

Report No.: RZA2010-0847

OET 65 TEST REPORT

Model PD700

FCC ID YAMPD70XU1

Client Hytera Communications Corporation Ltd.

TA Technology (Shanghai) Co., Ltd. 报告专用章

GENERAL SUMMARY

Product Name	Digital Portable Radio	Model	PD700	
FCC ID	YAMPD70XU1	Report No.	RZA2010-0847	
Client	Hytera Communications Co	rporation Ltd.		
Manufacturer	Hytera Communications Co	rporation Ltd.		
Reference Standard(s)	IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.			
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: June 22 nd , 2010			
Comment	The test result only responds to the measured sample.			

Approved by 和伟中

Revised by 仮如

Performed by_

Xue Chaofeng

TABLE OF CONTENT

1.	Ger	neral Information	4
1	l.1.	Notes of the test report	4
1	1.2.	Testing laboratory	4
1	1.3.	Applicant Information	5
1	1.4.	Manufacturer Information	5
1	1.5.	Information of EUT	6
1	1.6.	The Maximum SAR Values of Each Tested Band	7
1	1.7.	Test Date	7
2.	Оре	erational Conditions during Test	8
3.		R Measurements System Configuration	
3	3.1.	SAR Measurement Set-up	9
3	3.2.	DASY4 E-field Probe System	
	3.2.	.1. ET3DV6 Probe Specification	10
	3.2.	.2. E-field Probe Calibration	
3	3.3.		
	3.3.		
	3.3.	.2. Phantom	12
3	3.4.	Scanning procedure	
3	3.5.	Data Storage and Evaluation	
	3.5.	•	
	3.5.		
3	3.6.	System check	
3	3.7.	Equivalent Tissues	
4.		poratory Environment	
5.		arcteristics of the Test	
•	5.1.	Applicable Limit Regulations	
	5.2.	Applicable Measurement Standards	
		nducted Output Power Measurement	
	6.1.	Conducted Power Results	
		st Results	
	7.1.	Dielectric Performance	
-	7.2.	System Check Results	
_	7.3.	•	
8.		asurement Uncertainty	
9.		in Test Instruments	
		A: Test Layout	
		B: System Check Results	
		C: Graph Results	
		D: Probe Calibration Certificate	
		E: D450V3 Dipole Calibration Certificate	
		F: DAE4 Calibration Certificate	
		G: The EUT Appearances and Test Configuration	
		. V. TIN ENTERNACIONES AUGUS AUGUS AND MAINTAIN AND AND AND AND AND AND AND AND AND AN	

Page 4 of 61

Report No. RZA2010-0847

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date

and under the conditions stated in this test report and is based on the knowledge and technical

facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the

confidentiality of all information related to the items under test and the results of the test. This report

only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the

certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity

and/or promotional purposes without previous written approval of TA Technology (Shanghai) Co.,

Ltd. and the Accreditation Bodies, if it applies.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No. RZA2010-0847 Page 5 of 61

1.3. Applicant Information

Company: Hytera Communications Corporation Ltd.

Address: HYT Tower, Hi-Tech Industrial Park North, Nanshan District, Shenzhen China.

City: Shenzhen

Postal Code: 518057

Country: China

Telephone: +86-0755-26972999-1125

Fax: +86-755-86137130

1.4. Manufacturer Information

Company: Hytera Communications Corporation Ltd.

Address: HYT Tower, Hi-Tech Industrial Park North, Nanshan District, Shenzhen China.

City: Shenzhen

Postal Code: 518057

Country: China

Telephone: +86-0755-26972999-1125

Fax: +86-755-86137130

Report No. RZA2010-0847 Page 6 of 61

1.5. Information of EUT

General Information

Device Type:	Portable Device
Exposure Category:	Controlled Environment /Occupational
Product Name:	Digital Portable Radio
SN:	10621K0001
Device Operating Configurations	:
Operating Mode(s):	400.025 – 469.975 MHz
Test Modulation:	FM (analog), 4FSK(digital)
Operating Frequency Range(s):	400.025MHz ~ 469.975MHz(UHF)
Test Frequency:	400.025MHz – 435MHz – 469.975MHz
Hardware Version:	P3
Software Version:	V1.00.00.423
Antenna Type:	External Antenna

Report No. RZA2010-0847 Page 7 of 61

Auxiliary Equipment Details

AE1:Battery

Model: BL2006

Manufacturer: BYD

SN: 1062100001

AE2:Travel Adapter

Model: PS1026

Manufacturer: DVE

SN:

Equipment Under Test (EUT) is a Digital Portable Radio with external antenna. SAR is tested for 400.025 - 469.975 MHz only.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum SAR Values of Each Tested Band

Band	Maximum SAR _{1g} (W/kg)	
UHF	5.894	

1.7. Test Date

The test is performed from June 6, 2010 to June 11, 2010.

Report No. RZA2010-0847 Page 8 of 61

2. Operational Conditions during Test

The spatial peak SAR values were assessed for the low, middle and high channels defined by UHF (400.025MHz, 435MHz and 469.975MHz) systems. Battery and accessories shall be specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

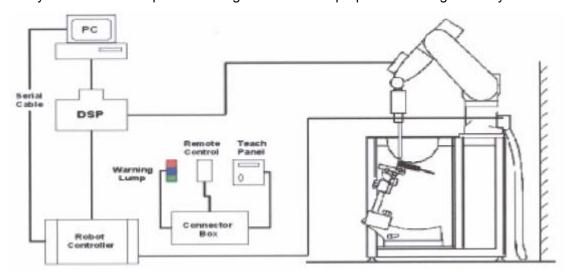


Figure 1. SAR Lab Test Measurement Set-up

3.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. ET3DV6 Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection System (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents,

e.q., glycol)

Calibration ISO/IEC 17025 calibration

service available

Frequency 10 MHz to 2.5 GHz; Linearity: ±0.2 dB

(30 MHz to 2.5 GHz)

Directivity ±0.2 dB in brain tissue

(rotation around probe axis)

±0.4 dB in brain tissue

(rotation around probe axis)

Dynamic Range 5u W/g to > 100mW/g; Linearity: ±0.2dB

Surface Detection ±0.2 mm repeatability in air and clear

liquids over diffuse reflecting surface

(ET3DV6 only)

Dimensions Overall length: 330mm

Tip length: 16mm Body diameter: 12mm Tip diarneter: 6.8mm

Distance from probe tip to dipole

centers: 2.7mm

Application General dosimetry up to 2.5GHz

Compliance tests of mobile phones
Fast automatic scanning in arbitrary

phantoms

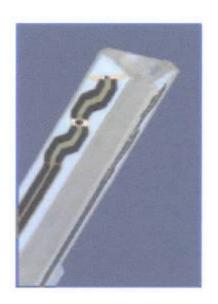


Figure 2 ET3DV6 E-field Probe

Figure 3 ET3DV6 E-field probe

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with

respect to the line between the ear reference points). The rotation centers for both scales is the

ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material. The amount of dielectric material

Figure 4.Device Holder

has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

3.3.2. **Phantom**

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness 2 \pm 0.2 mm Filling Volume Approx. 30 liters Dimensions 190×600×400 mm (H×L×W)

Figure 5.Generic Twin Phantom

3.4. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- · maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard s method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard s method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	SensitivityConversion factorDiode compression point	Normi, a_{i0} , a_{i1} , a_{i2} ConvF _i Dcp _i
Device parameters:	- Frequency - Crest factor	f cf
Media parameters:	- Conductivity - Density	σ ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f/d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

= local specific absorption rate in mW/g

 $\boldsymbol{E_{tot}}$ = total field strength in V/m

Report No. RZA2010-0847

with **SAR**

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 $\boldsymbol{E_{tot}}$ = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

Page 16 of 61

3.6. System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 398 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 7 and table 8.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

3D Probe positioner

Flat Phantom

Dipole

Dipole

Att2

Att2

PM3

Att2

PM3

Figure 6. System Check Set-up

3.7. Equivalent Tissues

The liquid is consisted of water, sugar, salt, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 1 and Table 2 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 1: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 450MHz		
Water	38.56		
Sugar	56.32		
Salt	3.95		
Preventol	0.10		
Cellulose	1.07		
Dielectric Parameters	5-450MU42 50 07		
Target Value	f=450MHz ε=43.5 σ=0.87		

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 450MHz		
Water	51.16		
Sugar	46.78		
Salt	1.49		
Preventol	0.10		
Cellulose	0.47		
Dielectric Parameters	£-450MH50.70.04		
Target Value	f=450MHz ε=56.7 σ=0.94		

4. Laboratory Environment

Table 3: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C		
Relative humidity	Min. = 30%, Max. = 70%		
Ground system resistance	< 0.5 Ω		
Ambient noise is checked and found very low and in compliance with requirement of standards.			
Reflection of surrounding objects is minimized and in compliance with requirement of standards.			

5. Charcteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

5.2. Applicable Measurement Standards

IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438 June 19, 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions.

6. Conducted Output Power Measurement

6.1. Conducted Power Results

Table 4: Conducted Power Measurement Results

12.5K UHF	Conducted Power (dBm)			
12.5K OHF	400.025MHz	435MHz	469.975MHz	
Test Results	36.24	36.25	36.27	
251/ 11115	Co	onducted Power (dBr	n)	
25K UHF	400.025MHz	435MHz	469.975MHz	
Test Results	36.25	36.25	36.26	
Dinital IIII	Conducted Power (dBm)			
Digital UHF	400.025MHz	435MHz	469.975MHz	
Test Results	36.45	36.46	36.44	

Note: The conducted power in the table is offered by the client.

7. Test Results

7.1. Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

	0 1			
Fraguency	Description	Dielectric Par	Temp	
Frequency	Description	ε _r	σ(s/m)	°C
	Target value	43.50	0.87	,
450MHz	±5% window	41.33 — 45.68	0.83 — 0.91	,
(head)	Measurement value	44.75	0.00	24.0
	2010-6-10	44.75	0.88	21.8

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

Erogueney	Description Dielectric Particle ϵ_r	Dielectric Par	Temp		
Frequency		σ(s/m)	${\mathfrak C}$		
	Target value	56.70	0.94	,	
450MHz	±5% window	53.87 — 59.54	0.89 — 0.99	,	
(body)	Measurement value	F7 00 0.04		04.0	
	2010-6-6	57.03	0.94	21.9	

7.2. System Check Results

Table 7: System Check for Head tissue Simulating Liquid

Frequency	Description	SAR(W/kg)		Dielectric Parameters		Temp
		10g	1g	ε _r	σ(s/m)	$^{\circ}$
	Recommended value	1.25	1.87	44.2	0.86	/
450MHz	±10% window	1.13—1.38	1.68 — 2.06			
450WHZ	Measurement value	1 22	2.02	44.75	0.88	21.9
	2010-6-10	1.32	1.32 2.02 44		0.00	21.9

Note: 1. The graph results see ANNEX B.

Table 8: System Check for Body tissue Simulating Liquid

Frequency	Description	SAR(V	V/kg)	Die Para	Temp	
		10g	1g	ε _r	σ(s/m)	$^{\circ}$
	Recommended value	1.18	1.77	54.1	0.00	1
450MHz	±10% window	1.06—1.30	1.59 — 1.95	34.1	0.90	,
	Measurement value	1.18	1.76	57.03	0.94	21.9
	2010-6-6	1.10	1.76	57.03	0.94	21.9

Note: 1. The graph results see ANNEX B.

^{2.} Recommended Values used derive from the calibration certificate and 398 mW is used as feeding power to the calibrated dipole.

^{2.} Recommended Values used derive from the calibration certificate and 398 mW is used as feeding power to the calibrated dipole.

7.3. Summary of Measurement Results

7.3.1. UHF

Table 9: SAR Values (UHF)

Limits		1 g Avera	ge (W/kg)	Power Drift (dB)					
		8.	.0	± 0.21	Graph				
Fraguency	Channel	Duty Cycle		Power	Results				
Frequency	Chamilei	100%	50%	Drift(dB)					
The EUT display towards phantom for 25KHz (Face Held)									
469.975 MHz	High	7.560	3.780	-0.034	Figure 9				
435 MHz	Middle	12.200	6.100	-0.149	Figure 10				
400.025 MHz	Low	6.470	3.235	-0.032	Figure 11				
The EU	JT display tov	vards ground w	rith belt clip for	· 25KHz (Body-Wor	n)				
469.975 MHz	High	7.320	3.660	-0.060	Figure 12				
435 MHz	Middle	10.500	5.250	-0.005	Figure 13				
400.025 MHz	Low	7.350	3.675	0.098	Figure 14				
12.5KHz (Worst case position of 25KHz, Face Held)									
435 MHz	Middle	10.300	5.150	-0.007	Figure 15				
	Digital (W	orst case posit	ion of 25KHz, I	Face Held)					
435 MHz	Middle	5.980	2.990	-0.089	Figure 16				

Table 10: SAR Values are scaled for the power drift

Limits		1 g Average (W/kg)		Power Drift (dB) ± 0.21	+ Power	SAR 1g (W/kg) (include + power drift)					
_		Duty Cycle		Power	10^(dB/10)	Duty Cycle					
Frequency	Channel	100%	50%	Drift(dB)		100%	50%				
	The EUT display towards phantom for 25KHz (Face Held)										
469.975 MHz	High	7.560	3.780	-0.034	0.992	7.501	3.751				
435 MHz	Middle	12.200	6.100	-0.149	0.966	11.789	5.894				
400.025 MHz	Low	6.470	3.235	-0.032	0.993	6.423	3.211				
The	EUT displ	ay towards	ground w	ith belt clip fo	or 25KHz (Boo	dy-Worn)					
469.975 MHz	High	7.320	3.660	-0.060	0.986	7.220	3.610				
435 MHz	Middle	10.500	5.250	-0.005	0.999	10.488	5.244				
400.025 MHz	Low	7.350	3.675	0.098	1.023	7.518	3.759				
12.5KHz (Worst case position of 25KHz, Face Held)											
435 MHz	Middle	10.300	5.150	-0.007	0.998	10.283	5.142				
	Dig	ital (Worst	case posit	ion of 25KHz,	Face Held)	·					
435 MHz	Middle	5.980	2.990	-0.089	0.980	5.859	2.929				

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} The Exposure category about EUT: controlled environment / Occupational, so the SAR limit is 8.0 W/kg averaged over any 1 gram of tissue.

Report No. RZA2010-0847

Page 24 of 61

8. Measurement Uncertainty

No.	source		Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom V _{eff} or v _i			
1	System repetivity	Α	0.5	N	1	1	0.5	9			
	Measurement system										
2	probe calibration	В	5.9	N	1	1	5.9	8			
3	axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	8			
4	Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞			
6	boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞			
7	probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞			
8	System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞			
9	readout Electronics	В	1.0	N	1	1	1.0	8			
10	response time	В	0	R	$\sqrt{3}$	1	0	∞			
11	integration time	В	4.32	R	$\sqrt{3}$	1	2.5	∞			
12	noise	В	0	R	$\sqrt{3}$	1	0	∞			
13	RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞			
14	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	8			
15	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	80			
16	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞			
	-	Tes	st sample Rela	ted							
17	-Test Sample Positioning	Α	2.9	N	1	1	2.9	5			
18	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5			
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞			
		Ph	ysical paramet	er							

Report No. RZA2010-0847

Page 25 of 61

20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	∞
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.64	1.8	∞
22	-liquid conductivity (measurement uncertainty)	В	5.0	N	1	0.64	3.2	∞
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
24	-liquid permittivity (measurement uncertainty)	В	5.0	N	1	0.6	3.0	∞
Combined standard uncertainty		$u_{c} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$					12.0	
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$		N	k=2		24.0	

9. Main Test Instruments

Table 11: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2009	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 13, 2010	One year
04	Power sensor	Agilent 8481H	MY41091316	March 26, 2010	One year
05	Signal Generator	HP 8341B	2730A00804	September 13, 2009	One year
06	Amplifier	IXA-020	0401	No Calibration Requested	
07	E-field Probe	ET3DV6	1737	November 20, 2009	One year
08	DAE	DAE4	871	November 11, 2009	One year
09	Validation Kit 450MHz	D450V3	1065	November 9, 2009	One year

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the Flat Phantom (450 MHz, 15.4cm depth)

ANNEX B: System Check Results

System Performance Check at 450 MHz Head

DUT: Dipole450 MHz; Type: D450V3; Serial: 1065

Date/Time: 6/10/2010 6:40:21 PM

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.88 \text{ mho/m}$; $\epsilon_r = 44.75$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 ℃ Liqiud Temperature: 21.5℃

DASY4 Configuration:

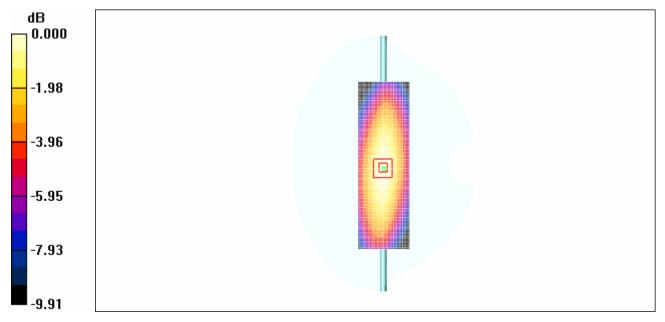
Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2) Calibrated: 11/20/2009;

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=398mW/Area Scan (41x131x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 2.15 mW/g

d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.2 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 3.29 W/kg

SAR(1 g) = 2.02 mW/g; SAR(10 g) = 1.32 mW/gMaximum value of SAR (measured) = 2.15 mW/g

0 dB = 2.15 mW/g

Figure 7 System Performance Check 450MHz 398mW

System Performance Check at 450 MHz Body

DUT: Dipole450 MHz; Type: D450V3; Serial: 1065

Date/Time: 6/6/2010 1:01:21 AM

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; σ = 0.94 mho/m; ε_r = 57.03; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

DASY4 Configuration:

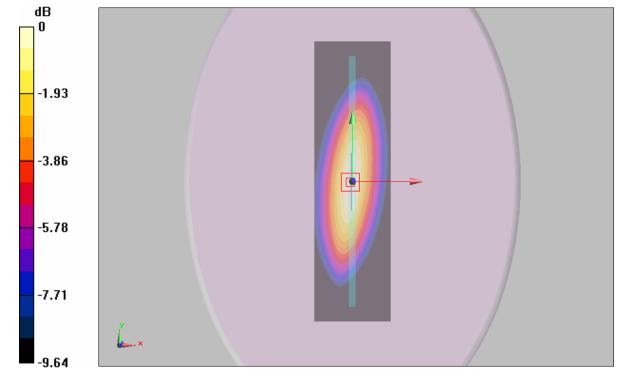
Probe: ET3DV6 - SN1737; ConvF(7.52, 7.52, 7.52) Calibrated: 11/20/2009;

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=398mW/Area Scan (61x221x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.9 mW/g

d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.7 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 2.64 W/kg

SAR(1 g) = 1.76 mW/g; SAR(10 g) = 1.18 mW/g Maximum value of SAR (measured) = 1.89 mW/g

0 dB = 1.89 mW/g

Figure 8 System Performance Check 450MHz 398mW

ANNEX C: Graph Results

Face Held, Front Towards Phantom for 25KHz High

Date/Time: 6/10/2010 9:53:31 PM

Communication System: PTT450; Frequency: 469.975 MHz; Duty Cycle: 1:1

Medium parameters used: f = 470 MHz; $\sigma = 0.895 \text{ mho/m}$; $\varepsilon_r = 44.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2) Calibrated: 11/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

High/Area Scan (61x171x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 8.16 mW/g

High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.3 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 9.92 W/kg

SAR(1 g) = 7.56 mW/g; SAR(10 g) = 5.55 mW/g

Maximum value of SAR (measured) = 7.99 mW/g

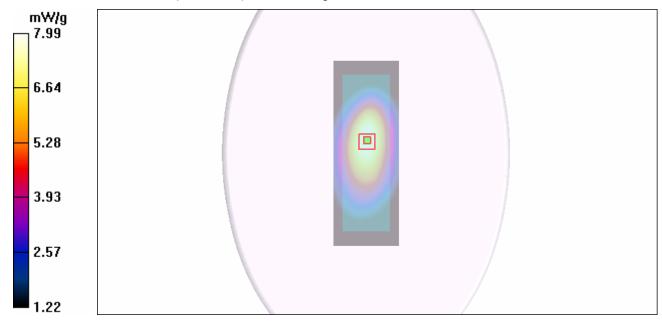


Figure 9 Face Held, Front Towards Phantom for 25KHz 469.975 MHz

Face Held, Front Towards Phantom for 25KHz Middle

Date/Time: 6/10/2010 8:40:18 PM

Communication System: PTT450; Frequency: 435 MHz; Duty Cycle: 1:1

Medium parameters used: f = 435 MHz; σ = 0.868 mho/m; ε_r = 45; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2) Calibrated: 11/20/2009

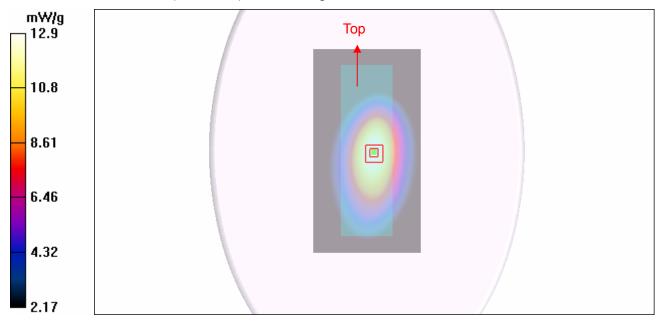
Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (91x171x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 13.2 mW/g


Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 121.4 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 12.2 mW/g; SAR(10 g) = 9.05 mW/g

Maximum value of SAR (measured) = 12.9 mW/g

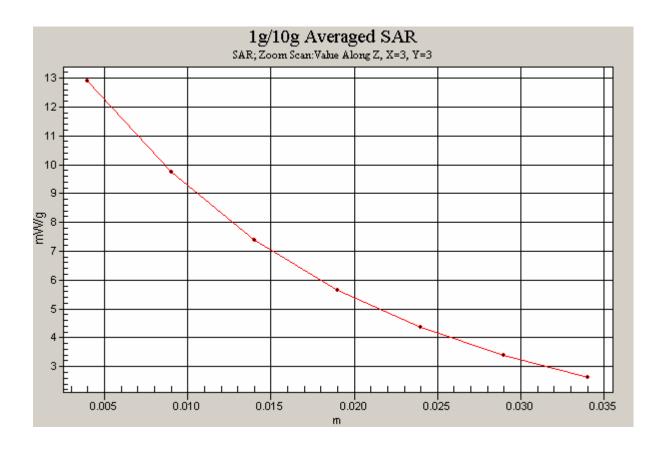


Figure 10 Face Held, Front Towards Phantom for 25KHz 435 MHz

Face Held, Front Towards Phantom for 25KHz Low

Date/Time: 6/10/2010 9:14:34 PM

Communication System: PTT450; Frequency: 400.025 MHz; Duty Cycle: 1:1

Medium parameters used: f = 400.025 MHz; $\sigma = 0.836 \text{ mho/m}$; $\varepsilon_r = 45.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2) Calibrated: 11/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Low/Area Scan (61x171x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 7.36 mW/g

Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.8 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 8.35 W/kg

SAR(1 g) = 6.47 mW/g; SAR(10 g) = 4.89 mW/g Maximum value of SAR (measured) = 6.85 mW/g

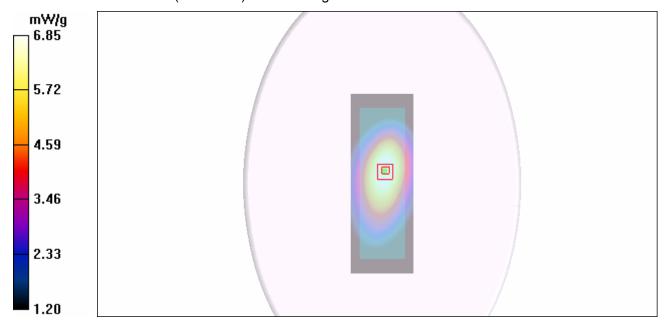


Figure 11 Face Held, Front Towards Phantom for 25KHz 400.025 MHz

Body-Worn, Front Towards Ground for 25KHz Belt clip attach Phantom High

Date/Time: 6/6/2010 2:20:18 AM

Communication System: PTT450; Frequency: 469.975 MHz; Duty Cycle: 1:1

Medium parameters used: f = 470 MHz; σ = 0.956 mho/m; ε_r = 56.6; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(7.52, 7.52, 7.52) Calibrated: 11/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

High/Area Scan (81x171x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 8.21 mW/g

High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.8 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 9.72 W/kg

SAR(1 g) = 7.32 mW/g; SAR(10 g) = 5.31 mW/g

Maximum value of SAR (measured) = 7.77 mW/g

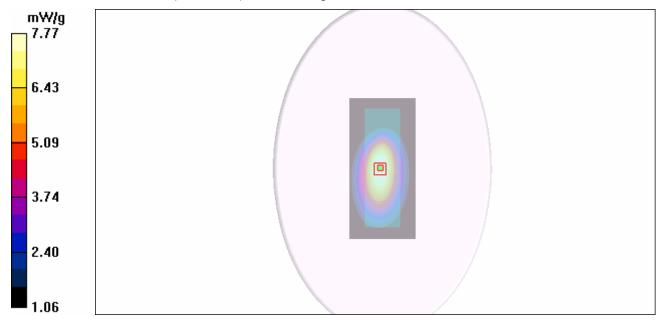


Figure 12 Body-Worn, Front Towards Ground for 25KHz Belt clip attach Phantom 469.975MHz

Body-Worn, Front Towards Ground for 25KHz Belt clip attach Phantom Middle

Date/Time: 6/6/2010 11:37:09 AM

Communication System: PTT450; Frequency: 435 MHz; Duty Cycle: 1:1

Medium parameters used: f = 435 MHz; $\sigma = 0.939$ mho/m; $\varepsilon_r = 57.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(7.52, 7.52, 7.52) Calibrated: 11/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (91x171x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.3 mW/g

Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.2 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 13.8 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 7.62 mW/g

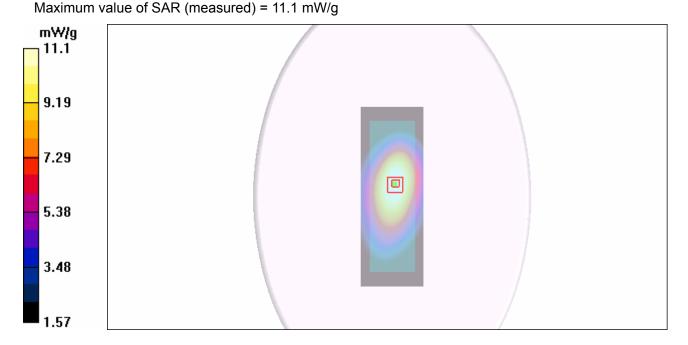


Figure 13 Body-Worn, Front Towards Ground for 25KHz Belt clip attach Phantom 435MHz

Body-Worn, Front Towards Ground for 25KHz Belt clip attach Phantom Low

Date/Time: 6/6/2010 2:49:26 AM

Communication System: PTT450; Frequency: 400.025 MHz; Duty Cycle: 1:1

Medium parameters used: f = 400.025 MHz; $\sigma = 0.905 \text{ mho/m}$; $\varepsilon_r = 57.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(7.52, 7.52, 7.52) Calibrated: 11/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Low/Area Scan (81x171x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 7.74 mW/g

Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.1 V/m; Power Drift = 0.098 dB

Peak SAR (extrapolated) = 9.66 W/kg

SAR(1 g) = 7.35 mW/g; SAR(10 g) = 5.38 mW/g Maximum value of SAR (measured) = 7.78 mW/g

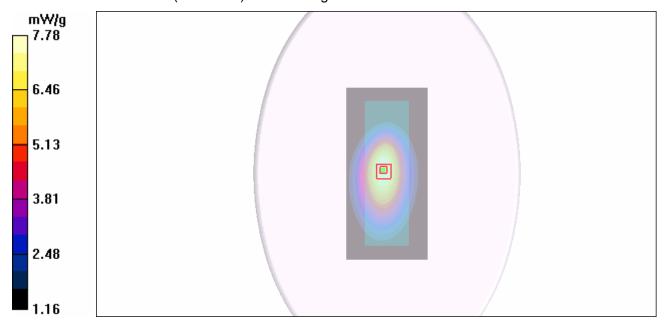


Figure 14 Body-Worn, Front Towards Ground for 25KHz Belt clip attach Phantom 400.025MHz

Face Held, Front Towards Phantom for 12.5KHz Middle

Date/Time: 6/11/2010 4:47:48 AM

Communication System: PTT450; Frequency: 435 MHz; Duty Cycle: 1:1

Medium parameters used: f = 435 MHz; σ = 0.838 mho/m; ε_r = 45.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2) Calibrated: 11/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (91x171x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.2 mW/g

Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.1 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 13.5 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 7.61 mW/g Maximum value of SAR (measured) = 10.9 mW/g

Figure 15 Face Held, Front Towards Phantom for 12.5 KHz 435 MHz

Face Held, Front Towards Phantom for Digital, Middle

Date/Time: 6/11/2010 5:49:07 AM

Communication System: PTT450; Frequency: 435 MHz; Duty Cycle: 1:2

Medium parameters used: f = 435 MHz; $\sigma = 0.868$ mho/m; $\varepsilon_r = 45$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(7.2, 7.2, 7.2) Calibrated: 11/20/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN1058

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Middle/Area Scan (91x171x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 6.38 mW/g

Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.3 V/m; Power Drift = -0.089 dB

Peak SAR (extrapolated) = 9.01 W/kg

SAR(1 g) = 5.98 mW/g; SAR(10 g) = 4.33 mW/g Maximum value of SAR (measured) = 6.43 mW/g

mW/g
6.43

5.32

4.20

3.09

1.97

0.858

Figure 16 Face Held, Front Towards Phantom for Digital, 435 MHz

ANNEX D: Probe Calibration Certificate

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 E-mail: Info@emcite.com

Http://www.emcite.com

Client

Certificate No: ET3-1737_Nov09

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN: 1737

Calibration Procedure(s)

TMC-XZ-01-028

Calibration procedure for dosimetric E-field probes

Calibration date:

November 20, 2009

Condition of the calibrated item

In Tolerance

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	SN.	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	101253	18-Jun-09 (TMC, No.JZ09-248)	Jun-10
Power sensor NRV-Z5	100333	18-Jun-09 (TMC, No. JZ08-248)	Jun-10
Reference Probe EX3DV4	SN 3631	13-Dec-08(TMC, No.EX3-3631_Dec08)	Dec-09 -
DAE4	SN 777	09-Jul-09(TMC, No.DAE4-777_Jul09)	Jul-10
RF generator E4438C	MY45092879	17-Jun-09(TMC, No.JZ09-302)	Jun-10
Network Analyzer 8753E	US38433212	02-Aug-09(TMC, No.JZ09-056)	Aug-10

Calibrated by:

Function Lin Hao SAR Test Engineer

Signature

Reviewed by:

Approved by:

Qi Dianyuan

Name

SAR Project Leader

Lu Bingsong Deputy Director of the laboratory

Issued: November 20, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1737_Nov09

Page 1 of 8

Report No. RZA2010-0847

Page 39 of 61

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

TSL tissue simulating liquid sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis(at

measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f>800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha,depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1737 Nov09

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: ET3DV6 SN:1737

Sensitivity in Free Space ^A				Diode Compression			
	NormX NormY NormZ	1.42 ± 10.1 1.68 ± 10.1 1.63 ± 10.1	1% 1	$V/(V/m)^2$ $V/(V/m)^2$ $V/(V/m)^2$	I	DCP X DCP Y DCP Z	93mV 94mV 85mV
Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8							
Boun	dary Effect						
TSL	9	000MHz	Typical	SAR gradient:	5% p	er mm	
	Sensor Center to Phantom Surface Distance SAR _{be} [%] Without Correction Algorithm SAR _{be} [%] With Correction Algorithm					3.7 mm 10.7 0.3	4.7 mm 6.9 0.4
TSL	1	750MHz	Typical	SAR gradient:	10%	per mm	
	Sensor Center to Phantom Surface Distance SAR _{be} [%] Without Correction Algo SAR _{be} [%] With Correction Algorith				m	3.7 mm 12.5 0.8	4.7 mm 8.4 0.5

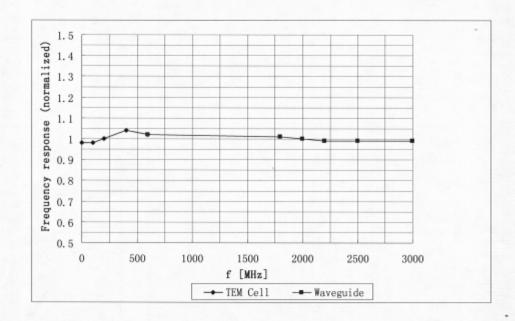
Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2,which for a normal distribution Corresponds to a coverage probability of approximately 95%.

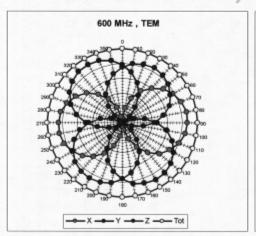
Certificate No: ET3-1737_Nov09

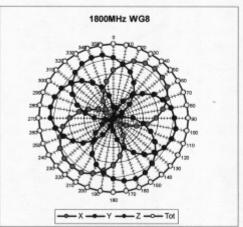

A The uncertainties of NormX, Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

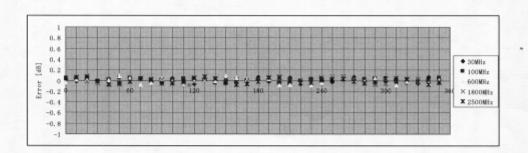
^B Numerical linearization parameter: uncertainty not required.

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793

E-mail: Info@emcite.com Http://www.emcite.com

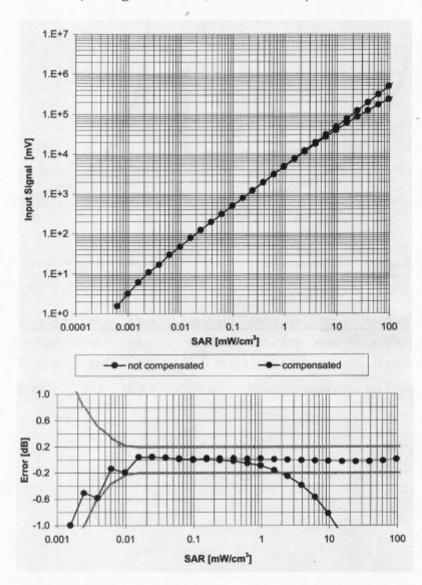

Frequency Response of E-Field




Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 E-mail: Info@emcite.com Http://www.emcite.com

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

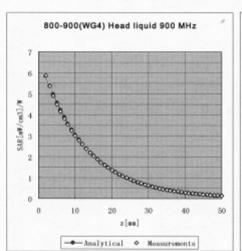


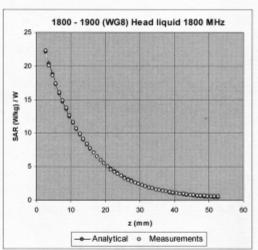
Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 Fax: +86-10-62304793

E-mail: Info@emcite.com Http://www.emcite.com

Dynamic Range f(SAR_{head}) (Waveguide: WG8, f = 1800 MHz)

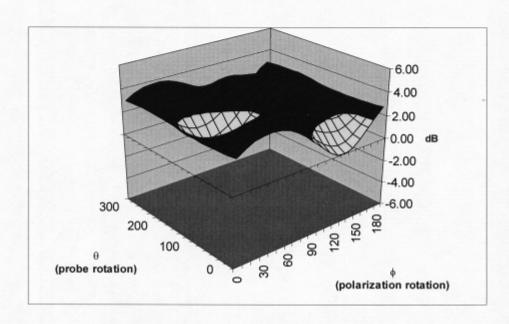

Uncertainty of Linearity Assessment: ±0.6% (k=2)


Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793

E-mail: Info@emcite.com Http:

Http://www.emcite.com

Conversion Factor Assessment


f[MHz]	Validity[MHz]C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	$\pm 50 / \pm 100$	Head	43.5±5%	$0.87 \pm 5\%$	0.36	1.84	7.20	±13.3% (k=2)
835	$\pm 50 / \pm 100$	Head	41.5±5%	0.90±5%	0.25	3.53	6.33	±11.0% (k=2)
900	±50/±100	Head	41.5±5%	0.97±5%	0.27	3.53	6.14	±11.0% (k=2)
1750	±50/±100	Head	40.0±5%	1.37±5%	0.56	2.77	5.35	±11.0% (k=2)
1950	$\pm 50 / \pm 100$	Head	40.0±5%	$1.40 \pm 5\%$	0.57	2.72	4.89	±11.0% (k=2)
2450	±50/±100	Head	39.2±5%	$1.80 \pm 5\%$	0.51 .	1.60	4.39	±11.0% (k=2)
450	$\pm 50 / \pm 100$	Body	56.7±5%	$0.94 \pm 5\%$	0.27	1.80	7.52	±13.3% (k=2)
835	$\pm 50 / \pm 100$	Body	55.2±5%	0.97±5%	0.36	2.75	6.14	±11.0% (k=2)
900	$\pm 50 / \pm 100$	Body	55.0±5%	1.05±5%	0.43	2.51	5.98	±11.0% (k=2)
1750	$\pm 50 / \pm 100$	Body	53.4±5%	$1.49 \pm 5\%$	0.99	1.74	4.84	±11.0% (k=2)
1950	$\pm 50 / \pm 100$	Body	53.3±5%	1.52±5%	0.99	1.50	4.60	±11.0% (k=2)
2450	$\pm 50 / \pm 100$	Body	52.7±5%	1.95±5%	0.98	1.42	3.91	±11.0% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62303288-2082 Fax: +86-10-62304793 Http://www.emcite.com

Deviation from Isotropy

Error (ϕ, θ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ±2.6% (k=2)