

Page: 1 of 27

TEST REPORT

Application No.: T32020250067EM

Applicant: Stadlbauer Marketing + Vertrieb GmbH

Address of Applicant: Rennbahn Allee 1, 5412 Puch, Salzburg, Austria

Equipment Under Test (EUT):

EUT Name: Remote Control Toy Transmitter (2.4GHz)

Model No.: 370410507

Standard(s): 47 CFR Part 15, Subpart C 15.249

FCC ID: YFA370410507 **Date of Receipt:** 2020-05-29

Date of Test: 2020-05-29 to 2020-06-12

Date of Issue: 2020-06-12

Test Result: Pass*

Law Man Kit EMC Manager

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request and accessible at http://www.sqs.com/en/Terms-and-conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. The document cannot be reproduced except in full, whout prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: T32020250067EM Page: 2 of 27

Revision Record						
Version	Version Chapter Date N			Remark		
01		2020-06-12		Original		

Authorized for issue by:		
	Zen Xn.	
	Leo Xu /Project Engineer	Date: 2020-06-12
	Law	
	Law Man Kit	
	/Reviewer	Date: 2020-06-12

Page: 3 of 27

2 Test Summary

Radio Spectrum Technical Requirement						
Item	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass		

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass		
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass		
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass		
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass		

Declaration of EUT Family Grouping:

N/A

Abbreviation:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

Report No.: T32020250067EM Page: 4 of 27

Contents

		Page
1	1 COVER PAGE	1
2	2 TEST SUMMARY	3
3	3 CONTENTS	4
4	4 GENERAL INFORMATION.	5
	4.1 DETAILS OF E.U.T	5
		RT UNITS
		AINTY
	4.5 TEST FACILITY	7
	4.6 DEVIATION FROM STANDA	ARDS
	4.7 ABNORMALITIES FROM ST	FANDARD CONDITIONS
5	5 EQUIPMENT LIST	8
_		
6	6 RADIO SPECTRUM TECHN	IICAL REQUIREMENT11
	6.1 ANTENNA REQUIREMENT	11
		11
	6.1.2 Conclusion	11
7	7 RADIO SPECTRUM MATTE	R TEST RESULTS12
	7.1 20DB BANDWIDTH	12
	7.1.1 E.U.T. Operation	12
		12
	7.1.3 Measurement Proce	edure and Data12
	7.2 FIELD STRENGTH OF THE	FUNDAMENTAL SIGNAL (15.249(A))
		17
		17
		edure and Data
		IND FUNDAMENTAL FREQUENCY
		eoure and Data
		edure and Data23
8		27
_		

Page: 5 of 27

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3 V ('AAA' size battery x 2)
Test voltage:	DC 3 V
Antenna Gain:	0dBi
Antenna Type:	Integral antenna
Modulation Type:	GFSK
Number of Channels:	3
Operation Frequency:	2402MHz to 2482MHz
Series no.:	A1
Firmware version:	N/A

EUT channels and frequencies list:

Channel	Frequency (MHz)
1	2402
2	2442
3	2482

Test frequencies are the lowest channel: 2402 MHz, middle channel: 2442 MHz and highest channel: 2482 MHz

4.2 Description of Support Units

The EUT has been tested as an independent unit.

Page: 6 of 27

4.3 Measurement Uncertainty

EMI

No.	Item Measurement Uncertain		
1	Conduction emission	2.5dB (9kHz to 150kHz)	
'	Conduction emission	2.6dB (150kHz to 30MHz)	
0	Radiated emission	5.1dB (30MHz-1GHz)	
2	Radiated emission	4.9dB (1GHz-6GHz)	

RF

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power (30MHz-40GHz)	1.5dB
5	RF power density	1.5dB
6	Conducted Spurious emissions	1.5dB
7	DE Dedicted never	5.1dB (below 1GHz)
/	RF Radiated power	5.3dB (above 1GHz)
8	Dadiated Courieus emission test	5.1dB (below 1GHz)
0	Radiated Spurious emission test	5.3dB (above 1GHz)
9	Temperature test	± 1 ℃
10	Humidity test	± 3%
11	Supply voltages	± 1.5%
12	Time	± 3%

Remark:

The U_{lab} (lab Uncertainty) is less than U_{cispr} (CISPR Uncertainty), so the test results

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

According to decision rule based on Clause 4.2 of CISPR 16-4-2, the EUT complied with the standards specified above.

Page: 7 of 27

4.4 Test Location

All tests were performed at:

SGS Hong Kong Limited

Unit 2 and 3, G/F, Block A, Po Lung Centre,

11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong

Tel: +852 2305 2570 Fax: +852 2756 4480

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· HOKLAS (Lab Code: 009)

SGS Hong Kong Limited has been accepted by HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a HOKLAS Accredited Laboratory, this laboratory meets the requirements of ISO/IEC 17025:2017 an it has been accredited for performing specific test as listed in the scope of accreditation within the test category of Electrical and Electronic Products.

IAS Accreditation (Lab Code: TL-187)

SGS Hong Kong Limited has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation maintained on the IAS website (www.iasonline.org).

The report must not be used by the client to claim product certification, approval, or endorsement by IAS, NIST, or any agency of the Federal Government.

• FCC Recognized Accredited Test Firm(CAB Registration No.: 514599)

SGS Hong Kong Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0015, Test Firm Registration Number: 514599.

• Industry Canada (Site Registration No.: 26103; CAB Identifier No.: HK0015)

SGS Hong Kong Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0015, Site Registration Number: 26103.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: T32020250067EM Page: 8 of 27

5 Equipment List

20dB Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2019/9/23	2020/9/22

Report No.: T32020250067EM Page: 9 of 27

Radiated Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2019/8/9	2020/8/8
Coaxial Cable	SGS	N/A	E167	2019/7/22	2020/7/21
EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESR7 / 102298	E314	2020/05/18	2021/05/18
EMI Test Receiver 9kHz to 3.6GHz	Rohde & Schwarz	ESR3 / 102326	E231	2019/9/2	2020/9/1
TRILOG Super Broadb. Test Antenna, (25) 30- 1000 (2	Schwarzbeck	VULB 9168	E264	2018/10/20	2020/10/19
EMC32 Test software	Rohde & Schwarz	Version 10	N/A	N/A	N/A
Signal and Spectrum Analyzer 2Hz - 26.5GHz	Rohde & Schwarz	FSW26	E296	2019/10/29	2020/10/28
Spectrum Analyzer 9kHz - 30GHz	Rohde & Schwarz	FSP30	E204	2020/4/23	2021/4/22
Horn Antenna 1 - 18GHz	Schwarzbeck	BBHA9120D	E211	2020/1/30	2022/1/29
Horn Antenna 15 - 40GHz	Schwarzbeck	BBHA9170	E212	2017/10/17	2020/10/16
Preamplifier 33dB, 1 - 18GHz	Schwarzbeck	BBV9718	E214	2020/4/24	2021/4/23
Preamplifier 33dB, 18 - 26.5GHz	Schwarzbeck	BBV9719	E215	2019/4/24	2021/4/23
Broadband Coaxial Preamplifier typ. 30 dB, 18-40 G	Schwarzbeck	BBV 9721	E266	2019/8/22	2020/8/21
Highpass Filter 3.5- 26.5GHz	Wainwright	WHNX3.5/26.5 G-6SS	E205	2019/4/24	2021/4/23
Band Reject Filter 2.4- 2.5GHz	Wainwright	WRCJV 2400/2500- 2100	E206	2019/4/24	2021/4/23
RF cable SMA to SMA 10000mm	HUBER+SUHNER	SF104- 26.5/2*11SMA 45	E207-1	2019/9/26	2020/9/25
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237		
Turntable with Controller	ChamPro	EM1000	E238		

Report No.: T32020250067EM Page: 10 of 27

General used equipment						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Digital temperature & humidity data logger	SATO	SK-L200TH II	E232	2019/10/28	2020/10/27	
Electronic Digital Thermometer with Hygrometer	nil	2074/2075	E159	2019/10/28	2020/10/27	
Barometer with digital thermometer	SATO	7612-00	E218	2020/4/23	2021/4/22	
Conditional Chamber	Zhong Zhi Testing Instruments	CZ-E-608D	E216	2019/8/22	2020/8/21	

Page: 11 of 27

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 Limit:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently

attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi. (Inset photos!)

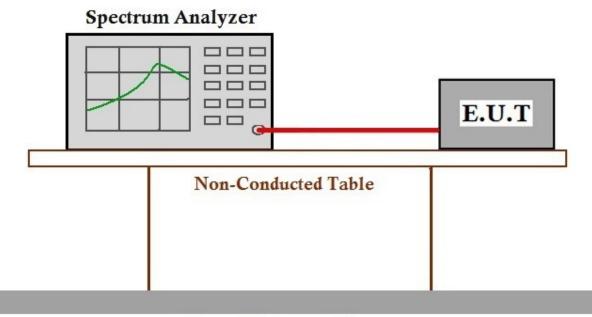
Page: 12 of 27

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.215
Test Method: ANSI C63.10 (2013) Section 6.9

Limit: N/A

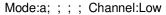

7.1.1 E.U.T. Operation

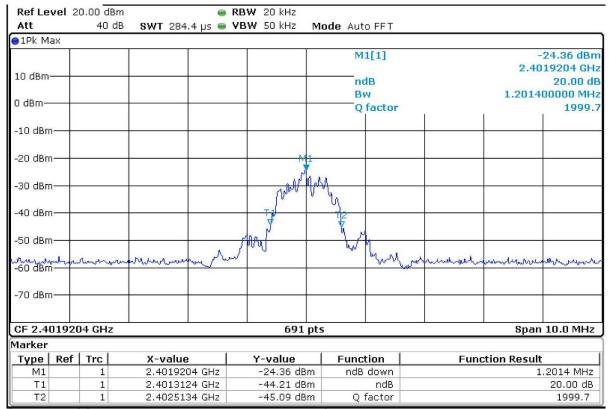
Operating Environment:

Temperature: 25 °C Humidity: 50 % RH

Test mode a: TX mode Keep the EUT in transmitting with modulation mode.

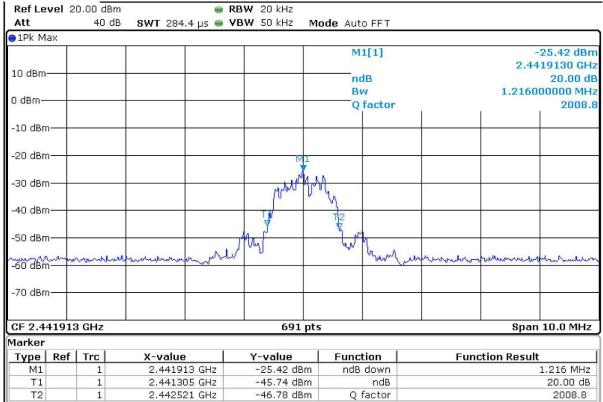
7.1.2 Test Setup Diagram




Ground Reference Plane

7.1.3 Measurement Procedure and Data

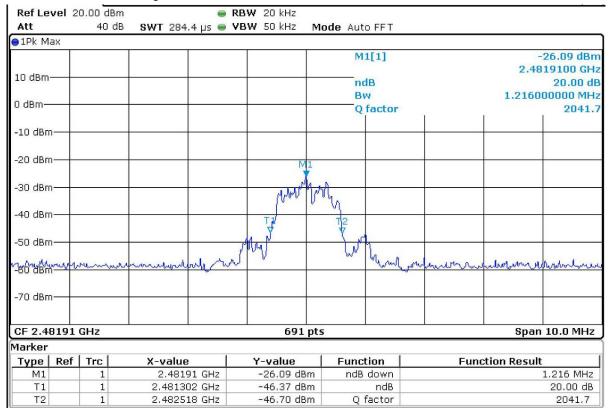
Page: 13 of 27



20dB Bandwidth = 1.201400 MHz

Page: 14 of 27

Mode:a; ; ; Channel:middle



20dB Bandwidth = 1.216000 MHz

Page: 15 of 27

Mode:a; ; ; Channel:High

20dB Bandwidth = 1.216000 MHz

Page: 16 of 27

7.2 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement 47 CFR Part 15, Subpart C 15.249(a)
Test Method: ANSI C63.10 (2013) Section 6.5&6.6

Measurement Distance: 3m

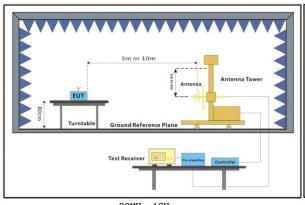
Limit:

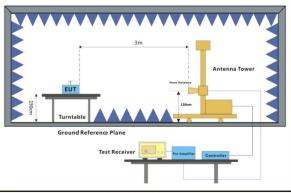
Fundamental frequency(MHz)	Field strength of fundamental(millivolts/meter)	Field strength of harmonics(microvolts/meter)
902-928	50	500
2400-2483.5	50	500
5725-5875	50	500
24000-24250	250	2500

Remark: The frequencies above 1000MHz are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

For fundamental frequency in "902-928MHz", the field strength of fundamental is based on Quasi-Peak.

Page: 17 of 27


7.2.1 E.U.T. Operation


Operating Environment:

Temperature: 25 °C Humidity: 50 % RH

Test mode a: TX mode Keep the EUT in transmitting with modulation mode.

7.2.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.2.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: T32020250067EM Page: 18 of 27

Mode:a;

Frequency	Peak	Average	Pol.	Corr.	Peak Margin	Average Margin	Peak Limit	Avergae Limit	Result
(MHz)	(dBµV/m)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	
2402.000000	80.7	54.7	Н	32.2	33.4	39.3	114.0	94.0	Pass
2442.000000	81.2	55.3	Н	32.4	32.8	38.7	114.0	94.0	Pass
2482.000000	79.4	54.9	Н	32.6	34.7	39.1	114.0	94.0	Pass
2402.000000	85.4	58.7	٧	32.2	28.6	35.3	114.0	94.0	Pass
2442.000000	85.8	59.1	٧	32.4	28.2	34.9	114.0	94.0	Pass
2482.000000	83.0	58.1	٧	32.6	31.0	35.9	114.0	94.0	Pass

Page: 19 of 27

7.3 Restricted Band Around Fundamental Frequency

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209

Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

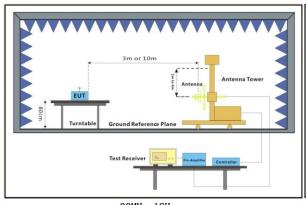
Measurement Distance: 3m

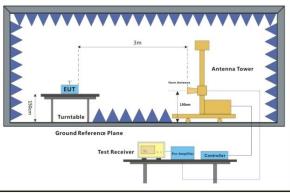
Limit:

Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1GHz	54.0	Average Value
Above 1GHz	74.0	Peak Value

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

20 of 27 Page:


7.3.1 E.U.T. Operation


Operating Environment:

Temperature: 25 °C Humidity: 50 % RH

Test mode a:TX mode Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.3.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: T32020250067EM Page: 21 of 27

Mode:a;

Frequency	Antenna	Antenna Emission Level (dBμV/m)		Limit (d	Remark	
(MHz)	Polarization	Peak	Average	Peak	Average	nemark
2386.000	Н	35.4	/	74.0	54.0	Pass
2483.500	Н	31.3	/	74.0	54.0	Pass
2386.000	V	37.2	/	74.0	54.0	Pass
2483.500	V	32.1	/	74.0	54.0	Pass

Page: 22 of 27

7.4 Radiated Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)

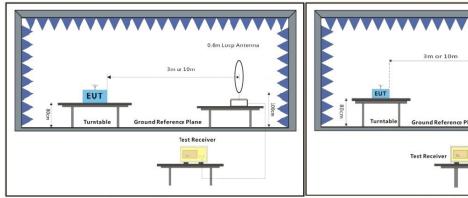
Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

Measurement Distance: 3m

Limit:

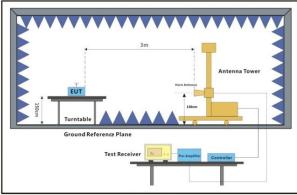
Frequency (MHz)	Field strength (microvolts/meter)	Limit (dBuV/m)	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30
30-88	100	40.0	QP	3
88-216	150	43.5	QP	3
216-960	200	46.0	QP	3
960-1000	500	54.0	QP	3
Above 1000	500	54.0	AV	3

Page: 23 of 27


7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 50 % RH :


Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

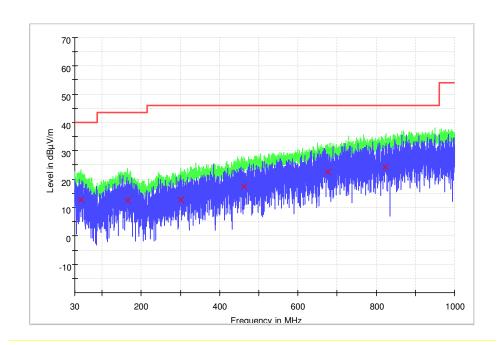
7.4.2 Test Setup Diagram

Below 30MHz

30MHz-1GHz

Above 1GHz

7.4.3 Measurement Procedure and Data

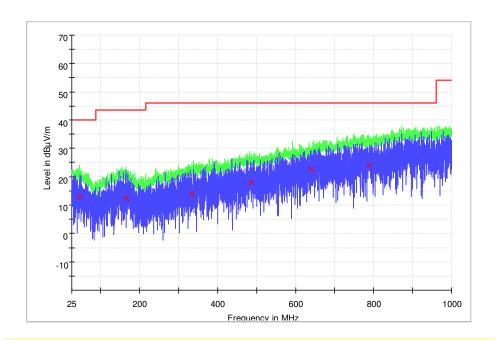

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

Report No.: T32020250067EM Page: 24 of 27

Radiated emission below 1GHz

Horizontal (worse plot was shown as below)

Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Dlt
(MHz)	(dBµV/m)		(dB/m)	(dB)	(dBµV/m)	Result
46.352500	12.9	Н	14.5	27.2	40.0	Pass
165.790000	12.4	Н	14.2	31.1	43.5	Pass
300.242500	12.7	Н	14.4	33.3	46.0	Pass
462.677500	17.4	Н	18.6	28.6	46.0	Pass
674.740000	22.6	Н	23.2	23.4	46.0	Pass
823.720000	24.4	Н	25.2	21.6	46.0	Pass


Remark:

- 1. All readings are Quasi-Peak values.
- 2. Correction Factor = Antenna Factor + Cable Loss.
- 3. Pol. = antenna polarization

Report No.: T32020250067EM Page: 25 of 27

Vertical (worse plot was shown as below)

Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Decult
(MHz)	(dBµV/m)		(dB/m)	(dB)	(dBµV/m)	Result
44.597500	13.0	٧	14.5	27.0	40.0	Pass
164.522500	12.4	٧	14.3	31.1	43.5	Pass
333.100000	13.8	٧	15.5	32.2	46.0	Pass
486.272500	17.9	٧	19.1	28.1	46.0	Pass
638.957500	22.8	٧	22.3	23.2	46.0	Pass
788.620000	24.1	٧	24.7	21.9	46.0	Pass

Remark:

- 1. All readings are Quasi-Peak values.
- 2. Correction Factor = Antenna Factor + Cable Loss.
- 3. Pol. = antenna polarization

Report No.: T32020250067EM Page: 26 of 27

Above 1GHz

Channel:Low

Frequency	Antenna	Emission Level (dBμV/m)		Limit (c	Remark	
(MHz)	Polarizati on	Peak	Average	Peak	Average	nemark
4804.000	Н	47.0	/	74.0	54.0	Pass
4972.000	Н	45.6	/	74.0	54.0	Pass
7207.000	Н	39.0	/	74.0	54.0	Pass
4787.000	V	51.2	/	74.0	54.0	Pass
4972.500	V	45.7	/	74.0	54.0	Pass
7205.000	V	46.1	/	74.0	54.0	Pass

Channel:Middle

Frequency	Antenna	Emission Level (dBμV/m)		Limit (d	Remark	
(MHz)	Polarizati on	Peak	Average	Peak	Average	nemark
3158.500	Н	39.1	/	74.0	54.0	Pass
4864.500	Н	48.9	/	74.0	54.0	Pass
7326.000	Н	42.9	/	74.0	54.0	Pass
4884.000	V	49.7	/	74.0	54.0	Pass
4973.000	V	46.0	/	74.0	54.0	Pass
7325.000	V	46.4	/	74.0	54.0	Pass

Channel: High

Frequency	Antenna	Emission Level (dBμV/m)		Limit (d	Remark	
(MHz)	Polarizati on	Peak	Average	Peak	Average	nemark
4865.000	Н	34.7	/	74.0	54.0	Pass
4964.500	Н	49.2	/	74.0	54.0	Pass
7445.000	Н	44.8	/	74.0	54.0	Pass
4965.000	V	52.0	/	74.0	54.0	Pass
7445.000	V	45.7	/	74.0	54.0	Pass
7445.000	V	45.7	/	74.0	54.0	Pass

Report No.: T32020250067EM Page: 27 of 27

Photographs 8

Remark: Photos refer to Appendix: External Photo, Internal Phot, and Setup Photo

- End of the Report -