

TEST REPORT (SPOT CHECK)

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Report No.: RFBFBE-WTW-P21118016A-3

FCC ID: YAW539848-Z

Original FCC ID: YAW539848

Model No.: PVS6

Received Date: 2022/6/16

Test Date: 2022/6/28 ~ 2022/7/1

Issued Date: 2022/7/20

Applicant: SunPower Corporation

Address: 1414 Harbour Way South Suite 1901, Richmond, CA 94804, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

FCC Registration / 723255 / TW2022

Designation Number:

Approved by: _____, **Date:** 2022/7/20
May Chen / Manager

This test report consists of 31 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Vivian Huang / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record	3
1 Certificate.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Supplementary Information	5
3 General Information	6
3.1 General Description.....	6
3.2 Antenna Description of EUT	7
3.3 Channel List.....	8
3.4 Power Setting	9
3.5 Test Mode Applicability and Tested Channel Detail.....	10
3.6 Duty Cycle of Test Signal.....	11
3.7 Test Program Used and Operation Descriptions	12
3.8 Connection Diagram of EUT and Peripheral Devices	12
3.9 Configuration of Peripheral Devices and Cable Connections	13
4 Test Instruments	14
4.1 RF Output Power.....	14
4.2 AC Power Conducted Emissions	14
4.3 Unwanted Emissions below 1 GHz	15
4.4 Unwanted Emissions above 1 GHz.....	16
5 Limits of Test Items.....	17
5.1 RF Output Power.....	17
5.2 AC Power Conducted Emissions	17
5.3 Unwanted Emissions below 1 GHz	17
5.4 Unwanted Emissions above 1 GHz.....	17
6 Test Arrangements.....	18
6.1 RF Output Power.....	18
6.1.1 Test Setup	18
6.1.2 Test Procedure.....	18
6.2 AC Power Conducted Emissions	18
6.2.1 Test Setup	18
6.2.2 Test Procedure.....	18
6.3 Unwanted Emissions below 1 GHz	19
6.3.1 Test Setup	19
6.3.2 Test Procedure.....	20
6.4 Unwanted Emissions above 1 GHz.....	21
6.4.1 Test Setup	21
6.4.2 Test Procedure.....	21
7 Test Results of Test Item	22
7.1 RF Output Power.....	22
7.2 AC Power Conducted Emissions	23
7.3 Unwanted Emissions below 1 GHz	25
7.4 Unwanted Emissions above 1 GHz.....	27
8 Pictures of Test Arrangements	30
9 Information of the Testing Laboratories	31

Release Control Record

Issue No.	Description	Date Issued
RFBFBE-WTW-P21118016A-3	Original release.	2022/7/20

1 Certificate

Product: SunPower Monitoring System with PVS6

Brand: SUNPOWER

Test Model: PVS6

Sample Status: Engineering sample

Applicant: SunPower Corporation

Test Date: 2022/6/28 ~ 2022/7/1

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Measurement

procedure: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)			
Standard / Clause	Test Item	Result	Remark
15.247(b)	RF Output Power	Pass	Meet the requirement of limit.
15.247(e)	Power Spectral Density	NA	Refer to Note 1 below
15.247(a)(2)	6 dB Bandwidth	NA	Refer to Note 1 below
15.247(d)	Conducted Out of Band Emissions	NA	Refer to Note 1 below
15.207	AC Power Conducted Emissions	Pass	Minimum passing margin is -6.92 dB at 4.78125 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -1.2 dB at 133.88 MHz
15.205 / 15.209 / 15.247(d)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -7.4 dB at 2483.50 MHz
15.203	Antenna Requirement	Pass	Antenna connector is i-pex not a standard connector.

Notes:

1. RF Output Power & AC Power Conducted Emissions & Unwanted Emissions Measurement were performed for this addendum. The others testing data refer to original test report.
2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Specification	Expanded Uncertainty (k=2) (\pm)
AC Power Conducted Emissions	150 kHz ~ 30 MHz	1.9 dB
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz	3.1 dB
	30 MHz ~ 1 GHz	5.4 dB
Unwanted Emissions above 1 GHz	1 GHz ~ 18 GHz	5.0 dB
	18 GHz ~ 40 GHz	5.3 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description

Product	SunPower Monitoring System with PVS6
Brand	SUNPOWER
Test Model	PVS6
Status of EUT	Engineering sample
Power Supply Rating	AC100-240V, 0.75A , 50/60Hz
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 2 Mbps
Operating Frequency	2.402 GHz ~ 2.48 GHz
Number of Channel	40
Output Power	BT-LE 1M: 8.337 mW (9.21 dBm) BT-LE 2M: 8.872 mW (9.48 dBm)
Accessory Device	-Hole Plugs x2 -Ethernet Cable x1: non-shielded, 1.5m -Bracket x1

Note:

1. Exhibit prepared and modification information is provided by the customer, the laboratory assists in evaluating the test conditions and Spot Check Verification report, for more details please refer to the declaration letter exhibit need to be performed. And all data was verified to meet the requirements. (Original FCC ID: YAW539848, Report No.: RFBFBE-WTW-P21118016-3)
2. The EUT contains certified WWAN module which FCC ID: XMR2020BG95M1 (Brand: Quectel; Model: BG95-M1)
3. There are WLAN, Bluetooth and WWAN technology used for the EUT.
4. The EUT has two radios as following table:

Radio 1	Radio 2
WLAN (2.4GHz+5GHz)+ BT	WWAN (LTE)

5. Simultaneously transmission condition.

Condition	Technology		
1	WLAN(2.4GHz)	BT	WWAN
2	WLAN(5GHz)	BT	WWAN

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

6. The EUT needs to be supplied from an Internal power supply, the information is as below table:

Brand	Model No.	Spec.
WLAN WELL	IRM-30-12	AC Input: 100-240V, 0.75A , 50/60Hz DC Output: 12V, 2.5A

7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

WLAN / Bluetooth							
Ant No.	Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency rang (GHz)	Antenna type	Connector type
1	Chain 0 (Including BT)	airgain	65-031-212002B	2.2	2.4~2.4835	PCB	I-PEX
				3.8	5.15~5.25		
				4.2	5.725~5.85		
2	Chain 1 (WLAN use only)	airgain	65-031-212003B	4.2	2.4~2.4835	PCB	I-PEX
				4.1	5.15~5.25		
				4.8	5.725~5.85		

*The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.3 Channel List

40 channels are provided for BT-LE:

Channel	Frequency (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.4 Power Setting

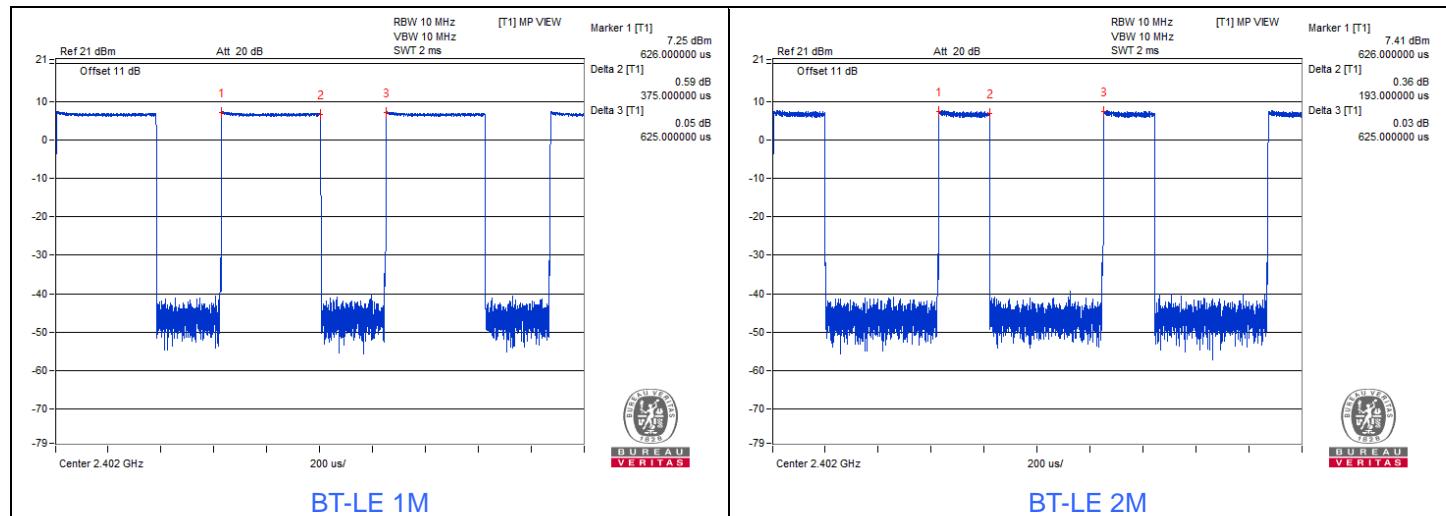
BT-LE 1M		BT-LE 2M	
Frequency (MHz)	Power Setting	Frequency (MHz)	Power Setting
2402	Default	2402	Default
2440	Default	2440	Default
2480	Default	2480	Default

3.5 Test Mode Applicability and Tested Channel Detail

Worst Case:	1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
-------------	--

Following channel(s) was (were) selected for the final test as listed below:

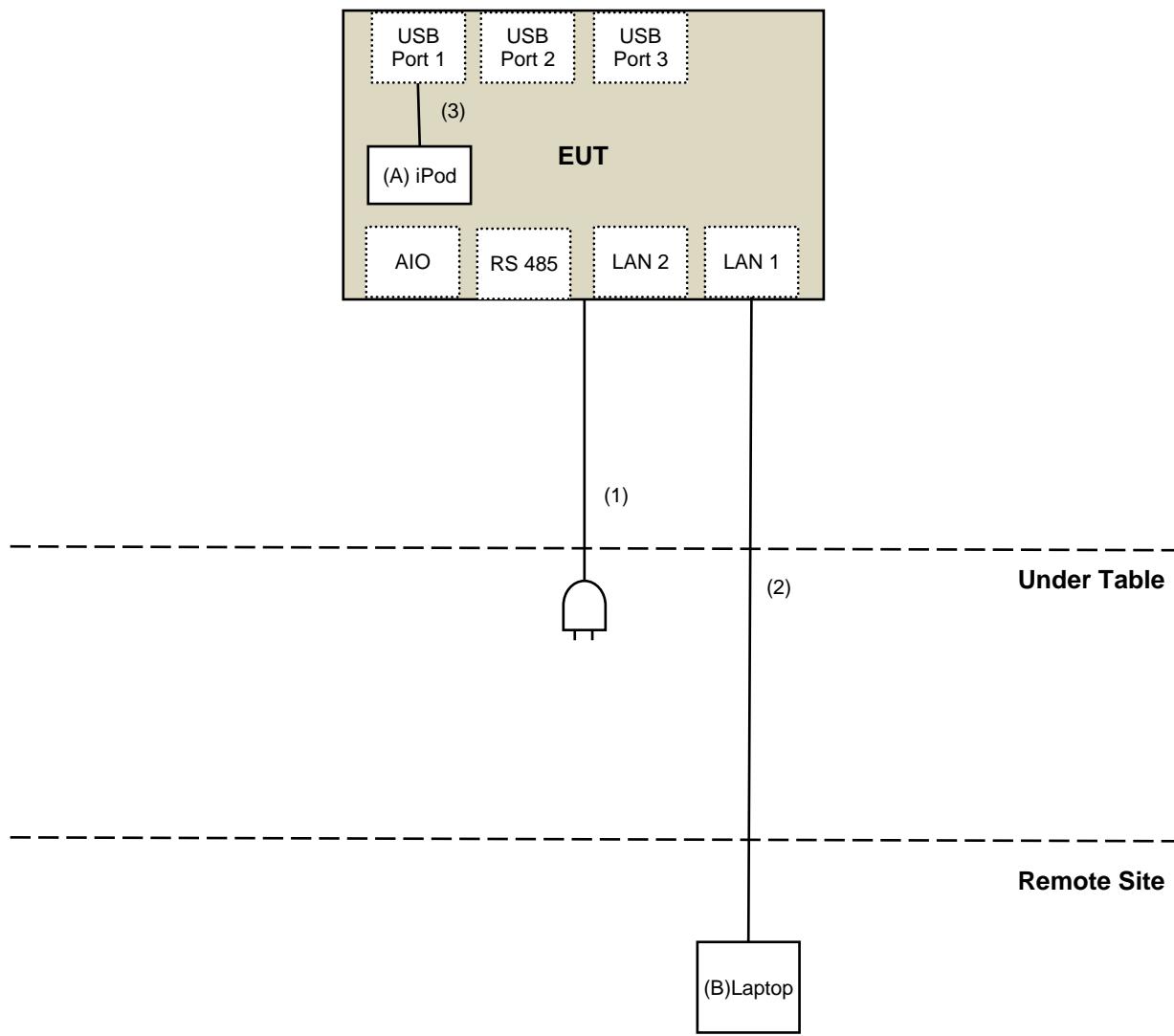
Test Item	Mode	Tested Channel	Modulation	Data Rate Parameter
AC Power Conducted Emissions	BT-LE 2M	39	GFSK	2Mb/s
Unwanted Emissions below 1 GHz	BT-LE 2M	39	GFSK	2Mb/s
Unwanted Emissions above 1 GHz	BT-LE 2M	39	GFSK	2Mb/s
RF Output Power	BT-LE 1M	0, 19, 39	GFSK	1Mb/s
	BT-LE 2M	0, 19, 39	GFSK	2Mb/s


3.6 Duty Cycle of Test Signal

Duty cycle of test signal is $\geq 98\%$, duty factor is not required.

Duty cycle of test signal is $< 98\%$, duty factor shall be considered.

BT-LE 1M: Duty cycle = $0.375 \text{ ms} / 0.625 \text{ ms} \times 100\% = 60.0\%$, duty factor = $10 \times \log(1/\text{Duty cycle}) = 2.22 \text{ dB}$


BT-LE 2M: Duty cycle = $0.193 \text{ ms} / 0.625 \text{ ms} \times 100\% = 30.9\%$, duty factor = $10 \times \log(1/\text{Duty cycle}) = 5.10 \text{ dB}$

3.7 Test Program Used and Operation Descriptions

Controlling software (Run Putty.exe paste PVS6_WiFi+BT+BLE SOP.docx command) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.8 Connection Diagram of EUT and Peripheral Devices

NOTE: The test configuration was defined by the applicant requirement.

3.9 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A	iPod	Apple	MC749TA/A	CC4DMFJUDFDM	N/A	Provided by Lab
B	Laptop	Lenovo	20U5S01X00 L14	PF-28LKK7	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	AC Cable	1	1.8	No	0	Supplied by Applicant
2	RJ-45 Cable	1	10	No	0	Provided by Lab
3	USB Cable	1	0.1	Yes	0	Provided by Lab

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	2022/4/5	2023/4/4
Power Meter Anritsu	ML2495A	1529002	2022/6/22	2023/6/21
Pulse Power Sensor Anritsu	MA2411B	1726434	2022/6/22	2023/6/21
Software	ADT_RF Test Software V6.6.5.4	N/A	N/A	N/A

Notes:

1. The test was performed in Oven room 2.
2. Tested Date: 2022/7/1

4.2 AC Power Conducted Emissions

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
50 ohms Terminator	50	3	2021/10/27	2022/10/26
Fixed attenuator STI	STI02-2200-10	005	2021/8/27	2022/8/26
LISN R&S	ESH3-Z5	848773/004	2021/10/29	2022/10/28
RF Coaxial Cable JYEB0	5D-FB	COCCAB-001	2021/9/25	2022/9/24
Software BVADT	BVADT_Cond_V7.3.7.4	N/A	N/A	N/A
TEST RECEIVER R&S	ESCS 30	847124/029	2021/10/13	2022/10/12

Notes:

1. The test was performed in Conduction 1
2. Tested Date: 2022/6/28

4.3 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	N/A	N/A
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	2021/9/23	2022/9/22
LOOP ANTENNA Electro-Metrics	EM-6879	264	2022/3/18	2023/3/17
MXE EMI Receiver(20 Hz to 44 GHz) Keysight	N9038A	MY54450088	2021/7/6	2022/7/5
Pre_Amplifier Agilent	8447D	2944A10636	2022/3/19	2023/3/18
Pre_Amplifier Mini-Circuits	ZFL-1000VH2	QA0838008	2021/10/19	2022/10/18
RF Coaxial Cable JYEB0	5D-FB	LOOPCAB-001	2022/1/6	2023/1/5
RF Coaxial Cable COMMATE/PEWC		LOOPCAB-002	2022/1/6	2023/1/5
RF Coaxial Cable COMMATE/PEWC	8D	966-4-1	2022/3/8	2023/3/7
RF Coaxial Cable COMMATE/PEWC		966-3-2	2022/2/26	2023/2/25
RF Coaxial Cable COMMATE/PEWC		966-3-3	2022/2/26	2023/2/25
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A
Trilog Broadband Antenna Schwarzbeck	VULB 9168	9168-361	2021/10/26	2022/10/25

Notes:

1. The test was performed in 966 Chamber No. 3.
2. Tested Date: 2022/6/28

4.4 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	N/A	N/A
Fix tool for Boresight antenna tower BV	FBA-01	FBA_SIP01	N/A	N/A
Horn Antenna Schwarzbeck	BBHA9120-D	9120D-406	2021/11/14	2022/11/13
	BBHA 9170	9170-739	2021/11/14	2022/11/13
MXE EMI Receiver(20 Hz to 44 GHz) Keysight	N9038A	MY54450088	2021/7/6	2022/7/5
Pre_Amplifier EMCI	EMC12630SE	980384	2022/1/10	2023/1/9
	EMC184045SE	980387	2022/1/10	2023/1/9
RF Cable EMCI	EMC104-SM-SM-6000	210201	2022/5/10	2023/5/9
RF Cable-Frequency range: 1- 40GHz EMCI	EMC102-KM-KM-1200	160924	2022/1/10	2023/1/9
RF Coaxial Cable EMCI	EMC104-SM-SM-1500	180504	2022/4/25	2023/4/24
	EMC104-SM-SM-2000	180601	2022/6/6	2023/6/5
	EMC-KM-KM-4000	200214	2022/3/8	2023/3/7
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer Keysight	N9030A	MY54490679	2021/7/9	2022/7/8

Notes:

1. The test was performed in 966 Chamber No. 3.
2. Tested Date: 2022/6/28 ~ 2022/6/30

5 Limits of Test Items

5.1 RF Output Power

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

5.2 AC Power Conducted Emissions

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Notes:

1. The lower limit shall apply at the transition frequencies.
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.3 Unwanted Emissions below 1 GHz

Radiated emissions up to 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

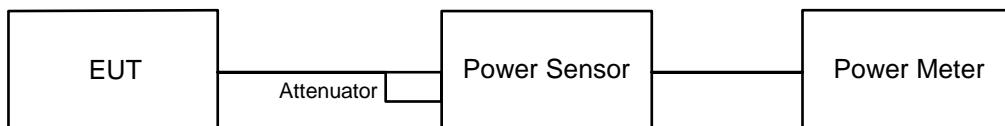
Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

5.4 Unwanted Emissions above 1 GHz

Radiated emissions above 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3


Notes:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

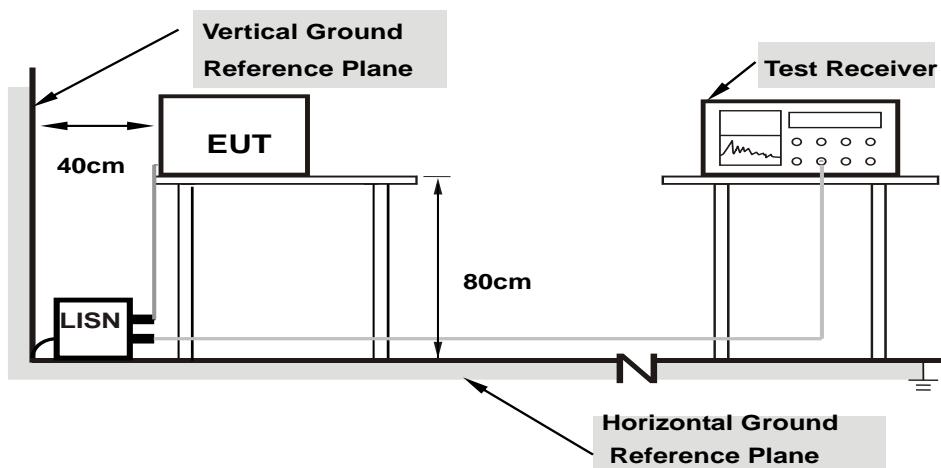
6 Test Arrangements

6.1 RF Output Power

6.1.1 Test Setup

6.1.2 Test Procedure

Peak Power:


A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average Power:

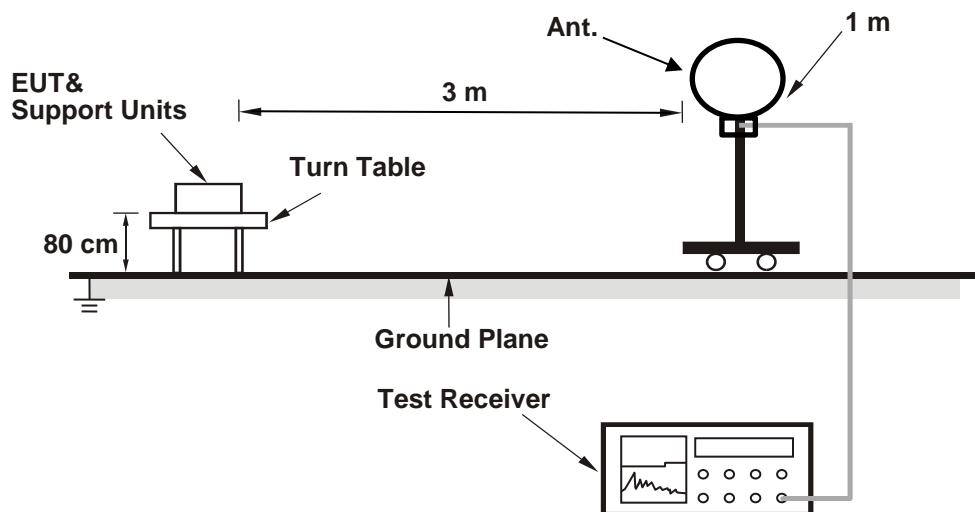
Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

6.2 AC Power Conducted Emissions

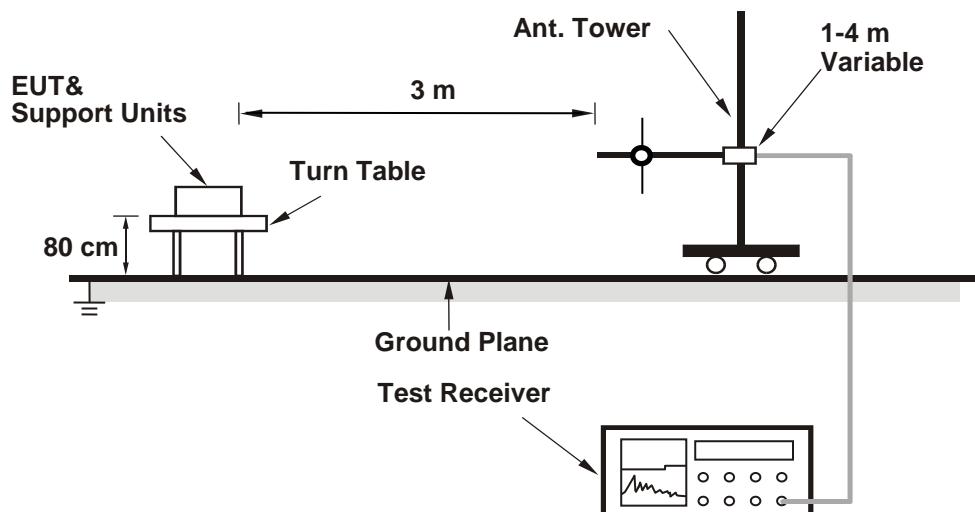
6.2.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.2.2 Test Procedure


- The EUT was placed on a 0.8 meter to the top of rotating table and placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit – 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz-30 MHz.


6.3 Unwanted Emissions below 1 GHz

6.3.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

6.3.2 Test Procedure

For Radiated emission below 30 MHz

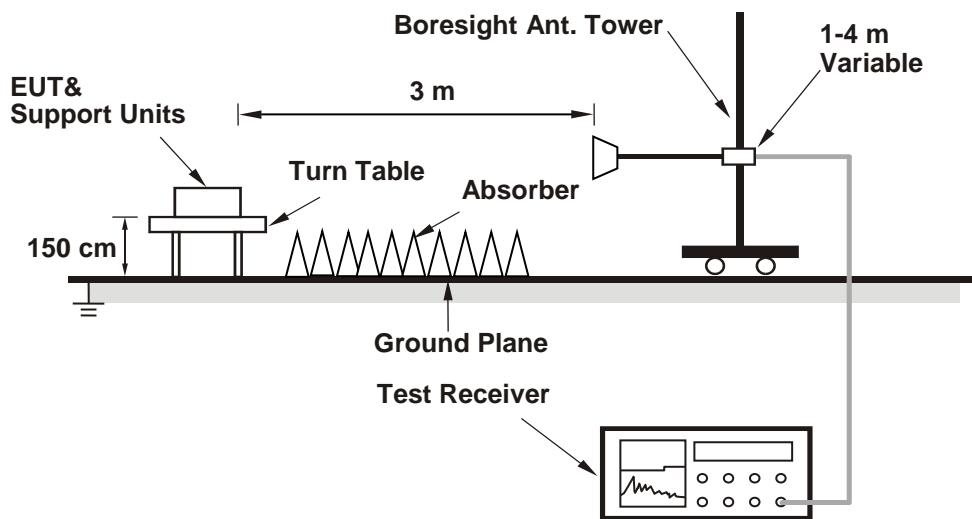
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.


Notes:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
2. All modes of operation were investigated and the worst-case emissions are reported.

6.4 Unwanted Emissions above 1 GHz

6.4.1 Test Setup

For Radiated emission above 1 GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.4.2 Test Procedure

- The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- For fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10 Hz (Duty cycle $\geq 98\%$) for Average detection (AV) at frequency above 1 GHz.
- All modes of operation were investigated and the worst-case emissions are reported.

7 Test Results of Test Item

7.1 RF Output Power

Input Power:	120 Vac, 60 Hz	Environmental Conditions:	25°C, 60% RH	Tested By:	Eric Peng
--------------	----------------	---------------------------	--------------	------------	-----------

For Peak Power

BT-LE 1M

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
0	2402	5.105	7.08	30	Pass
19	2440	6.592	8.19	30	Pass
39	2480	8.337	9.21	30	Pass

Note: The antenna gain is 2.2 dBi < 6 dBi, so the output power limit shall not be reduced.

BT-LE 2M

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
0	2402	5.521	7.42	30	Pass
19	2440	6.683	8.25	30	Pass
39	2480	8.872	9.48	30	Pass

Note: The antenna gain is 2.2 dBi < 6 dBi, so the output power limit shall not be reduced.

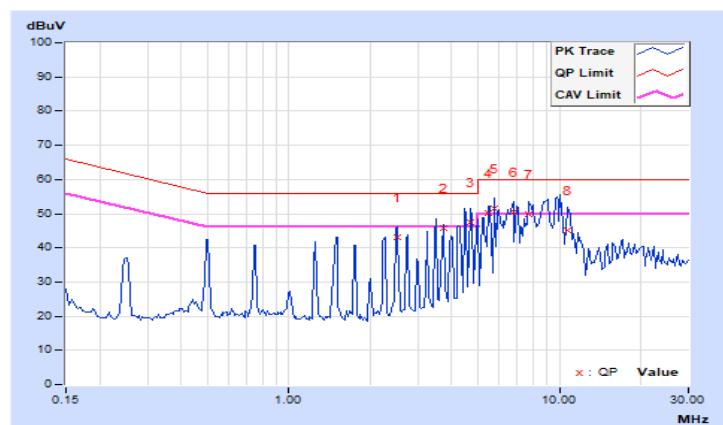
For Average Power

BT-LE 1M

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	4.355	6.39
19	2440	5.47	7.38
39	2480	7.278	8.62

BT-LE 2M

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	4.457	6.49
19	2440	5.585	7.47
39	2480	7.568	8.79

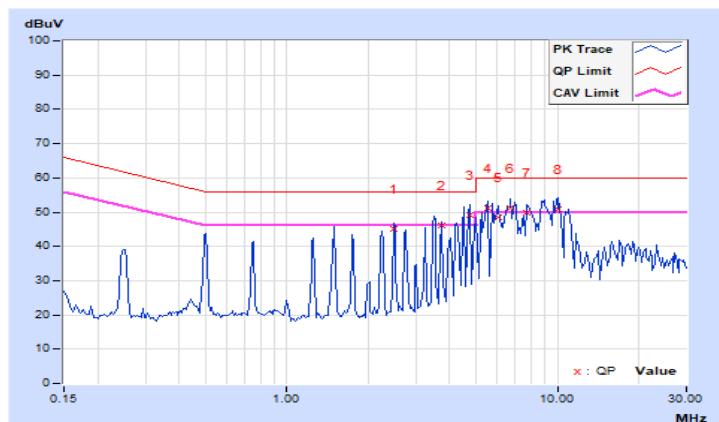

7.2 AC Power Conducted Emissions

RF Mode	TX BT-LE 2M	Channel	CH 39 : 2480 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	Ryan Du		

Phase Of Power : Line (L)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	2.51172	10.19	32.86	23.05	43.05	33.24	56.00	46.00	-12.95	-12.76
2	3.73438	10.25	35.63	27.15	45.88	37.40	56.00	46.00	-10.12	-8.60
3	4.71875	10.30	37.18	28.36	47.48	38.66	56.00	46.00	-8.52	-7.34
4	5.47656	10.34	39.85	30.14	50.19	40.48	60.00	50.00	-9.81	-9.52
5	5.73047	10.36	41.01	30.32	51.37	40.68	60.00	50.00	-8.63	-9.32
6	6.76172	10.42	40.21	30.61	50.63	41.03	60.00	50.00	-9.37	-8.97
7	7.71094	10.48	39.44	29.11	49.92	39.59	60.00	50.00	-10.08	-10.41
8	10.73438	10.66	34.59	24.11	45.25	34.77	60.00	50.00	-14.75	-15.23

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

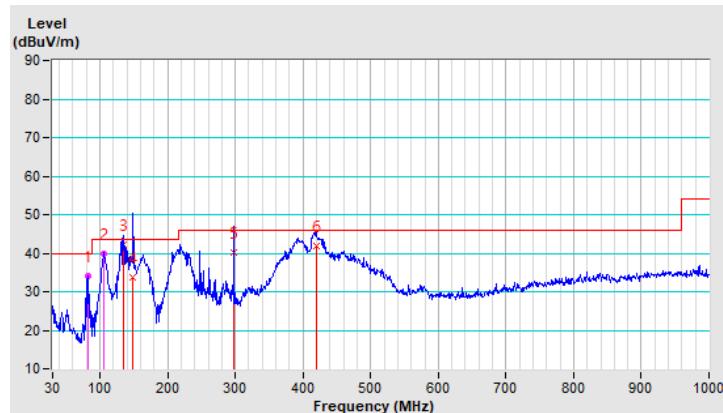

RF Mode	TX BT-LE 2M	Channel	CH 39 : 2480 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	Ryan Du		

Phase Of Power : Neutral (N)

No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	2.48438	10.15	35.03	27.01	45.18	37.16	56.00	46.00	-10.82	-8.84
2	3.75391	10.20	35.84	27.27	46.04	37.47	56.00	46.00	-9.96	-8.53
3	4.78125	10.25	38.83	27.60	49.08	37.85	56.00	46.00	-6.92	-8.15
4	5.53906	10.28	40.75	28.65	51.03	38.93	60.00	50.00	-8.97	-11.07
5	6.01563	10.30	38.18	29.44	48.48	39.74	60.00	50.00	-11.52	-10.26
6	6.72656	10.34	40.70	31.09	51.04	41.43	60.00	50.00	-8.96	-8.57
7	7.72266	10.38	39.43	30.06	49.81	40.44	60.00	50.00	-10.19	-9.56
8	10.06641	10.49	40.28	28.02	50.77	38.51	60.00	50.00	-9.23	-11.49

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

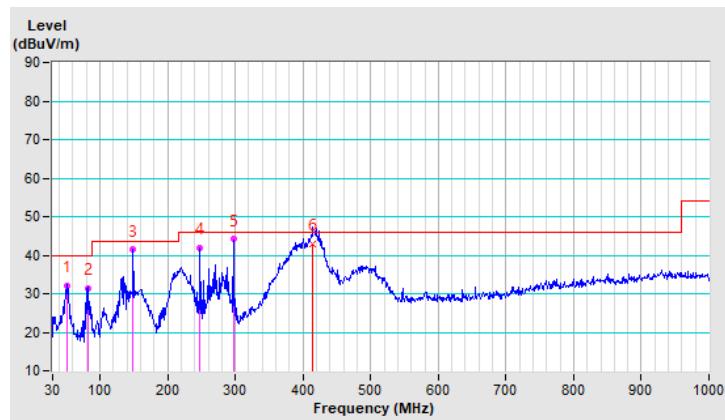

7.3 Unwanted Emissions below 1 GHz

RF Mode	TX BT-LE 2M	Channel	CH 39 : 2480 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 70% RH
Tested By	Ryan Du		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	82.22	34.0 QP	40.0	-6.0	2.00 H	35	47.6	-13.6
2	105.24	40.0 QP	43.5	-3.5	1.50 H	103	51.6	-11.6
3	133.88	42.3 QP	43.5	-1.2	1.50 H	133	51.1	-8.8
4	148.49	33.8 QP	43.5	-9.7	1.50 H	154	41.9	-8.1
5	297.01	40.2 QP	46.0	-5.8	2.00 H	38	48.0	-7.8
6	419.84	42.0 QP	46.0	-4.0	1.50 H	153	46.7	-4.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

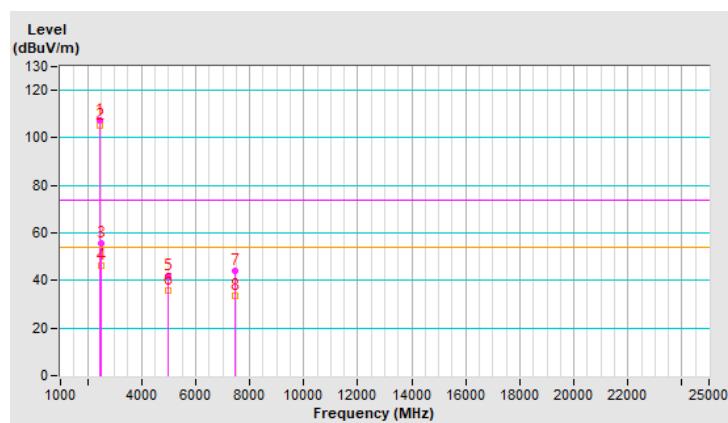


RF Mode	TX BT-LE 2M	Channel	CH 39 : 2480 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 70% RH
Tested By	Ryan Du		

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	50.41	32.2 QP	40.0	-7.8	1.50 V	356	40.4	-8.2
2	82.17	31.4 QP	40.0	-8.6	1.50 V	345	44.9	-13.5
3	148.53	41.4 QP	43.5	-2.1	2.00 V	46	49.5	-8.1
4	247.54	41.8 QP	46.0	-4.2	2.00 V	62	51.4	-9.6
5	297.04	44.1 QP	46.0	-1.9	2.00 V	43	51.9	-7.8
6	414.77	43.0 QP	46.0	-3.0	2.00 V	283	48.0	-5.0

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

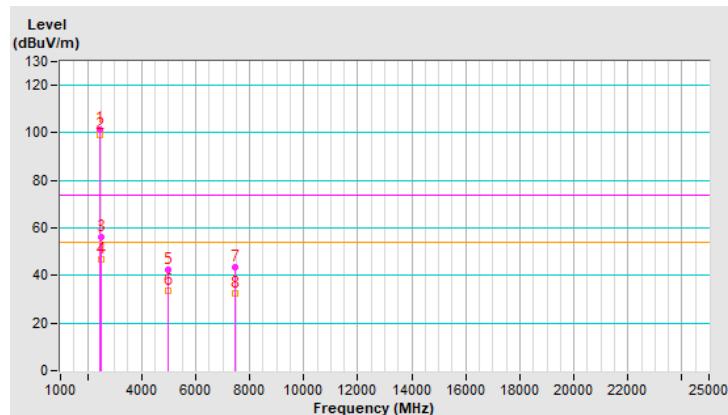

7.4 Unwanted Emissions above 1 GHz

RF Mode	TX BT-LE 2M	Channel	CH 39 : 2480 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	20°C, 70% RH
Tested By	Ryan Du		

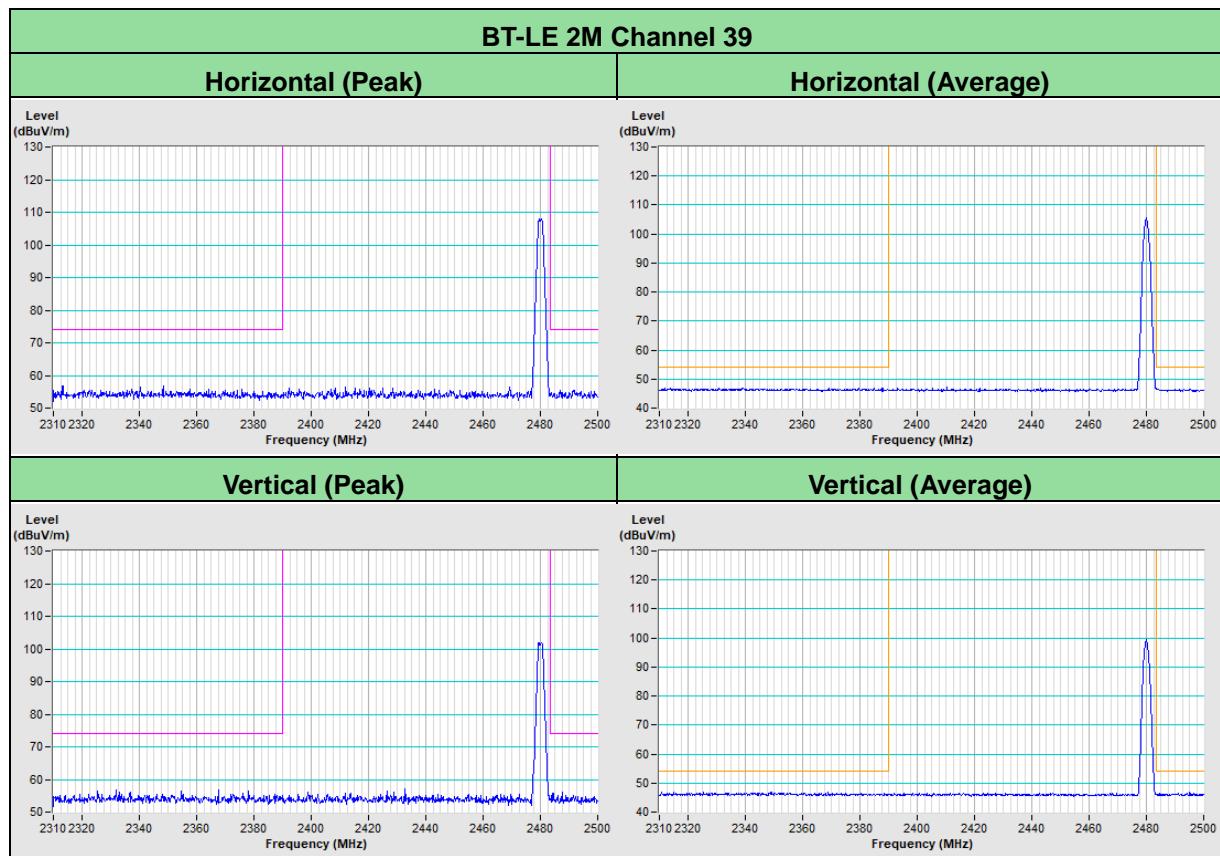
Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	107.5 PK			1.82 H	75	108.4	-0.9
2	*2480.00	105.3 AV			1.82 H	75	106.2	-0.9
3	2483.50	55.4 PK	74.0	-18.6	1.82 H	75	56.4	-1.0
4	2483.50	46.5 AV	54.0	-7.5	1.82 H	75	47.5	-1.0
5	4960.00	41.6 PK	74.0	-32.4	1.43 H	47	37.6	4.0
6	4960.00	35.6 AV	54.0	-18.4	1.43 H	47	31.6	4.0
7	7440.00	44.3 PK	74.0	-29.7	1.69 H	81	33.8	10.5
8	7440.00	33.4 AV	54.0	-20.6	1.69 H	81	22.9	10.5

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ". Fundamental frequency, the limit was restricted at the RF Output Power.



RF Mode	TX BT-LE 2M	Channel	CH 39 : 2480 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	20°C, 70% RH
Tested By	Ryan Du		


Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	101.6 PK			3.56 V	152	102.5	-0.9
2	*2480.00	99.2 AV			3.56 V	152	100.1	-0.9
3	2483.50	56.0 PK	74.0	-18.0	3.56 V	152	57.0	-1.0
4	2483.50	46.6 AV	54.0	-7.4	3.56 V	152	47.6	-1.0
5	4960.00	42.4 PK	74.0	-31.6	1.47 V	347	38.4	4.0
6	4960.00	33.5 AV	54.0	-20.5	1.47 V	347	29.5	4.0
7	7440.00	43.6 PK	74.0	-30.4	1.46 V	340	33.1	10.5
8	7440.00	32.3 AV	54.0	-21.7	1.46 V	340	21.8	10.5

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

Plot of Band Edge

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@bureauveritas.com

Web Site: <http://ee.bureauveritas.com.tw>

The address and road map of all our labs can be found in our web site also.

--- END ---