

FCC PART 90

TEST REPORT

For

3M Company

Personal Safety Division, 3M Center, Building 235-2NW-70, St. Paul, Minnesota, United States

FCC ID: Y9ZMT401050B

Report Type: Original Report	Product Type: PELTOR™ LiteCom Pro II headset
Test Engineer: William Li	<i>William Li</i>
Report Number: RSZ150720007-00	
Report Date: 2015-07-28	
Reviewed By: Jimmy Xiao RF Engineer	<i>Jimmy Xiao</i>
Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	4
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S).....	4
TEST METHODOLOGY	4
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
FCC §1.1307(b) & §2.1093 - RF EXPOSURE	7
FCC §2.1046 & §90.205 - RF Output Power	8
APPLICABLE STANDARD	8
TEST PROCEDURE	8
TEST EQUIPMENT LIST AND DETAILS.....	8
TEST DATA	8
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	10
APPLICABLE STANDARD	10
TEST EQUIPMENT LIST AND DETAILS.....	10
TEST PROCEDURE	10
TEST DATA	10
FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	18
APPLICABLE STANDARD	18
TEST EQUIPMENT LIST AND DETAILS.....	19
TEST PROCEDURE	19
TEST DATA	20
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	25
APPLICABLE STANDARD	25
TEST EQUIPMENT LIST AND DETAILS.....	26
TEST PROCEDURE	26
TEST DATA	26
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	29
APPLICABLE STANDARD	29
TEST EQUIPMENT LIST AND DETAILS.....	29
TEST PROCEDURE	29
TEST DATA	30
FCC §2.1055 & §90.213- FREQUENCY STABILITY	31
APPLICABLE STANDARD	31
TEST EQUIPMENT LIST AND DETAILS.....	31
TEST PROCEDURE	31
TEST DATA	31

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR.....	33
APPLICABLE STANDARD	33
TEST EQUIPMENT LIST AND DETAILS.....	33
TEST PROCEDURE	33
TEST DATA	34
PRODUCT SIMILARITY DECLARATION LETTER.....	37

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *3M Company* 's product, model number: *MT7H7F4010-NA-50* (*FCC ID: Y9ZMT401050B*) or the "EUT" in this report was a *PELTOR™ LiteCom Pro II headset*, which was measured approximately: 26cm (L)×14cm (W)×9.8 cm (H), rated input voltage: DC 3.7 V battery.

Note: the product, series model MT7H7B4010-NA-50;MT7H7P3E4010-NA-50 and MT7H7F4010-NA-50 ,the model MT7H7F4010-NA-50 was selected for fully testing; the detailed information can be referred to the attached declaration which was stated and guaranteed by the applicant.

** All measurement and test data in this report was gathered from production sample serial number: 1505765 (Assigned by Applicant). The EUT supplied by the applicant was received on 2015-07-20.*

Objective

This test report is prepared on behalf of *3M Company* in accordance with Part 2 and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

FCC Part 95 FRE submissions with FCC ID: Y9ZMT401050B

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 – Private Land Mobile Radio Service

Applicable Standards: TIA 603-D and ANSI 63.4-2014.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

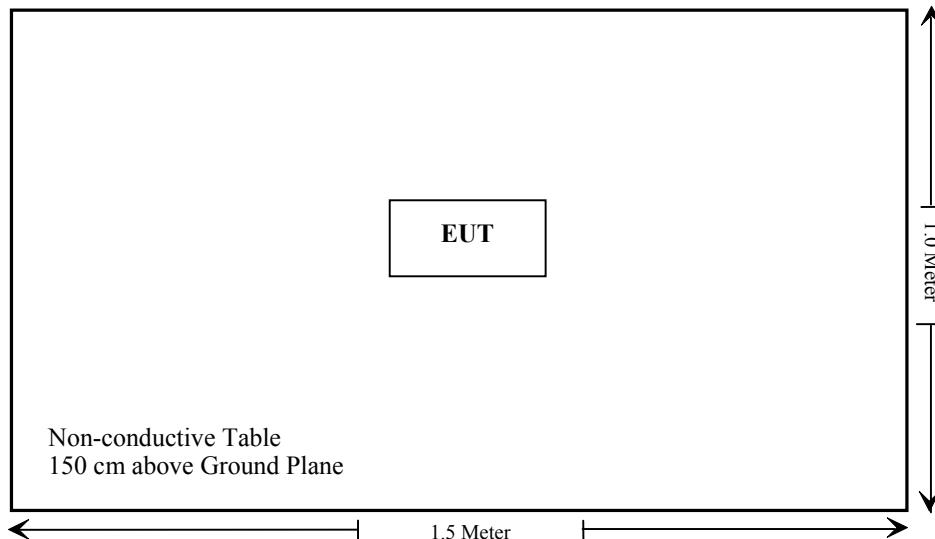
Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.


Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307(b);§2.1093	RF Exposure	Compliance
§2.1046;§90.205	RF Output Power	Compliance
§2.1047;§90.207	Modulation Characteristic	Compliance
§2.1049;§90.209; §90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051;§90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053;§90.210	Spurious Radiated Emissions	Compliance
§2.1055;§90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

FCC §1.1307(b) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to FCC OET, KDB 447498 D01 General RF Exposure Guidance v05 section 4.3.1 & 6.1 Push-to-talk (PTT) devices:

RF exposure is evaluated with a duty factor of 50% when the actual operating duty factor is $\leq 50\%$. Devices supporting higher duty factors shall be evaluated at the maximum duty factor; for example, devices supporting operator-assisted PSTN calls. Contact the FCC Laboratory when unable to test a device at the required duty factor due to hardware limitations or other reasons.

Result

According to FCC KDB 447498 D01 General RF Exposure Guidance v05 generic portable criteria

The distance between antenna and head is 40mm

The Maximum tune-up output power: 24 dBm (251.19 mW), for PTT device the duty factor is 50%

The time-averaged output power is: $251.19 \times 0.5 = 125.60$ mW

The exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

So, the exclusion thresholds is 189.0mW @ 403.05MHz (worst case)

Conclusion:

The time-averaged output power is 125.60 mW < the exclusion thresholds is 189.0 mW

Stand-alone SAR evaluation is not required.

FCC §2.1046 & §90.205 - RF Output Power

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/W Video B/W
100 kHz 300 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22
HP Agilent	RF Communication test set	8920A	3325U00859	2015-06-03	2016-06-03

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by William Li from 2015-07-28.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	Output Power (dBm)	Output Power (W)	Result
Analog	12.5	403.05	High	23.66	0.232	Pass
		440.0		23.61	0.230	Pass
		469.95		23.68	0.233	Pass
		403.05	Low	10.59	0.011	Pass
		440.0		10.61	0.012	Pass
		469.95		10.57	0.011	Pass
	6.25	403.05	High	23.68	0.233	Pass
		440.0		23.65	0.232	Pass
		469.95		23.62	0.230	Pass
		403.05	Low	10.62	0.012	Pass
		440.0		10.64	0.012	Pass
		469.95		10.59	0.011	Pass

Note: The rated high power is 0.2W. The limit of the high output power is 0.16W-0.24W.

The rated low power is 0.01W. The limit of the low output power is 0.008W-0.012W.

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047and §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP	RF Communication Test Set	8920A	3438A05201	2015-06-14	2016-06-13
LEADER	MILLIVOLTMETER	LMV-181A	6041126	2015-06-09	2016-06-09

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

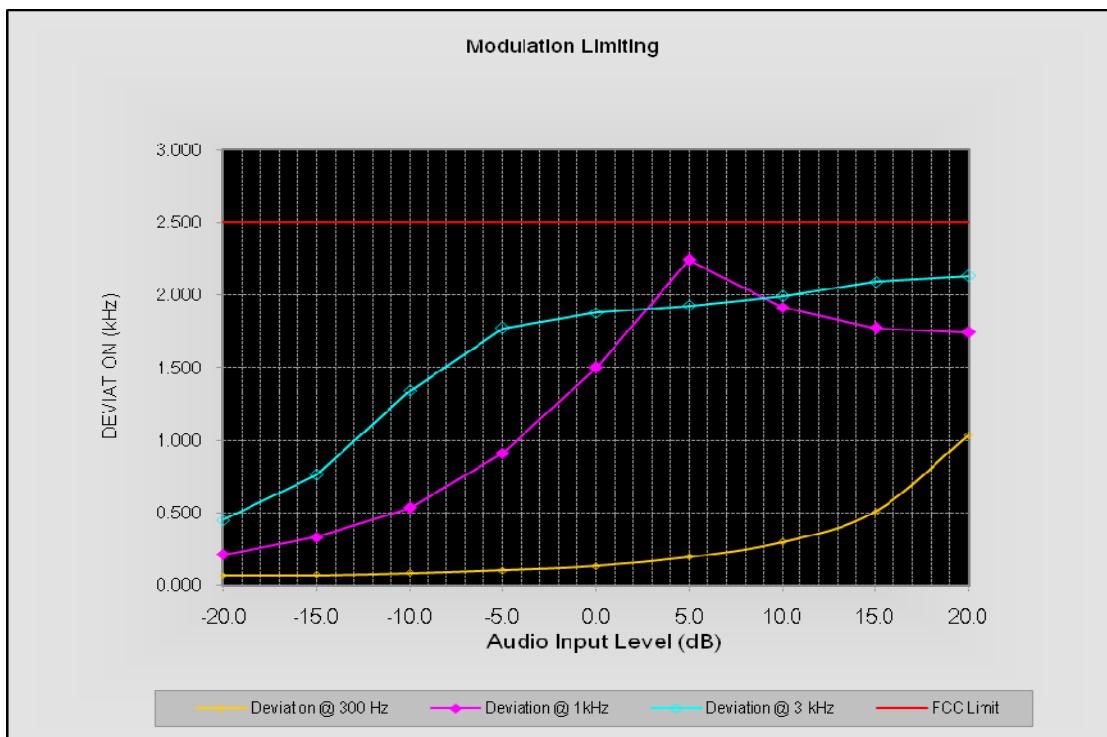
Test Method: TIA/EIA-603 2.2.3

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

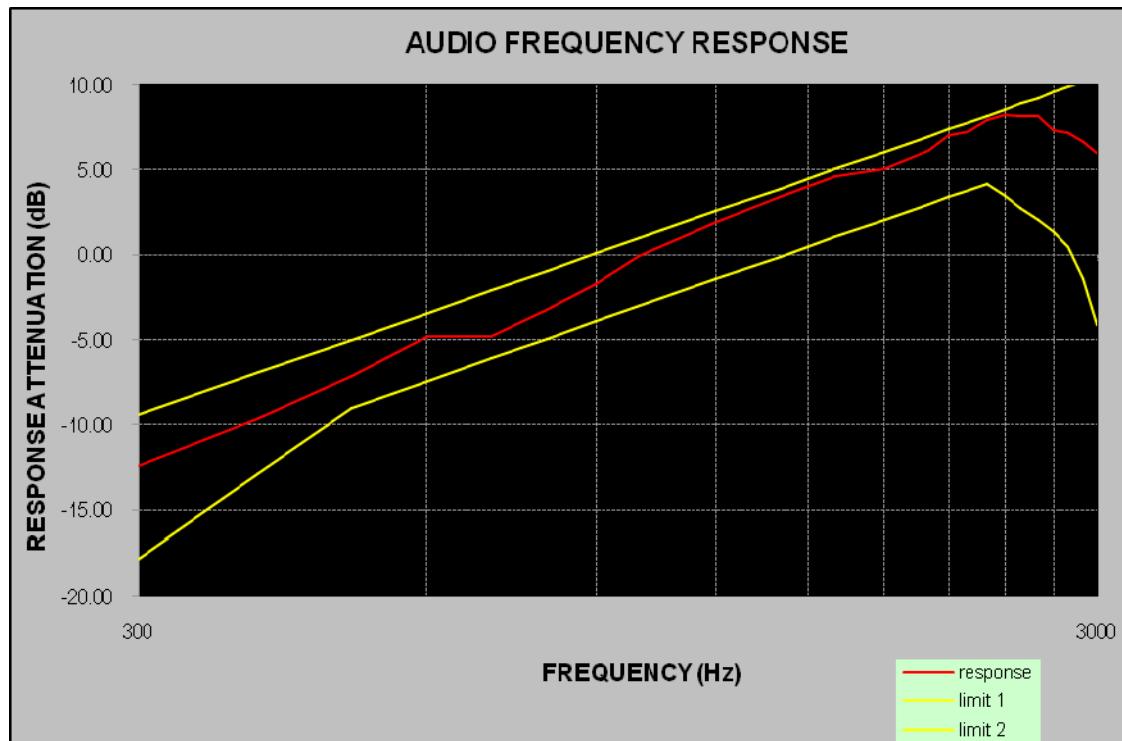
The testing was performed by William Li on 2015-07-28.


Test Mode: Transmitting

Result: Compliance.

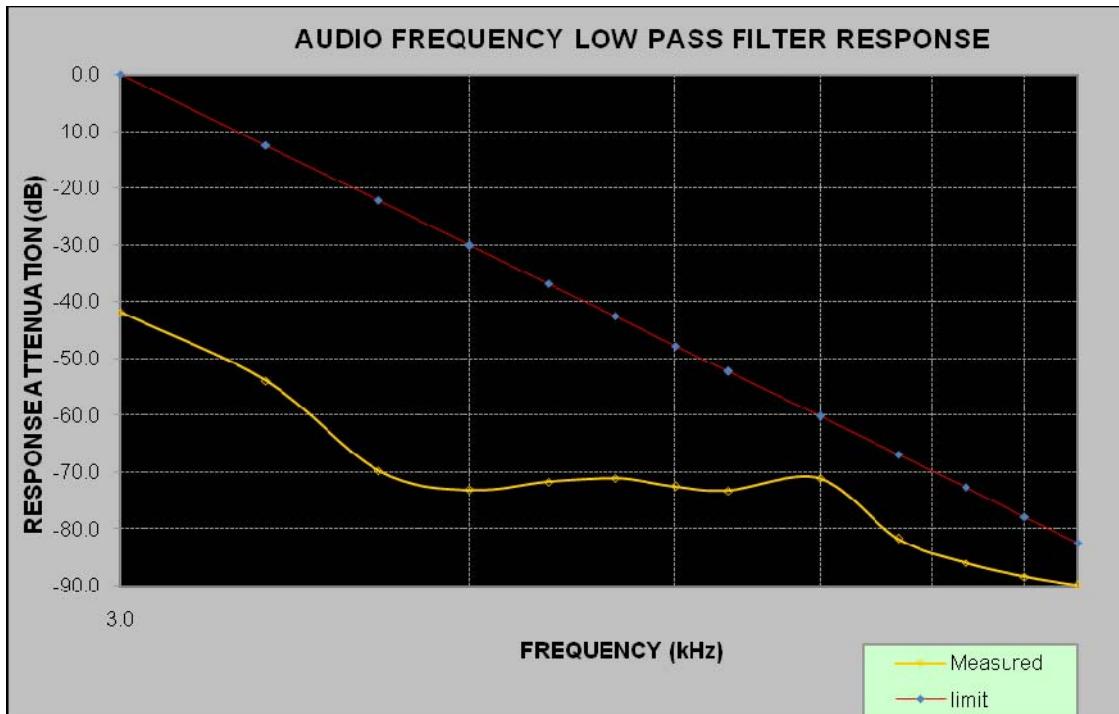
Analog Modulation:**MODULATION LIMITING**

Carrier Frequency: 440.0 MHz, Middle Channel Separation=12.5 kHz


Audio Input Level [dB]	Frequency Deviation (kHz)			Limit [kHz]
	@ 300 Hz	@ 1kHz	@ 3 kHz	
20.0	1.035	1.743	2.130	2.5
15.0	0.508	1.771	2.091	2.5
10.0	0.301	1.916	1.992	2.5
5.0	0.198	2.242	1.928	2.5
0.0	0.134	1.500	1.878	2.5
-5.0	0.105	0.913	1.771	2.5
-10.0	0.088	0.535	1.341	2.5
-15.0	0.071	0.332	0.760	2.5
-20.0	0.069	0.213	0.451	2.5

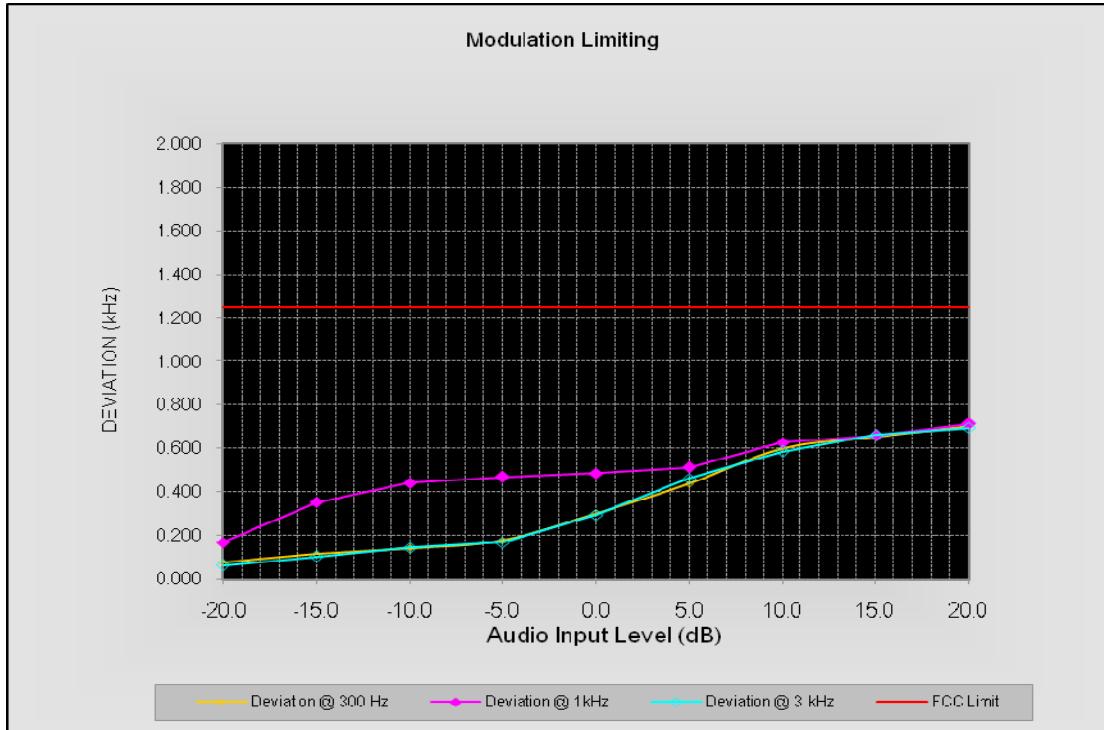
Audio Frequency Response

Carrier Frequency: 440.0 MHz, Channel Separation=12.5 kHz


Audio Frequency (Hz)	Response Attenuation (dB)
300	-12.40
400	-9.63
500	-7.09
600	-4.76
700	-4.76
800	-3.22
900	-1.68
1000	0.00
1200	1.92
1400	3.43
1600	4.63
1800	5.07
2000	6.13
2100	7.07
2200	7.25
2300	7.95
2400	8.25
2500	8.20
2600	8.17
2700	7.37
2800	7.21
2900	6.69
3000	6.00

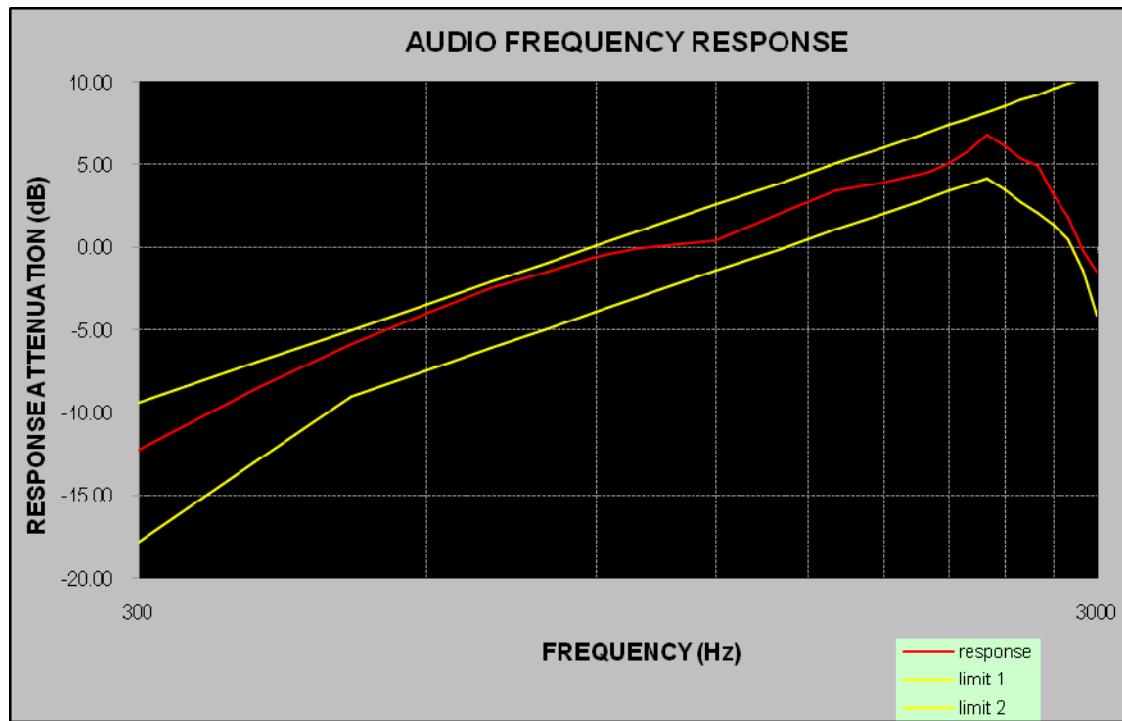
Audio Frequency Response Low Pass Filter

Carrier Frequency: 440.0 MHz, Channel Separation=12.5 kHz


Audio Frequency (kHz)	Response Attenuation (dB)	Limit (dB)
3.0	-41.8	0.0
4.0	-53.9	-12.5
5.0	-69.7	-22.2
6.0	-73.1	-30.1
7.0	-71.7	-36.8
8.0	-71.0	-42.6
9.0	-72.5	-47.7
10.0	-73.2	-52.3
12.0	-71.1	-60.2
14.0	-81.7	-66.9
16.0	-85.9	-72.7
18.0	-88.4	-77.8
20.0	-89.8	-82.4

MODULATION LIMITING

Carrier Frequency: 440.0 MHz, Middle Channel Separation=6.25 kHz


Audio Input Level [dB]	Frequency Deviation (kHz)			Limit [kHz]
	@ 300 Hz	@ 1kHz	@ 3 kHz	
20.0	0.703	0.713	0.694	1.25
15.0	0.652	0.659	0.661	1.25
10.0	0.598	0.628	0.586	1.25
5.0	0.436	0.512	0.462	1.25
0.0	0.303	0.485	0.296	1.25
-5.0	0.177	0.468	0.168	1.25
-10.0	0.142	0.441	0.143	1.25
-15.0	0.113	0.352	0.101	1.25
-20.0	0.075	0.169	0.062	1.25

Audio Frequency Response

Carrier Frequency: 440.0 MHz, Channel Separation=6.25 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
300	-12.25
400	-8.50
500	-5.81
600	-3.99
700	-2.45
800	-1.45
900	-0.57
1000	0.00
1200	0.39
1400	2.06
1600	3.42
1800	4.00
2000	4.54
2100	5.06
2200	5.81
2300	6.83
2400	6.13
2500	5.43
2600	4.93
2700	3.20
2800	1.88
2900	-0.19
3000	-1.47

FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 ($f_d - 2.88$ kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P)$ dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) On any frequency from the center of the authorized bandwidth f_0 to 3.0 kHz removed from f_0 : Zero dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least $30 + 16.67(f_d - 3$ kHz) or $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.
- 3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22
HP	RF Communication Test Set	8920A	3438A05201	2015-06-14	2016-06-13
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K0 3-101746-zn	2015-06-13	2016-06-13

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

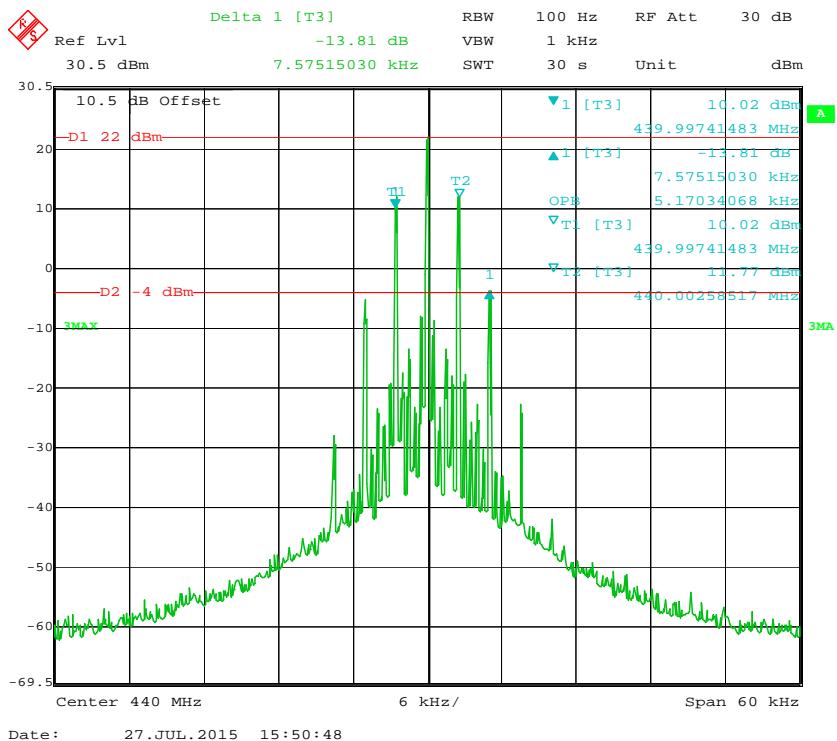
Test Procedure

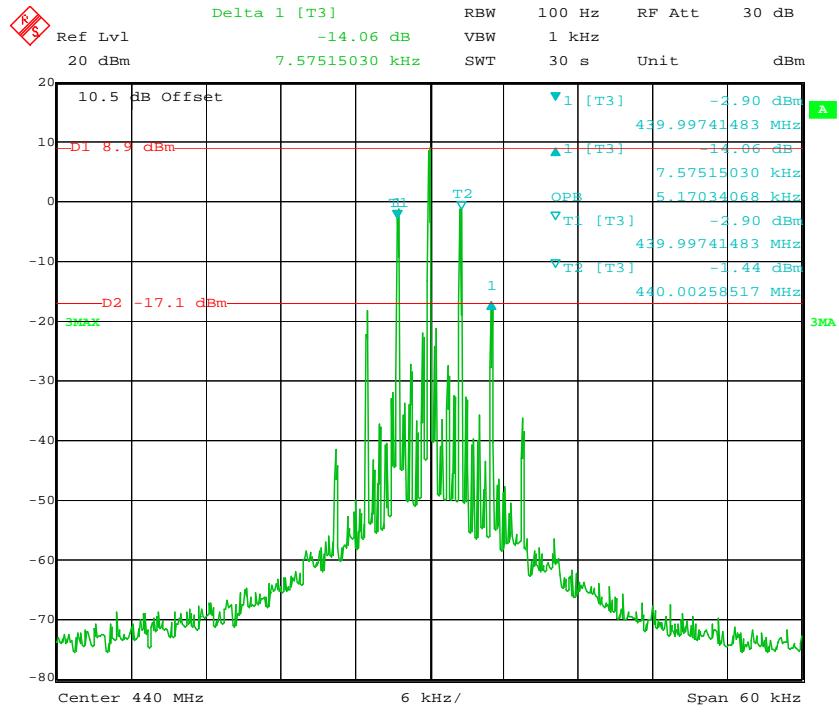
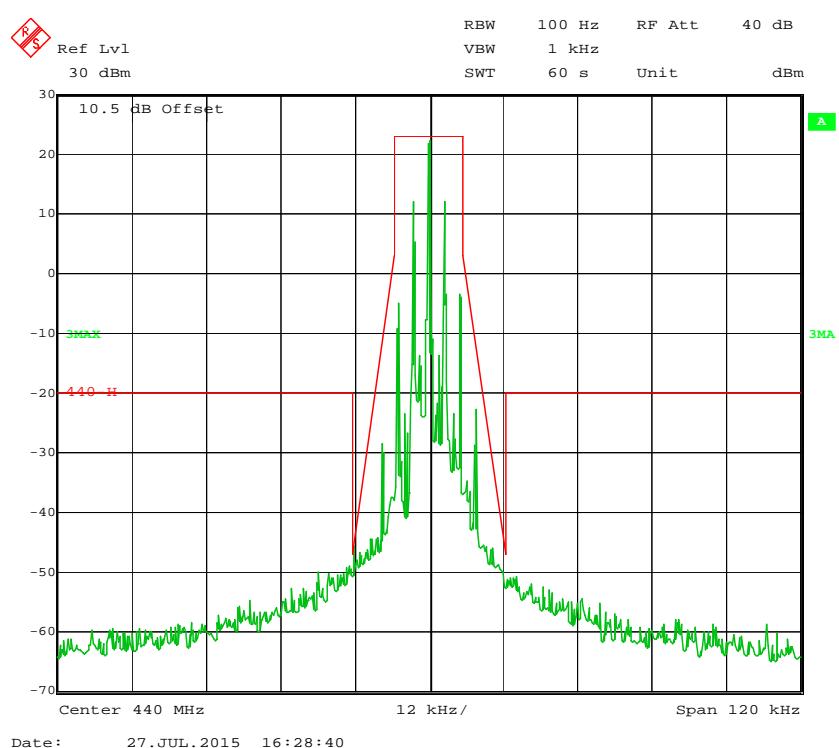
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

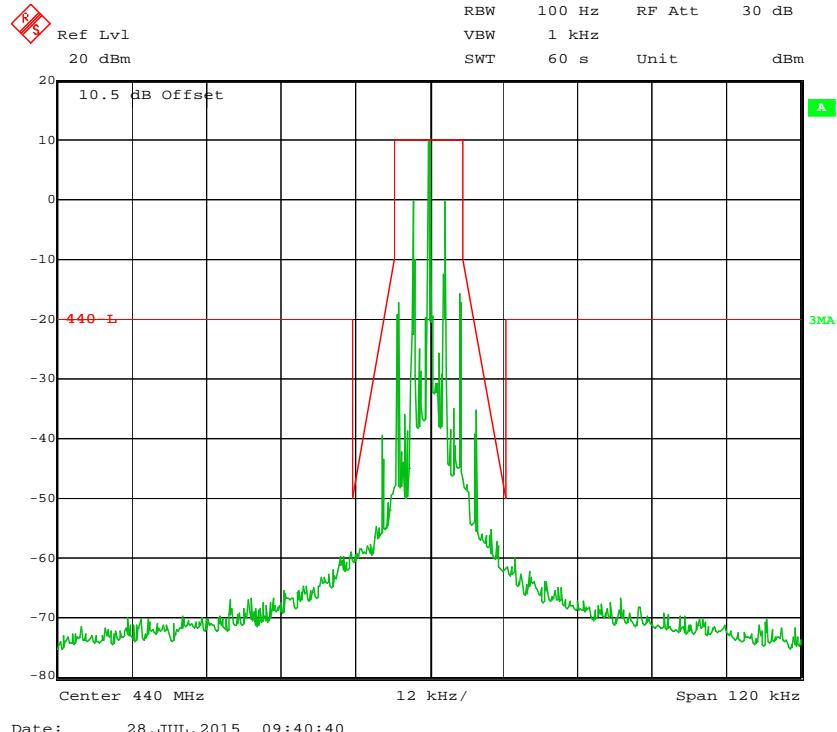
Test Data

Environmental Conditions

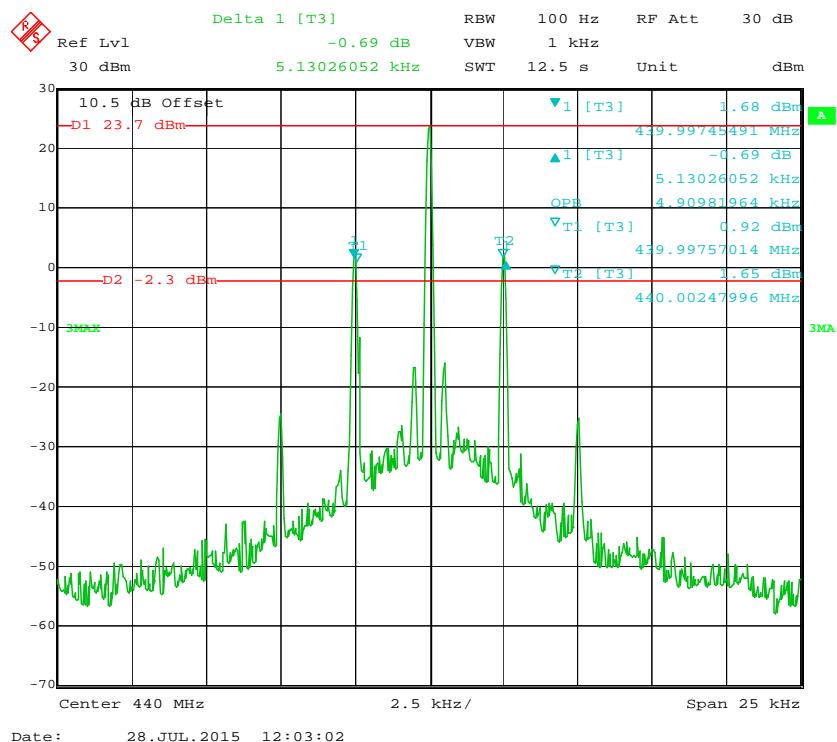

Temperature:	24~26 °C
Relative Humidity:	50~53 %
ATM Pressure:	100.0~101.0 kPa

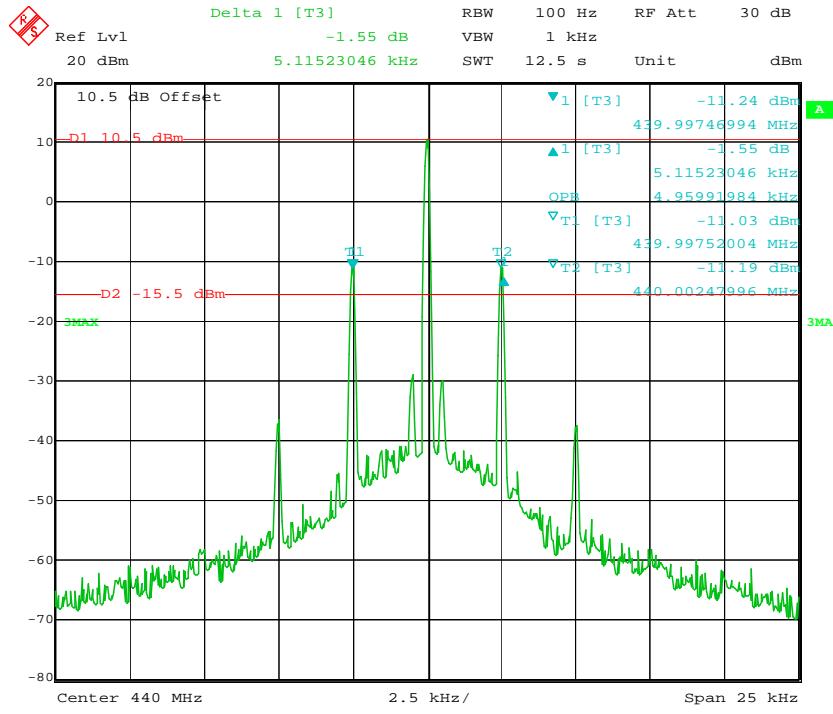
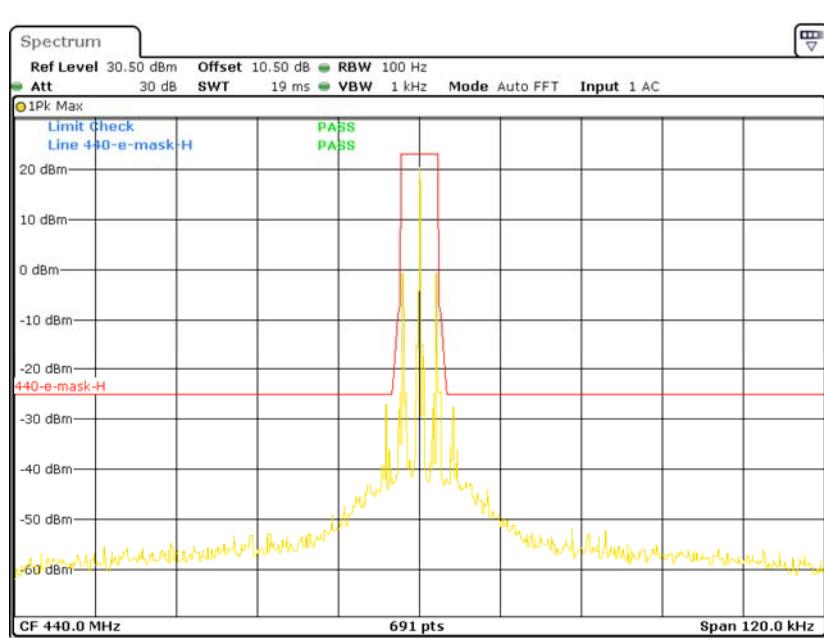


The testing was performed by William Li from 2015-07-27 to 2015-07-28.

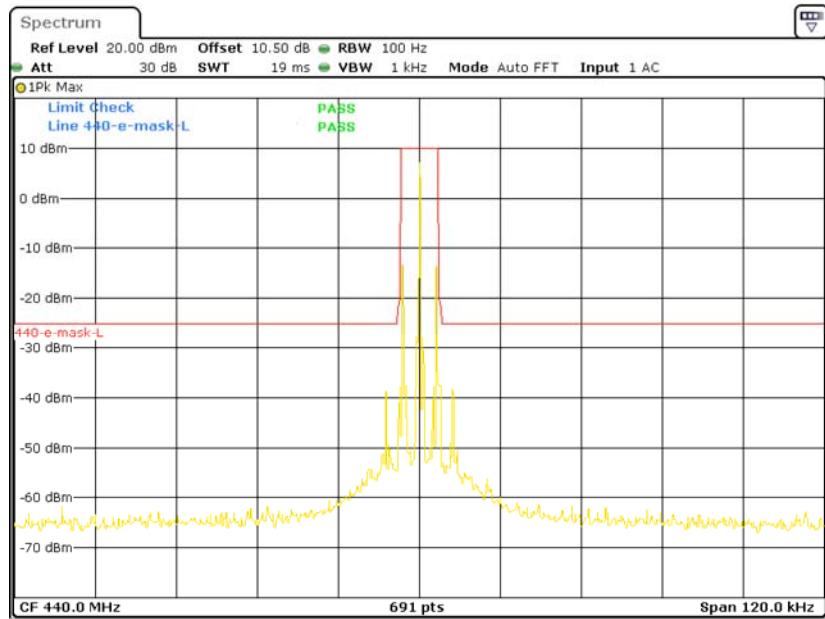
Test Mode: Transmitting


Modulation	Frequency (MHz)	Channel space (kHz)	Power Level	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)
Analog	440.0	12.5	High	5.170	7.575
			Low	5.170	7.575
		6.25	High	4.910	5.130
			Low	4.960	5.115

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 440.0 MHz (High Power)





99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 440.0 MHz (Low Power)**Emission Mask D with High Power 12.5 kHz, 440.0 MHz**


Emission Mask D with Low Power 12.5 kHz, 440.0 MHz

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 6.25 kHz, 440.0 MHz (High Power)

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 6.25 kHz, 440.0 MHz (Low Power)**Emission Mask E with High Power 6.25 kHz, 440.0 MHz**

Emission Mask E with Low Power 6.25 kHz, 440.0 MHz

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 ($f_d - 2.88$ kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P)$ dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) On any frequency from the center of the authorized bandwidth f_0 to 3.0 kHz removed from f_0 : Zero dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least $30 + 16.67(f_d - 3$ kHz) or $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.
- 3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.
- 4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

Test Equipment List and Details

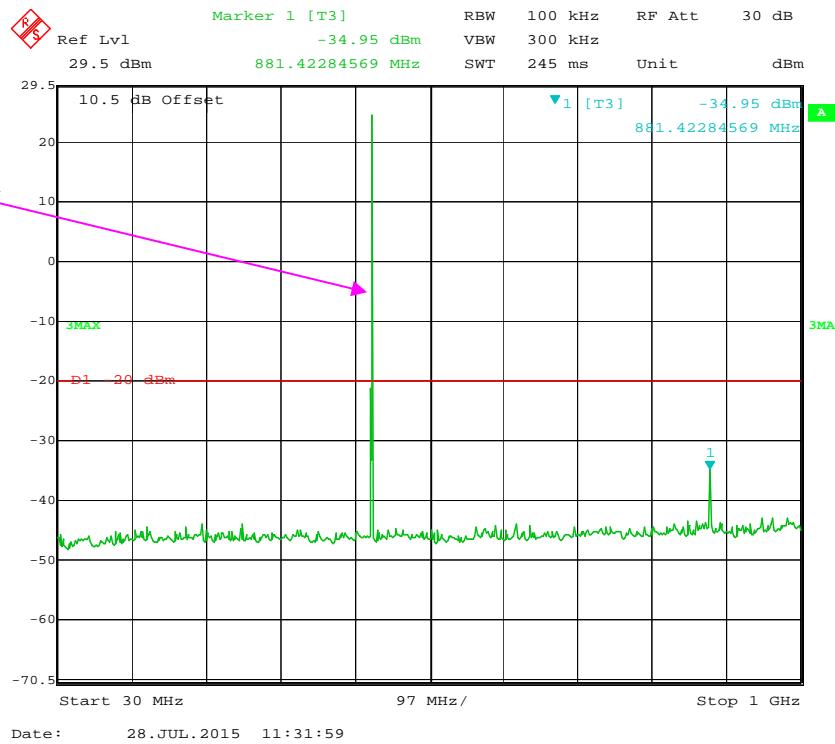
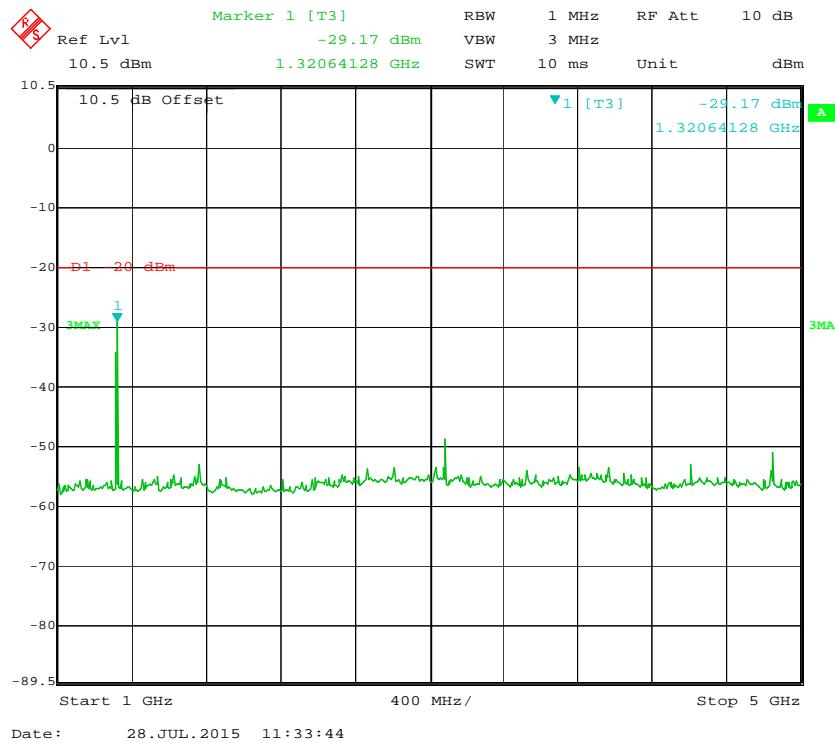
Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22

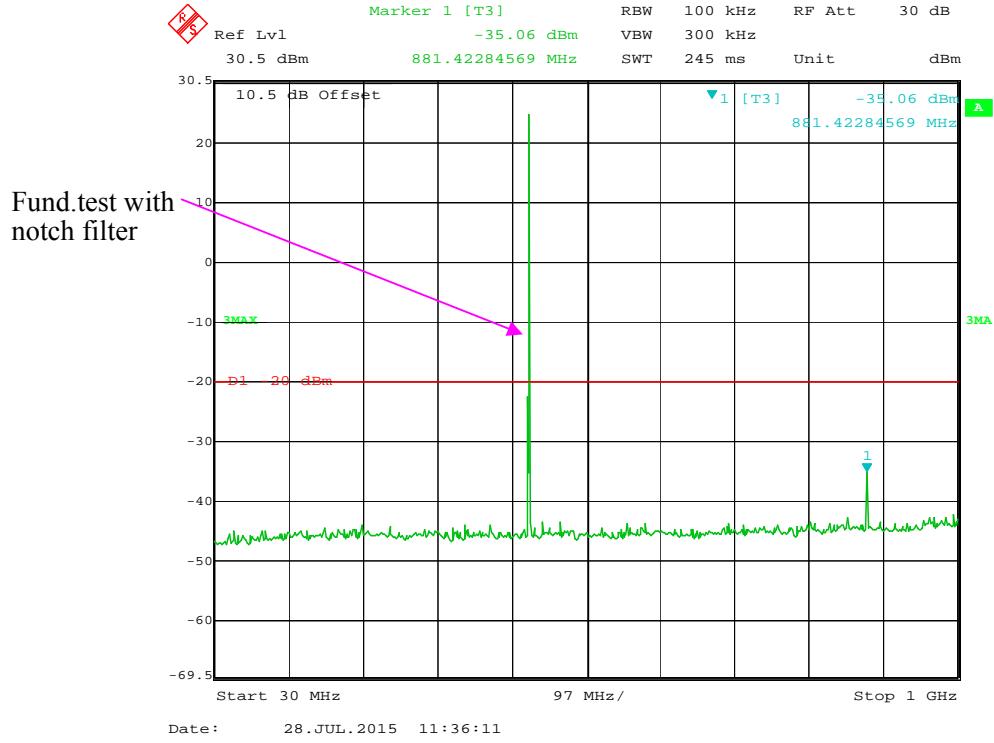
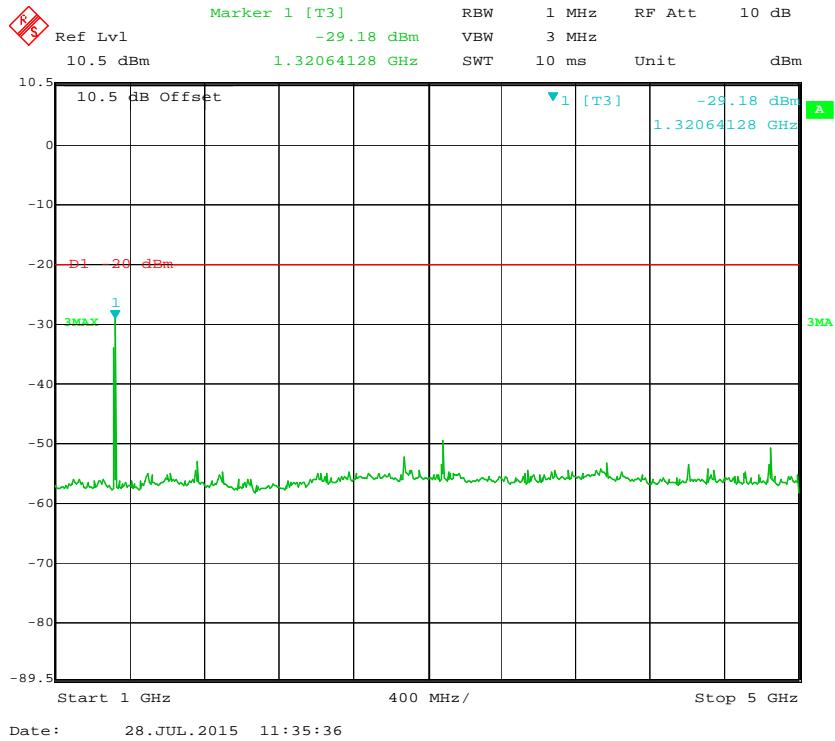
* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz, and 1MHz for above 1GHz. sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data



Environmental Conditions



Temperature:	25 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by William Li on 2015-07-28.

Test Mode: Transmitting

Please refer to the following plots.

Analog Modulation:**30 MHz – 1 GHz, Spacing Channel 12.5 kHz, 440.0 MHz**Fund.test with
notch filter**1 GHz – 5GHz, Spacing Channel 12.5 kHz, 440.0 MHz**

30 MHz – 1 GHz, Spacing Channel 6.25 kHz, 440.0 MHz**1 GHz – 5GHz, Spacing Channel 6.25 kHz, 440.0MHz**

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2014-11-03	2015-11-03
HP	Amplifier	8447E	1937A01046	2015-05-06	2016-05-05
Sunol Sciences	Broadband Antenna	JB3	A111513	2014-06-18	2017-06-17
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22
Sunol Sciences	Horn Antenna	DRH-118	A052304	2013-12-01	2016-11-30
HP	Synthesized Sweeper	8341B	2624A00116	2015-06-03	2016-06-03
Mini-Circuits	Amplifier	ZVA-183-S+	5969001149	2015-04-23	2016-04-22
A.H. System	Horn Antenna	SAS-200/571	135	2015-02-11	2016-02-10
COM POWER	Dipole Antenna	AD-100	041000	NCR	NCR

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = $10 \log_{10}(\text{TXpwr in Watts}/0.001)$ -the absolute level

Spurious attenuation limit in dB = $50 + 10 \log_{10}(\text{power out in Watts})$ for EUT with a 12.5 kHz channel bandwidth.

Spurious attenuation limit in dB = $55 + 10 \log_{10}(\text{power out in Watts})$ for EUT with a 6.25 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by William Li on 2015-07-28.

Test Mode: Transmitting

30 MHz – 2 GHz:

Frequency (MHz)	Receiver Reading (dB μ V)	Turn Table Angle Degree	Rx Antenna		Substituted			Absolute Level (dBm)	FCC Part 90	
			Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)		Limit (dBm)	Margin (dB)
Analog Modulation 440.0MHz, Channel Spacing 12.5K										
141.64	30.31	299	2.0	H	-66.7	0.26	0	-66.96	-20	46.96
141.64	31.44	104	2.3	V	-65.6	0.26	0	-65.86	-20	45.86
880.00	54.92	326	2.1	H	-42.1	0.70	0	-42.80	-20	22.80
880.00	56.87	154	1.5	V	-40.1	0.70	0	-40.80	-20	20.80
1320.00	43.88	274	1.6	H	-55.6	1.30	6.30	-50.60	-20	30.60
1320.00	44.92	344	2.0	V	-54.7	1.30	6.30	-49.70	-20	29.70
Analog Modulation 440.0MHz, Channel Spacing 6.25K										
141.64	31.94	25	1.9	H	-65.1	0.26	0	-65.36	-25	40.36
141.64	30.40	109	1.0	V	-66.6	0.26	0	-66.86	-25	41.86
880.00	53.88	91	2.1	H	-43.1	0.70	0	-43.80	-25	18.80
880.00	55.26	278	1.8	V	-41.7	0.70	0	-42.40	-25	17.40
1320.00	42.26	186	2.1	H	-57.2	1.30	6.30	-52.20	-25	27.20
1320.00	43.68	86	2.3	V	-56.0	1.30	6.30	-51.00	-25	26.00

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

,

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Hewlett-Packard	Frequency Counter	5343A	2232A00827	2013-05-09	2016-05-08
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2014-11-01	2015-11-01
Long Wei	DC Power Supply	TPR-6420D	398363	NCR	NCR

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by William Li on 2015-07-28.

Test Mode: Transmitting

For Analog Modulation

Reference Frequency: 440.0MHz, Limit: ±2.5 ppm, 12.5 kHz			
Test Environment		Frequency Measure with Time Elapsed	
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)
Frequency Stability versus Input Temperature			
50	3.7	440.000022	0.050
40	3.7	440.000019	0.043
30	3.7	440.000017	0.039
20	3.7	440.000019	0.043
10	3.7	440.000018	0.041
0	3.7	440.000013	0.030
-10	3.7	440.000014	0.032
-20	3.7	440.000019	0.043
-30	3.7	440.000024	0.055
Frequency Stability versus Input Voltage			
20	3.4	440.000022	0.050

Reference Frequency: 440.0MHz, Limit: ±1.0 ppm, 6.25 kHz			
Test Environment		Frequency Measure with Time Elapsed	
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)
Frequency Stability versus Input Temperature			
50	3.7	440.000015	0.034
40	3.7	440.000013	0.030
30	3.7	440.000011	0.025
20	3.7	440.000009	0.020
10	3.7	440.000013	0.030
0	3.7	440.000012	0.027
-10	3.7	440.000014	0.032
-20	3.7	440.000016	0.036
-30	3.7	440.000018	0.041
Frequency Stability versus Input Voltage			
20	3.4	440.000008	0.018

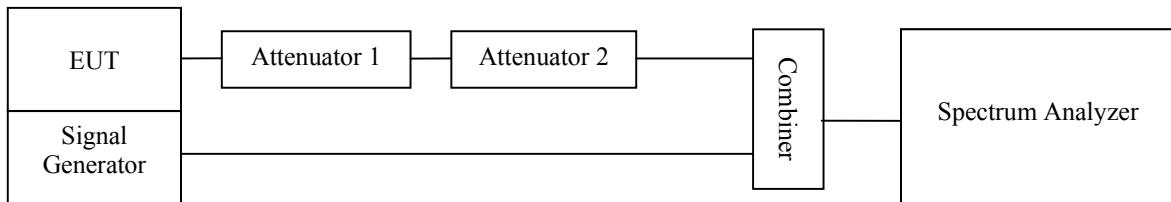
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

Test Equipment List and Details


Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22
HP	RF Communication Test Set	8920A	3438A05201	2015-06-14	2016-06-13

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

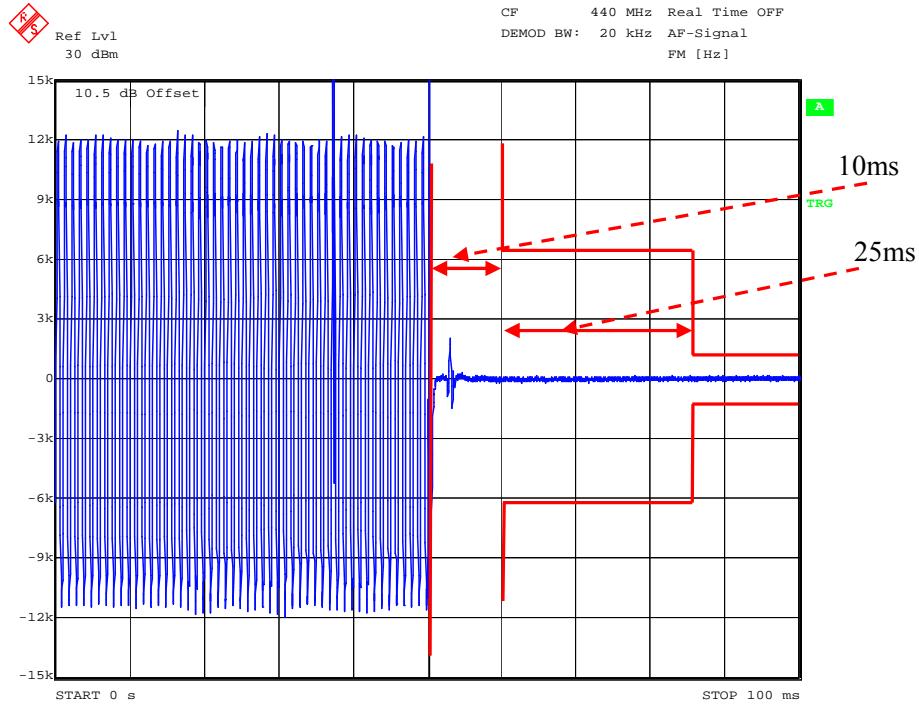
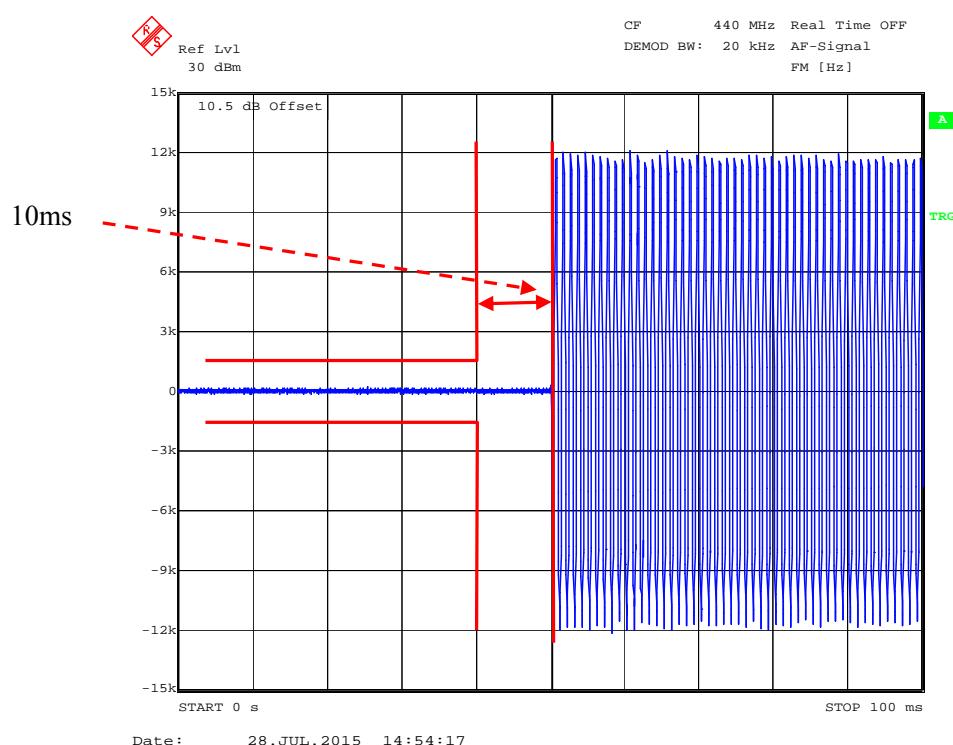
Test Procedure

- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P_0 .
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P_0 . This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ± 4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .

k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t_3 .

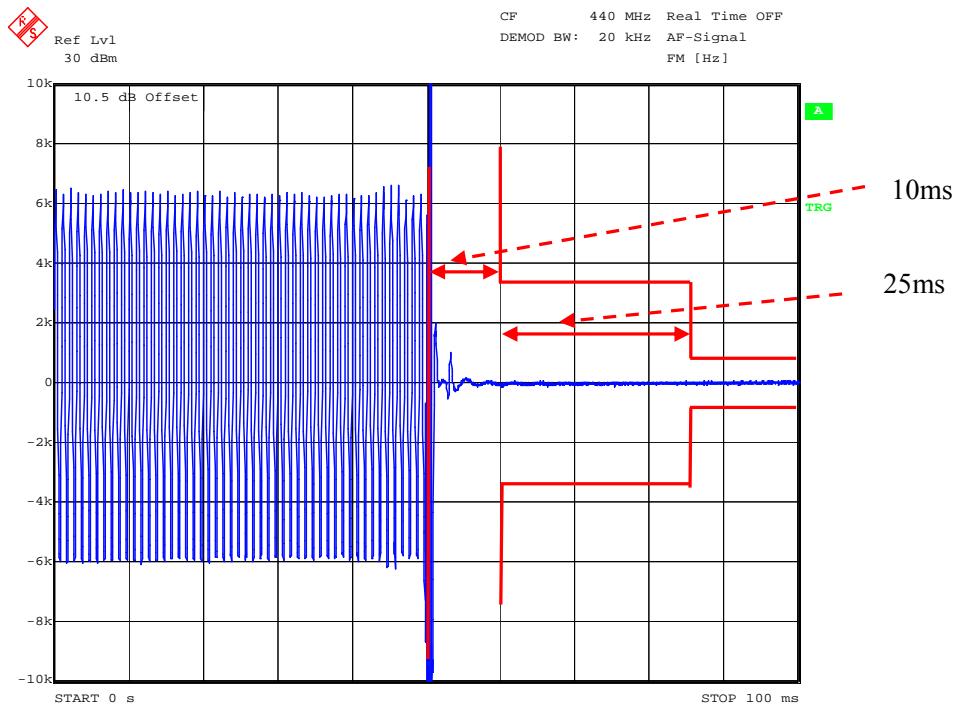
Test Data

Environmental Conditions

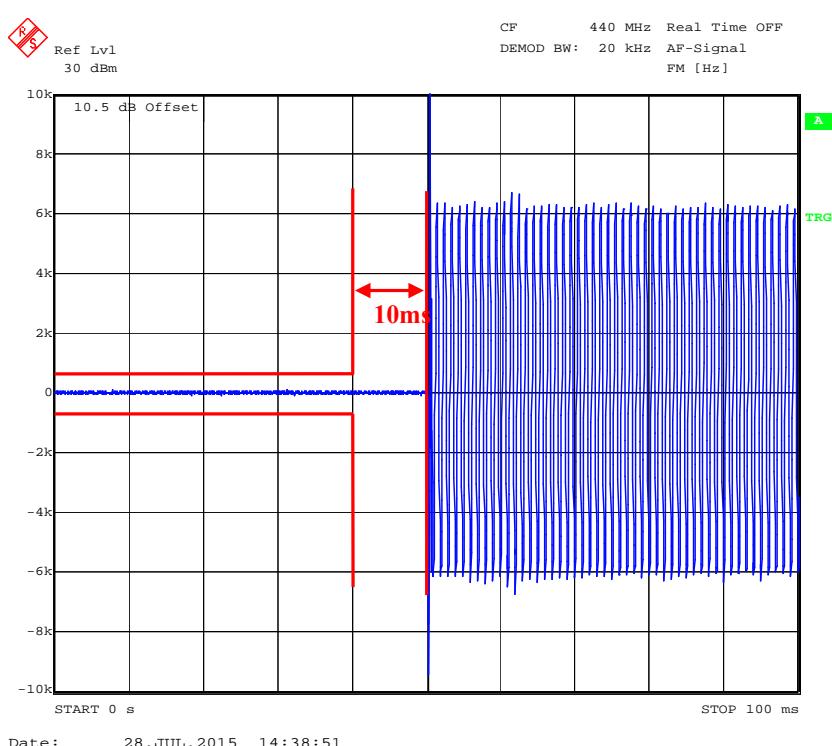


Temperature:	25 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by William Li on 2015-07-28.

Test Mode: Transmitting


Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
6.25	10 (t1)	<+/-6.25 kHz	Pass
	25 (t2)	<+/-3.125 kHz	
	10 (t3)	<+/-6.25 kHz	
12.5	10 (t1)	<+/-12.5 kHz	Pass
	25 (t2)	<+/-6.25 kHz	
	10 (t3)	<+/-12.5 kHz	

Please refer to the following plots.


Channel Spacing 12.5 kHz**Turn on****Turn off**

Channel Spacing 6.25 kHz

Turn on

Turn off

PRODUCT SIMILARITY DECLARATION LETTER

Company name: 3M Company

Address: Personal Safety Division, 3M Center, Building 235-2NW-70, St. Paul, Minnesota, United States

Tel: +651-778-6336 Fax: +651-778-6336

Product Similarity Declaration

October 10, 2015

To Whom It May Concern,

We, 3M Company, hereby declare that we have a product named as PELTOR™ LiteCom Pro II headset (Model number: MT7H7F4010-NA-50) was tested by BACL, meanwhile, for our marketing purpose, we would like to list a series models (MT7H7B4010-NA-50; MT7H7P3E4010-NA-50), on reports and certificate, all the models are identical schematics, only named differently.

No other changes are made to them

We confirm that all information above is true, and we'll be responsible for all the consequences. Please contact me if you have any question.

Sincerely,

Signature:

Yuriy Litvinov

Lead EMC Engineer

******* END OF REPORT *******