

FCC TEST REPORT

Product Name: Remote Control Toy Transmitter(2.4GHz)
Trade Mark: N/A
Model No.: 370401026
HVIN: 370401026
Report Number: 171206003RFC-1
FCC 47 CFR Part 15 Subpart C
RSS-210 Issue 9
RSS-Gen Issue 4
FCC ID: YFA370401026
IC: 12260A-370401026
Test Result: PASS
Date of Issue: January 2, 2018

Prepared for:

Stadlbauer Marketing + Vertrieb GmbH
Rennbahn Allee 1, 5412 Puch Salzburg Austria

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.
16/F, Block A, Building 6, Baoneng Science and Technology Park,
Qingxiang Road No.1, Longhua New District, Shenzhen, China
TEL: +86-755-2823 0888
FAX: +86-755-2823 0886

Tested by: Henry Lu
Henry Lu
Engineer

Reviewed by: Kevin Liang
Kevin Liang
Senior Engineer

Approved by: Jim Long
Jim Long
Senior Supervisor

Date:

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com [Http://www.uttlab.com](http://www.uttlab.com)

Version

Version No.	Date	Description
V1.0	January 2, 2018	Original

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com [Http://www.uttlab.com](http://www.uttlab.com)

CONTENTS

1. GENERAL INFORMATION	4
1.1 CLIENT INFORMATION	4
1.2 EUT INFORMATION	4
1.2.1 GENERAL DESCRIPTION OF EUT	4
1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	4
1.4 OTHER INFORMATION	4
1.5 DESCRIPTION OF SUPPORT UNITS	4
1.6 TEST LOCATION	5
1.7 TEST FACILITY	5
1.8 DEVIATION FROM STANDARDS	5
1.9 ABNORMALITIES FROM STANDARD CONDITIONS	5
1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	5
1.11 MEASUREMENT UNCERTAINTY	6
2. TEST SUMMARY	7
3. EQUIPMENT LIST	8
4. TEST CONFIGURATION	9
4.1 ENVIRONMENTAL CONDITIONS FOR TESTING	9
4.1.1 NORMAL OR EXTREME TEST CONDITIONS	9
4.1.2 RECORD OF NORMAL ENVIRONMENT	9
4.2 TEST CHANNELS	9
4.3 EUT TEST STATUS	9
4.4 TEST SETUP	10
4.4.1 FOR RADIATED EMISSIONS TEST SETUP	10
4.4.2 FOR CONDUCTED EMISSIONS TEST SETUP	10
4.5 SYSTEM TEST CONFIGURATION	11
4.6 DUTY CYCLE	12
5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION	13
5.1 REFERENCE DOCUMENTS FOR TESTING	13
5.2 ANTENNA REQUIREMENT	13
5.3 RADIATED EMISSION	13
5.4 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	23
5.5 20dB OCCUPIED BANDWIDTH	26
PHOTOS OF TEST SETUP	29
PHOTOS OF EUT CONSTRUCTIONAL DETAILS	30
EUT EXTERNAL PHOTOS	30
EUT INTERNAL PHOTOS	32

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Stadlbauer Marketing + Vertrieb GmbH
Address of Applicant:	Rennbahn Allee 1, 5412 Puch Salzburg Austria
Manufacturer:	Stadlbauer Marketing + Vertrieb GmbH
Address of Manufacturer:	Rennbahn Allee 1, 5412 Puch Salzburg Austria

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Remote Control Toy Transmitter(2.4GHz)
Model No.:	370401026
Trade Mark:	N/A
DUT Stage:	Identical Prototype
EUT Supports Function:	General 2.4GHz Technique
Power Supply:	The transmitter unit is supplied by 2x1.5V—AA batteries.
Sample Received Date:	December 6, 2017
Sample Tested Date:	February 6, 2017 to December 12, 2017

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Range:	2405 MHz to 2475 MHz
Type of Modulation:	GFSK
Number of Channels:	71
Channel Separation:	1MHz
Antenna Type:	Integral Antenna
Antenna Gain:	0 dBi
Maximum Field Strength:	88.12 dB μ V/m@3m
Normal Test Voltage:	Transmitter unit: 3.0 Vdc

1.4 OTHER INFORMATION

Operation Frequency Each of Channel	
$f = 2405 + k$ MHz, $k = 0, \dots, 70$	
Note:	
f	is the operating frequency (MHz);
k	is the operating channel.

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested independently

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109
Telephone: +86 (0) 755 2823 0888
Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194
Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com [Http://www.uttlab.com](http://www.uttlab.com)

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

No.	Item	Measurement Uncertainty
3	Radiated emission 9KHz-30MHz	± 4.9 dB
4	Radiated emission 30MHz-1GHz	± 4.7 dB
5	Radiated emission 1GHz-18GHz	± 5.1 dB
6	Radiated emission 18GHz-26GHz	± 5.2 dB
7	Radiated emission 26GHz-40GHz	± 5.2 dB

2. TEST SUMMARY

Test Cases			
Test Item	Test Requirement	Test Method	Result
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 RSS-Gen Issue 4, Section 8.3	ANSI C63.10-2013	PASS
Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207 RSS-Gen Issue 4, Section 8.8	ANSI C63.10-2013	N/A ^(Note1)
Radiated Emission	FCC 47 CFR Part 15 Subpart C Section 15.249 (a)/15.209 RSS-210 Issue 9, Annex B.10 RSS-Gen Issue 4, section 8.9 / 7.1.2	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	FCC 47 CFR Part 15 Subpart C Section 15.249(a)/15.205 RSS-210 Issue 9, Annex B.10 RSS-Gen Issue 4, section 8.9 / 7.1.2	ANSI C63.10-2013	PASS
Occupied Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.215 (c) RSS-Gen Issue 4, section 6.6	ANSI C63.10-2013	PASS

Note:

- 1) N/A: In this whole report not application.

3. EQUIPMENT LIST

Radiated Emission Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018
<input checked="" type="checkbox"/>	Receiver	R&S	ESIB26	100114	Dec. 22, 2016	Dec. 22, 2017
<input checked="" type="checkbox"/>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017
<input checked="" type="checkbox"/>	Loop Antenna	ETS-LINDGREN	6502	00202525	Jun. 24, 2015	Jun. 23, 2018
<input checked="" type="checkbox"/>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Jul. 24, 2015	Jul. 23, 2018
<input checked="" type="checkbox"/>	Preamplifier	HP	8447F	2805A02960	Dec. 22, 2016	Dec. 22, 2017
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	Dec. 30, 2016	Dec. 30, 2017
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jul. 29, 2015	Jul. 28, 2018
<input checked="" type="checkbox"/>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
<input checked="" type="checkbox"/>	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	Jun. 21, 2017	Jun. 20, 2018
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323		

Conducted RF test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter		Selected Values During Tests		
Test Condition	Ambient			Relative Humidity (%)
	Temperature (°C)	Voltage (Vdc)		
NT/NV	+15 to +35	3		20 to 75
Remark: 1) NV: Normal Voltage; NT: Normal Temperature				

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (Kpa)	Tested by
Radiated Emission	22.8	53	100.23	Terence Chen
Restricted bands around fundamental frequency (Radiated Emission)	22.8	53	100.23	Terence Chen
20dB Occupied Bandwidth	23	52	100.33	Fire Huo

4.2 TEST CHANNELS

Type of Modulation	Tx/Rx Frequency	Test RF Channel Lists		
		Lowest(L)	Middle(M)	Highest(H)
GFSK	2405 MHz to 2475 MHz	Channel 0	Channel 36	Channel 71
		2405 MHz	2440 MHz	2475 MHz

4.3 EUT TEST STATUS

Modulation Mode	Tx Function	Description
GFSK	1Tx	Keep the EUT in continuously transmitting with modulation test single.

4.4 TEST SETUP

4.4.1 For Radiated Emissions test setup

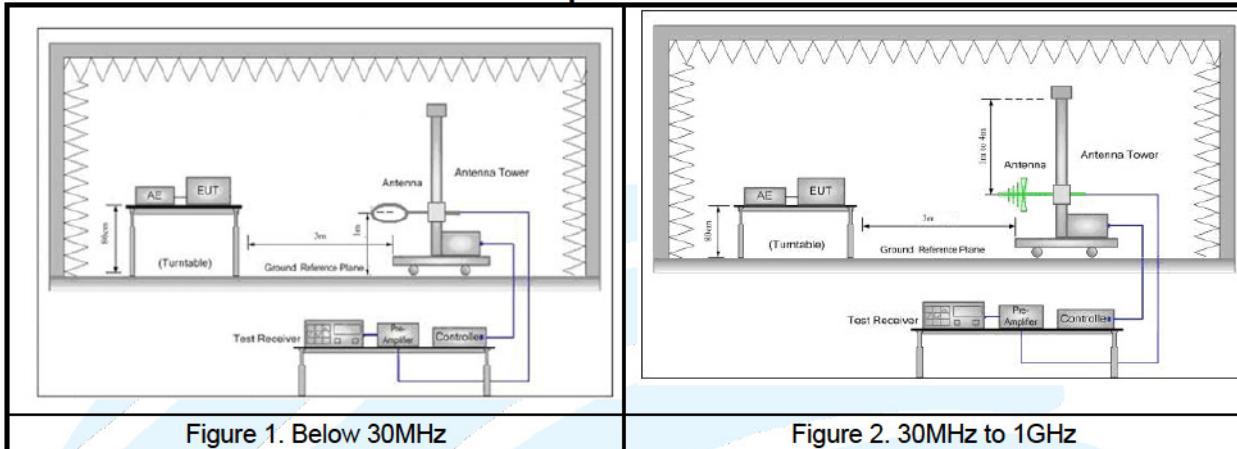
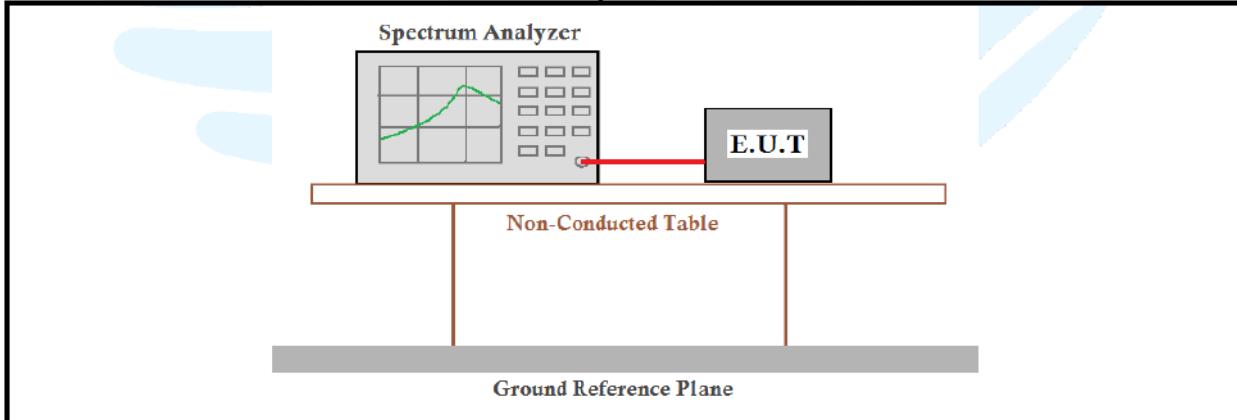



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

4.4.2 For Conducted Emissions test setup

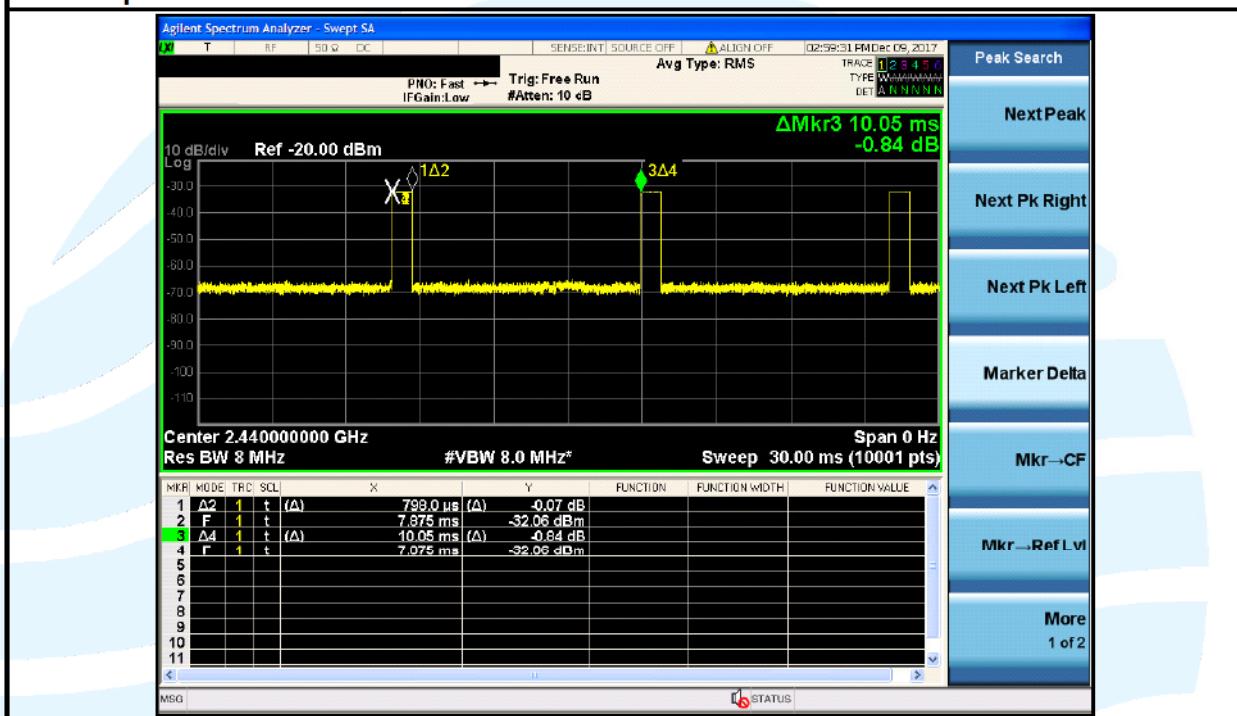
4.5 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3Vdc battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning
Above 1GHz	1TX	Chain 0	Y axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.


Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.6 DUTY CYCLE

Type of Modulation	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Average Factor (dB)
GFSK	0.7980	10.05	0.08	7.94	-22

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = $10 * \log(1/ \text{Duty cycle})$;
- 3) Average factor = $20 \log_{10} \text{Duty Cycle}$.

The test plot as follows

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION

5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 15	Radio Frequency Devices
2	RSS-Gen Issue 4	General Requirements for Compliance of Radio Apparatus
3	RSS-210 Issue 9	Licence-Exempt Radio Apparatus: Category I Equipment
4	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

5.2 ANTENNA REQUIREMENT

Standard Requirement
15.203 Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
RSS-Gen Issue 4, Section 8.3 requirement: According to RSS-Gen Issue 4, section 8.3, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.
EUT Antenna: Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 0 dBi.

5.3 RADIATED EMISSION

Test Requirement: FCC 47 CFR Part 15.209 and 15.249;
Test Method: RSS-210 Issue 9, Annex B.10; RSS-Gen Issue 4, section 8.9 / 7.1.2

Receiver Setup: ANSI C63.10-2013 Section 6.6.4.3

Limits:

Spurious Emissions

Frequency	Field strength (microvolt/meter)	Limit (dB μ V/m)	Remark	Measurement distance (m)
0.009 MHz-0.090 MHz	Peak	10 kHz	30 KHz	Peak
0.009 MHz-0.090 MHz	Average	10 kHz	30 KHz	Average
0.090 MHz-0.110 MHz	Quasi-peak	10 kHz	30 KHz	Quasi-peak
0.110 MHz-0.490 MHz	Peak	10 kHz	30 KHz	Peak
0.110 MHz-0.490 MHz	Average	10 kHz	30 KHz	Average
0.490 MHz -30 MHz	Quasi-peak	10 kHz	30 kHz	Quasi-peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Quasi-peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak
	Peak	1 MHz	10 Hz	Average

216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Field strength of the fundamental signal

Frequency	Limit (dB μ V/m @3m)	Remark
2400 MHz-2483.5 MHz	94.0	Average
	114.0	Peak

Remark:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB μ V/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Test Setup: Refer to section 4.4.1 for details.

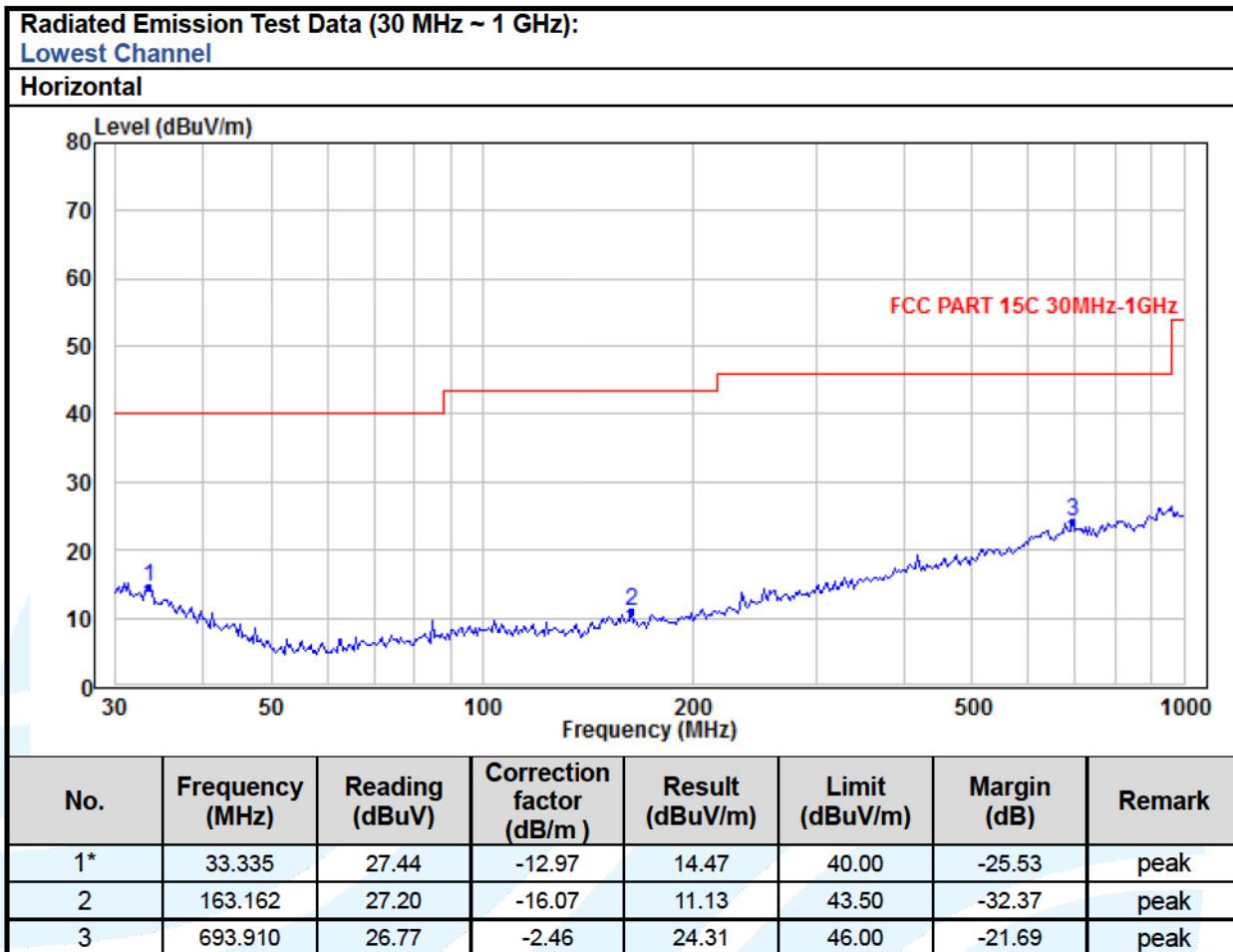
Test Procedures:**1. From 30 MHz to 1GHz test procedure as below:**

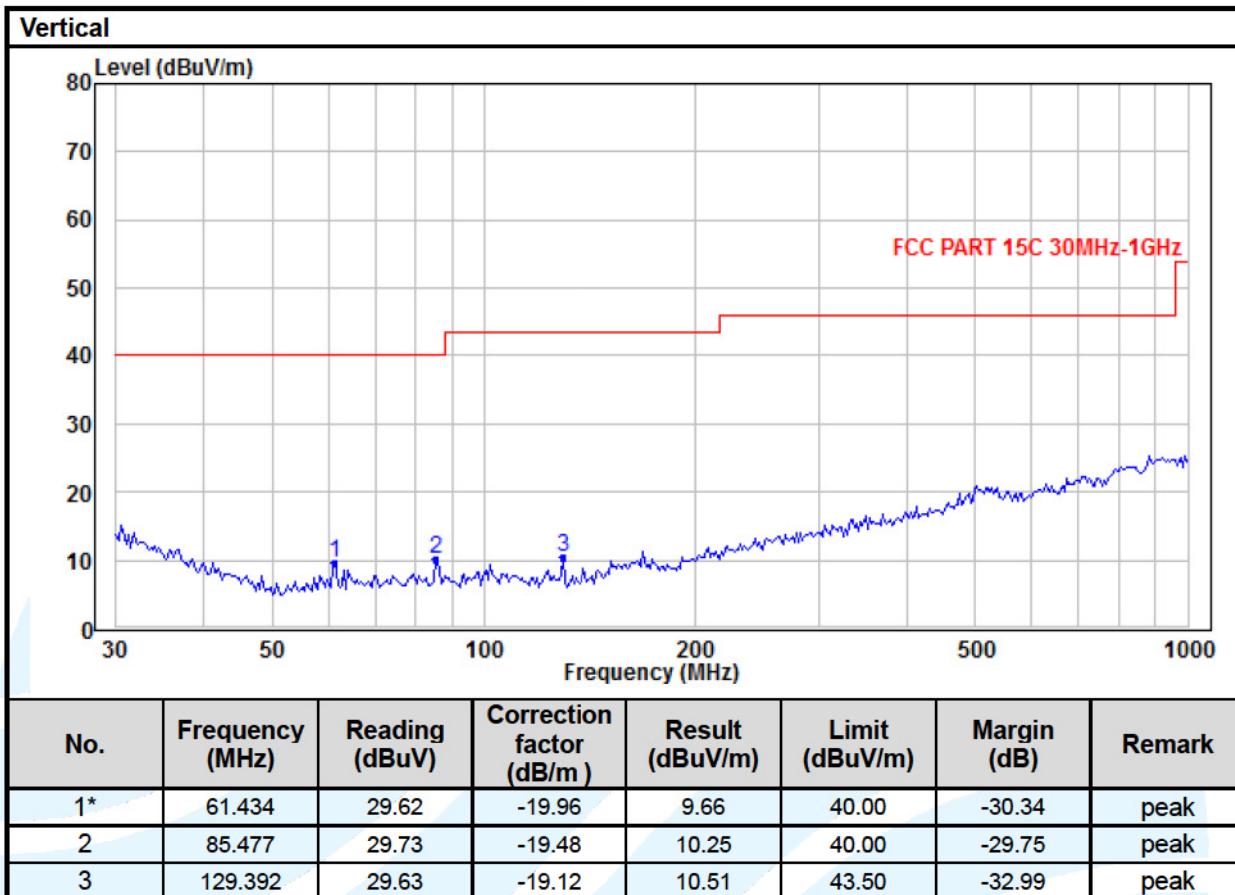
- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

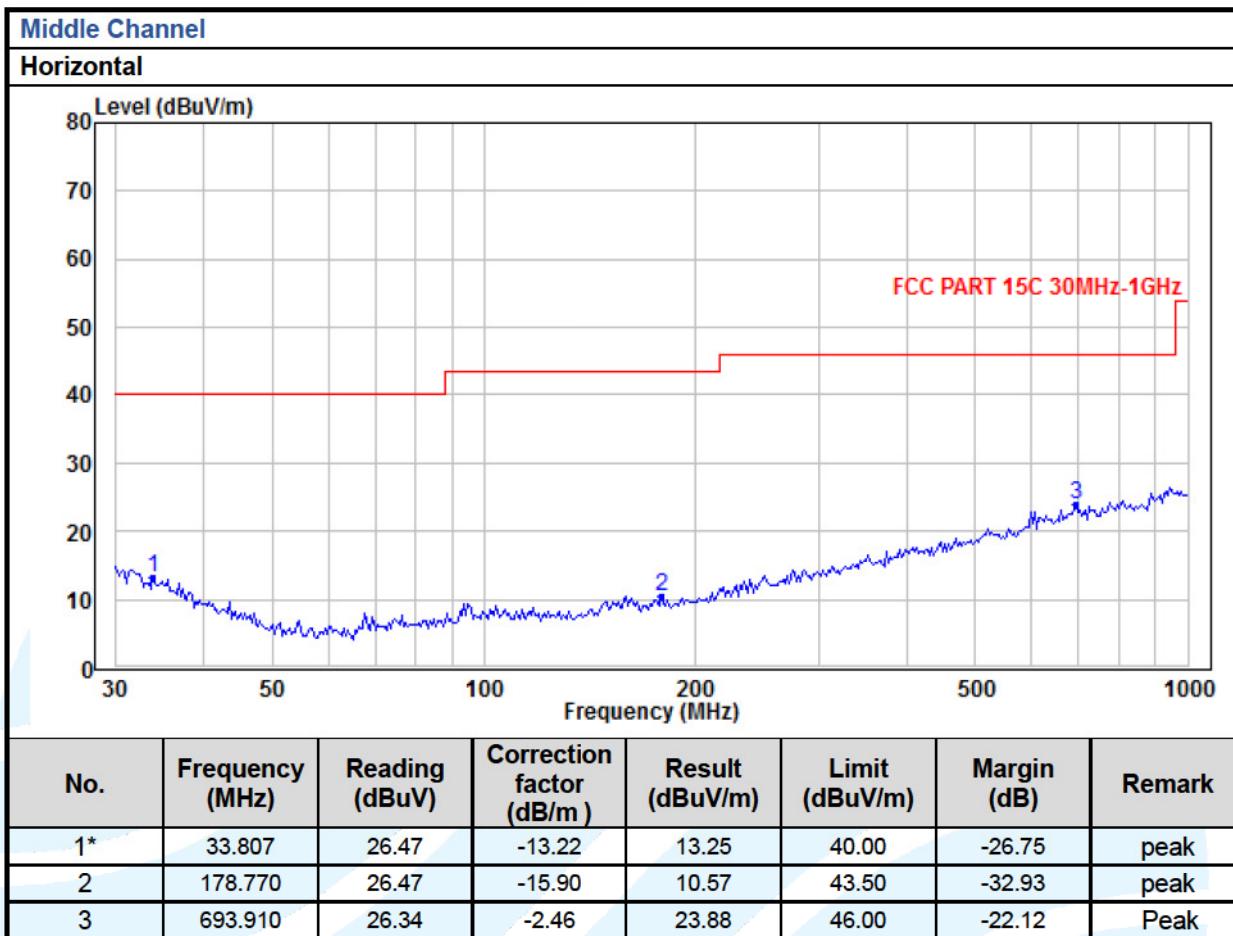
2. Above 1GHz test procedure as below:

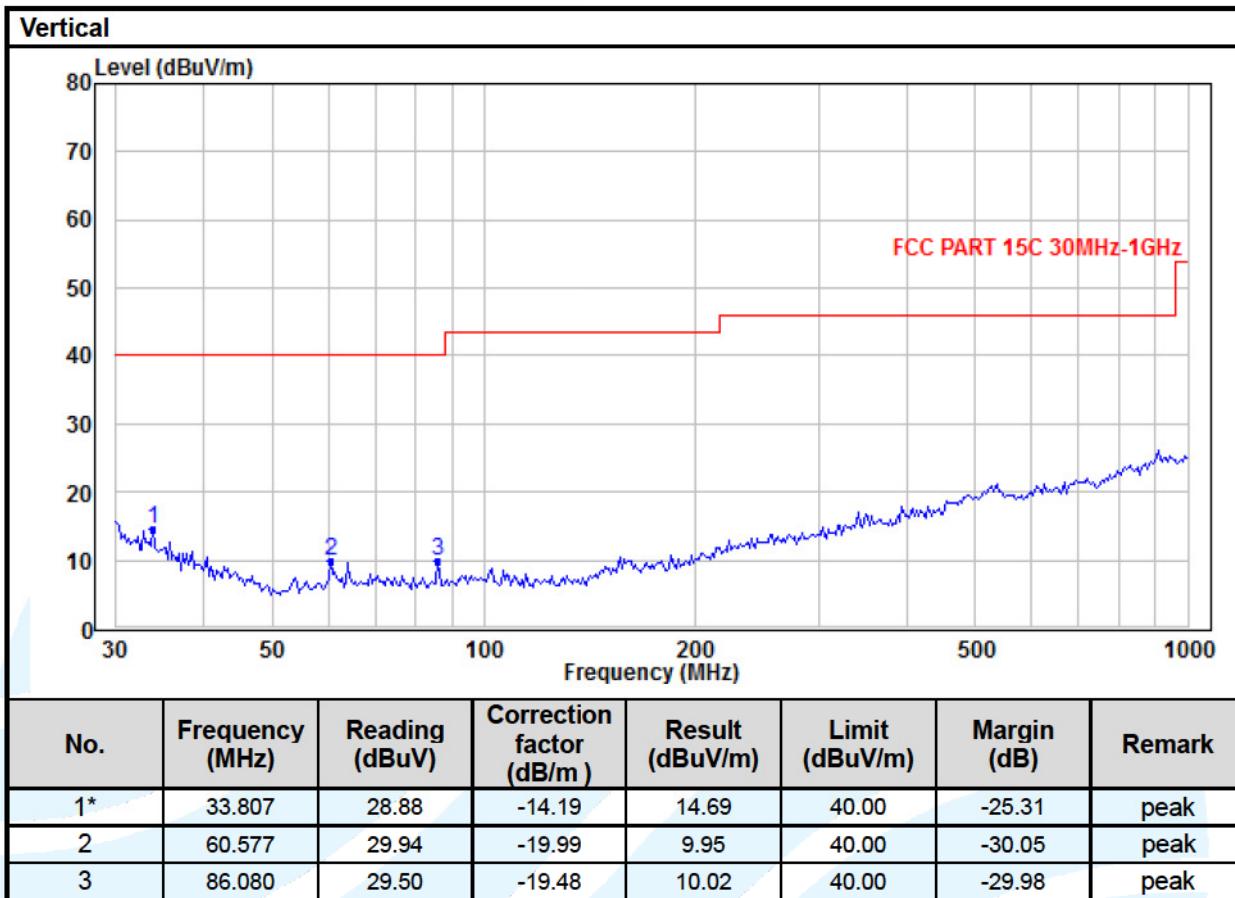
- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- 2) Test the EUT in the lowest channel ,middle channel, the Highest channel
- 3) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Y axis positioning which it is worse case.
- 4) Repeat above procedures until all frequencies measured was complete.

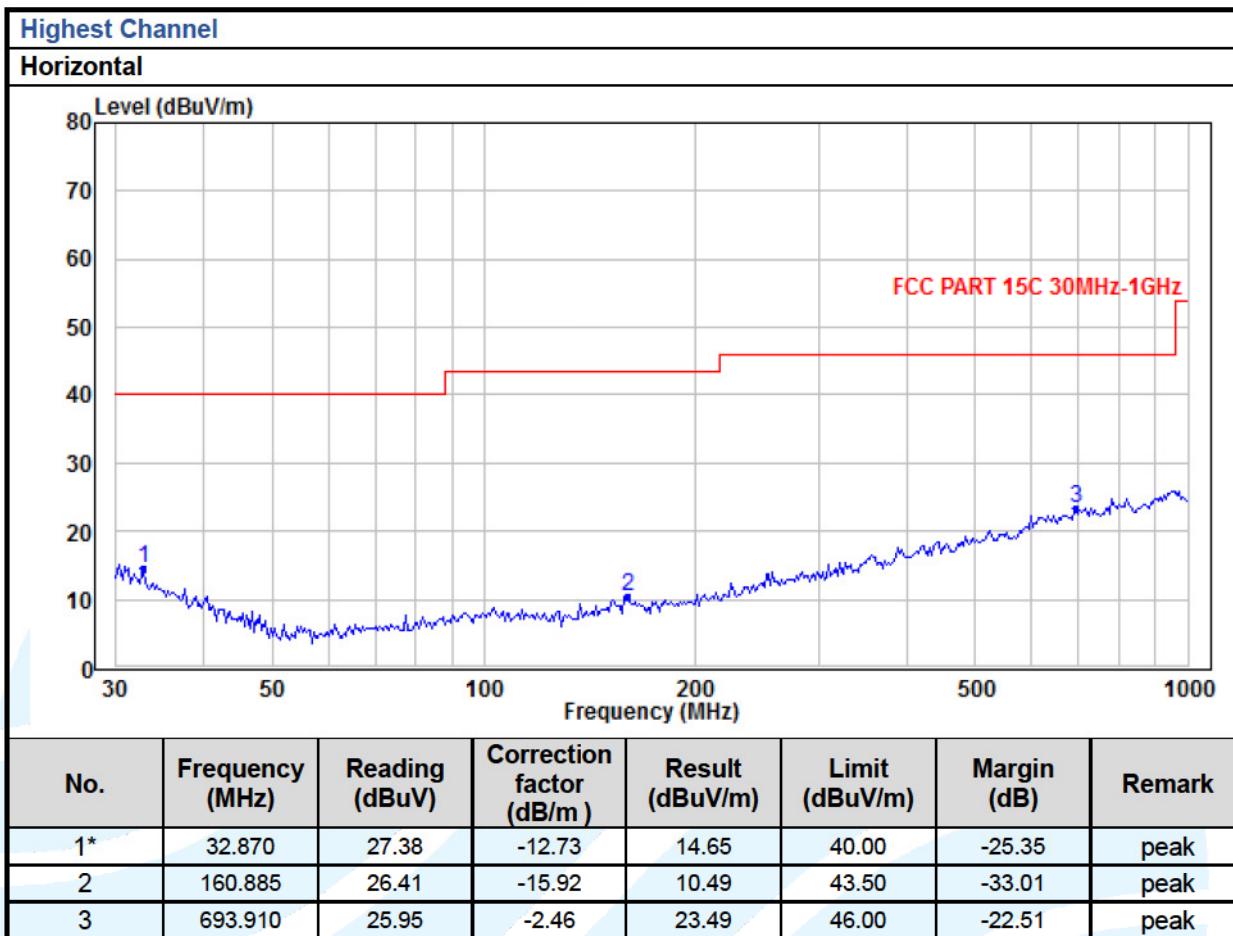
Equipment Used: Refer to section 3 for details.


Test Result: Pass


The measurement data as follows:


Field Strength of the Fundamental Signal					
Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Antenna Polaxis	Pass/Fail
Lowest Channel					
62.17	94.00	-31.83	Average	Horizontal	Pass
82.17	114.00	-31.83	Peak	Horizontal	Pass
66.12	94.00	-27.88	Average	Vertical	Pass
88.12	114.00	-25.88	Peak	Vertical	Pass
Middle Channel					
61.76	94.00	-32.24	Average	Horizontal	Pass
83.76	114.00	-30.24	Peak	Horizontal	Pass
64.94	94.00	-29.06	Average	Vertical	Pass
86.94	114.00	-27.06	Peak	Vertical	Pass
Highest Channel					
61.56	94.00	-32.44	Average	Horizontal	Pass
83.56	114.00	-30.44	Peak	Horizontal	Pass
64.71	94.00	-29.29	Average	Vertical	Pass
86.71	114.00	-27.29	Peak	Vertical	Pass


Radiated Emission Test Data (9 KHz ~ 30 MHz):


The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

