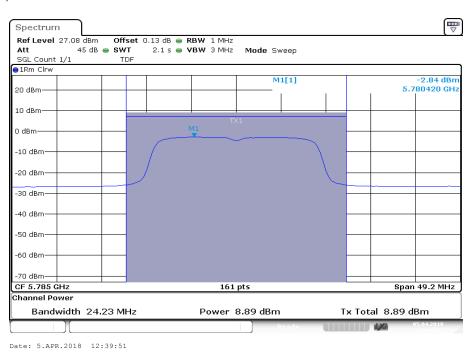
Plots: n/ac HT20 - mode / Antenna 0

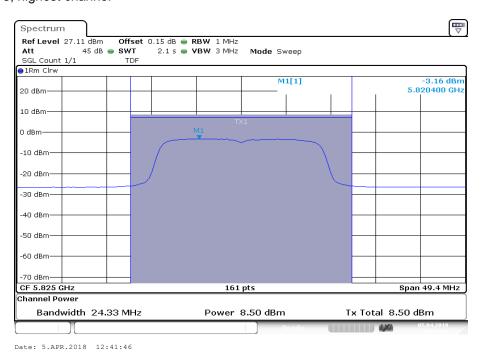
Plot 1: U-NII-1; lowest channel


Plot 2: U-NII-1; middle channel


© CTC advanced GmbH Page 26 of 99

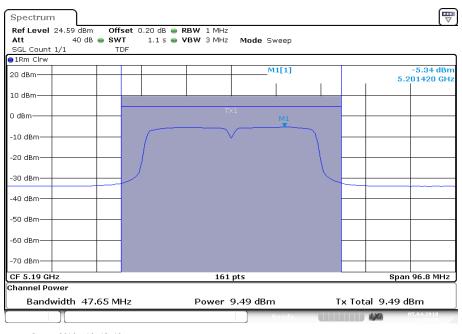
Plot 3: U-NII-1; highest channel


Plot 4: U-NII-3; lowest channel

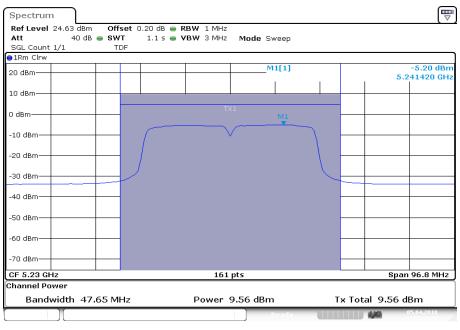

© CTC advanced GmbH Page 27 of 99

Plot 5: U-NII-3; middle channel

Plot 6: U-NII-3; highest channel



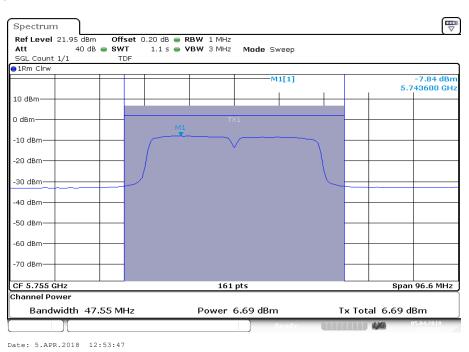
© CTC advanced GmbH Page 28 of 99


Plots: n/ac HT40 - mode / Antenna 0

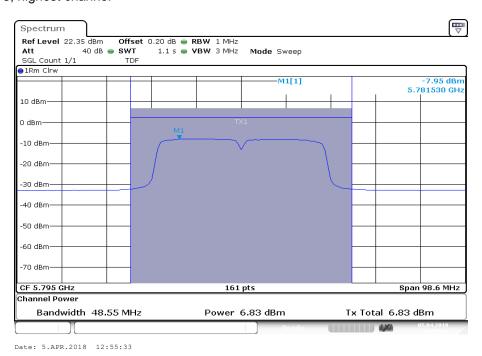
Plot 1: U-NII-1; lowest channel

Date: 5.APR.2018 12:43:42

Plot 2: U-NII-1; highest channel

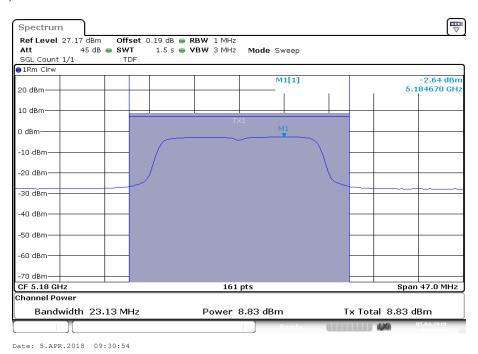


Date: 5.APR.2018 12:45:27

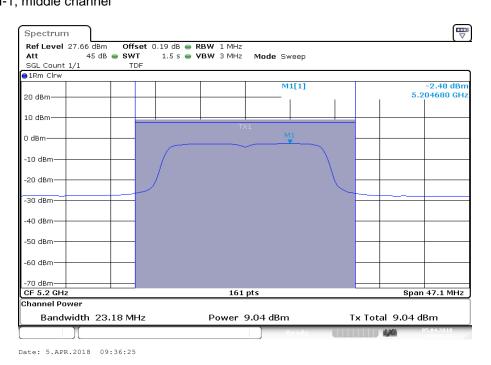

© CTC advanced GmbH Page 29 of 99

Plot 3: U-NII-3; lowest channel

Plot 4: U-NII-3; highest channel

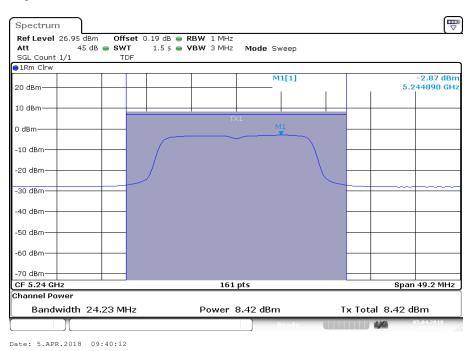


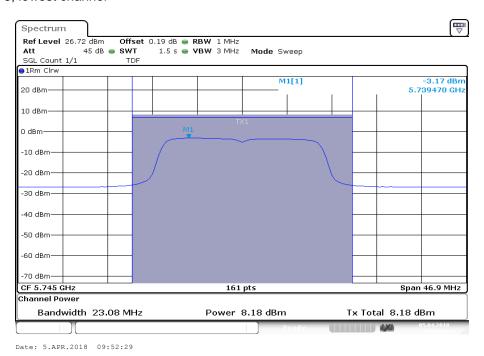
© CTC advanced GmbH Page 30 of 99



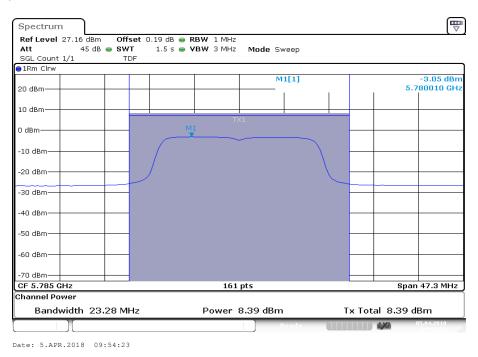
Plots: a - mode / Antenna 1

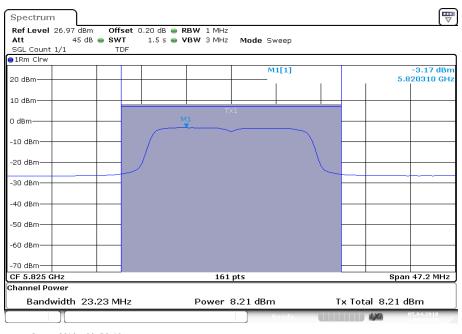
Plot 7: U-NII-1; lowest channel


Plot 8: U-NII-1; middle channel


© CTC advanced GmbH Page 31 of 99

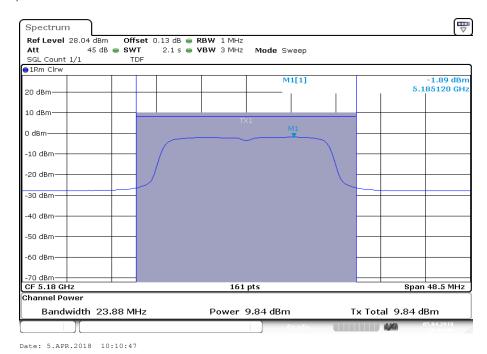
Plot 9: U-NII-1; highest channel


Plot 10: U-NII-3; lowest channel

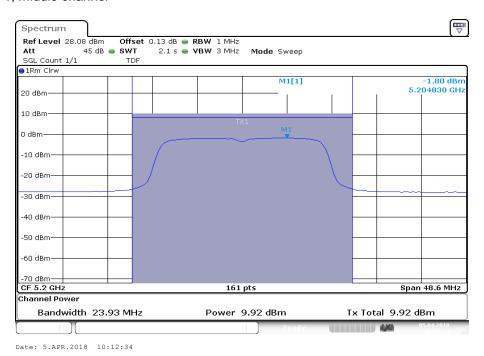

© CTC advanced GmbH Page 32 of 99

Plot 11: U-NII-3; middle channel

Plot 12: U-NII-3; highest channel

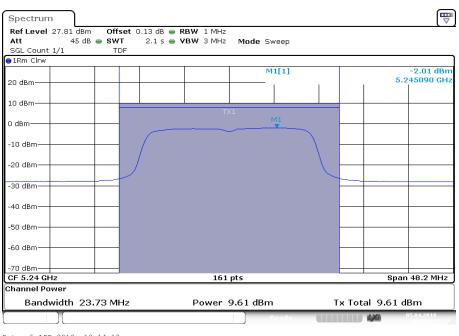

© CTC advanced GmbH Page 33 of 99

Date: 5.APR.2018 09:56:19

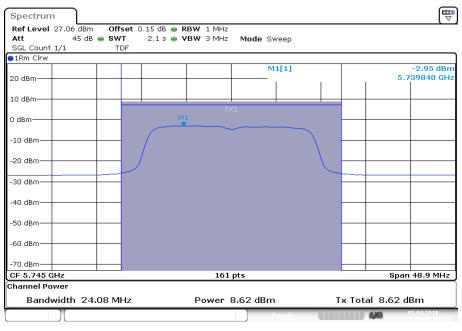


Plots: n/ac HT20 - mode / Antenna 1

Plot 7: U-NII-1; lowest channel


Plot 8: U-NII-1; middle channel

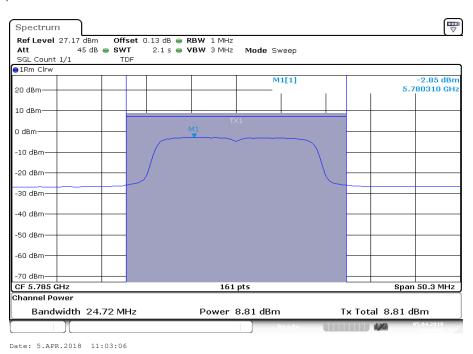
© CTC advanced GmbH Page 34 of 99



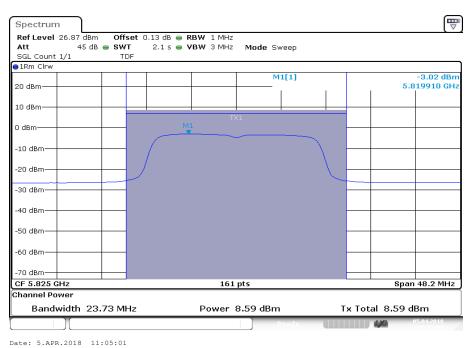
Plot 9: U-NII-1; highest channel

Date: 5.APR.2018 10:14:19

Plot 10: U-NII-3; lowest channel

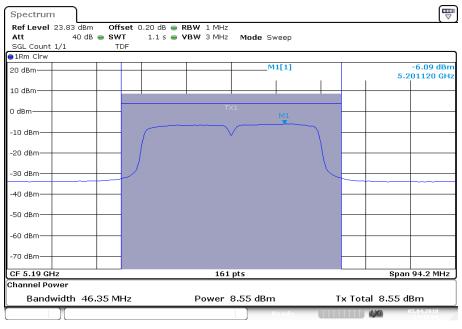


Date: 5.APR.2018 11:01:13

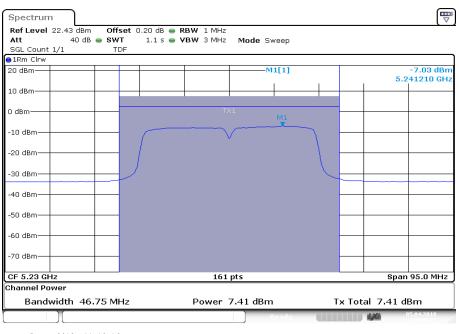

© CTC advanced GmbH Page 35 of 99

Plot 11: U-NII-3; middle channel

Plot 12: U-NII-3; highest channel



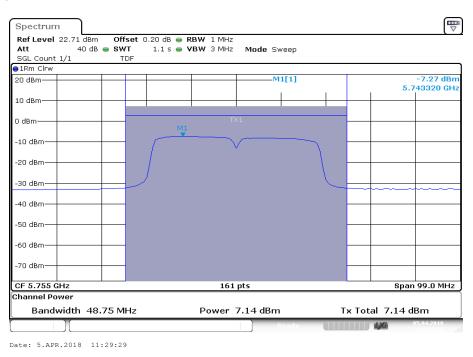
© CTC advanced GmbH Page 36 of 99


Plots: n/ac HT40 - mode / Antenna 1

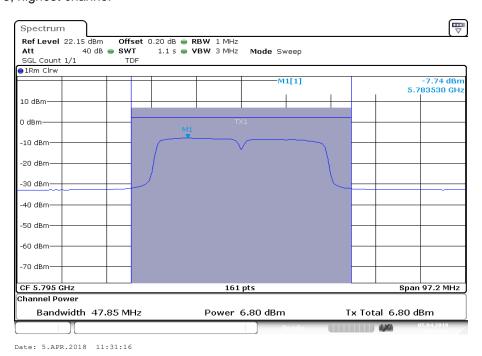
Plot 5: U-NII-1; lowest channel

Date: 5.APR.2018 11:12:01

Plot 6: U-NII-1; highest channel



Date: 5.APR.2018 11:10:16


© CTC advanced GmbH Page 37 of 99

Plot 7: U-NII-3; lowest channel

Plot 8: U-NII-3; highest channel

© CTC advanced GmbH Page 38 of 99

10.5.2 Maximum output power according to IC requirements

Description:

Measurement of the maximum output power conduced + radiated

Measurement:

Measurement parameter			
Detector:	RMS		
Sweep time:	≥10*(swp points)*(total on/off time)		
Resolution bandwidth:	1 MHz		
Video bandwidth:	≥ 3 MHz		
Span:	> EBW		
Trace mode:	Max hold		
Analyzer function	Band power / channel power Interval > 99% OBW		
Used test setup:	See chapter 6.2 – B		
Measurement uncertainty:	See chapter 8		

Limits:

Radiated output power	Conducted output power for devices, other than devices installed in vehicles
The lesser one of 200 mW (23.0dBm) or 10 dBm + 10 log Bandwidth 5.150-5.250 GHz	5.725-5.85 GHz: 1W or 30dBm (30dBm – 3 dB = 27dBm)
Conducted power + 6dBi antenna gain 5.725-5.825 GHz	

Note:

The conducted limit is reduced by 3 dB to consider a 9dBi antenna.

E.i.r.p results in single chain mode are calculated using the highest allowed gain of 9dBi.

E.i.r.p. results in dual chain mode are calculated using the highest allowed gain of 5dBi.

© CTC advanced GmbH Page 39 of 99

Results: a - mode / Antenna 0

	Maximum output power [dBm]				
	U	J-NII-1 (5150 MHz to 5250 MHz			
	Lowest channel	Middle channel	Highest channel		
		Conducted			
	10.2	9.9	9.9		
	Radiated	l (calculated – see chapter anter	nna gain)		
	19.2	18.9	18.9		
	U	-NII-2A (5250 MHz to 5350 MHz	2)		
	Lowest channel	Middle channel	Highest channel		
		Conducted			
	-/-	-/-	-/-		
	Radiated (calculated – see chapter antenna gain)				
а	-/-	-/-	-/-		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	Conducted				
	-/-	-/-	-/-		
	Radiated	(calculated – see chapter anter	na gain)		
	-/-	-/-	-/-		
	L	J-NII-3 (5725 MHz to 5850 MHz			
	Lowest channel	Middle channel	Highest channel		
		Conducted			
	8.5	8.6	8.1		
	Radiated	(calculated – see chapter anter	nna gain)		
	17.5	17.6	17.1		

© CTC advanced GmbH Page 40 of 99

Results: n/ac - mode / Antenna 0

	Maximum output power [dBm]			
	U	J-NII-1 (5150 MHz to 5250 MHz		
	Lowest channel Middle channel Highest channe		Highest channel	
	Conducted			
	11.2	10.9	10.8	
	Radiated	l (calculated – see chapter anter	nna gain)	
	20.2	19.9	19.8	
	U	-NII-2A (5250 MHz to 5350 MHz	z)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	-/-	-/-	-/-	
	Radiated (calculated – see chapter antenna gain)			
n/ac HT20	-/-	-/-	-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	-/-	-/-	-/-	
	Radiated	(calculated – see chapter anter	nna gain)	
	-/-	-/-	-/-	
	l	J-NII-3 (5725 MHz to 5850 MHz)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	8.8	8.8	8.4	
	Radiated	(calculated – see chapter anter	nna gain)	
	17.8	17.8	17.4	

© CTC advanced GmbH Page 41 of 99

Results: n/ac HT40 - mode / Antenna 0

	Maximum output power [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz))	
	Lowest channel			Highest channel	
	Cond		ucted		
	9.5			9.5	
	Radiated	l (calculated – se	ee chapter anter	nna gain)	
	18.5			18.5	
	U	-NII-2A (5250 M	Hz to 5350 MH	z)	
	Lowest channel			Highest channel	
		Cond	ucted		
	-/-	-/-		-/-	
	Radiated (calculated – see chapter antenna gain)		nna gain)		
n/ac HT40		-/-		-/-	
	U-NII-2C (5470 MHz to 5725 MHz)		z)		
	Lowest channel	channel Middle channel		Highest channel	
		Cond	ucted		
	-/-	-/		-/-	
	Radiated	(calculated – se		nna gain)	
	-/-	-/		-/-	
	l	J-NII-3 (5725 MI	Hz to 5850 MHz		
	Lowest channel		Highest channel		
	Conducted		ucted		
	6.7		6.8		
		l (calculated – se	ee chapter anter		
	15.7			15.8	

© CTC advanced GmbH Page 42 of 99

Results: a - mode / Antenna 1

	Maximum output power [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	8.7	9.1	8.4	
	Radiated	(calculated – see chapter anter	nna gain)	
	17.7	18.1	17.4	
	U	-NII-2A (5250 MHz to 5350 MHz	z)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	-/-	-/-	-/-	
	Radiated (calculated – see chapter antenna gain)			
а	-/-	-/-	-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	-/-	-/-	-/-	
	Radiated	(calculated – see chapter anter	nna gain)	
	-/-	-/-	-/-	
	l	J-NII-3 (5725 MHz to 5850 MHz)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	8.1	8.3	8.2	
		(calculated – see chapter anter		
	17.1	17.3	17.2	

© CTC advanced GmbH Page 43 of 99

Results: n/ac - mode / Antenna 1

	Maximum output power [dBm]			
	U	J-NII-1 (5150 MHz to 5250 MHz		
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	9.9	10.1	9.5	
	Radiated	(calculated – see chapter anter	nna gain)	
	18.9	19.1	18.5	
	U	-NII-2A (5250 MHz to 5350 MHz	z)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	-/-	-/-	-/-	
	Radiated (calculated – see chapter antenna gain)			
n/ac HT20	-/-	-/-	-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	-/-	-/-	-/-	
	Radiated	(calculated – see chapter anter	nna gain)	
	-/-	-/-	-/-	
	l	J-NII-3 (5725 MHz to 5850 MHz		
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	8.5	8.7	8.5	
	Radiated	(calculated – see chapter anter	nna gain)	
	17.5	17.7	17.5	

© CTC advanced GmbH Page 44 of 99

Results: n/ac HT40 - mode / Antenna 1

	Maximum output power [dBm]				
	ι	J-NII-1 (5150 MI	Hz to 5250 MHz	2)	
	Lowest channel			Highest channel	
	Cond		ucted		
	8.5			7.5	
		l (calculated – se	ee chapter anter	nna gain)	
	17.5			16.5	
		-NII-2A (5250 M	Hz to 5350 MH	z)	
	Lowest channel			Highest channel	
		Cond	ucted		
		-/-		-/-	
	Radiated (calculated – see chapter antenna gain)		nna gain)		
n/ac HT40		-/-		-/-	
	U-NII-2C (5470 MHz to 5725 MHz)		r [*]		
	Lowest channel	channel Middle channel		Highest channel	
		Cond	ucted		
	-/-	-,		-/-	
		(calculated – se			
	-/-	-/		-/-	
	l	J-NII-3 (5725 MI	Hz to 5850 MHz	2)	
	Lowest channel			Highest channel	
	Conduct		ucted		
	7.3		6.8		
		l (calculated – se	ee chapter anter		
	16.3			15.8	

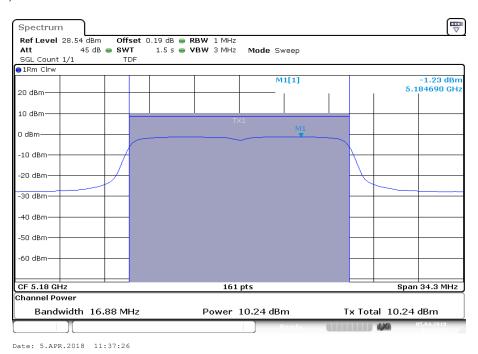
© CTC advanced GmbH Page 45 of 99

Results: n/ac - mode / Antenna 0&1 (Dual Chain Mode - Calculated Sum Power)

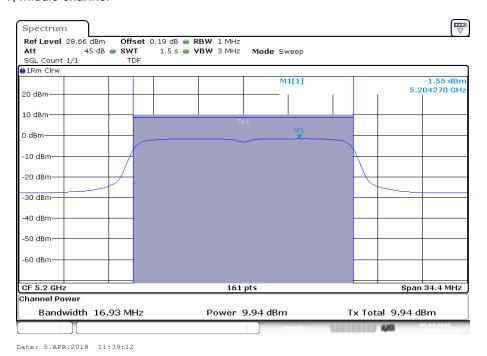
	Maximum output power [dBm]			
	Ų	J-NII-1 (5150 MHz to 5250 MHz)	
	Lowest channel	Lowest channel Middle channel Highest channel		
	Conducted			
	13.6	13.5	13.2	
	Radiated	l (calculated – see chapter anter	nna gain)	
	18.6	18.5	18.2	
	U	-NII-2A (5250 MHz to 5350 MHz	z)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	-//-			
	Radiated (calculated – see chapter antenna gain)			
n/ac HT20	-/-	-/-	-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	-/-	-/-	-/-	
	Radiated	(calculated – see chapter anter	nna gain)	
	-/-	-/-	-/-	
	l	J-NII-3 (5725 MHz to 5850 MHz)	
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	11.7	11.8	11.5	
	Radiated	(calculated – see chapter anter	- :	
	16.7	16.8	16.5	

© CTC advanced GmbH Page 46 of 99

Results: n/ac HT40 - mode / Antenna 0&1 (Dual Chain Mode - Calculated Sum Power)

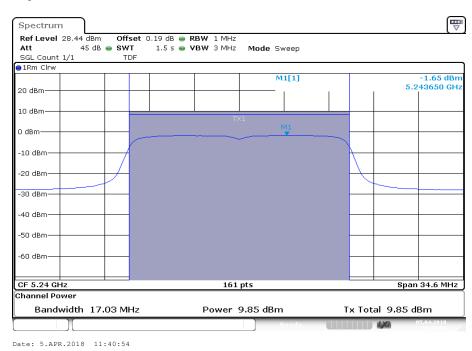

	Maximum output power [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	Cond		ducted	
	12.0		11.6	
	,	ted – s	see chapter antenna gain)	
	17.0		16.6	
		5250 N	MHz to 5350 MHz)	
	Lowest channel		Highest channel	
			ducted	
	-/-		-/-	
	-	ted – s	ee chapter antenna gain)	
n/ac HT40	-/-		-/-	
	,		MHz to 5725 MHz)	
			e channel Highest channel	
		Cond	ducted	
	-/-	-	-/-	
	Radiated (calcula	ted – s	see chapter antenna gain)	
	-/-	-	-/-	
	U-NII-3 (5	725 M	MHz to 5850 MHz)	
	Lowest channel		Highest channel	
	Conducted		ducted	
	10.0		9.8	
	Radiated (calcula	ted – s	see chapter antenna gain)	
	15.0		14.8	

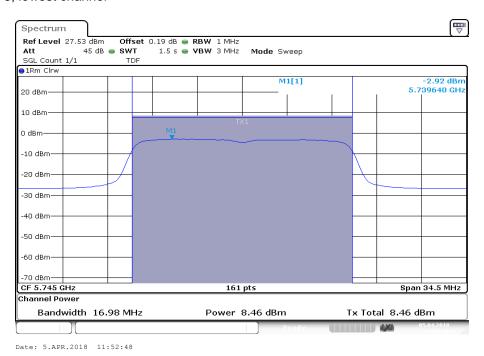
© CTC advanced GmbH Page 47 of 99



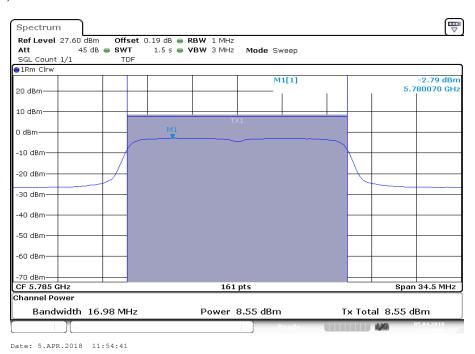
Plots: a - mode / Antenna 0

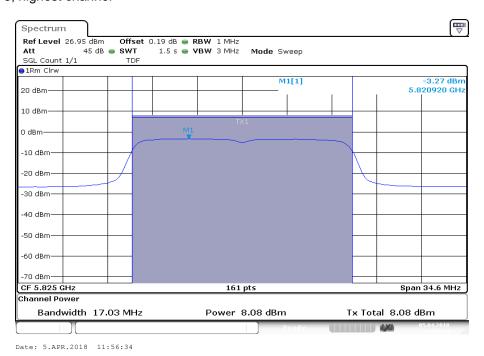
Plot 1: U-NII-1; lowest channel


Plot 2: U-NII-1; middle channel


© CTC advanced GmbH Page 48 of 99

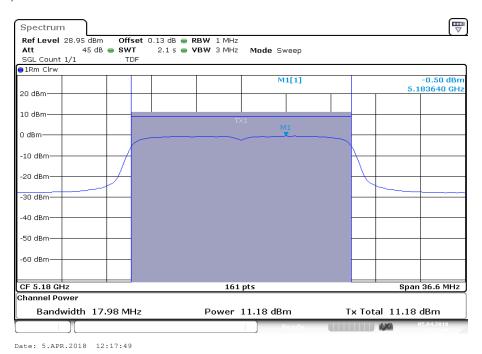
Plot 3: U-NII-1; highest channel


Plot 4: U-NII-3; lowest channel

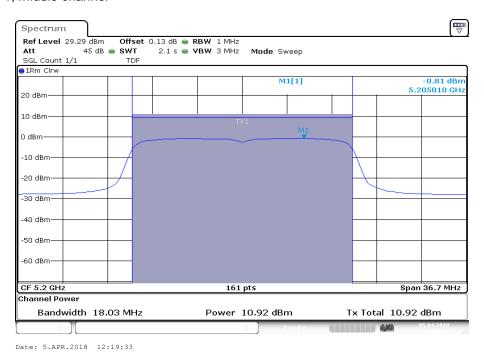

© CTC advanced GmbH Page 49 of 99

Plot 5: U-NII-3; middle channel

Plot 6: U-NII-3; highest channel

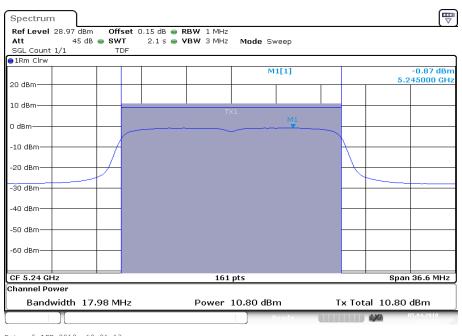


© CTC advanced GmbH Page 50 of 99

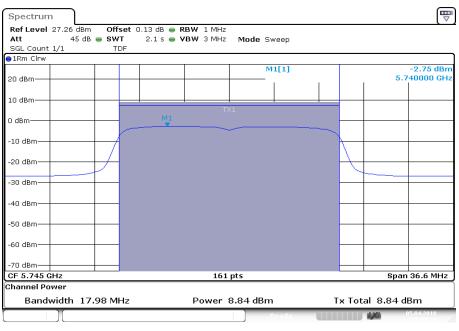


Plots: n/ac HT20 - mode / Antenna 0

Plot 1: U-NII-1; lowest channel


Plot 2: U-NII-1; middle channel

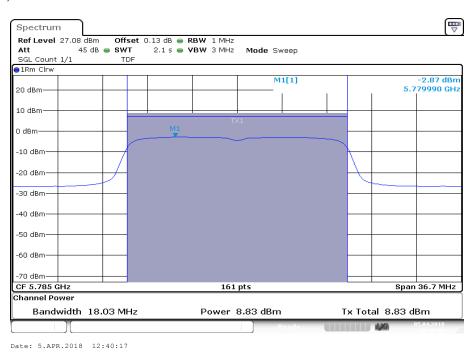
© CTC advanced GmbH Page 51 of 99



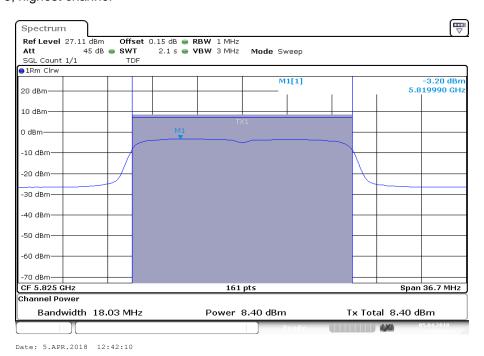
Plot 3: U-NII-1; highest channel

Date: 5.APR.2018 12:21:13

Plot 4: U-NII-3; lowest channel

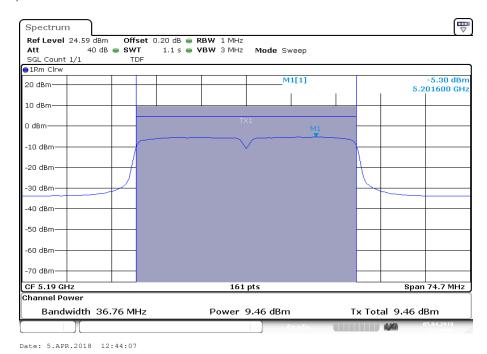


Date: 5.APR.2018 12:38:23

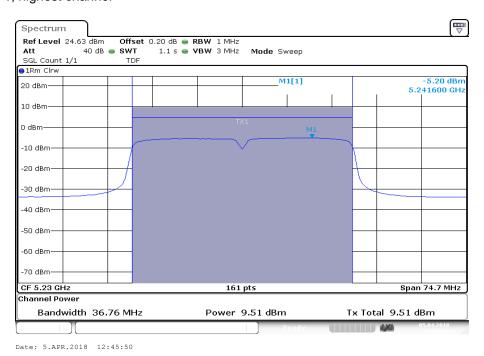

© CTC advanced GmbH Page 52 of 99

Plot 5: U-NII-3; middle channel

Plot 6: U-NII-3; highest channel

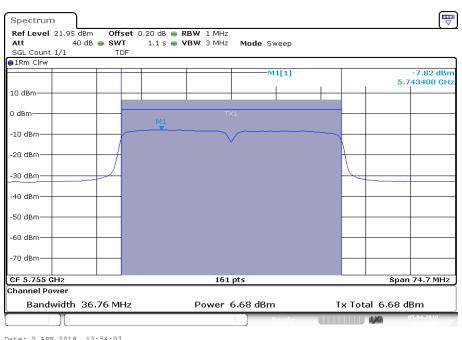


© CTC advanced GmbH Page 53 of 99

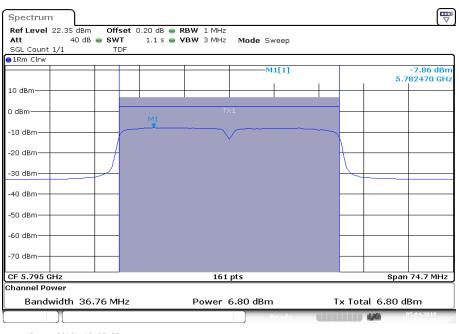


Plots: n/ac HT40 - mode / Antenna 0

Plot 1: U-NII-1; lowest channel


Plot 2: U-NII-1; highest channel

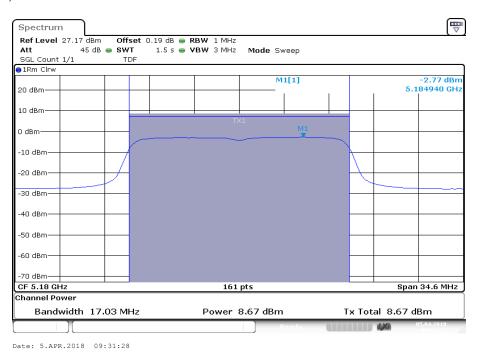
© CTC advanced GmbH Page 54 of 99



Plot 3: U-NII-3; lowest channel

Date: 5.APR.2018 12:54:07

Plot 4: U-NII-3; highest channel

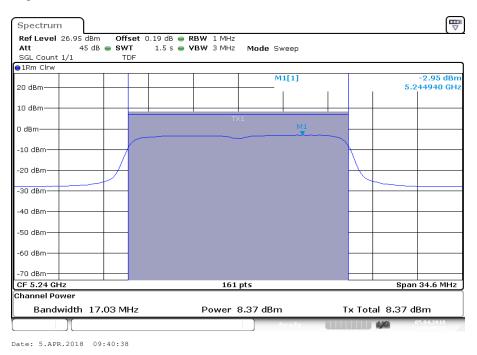

Date: 5.APR.2018 12:55:53

© CTC advanced GmbH Page 55 of 99

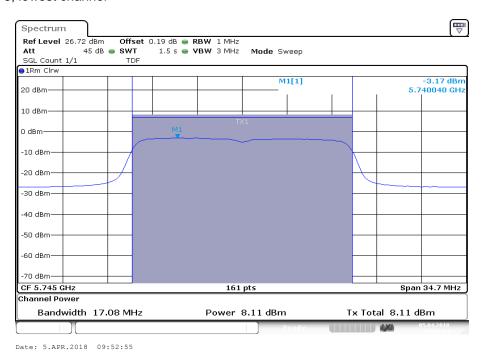
Plots: a - mode / Antenna 1

Plot 7: U-NII-1; lowest channel

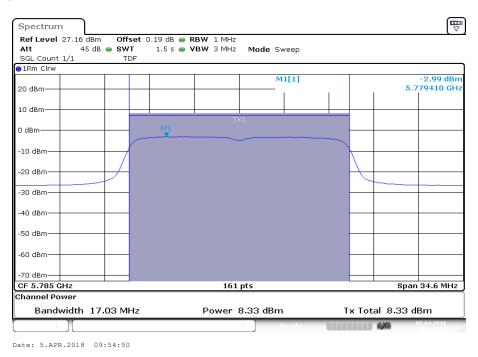
Plot 8: U-NII-1; middle channel

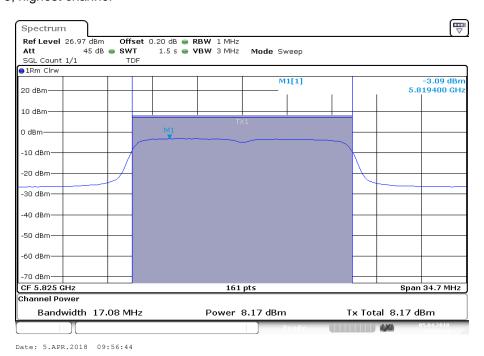


Date: 5.APR.2018 09:36:57


© CTC advanced GmbH Page 56 of 99

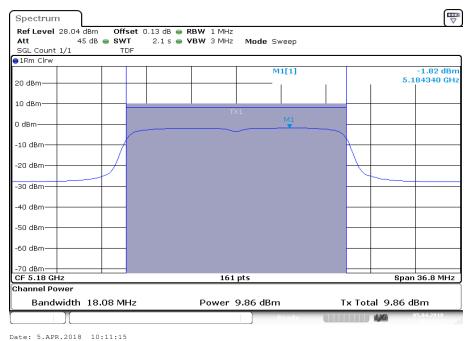
Plot 9: U-NII-1; highest channel


Plot 10: U-NII-3; lowest channel

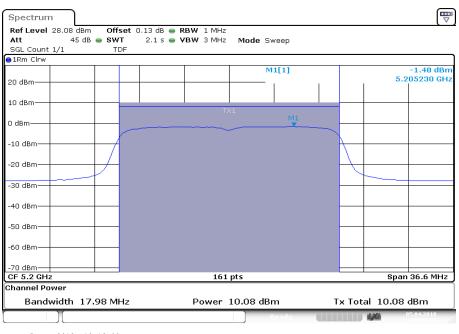

© CTC advanced GmbH Page 57 of 99

Plot 11: U-NII-3; middle channel

Plot 12: U-NII-3; highest channel



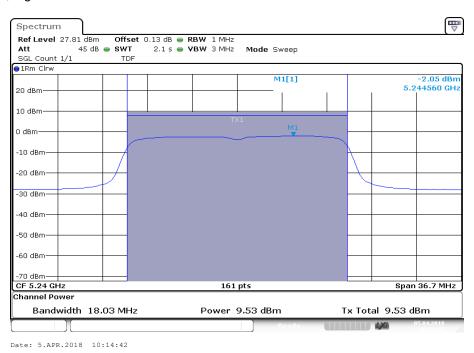
© CTC advanced GmbH Page 58 of 99


Plots: n/ac HT20 - mode / Antenna 1

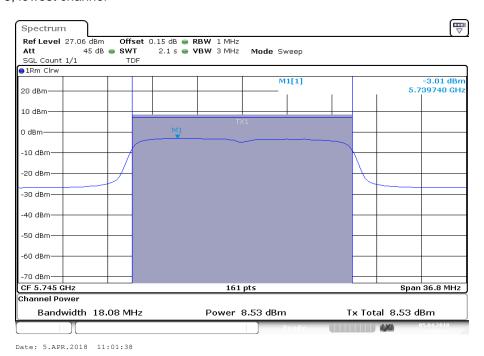
Plot 7: U-NII-1; lowest channel

Date: 5.APR.2018 10:11:1

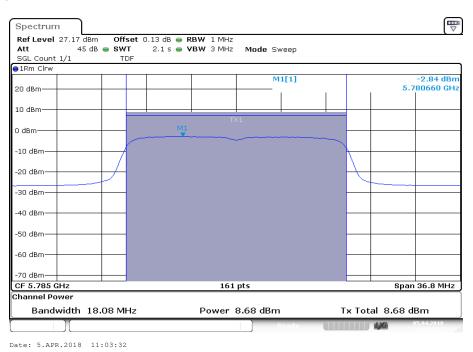
Plot 8: U-NII-1; middle channel

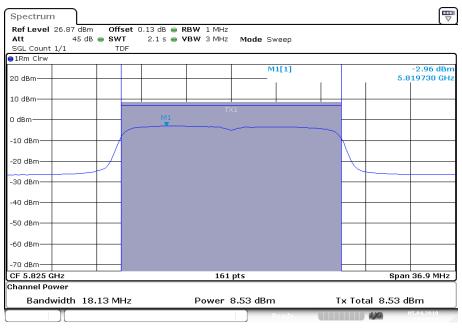


Date: 5.APR.2018 10:13:00


© CTC advanced GmbH Page 59 of 99

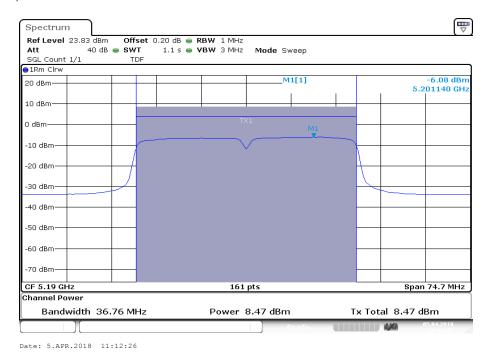
Plot 9: U-NII-1; highest channel


Plot 10: U-NII-3; lowest channel

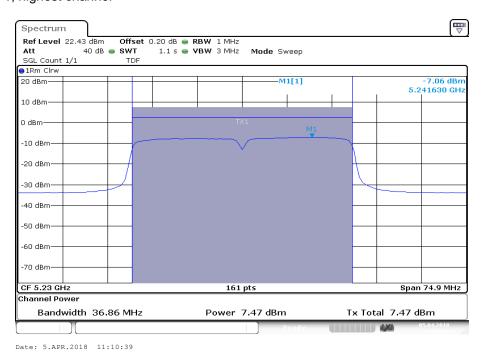

© CTC advanced GmbH Page 60 of 99

Plot 11: U-NII-3; middle channel

Plot 12: U-NII-3; highest channel

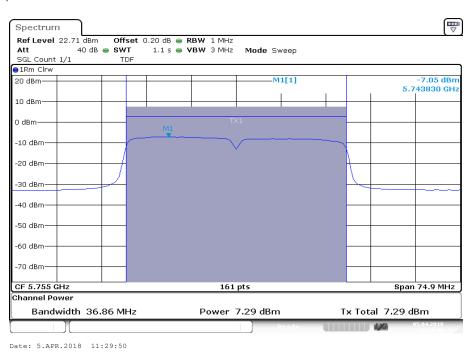

© CTC advanced GmbH Page 61 of 99

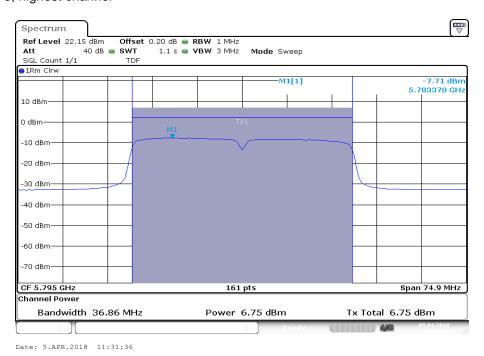
Date: 5.APR.2018 11:05:25



Plots: n/ac HT40 - mode / Antenna 1

Plot 5: U-NII-1; lowest channel


Plot 6: U-NII-1; highest channel


© CTC advanced GmbH Page 62 of 99

Plot 7: U-NII-3; lowest channel

Plot 8: U-NII-3; highest channel

© CTC advanced GmbH Page 63 of 99

10.6 Emissions in restricted frequency bands < 30MHz (radiated)

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at lowest, middle and highest channel.

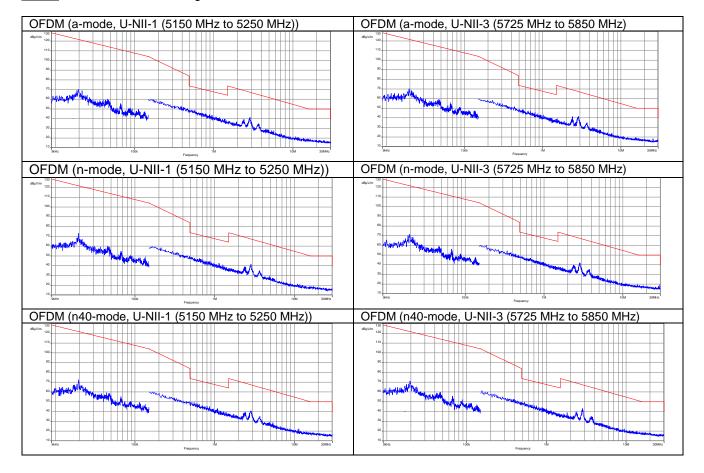
Measurement:

Measurement parameter			
Detector:	Peak / Quasi Peak		
Sweep time:	Auto		
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span:	9 kHz to 30 MHz		
Trace mode:	Max Hold		
Test setup:	See sub clause 6.1 – B		
Measurement uncertainty:	See sub clause 8		

Limits:

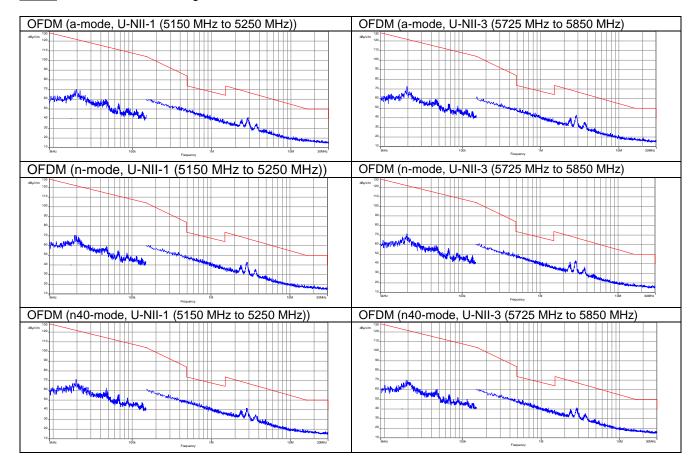
TX Spurious Emissions Radiated				
§15.209				
Frequency (MHz) Field Strength (dBµV/m) Measurement distance				
30 – 88	30.0	10		
88 – 216	33.5	10		
216 – 960	36.0	10		
Above 960	54.0	3		
§15.407				
Outside the restricted bands!	Outside the restricted bands! -27 dBm / MHz			

Results:

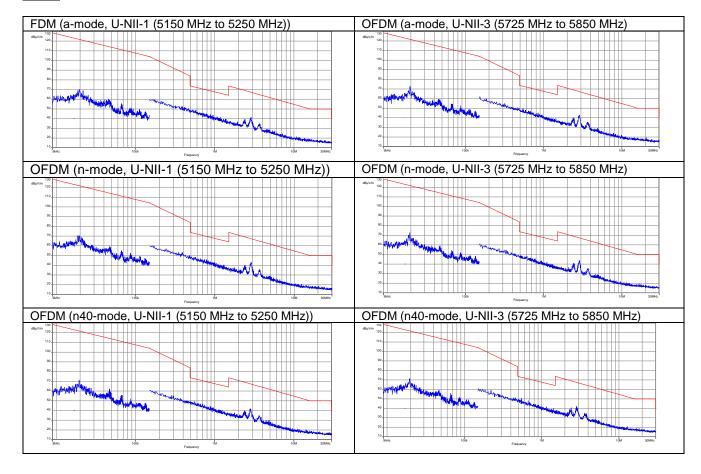

TX spurious	emissions radiated < 30 MHz / (dBµ	V / m) @ 3 m
Frequency / MHz	Detector	Level / (dBµV / m)
All detect	ed peaks are more than 20 dB below	the limit.

Note: Peak Emissions detected are more than 20dB below the limit on all tested channels, data rates and antenna configurations. Therefore, only one plot per modulation, UNII-band and antenna configuration is reported.

© CTC advanced GmbH Page 64 of 99


Plots: ANT-DIR-2459-01, single-chain, Antenna 0

© CTC advanced GmbH Page 65 of 99


Plots: ANT-DIR-2459-01, single-chain, Antenna 1

© CTC advanced GmbH Page 66 of 99

Plots: ANT-OMNI5900-01, dual-chain, Antenna 0&1

© CTC advanced GmbH Page 67 of 99

10.7 Emissions in restricted frequency bands > 30 MHz (conducted)

Description:

The UNII Test Procedures specify that emissions which fall into restricted frequency bands shall comply with the general radiated emission limits.

Measurement:

Measurement parameter						
According to UNII Test Procedures KDB clause II.G.4.b. & II.G.6.c)						
Detector	Peak / RMS (Power AVG)					
Sweep time	Auto					
Resolution bandwidth	30 MHz > F > 1 GHz: 1 GHz > F > 40 GHz:	100 kHz 1 MHz				
Video bandwidth	3x RBW					
Span	30 MHz to 40 GHz					
Trace mode	Max Hold / Trace Average					
Test setup	See chapter 6.2 – B (<1GHz); See sub clause 6.2 – C (>1GHz)					
Measurement uncertainty	See chapter 8					

© CTC advanced GmbH Page 68 of 99

Limits:

FCC

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

As per UNII Test Procedures KDB clause II.G.1. d) i) the field strength limit as specified in §15.209(a) is converted to an EIRP limit by the formula

EIRP = E + 20log D - 104.8

where:

 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

Frequency / MHz	Field Strength Limit / (dBµV / m)	Distance / m	Ground Reflection Factor / dB	EIRP Limit / dBm
30 – 88	40.0	3	4.7	-60.0
88 – 216	43.5	3	4.7	-56.4
216 – 960	46.0	3	4.7	-53.9
960 – 1000	53.9	3	4.7	-46.0
Above 1000	53.9	3	0	-41.3

Note: The EIRP Limit is further reduced to account for the Ground Reflection Factor.

Antenna gain as well as antenna multiplication factor* (if applicable) is considered in the Ref.Level Offset.

*Antenna multiplication factor = 10 log (n)

where:

n = number of antenna chains

The EIRP Limit is reduced further to account for the Ground Reflection Factor.

A **9dB** Offset is used to account for the maximum gain of the directional antenna (ANT-DIR-2459-01) in single-chain mode.

The 9dB Offset is also used to account for the 5dBi antennas (ANT-OMNI-2459-02, ANT-OMNI5900-01) in dual-chain mode (5dBi + 10 log (2) = 8dB). The overrating by 1 dB can be seen as an additional safety budget or worst case consideration respectively.

As per UNII Test Procedures II.G.6.c, an additional offset of 0.2dB is considered to account for the Duty Cycle Correction when Average Detector is used.

The number of sweeps was increased to consider the lowest duty cycle as specified in section 10.4. when Average Detector is used.

© CTC advanced GmbH Page 69 of 99

Results: 20 MHz channel bandwidth / Antenna 0

	TX Spurious Emissions Radiated [dBμV/m] / dBm										
	U-NII-1 (5150 MHz to 5250 MHz)										
Lowest channel Middle channel Highest channel											
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]			
37.1	Peak	-73.6	10403.0	AVG	-51.5	4981.2	AVG	-47.5			
4992.9	AVG	-46.7	-/-	-/-	-/-	10482.2	AVG	-50.0			
5150.0	AVG	-42.1				-/-	-/-	-/-			
10362.0	AVG	-50.3									

	TX Spurious Emissions Radiated [dBμV/m] / dBm											
	U-NII-3 (5725 MHz to 5850 MHz)											
Lowest channel Middle channel Highest channel												
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]				
165.0	Peak	-68.8	3857.2	AVG	-49.4	171.6	Peak	-75.4				
3830.7	AVG	-50.5	4992.1	AVG	-47.5	3884.1	AVG	-48.0				
4995.2	AVG	-48.9	11570.7	AVG	-48.9	4997.9	AVG	-48.5				
11488.3	AVG	-48.5	17355.6	AVG	-54.7	11650.6	AVG	-46.2				
17239.4	AVG	-55.1	-/-	-/-	-/-	17475.3	AVG	-53.9				

Results: 40 MHz channel bandwidth / Antenna 0

	TX Spurious Emissions Radiated [dBμV/m] / dBm										
U-NII-1 (5150 MHz to 5250 MHz)											
Lowest channel Middle channel Highest channel											
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]			
173.0	Peak	-75.7				171.4	Peak	-76.0			
5150.0	AVG	-41.8	-/-			4993.3	AVG	-50.1			
10403.0	AVG	-57.6	10459.3 AVG -54.6								

	TX Spurious Emissions Radiated [dBμV/m] / dBm									
	U-NII-3 (5725 MHz to 5850 MHz)									
L	owest chanr	nel	Middle channel			Highest channel				
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]		
4986.6	AVG	-51.5	1			3864.2	AVG	-50.0		
11509.8	11509.8 AVG -53.3 -/- 11589.4 AVG -52.1									

© CTC advanced GmbH Page 70 of 99

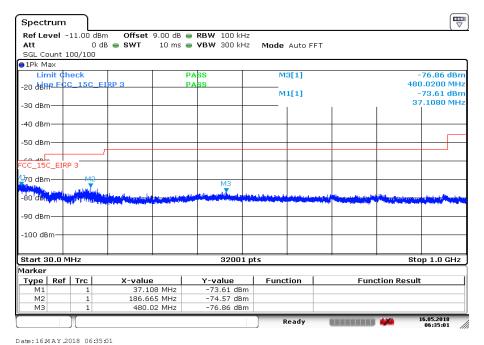
Results: 20 MHz channel bandwidth / Antenna 1

	TX Spurious Emissions Radiated [dBμV/m] / dBm											
U-NII-1 (5150 MHz to 5250 MHz)												
Lowest channel Middle channel Highest channel												
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]				
5150.0	AVG	-45.6	5400.0	AVG	-41.6	5400.0	AVG	-42.9				
5400.0	AVG	-42.4	5460.0	AVG	-45.3	5440.6	AVG	-44.3				
5460.0	AVG	-44.7	10403.0	AVG	-49.1	5460.0	AVG	-47.7				
10362.4	AVG	-51.9	-/-	-/-	-/-	10482.2	AVG	-49.2				

	TX Spurious Emissions Radiated [dBμV/m] / dBm										
U-NII-3 (5725 MHz to 5850 MHz)											
Lowest channel Middle channel Highest channel											
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]			
5400.0	AVG	-44.0	3856.4	AVG	-54.5	5440.2	AVG	-42.2			
11494.2	AVG	-49.6	5400.0	AVG	-41.8	11649.1	AVG	-48.6			
17232.4	AVG	-54.2	11569.1	AVG	-47.8	-/-	-/-	-/-			

Results: 40 MHz channel bandwidth / Antenna 1

	TX Spurious Emissions Radiated [dBμV/m] / dBm										
U-NII-1 (5150 MHz to 5250 MHz)											
Lowest channel Middle channel Highest channel											
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]			
5150.0	AVG	-42.1				163.1	Peak	-75.2			
5400.1	AVG	-43.7		1		5440.1	AVG	-41.5			
5480.8	AVG	-42.2		-/-		-/-	-/-	-/-			
6920.7	AVG	-45.1									


	TX Spurious Emissions Radiated [dBμV/m] / dBm									
U-NII-3 (5725 MHz to 5850 MHz)										
L	owest chann	iel	Middle channel			Highest channel				
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]		
11502.8	AVG	-54.3	1			5400.8	AVG	-44.5		
25925.5	25925.5 AVG -54.0 -7- 11587.4 AVG -53.3									

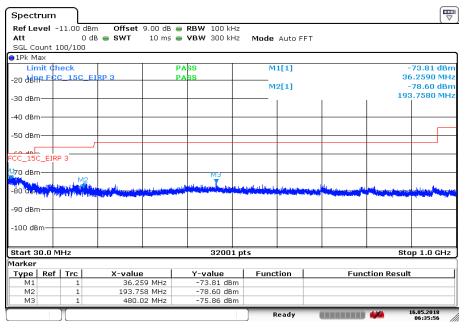
© CTC advanced GmbH Page 71 of 99



Plots: 20 MHz channel bandwidth / Antenna 0

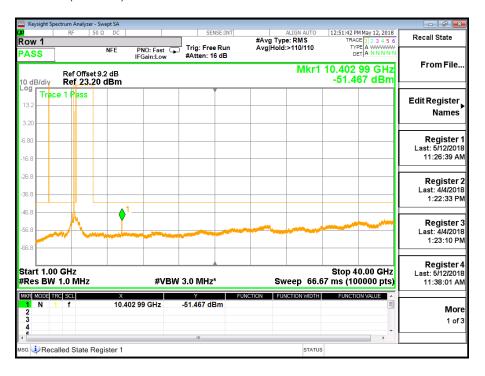
Plot 1: 30 MHz to 1 GHz, U-NII-1; lowest channel

Plot 2: 1 GHz to 40 GHz, U-NII-1; lowest channel

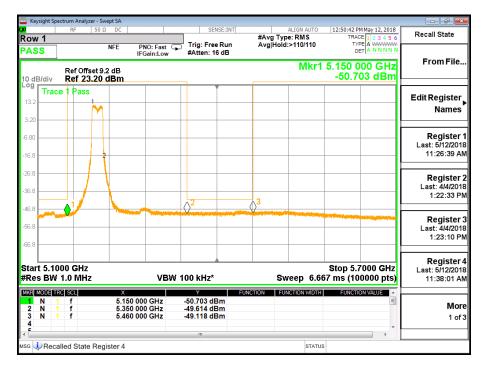

© CTC advanced GmbH Page 72 of 99

Plot 3: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; lowest channel

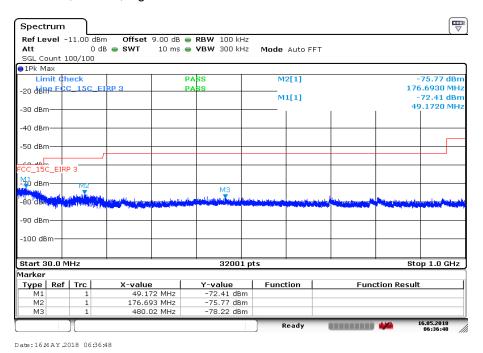
Plot 4: 30 MHz to 1 GHz, U-NII-1; middle channel

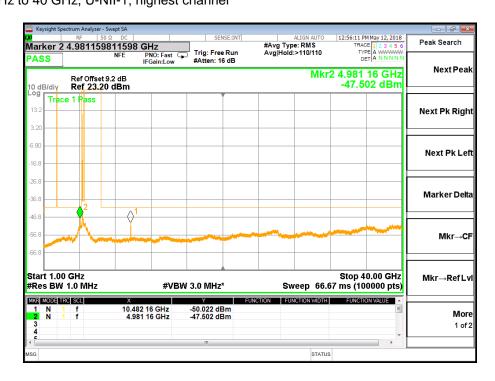


Date:16MAY 2018 06:35:56

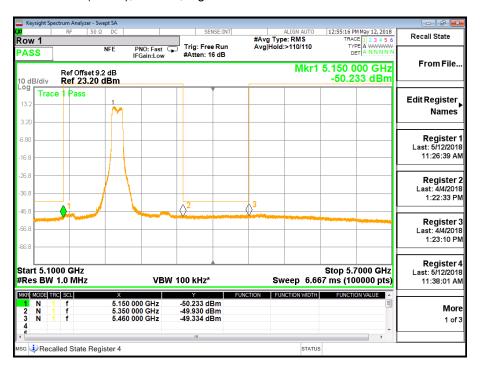

© CTC advanced GmbH Page 73 of 99

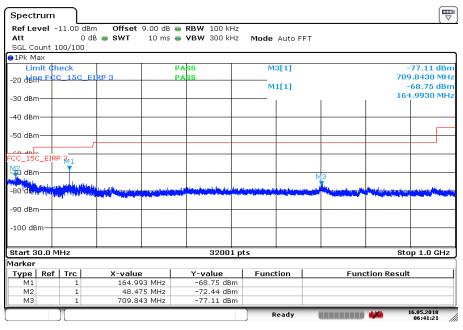
Plot 5: 1 GHz to 40 GHz, U-NII-1; middle channel


Plot 6: 5 GHz to 5.5 GHz (Zoom), U-NII-1; middle channel


© CTC advanced GmbH Page 74 of 99

Plot 7: 30 MHz to 1 GHz, U-NII-1; highest channel


Plot 8: 1 GHz to 40 GHz, U-NII-1; highest channel

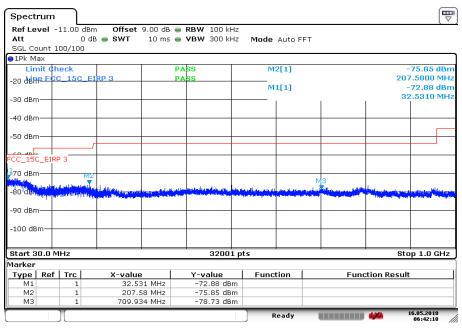

© CTC advanced GmbH Page 75 of 99

Plot 9: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; highest channel

Plot 10: 30 MHz to 1 GHz, U-NII-3; lowest channel



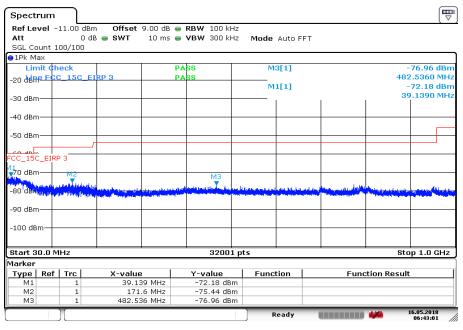
Date:16MAY 2018 06:41:21


© CTC advanced GmbH Page 76 of 99

Plot 11: 1 GHz to 40 GHz, U-NII-3; lowest channel

Plot 12: 30 MHz to 1 GHz, U-NII-3; middle channel

Date:16MAY 2018 06:42:17


© CTC advanced GmbH Page 77 of 99

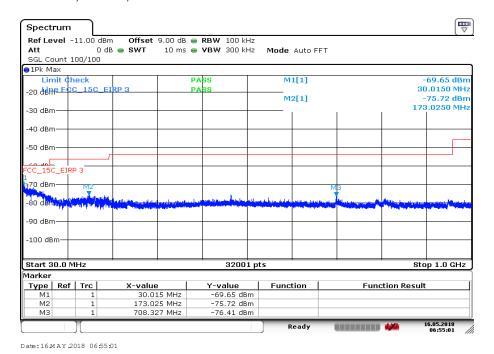
Plot 13: 1 GHz to 40 GHz, U-NII-3; middle channel

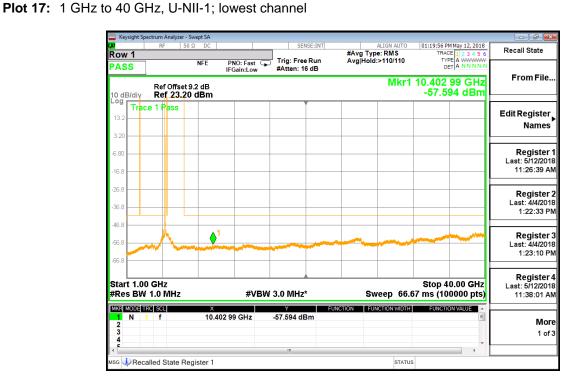
Plot 14: 30 MHz to 1 GHz, U-NII-3; highest channel

Date:16MAY.2018 06:43:01

© CTC advanced GmbH Page 78 of 99

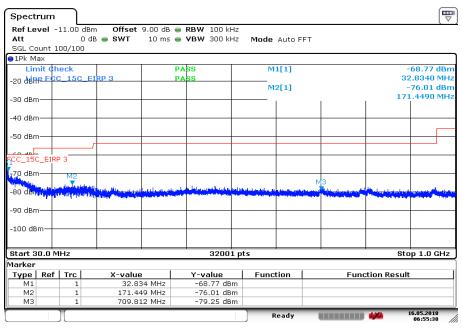
Plot 15: 1 GHz to 40 GHz, U-NII-3; highest channel




© CTC advanced GmbH Page 79 of 99

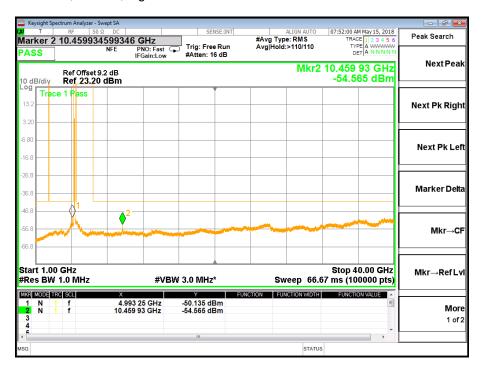
Plots: 40 MHz channel bandwidth / Antenna 0

Plot 16: 30 MHz to 1 GHz, U-NII-1; lowest channel

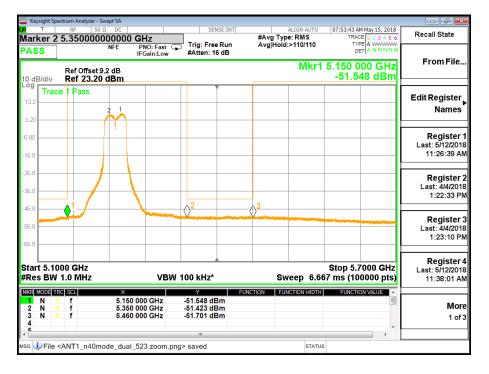

© CTC advanced GmbH Page 80 of 99

Plot 18: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; lowest channel

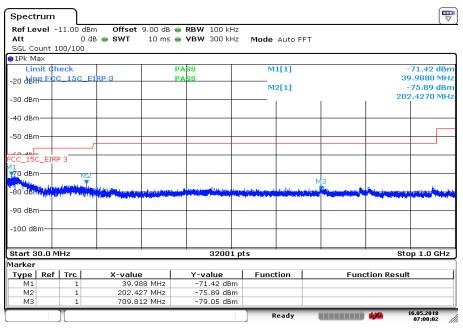
Plot 19: 30 MHz to 1 GHz, U-NII-1; highest channel



Date:16MAY 2018 06:55:38


© CTC advanced GmbH Page 81 of 99

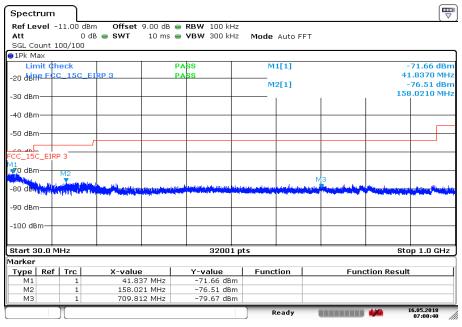
Plot 20: 1 GHz to 40 GHz, U-NII-1; highest channel


Plot 21: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; highest channel

© CTC advanced GmbH Page 82 of 99

Plot 22: 30 MHz to 1 GHz, U-NII-3; lowest channel

Date: 16 MAY 2018 07:00:02

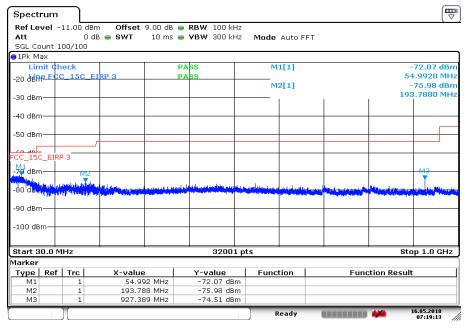

Plot 23: 1 GHz to 40 GHz, U-NII-3; lowest channel

© CTC advanced GmbH Page 83 of 99

Plot 24: 30 MHz to 1 GHz, U-NII-3; highest channel

Date: 16 MAY 2018 07:00:40

Plot 25: 1 GHz to 40 GHz, U-NII-3; highest channel



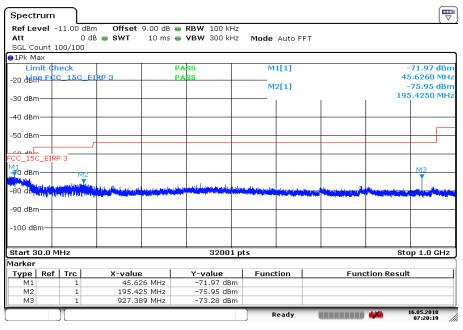
© CTC advanced GmbH Page 84 of 99

Plots: 20 MHz channel bandwidth / Antenna 1

Plot 26: 30 MHz to 1 GHz, U-NII-1; lowest channel

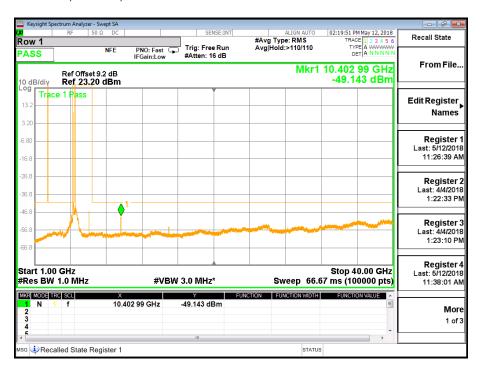
Date:16MAY.2018 07:19:13


Plot 27: 1 GHz to 40 GHz, U-NII-1; lowest channel


© CTC advanced GmbH Page 85 of 99

Plot 28: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; lowest channel

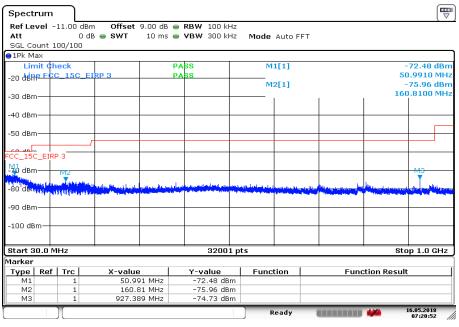
Plot 29: 30 MHz to 1 GHz, U-NII-1; middle channel



Date:16MAY 2018 07:20:20


© CTC advanced GmbH Page 86 of 99

Plot 30: 1 GHz to 40 GHz, U-NII-1; middle channel


Plot 31: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; middle channel

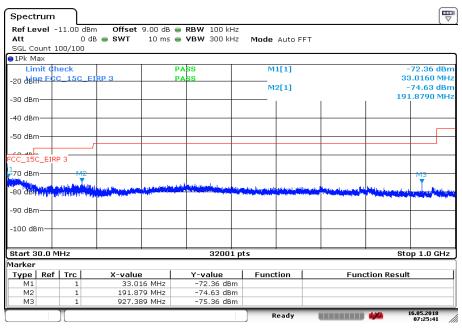
© CTC advanced GmbH Page 87 of 99



Plot 32: 30 MHz to 1 GHz, U-NII-1; highest channel

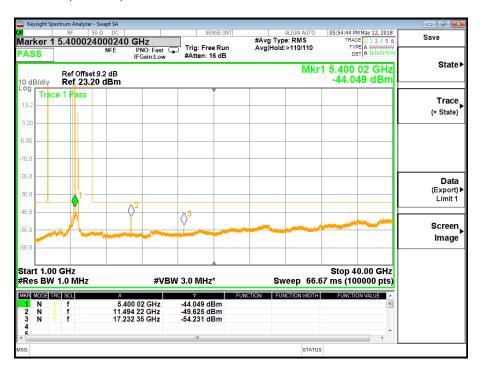
Date:16MAY 2018 07:20:52

Plot 33: 1 GHz to 40 GHz, U-NII-1; highest channel

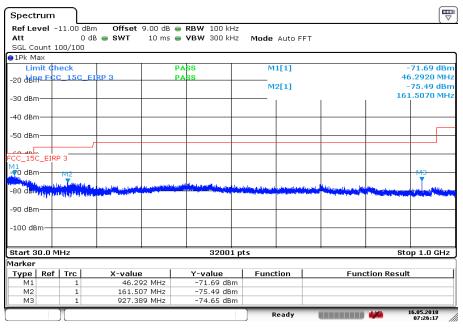

© CTC advanced GmbH Page 88 of 99

Plot 34: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; highest channel

Plot 35: 30 MHz to 1 GHz, U-NII-3; lowest channel



Date:16MAY 2018 07:25:41

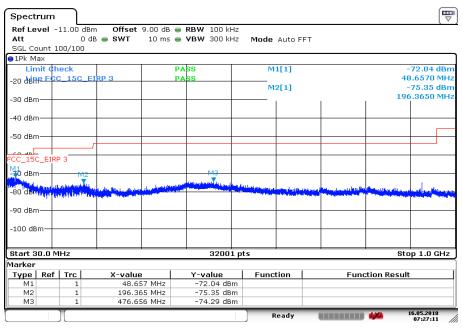

© CTC advanced GmbH Page 89 of 99

Plot 36: 1 GHz to 40 GHz, U-NII-3; lowest channel

Plot 37: 30 MHz to 1 GHz, U-NII-3; middle channel



Date:16MAY 2018 07:26:17


© CTC advanced GmbH Page 90 of 99

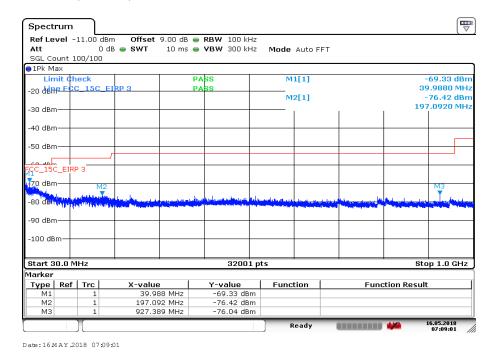
Plot 38: 1 GHz to 40 GHz, U-NII-3; middle channel

Plot 39: 30 MHz to 1 GHz, U-NII-3; highest channel

Date:16MAY 2018 07:27:11

© CTC advanced GmbH Page 91 of 99

Plot 40: 1 GHz to 40 GHz, U-NII-3; highest channel

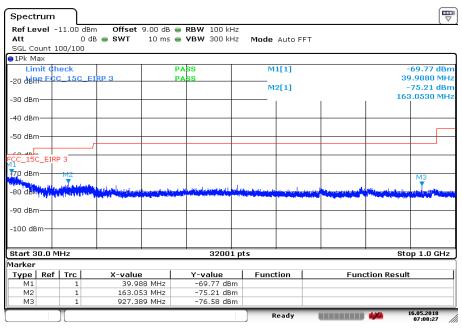


© CTC advanced GmbH Page 92 of 99

Plots: 40 MHz channel bandwidth / Antenna 1

Plot 41: 30 MHz to 1 GHz, U-NII-1; lowest channel

Plot 42: 1 GHz to 40 GHz, U-NII-1; lowest channel


© CTC advanced GmbH Page 93 of 99

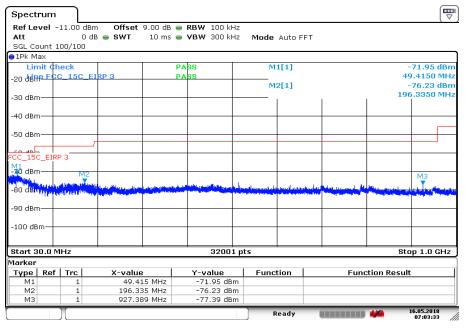
Plot 43: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; lowest channel

Plot 44: 30 MHz to 1 GHz, U-NII-1; highest channel

Date:16MAY.2018 07:08:28

© CTC advanced GmbH Page 94 of 99

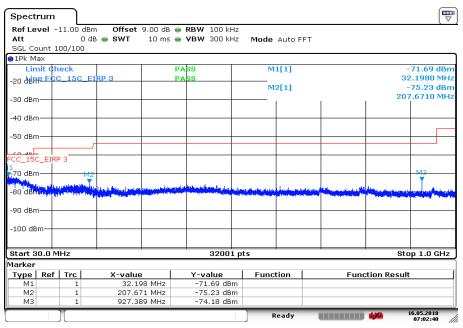
Plot 45: 1 GHz to 40 GHz, U-NII-1; highest channel


Plot 46: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; highest channel

© CTC advanced GmbH Page 95 of 99

Plot 47: 30 MHz to 1 GHz, U-NII-3; lowest channel

Date:16MAY.2018 07:03:34


Plot 48: 1 GHz to 40 GHz, U-NII-3; lowest channel

© CTC advanced GmbH Page 96 of 99

Plot 49: 30 MHz to 1 GHz, U-NII-3; highest channel

Date:16MAY.2018 07:02:40

Plot 50: 1 GHz to 40 GHz, U-NII-3; highest channel

© CTC advanced GmbH Page 97 of 99

Test report no.: 1-5326/17-01-03-C

11 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System

© CTC advanced GmbH Page 98 of 99

Test report no.: 1-5326/17-01-03-C

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2018-05-18
А	Applicant, Manufacturer, FVIN, HVIN, HMN and type identification changed	2018-05-24
В	FVIN, HVIN, HMN changed	2018-07-06
С	HVIN revised	2018-08-24

Annex C Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin G0327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the sccreditation number 0-Pt-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the revers lade of the cores have and the following among with a total of 48 pages. Registration number of the certificate: 0-Pt-12076-01-03 Frankfurt, 02.06.2017 Digital, this later is the following among with a total of 48 pages.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Adkrediterungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation was granted pursuant to the Act on the Accreditation Body (AkSstelleG) of 31 July 2009 (Federal Law Gazette 1p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 etting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1. 218 of 9 July 2008, p. 30). DAKSs is a signatory to the Multilateral Agreements for Multila Recognition of the European co-peration for Accreditation (EA), International Accreditation Forum (IAP) and international Laboratory Accreditation Cooperation (ILC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA www.lac.org. IAF: www.lac.org. IAF: www.lac.org.

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf

© CTC advanced GmbH Page 99 of 99