Report No.: 2540466R-SAUSV01S-A

Appendix A. System Check Data

System Performance Check_750MHz-Head

DUT: Dipole 750 MHz; Type: D750V3

Communication System: UID 0, CW; Frequency: 750 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 750 MHz; σ = 0.91 S/m; ϵ_r = 42.67; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3979; ConvF(8.47, 10.75, 8.97) @ 750 MHz; Calibrated: 2024/11/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

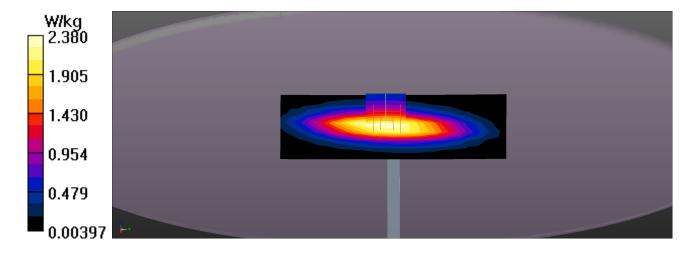
Electronics: DAE4 Sn1425; Calibrated: 2024/11/18

• Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199

• Measurement SW: DASY52, Version 52.10 (4);

Configuration/750MHz Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.38 W/kg

Configuration/750MHz Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.00 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 3.14 W/kg

SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.38 W/kg

Smallest distance from peaks to all points 3 dB below = 16.7 mm

Ratio of SAR at M2 to SAR at M1 = 72.1%

Maximum value of SAR (measured) = 2.71 W/kg

System Performance Check_900MHz-Head

DUT: Dipole 900 MHz; Type: D900V2

Communication System: UID 0, CW; Frequency: 900 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 900 MHz; σ = 0.95 S/m; ϵ_r = 41.68; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3979; ConvF(8.06, 10.23, 8.54) @ 900 MHz; Calibrated: 2024/11/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

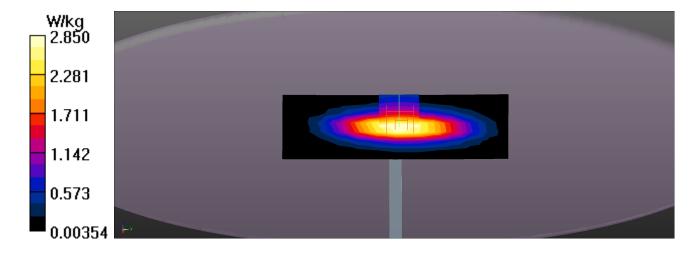
• Electronics: DAE4 Sn1425; Calibrated: 2024/11/18

• Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199

Measurement SW: DASY52, Version 52.10 (4);

Configuration/900MHz Head/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.85 W/kg

Configuration/900MHz Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 61.70 V/m; Power Drift = -0.15 dB


Peak SAR (extrapolated) = 3.86 W/kg

SAR(1 g) = 2.71 W/kg; SAR(10 g) = 1.75 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm

Ratio of SAR at M2 to SAR at M1 = 71.9%

Maximum value of SAR (measured) = 3.27 W/kg

System Performance Check_1750MHz-Head

DUT: Dipole 1750 MHz; Type: D1750V2

Communication System: UID 0, CW; Frequency: 1750 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 1750 MHz; σ = 1.34 S/m; ϵ_r = 39.78; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3979; ConvF(6.92, 8.78, 7.33) @ 1750 MHz; Calibrated: 2024/11/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1425; Calibrated: 2024/11/18

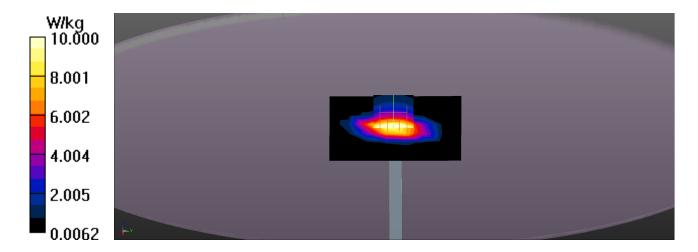
• Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199

Measurement SW: DASY52, Version 52.10 (4);

Configuration/1750MHz Head/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 10.0 W/kg

Configuration/1750MHz Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 103.3 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.12 W/kg; SAR(10 g) = 4.82 W/kg

Smallest distance from peaks to all points 3 dB below = 10.1 mm

Ratio of SAR at M2 to SAR at M1 = 60.7%

Maximum value of SAR (measured) = 13.1 W/kg

System Performance Check_1950MHz-Head

DUT: Dipole 1950 MHz; Type: D1950V3

Communication System: UID 0, CW; Frequency: 1950 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 1950 MHz; σ = 1.4 S/m; ϵ_r = 40.64; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3979; ConvF(6.74, 8.55, 7.13) @ 1950 MHz; Calibrated: 2024/11/20

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1425; Calibrated: 2024/11/18

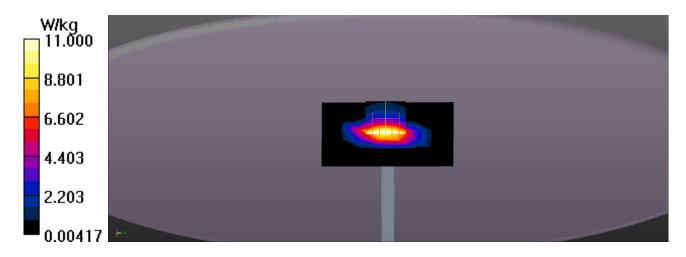
Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199

Measurement SW: DASY52, Version 52.10 (4);

Configuration/1950MHz Head/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.0 W/kg

Configuration/1950MHz Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 105.5 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.19 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 58.6%

Maximum value of SAR (measured) = 14.6 W/kg

System Performance Check_2450MHz-Head

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: UID 0, CW; Frequency: 2450 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 2450 MHz; $\sigma = 1.77 \text{ S/m}$; $\epsilon_r = 39.75$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN7631; ConvF(7.94, 7.57, 7.27) @ 2450 MHz; Calibrated: 2025/02/26

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1651; Calibrated: 2025/02/12

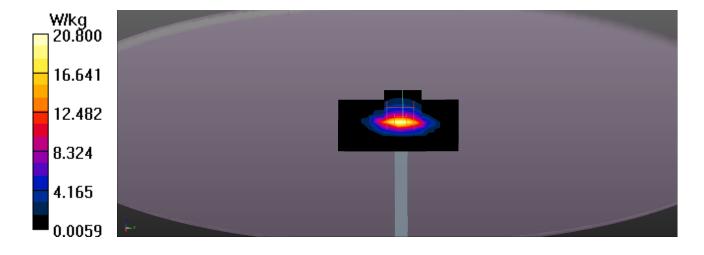
Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2139

• Measurement SW: DASY52, Version 52.10 (4);

Configuration/2450MHz-Head/Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 20.8 W/kg

Configuration/2450MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.4 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 25.3 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.25 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 54.5%

Maximum value of SAR (measured) = 21.2 W/kg

System Performance Check_2600MHz-Head

DUT: D2600V2; Type: D2600V2

Communication System: UID 0, CW; Frequency: 2600 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 2600 MHz; $\sigma = 1.92 \text{ S/m}$; $\epsilon_r = 37.69$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3979; ConvF(6.25, 7.93, 6.62) @ 2600 MHz; Calibrated: 2024/11/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1425; Calibrated: 2024/11/18

Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199

Measurement SW: DASY52, Version 52.10 (4);

Configuration/2600MHz-Head/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 21.1 W/kg

Configuration/2600MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.5 V/m; Power Drift = 0.14 dB


Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.37 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 52%

Maximum value of SAR (measured) = 22.6 W/kg

System Performance Check_2600MHz-Head

DUT: D2600V2; Type: D2600V2

Communication System: UID 0, CW; Frequency: 2600 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 2600 MHz; $\sigma = 1.95 \text{ S/m}$; $\varepsilon_r = 38.22$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3979; ConvF(6.25, 7.93, 6.62) @ 2600 MHz; Calibrated: 2024/11/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1425; Calibrated: 2024/11/18

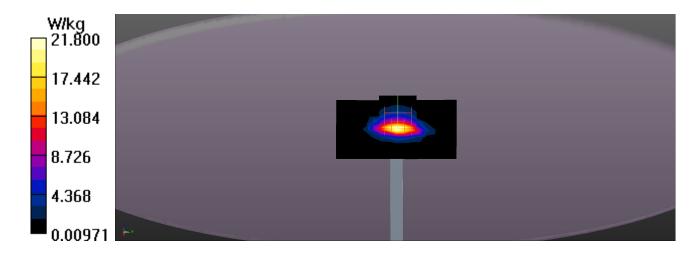
Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199

• Measurement SW: DASY52, Version 52.10 (4);

Configuration/2600MHz-Head/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 21.8 W/kg

Configuration/2600MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 112.6 V/m; Power Drift = 0.18 dB


Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.35 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 52%

Maximum value of SAR (measured) = 23.2 W/kg

System Performance Check_3500MHz-Head

DUT: D3500V2; Type: D3500V2

Communication System: UID 0, CW; Frequency: 3500 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 3500 MHz; σ = 2.89 S/m; ϵ_r = 37.89; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN3979; ConvF(6.06, 7.69, 6.42) @ 3500 MHz; Calibrated: 2024/11/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1425; Calibrated: 2024/11/18

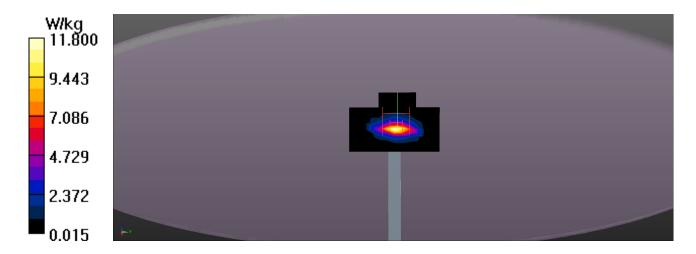
• Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199

Measurement SW: DASY52, Version 52.10 (4);

Configuration/3500MHz-Head/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 11.8 W/kg

Configuration/3500MHz-Head/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm

Reference Value = 67.86 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 6.49 W/kg; SAR(10 g) = 2.45 W/kg

Smallest distance from peaks to all points 3 dB below = 8.2 mm

Ratio of SAR at M2 to SAR at M1 = 78.1%

Maximum value of SAR (measured) = 12.0 W/kg

System Performance Check_3700MHz-Head

DUT: D3700V2; Type: D3700V2

Communication System: UID 0, CW; Frequency: 3700 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 3700 MHz; σ = 3.07 S/m; ϵ_r = 37.68; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3979; ConvF(5.93, 7.52, 6.28) @ 3700 MHz; Calibrated: 2024/11/20

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1425; Calibrated: 2024/11/18

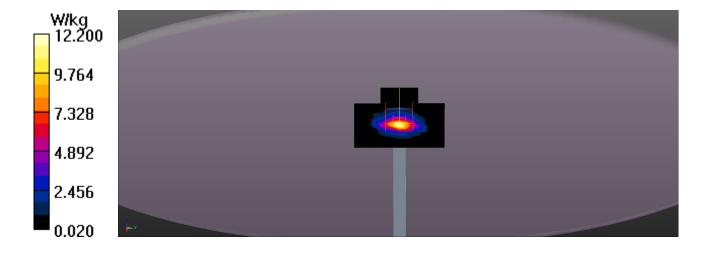
Phantom: ELI 5.0; Type: QDOVA002AA; Serial: 1199

Measurement SW: DASY52, Version 52.10 (4);

Configuration/3700MHz-Head/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 12.2 W/kg

Configuration/3700MHz-Head/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm

Reference Value = 66.55 V/m; Power Drift = 0.13 dB


Peak SAR (extrapolated) = 16.5 W/kg

SAR(1 g) = 6.77 W/kg; SAR(10 g) = 2.47 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 78.2%

Maximum value of SAR (measured) = 12.8 W/kg

System Performance Check_5250MHz-Head

DUT: D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW; Frequency: 5250 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 5250 MHz; σ = 4.77 S/m; ϵ_r = 36.38; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN7631; ConvF(6.04, 5.76, 5.54) @ 5250 MHz; Calibrated: 2025/02/26

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1651; Calibrated: 2025/02/12

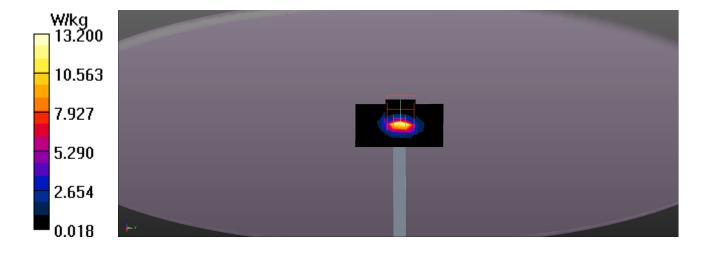
Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2139

• Measurement SW: DASY52, Version 52.10 (4);

Configuration/5250MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.2 W/kg

Configuration/5250MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.98 V/m; Power Drift = 0.15 dB


Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.23 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 63.9%

Maximum value of SAR (measured) = 19.0 W/kg

System Performance Check_5600MHz-Head

DUT: D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW; Frequency: 5600 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 5600 MHz; σ = 5.25 S/m; ϵ_r = 35.41; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN7631; ConvF(5.68, 5.42, 5.21) @ 5600 MHz; Calibrated: 2025/02/26

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1651; Calibrated: 2025/02/12

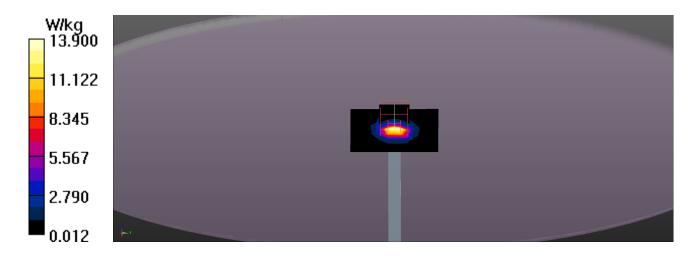
Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2139

• Measurement SW: DASY52, Version 52.10 (4);

Configuration/5600MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.9 W/kg

Configuration/5600MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.99 V/m; Power Drift = 0.14 dB


Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.34 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 60.5%

Maximum value of SAR (measured) = 21.5 W/kg

System Performance Check_5800MHz-Head

DUT: D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW; Frequency: 5800 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 5800 MHz; σ = 5.51 S/m; ϵ_r = 34.86; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

Probe: EX3DV4 - SN7631; ConvF(5.54, 5.29, 5.08) @ 5800 MHz; Calibrated: 2025/02/26

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1651; Calibrated: 2025/02/12

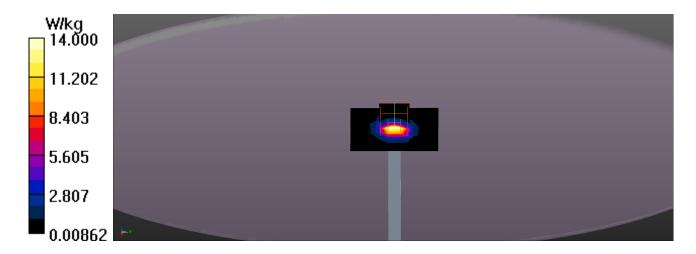
• Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2139

Measurement SW: DASY52, Version 52.10 (4);

Configuration/5800MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.0 W/kg

Configuration/5800MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.85 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.29 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 60.6%

Maximum value of SAR (measured) = 21.6 W/kg

System Performance Check_6500MHz-Head

Communication System: UID 0--, CW; Frequency: 6500.000 MHz

Medium parameters used: f = 6500.000 MHz; Conductivity = 5.97 S/m; Permittivity = 34.4

Phantom section: Flat

DASY Configuration:

Probe: EX3DV4 - SN7631; ConvF(5.78, 5.51, 5.3); Calibrated: 2025-02-26

Sensor-Surface: 1.4 mm

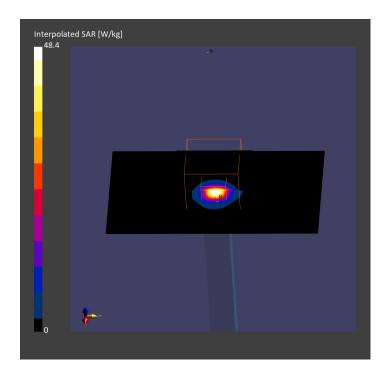
• Electronics: DAE4 Sn1651; Calibrated: 2025-02-12

Phantom: ELI V8.0 (20deg probe tilt)Measurement SW: V16.4.0.5005

Area Scan (51.0 mm x 85.0 mm): Measurement grid: 8.5 mm x 8.5 mm

SAR (1 g) = 24.6 W/kg; SAR (10 g) = 4.81 W/kg

Zoom Scan (22.0 mm x 22.0 mm x 22.0 mm): Measurement grid: 3.4 mm x 3.4 mm x 1.4 mm


Power Drift = -0.04 dB

SAR(1 g) = 29.0 W/kg; SAR(10 g) = 5.29 W/kg

psAPD (4.0cm2, sq) = 128 W/m2

Smallest distance from peaks to all points 3 dB below = 4.8

Ratio of SAR at M2 to SAR at M1 = 51.7

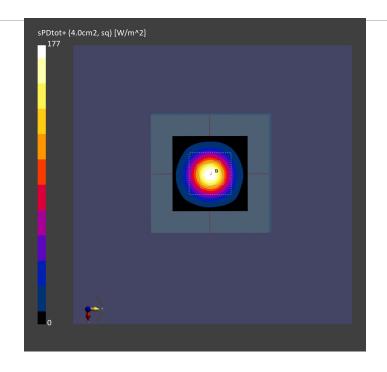
System Performance Check_10GHz Device under Test Properties

Model, Manufacturer Dimensions [mm] IMEI DUT Type
, 5G Verification Source 10 GHz 100.0 x 100.0 x 100.0 SN:2006

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G Air	FRONT, 10.00	Validation band	CW, 0	10000.0, 10000	1.0

Hardware Setup


Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave- 1068	Air	EUmmWV4 - SN9546_F1-55GHz, 2025-	DAE4 Sn1651, 2025-02-12
		04-16	

Scan Setup

	5G Scan
Grid Extents [mm]	60.0 x 60.0
Grid Steps [lambda]	0.125 x 0.125
Sensor Surface [mm]	10.0
MAIA	N/A
Sensor Surface [mm]	10.0

Measurement Results

ivicusui cilicile results			
	5G Scan		
Date	2025-05-25		
Avg. Area [cm ²]	4.00		
psPDn+ [W/m ²]	176		
psPDtot+ [W/m ²]	177		
psPDmod+ [W/m²]	181		
E _{max} [V/m]	296		
Power Drift [dB]	-0.09		

