

RADIO TEST REPORT

REP040275

Date of issue: May 17, 2024

Applicant:

Radio Activity Srl

Via Privata Cascia, 11 – 20128 Milano (MI) – Italy

Product:

Multi-protocol analog and digital transceiver

Model:

KA-160e

FCC ID:

Y9M-KA160E

Specifications:

FCC 47 CFR Part 90, Subpart I

Test location

Company name	Nemko S.p.A.		
Address	Via Del Carroccio, 4		
City	Biassono		
Province	MB		
Postal code	20853		
Country	taly		
Telephone	+39 039 220 12 01		
Facsimile	+39 039 220 12 21		
Website	www.nemko.com		
Site number	FCC: 682159; IC: 9109A		

Tested by	O. Frau
Test engineer signature	Theotee
Reviewed by	R. Giampaglia
Reviewer signature	and the second s

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko S.p.A. ISO/IEC 17025 accreditation.

Copyright notification

Nemko S.p.A. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko S.p.A. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Table of Contents

Table of 0	Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	2
1.5	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section 3	Test conditions	б
3.1	Atmospheric conditions	6
3.2	Power supply range	e
Section 4	Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section 5	Information provided by the applicant	8
5.1	Disclaimer	8
5.2	Applicant/Manufacture	8
5.3	EUT information	8
5.4	Technical information	9
5.5	EUT setup details	9
Section 6	Summary of test results	14
6.1	Testing location	14
6.2	Testing period	14
6.3	Sample information	14
6.4	FCC Part 2 and 90 Subpart I test requirements results	14
Section 7	Testing data	15
7.1	Number of frequencies	15
7.2	Modulation characteristic	16
7.3	Transmitter Output Power	22
7.4	Bandwidth limitations	26
7.5	Spectrum mask and spurious emissions	32
7.6	Transient frequency behavior	87
7.7	Transmitter frequency stability	93
Section 8	Photos	95
8.1	Photos of the test set-up	95
8.2	Photos of the EUT	97

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 90, Subpart I Private land mobile radio services. General technical standards

1.2 Test methods

ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Se		
FCC 47 CFR Part 2, Subpart J	Equipment authorization procedures		

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
REP040275	2024-05-17	Original report issued

Report reference ID: REP040275 Page 4 of 99

2.3

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance There were no modifications performed to the EUT during this assessment. 2.2 Technical judgment None

No deviations were made from laboratory procedures.

Deviations from laboratory tests procedures

Report reference ID: REP040275 Page 5 of 99

Section 3 Test conditions

3.1	Atmosp	heric (cond	litions

In the laboratory, the following ambient conditions are respected for each test reported below:

Ambient temperature: $18 \div 33 \degree C^{(1)}$

Relative Humidity: $25 \div 70 \%$ (2)

Atmospheric pressure: 860 ÷ 1060 hPa

The following instruments are used to monitor the environmental conditions:

Equipment	Manufacturer	Model	Serial N°
Thermo-hygrometer data loggers	Testo	175-H2	20012380/305
Thermo-hygrometer data loggers	Testo	175-H2	38203337/703
Barometer	Castle	GPB 3300	072015

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Report reference ID: REP040275 Page 6 of 99

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2, ETSI TR 100 028-1, ETSI TR 100 028-2 and other specific test standards and is documented in Nemko Spa working manuals WML1002 and WML0078.

The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:

P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit.

F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.

Hereafter Nemko's measurement uncertainties are reported:

EUT	Туре	Type Test Range		Measurement Uncertainty	Notes	
		Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)	
			0.009 MHz ÷ 30 MHz	1.1 dB	(1)	
		Carrier power	30 MHz ÷ 18 GHz	1.5 dB	(1)	
		RF Output Power	18 MHz ÷ 40 GHz	3.0 dB	(1)	
			40 MHz ÷ 140 GHz	5.0 dB	(1)	
		Adjacent channel power	1 MHz ÷ 18 GHz	1.4 dB	(1)	
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)	
		Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)	
			40 GHz ÷ 220 GHz	6.0 dB	(1)	
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)	
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)	
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)	
	Conducted	Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)	
		Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)	
Transmitter		Transient behaviour of the transmitter– Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)	
		Transient behaviour of the transmitter – Power level slope	1 MHz ÷ 18 GHz	9%	(1)	
		Frequency deviation - Maximum permissible frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)	
		Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001 MHz ÷ 18 GHz	0.5 dB	(1)	
		Dwell time	-	3%	(1)	
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)	
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)	
-		Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)	
			0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)	
	- " - "	Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)	
			66 GHz ÷ 220 GHz	10 dB	(1)	
	Radiated		10 kHz ÷ 26.5 GHz	6.0 dB	(1)	
		Effective radiated power transmitter	26.5 GHz ÷ 66 GHz	8.0 dB	(1)	
			66 GHz ÷ 220 GHz	10 dB	(1)	

NOTES:

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

Report reference ID: REP040275 Page 7 of 99

Section 5 Information provided by the applicant

5.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

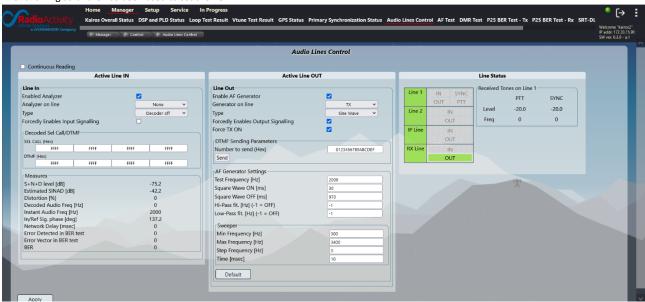
5.2 Applicant/Manufacture

Applicant name	Radio Activity Srl			
Applicant address	/ia Privata Cascia, 11 – 20128 Milano (MI) – Italy			
Manufacture name	Same as applicant			
Manufacture address	Same as applicant			

5.3 EUT information

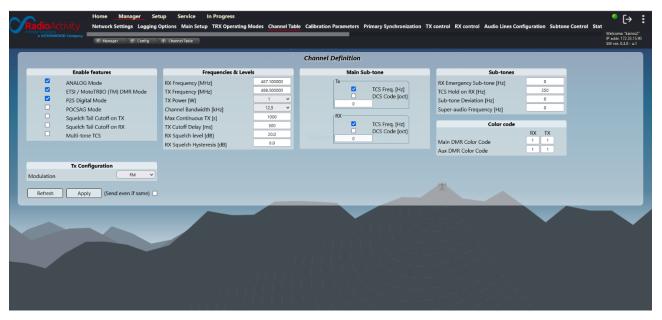
Product name	Multi-protocol analog and digital transceiver
Model	KA-160e
Model variant(s)	
Serial number	PRJ00527000001 (Assigned by Nemko S.p.A.)
Part number	
Power supply requirements	13.6 V DC, 10 A max
Product description and theory of operation	The EUT is a radio base station for fixed installation
Software version	

Report reference ID: REP040275 Page 8 of 99


5.4 Technical information

System type	☐ Mobile system	
	Base/Fixed point-to-p	oint system
Frequency band	150 MHz – 174 MHz	
Frequency Min (MHz)	150 MHz	
Frequency Max (MHz)	174 MHz	
RF power Max (W), Conducted	53.7 (47.30 dBm)	
Field strength, dBμV/m @ 3 m	N/A	
Measured BW (kHz), 99% OBW	8.093	
Emission designators	Analog	FM 11K0F3E / 14K0F3E / 16K0F3E (12.5 / 20 / 25 kHz)
	Analog	PM 11K0G3E / 14K0G3E / 16K0G3E (12.5 / 20 / 25 kHz)
	DMR 4FSK Voice & Data	7K60FXE
	DMR 4FSK Data	7K60FXD
	P25 C4FM Voice & Data	8K10F1E
	P25 C4FM Data	8K10F1D
Transmitter spurious, dBm @ 3 m	-39.20 @600.39 MHz	
Antenna information	External antenna not provide	ed

5.5 EUT setup details


5.5.1 Radio exercise details

The following software has been used to set the EUT.

Report reference ID: REP040275 Page 9 of 99

Report reference ID: REP040275 Page 10 of 99

5.5.2 EUT sub assemblies

--

5.5.3 EUT interface ports

Port	Name	Type ¹	Cable Max. >3m	Cable Shielded	Description
0	Enclosure	N/E	_	_	_
1	13.6 Vdc input	DC	\boxtimes		Two wires cable
2	LAN	TP	×	×	Standard cable with RJ45 connector
3	RF TX antenna	ANT	×	×	Coaxial cable with SMA connector
4	RF RX main antenna	ANT	×	×	Coaxial cable with SMA connector
5	RF RX diversity antenna	ANT	×	×	Coaxial cable with SMA connector
6	Main GPS antenna	ANT	×	×	Coaxial cable with SMA connector
7	USB type A	1/0	-		Normally not used
8	15 pole HD	I/O			Multi wires cable

Notes:

¹ Port type:

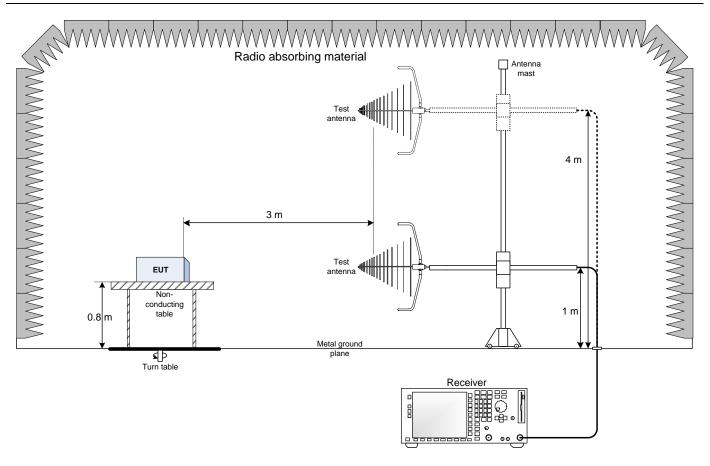
AC = AC Power Port DC = DC Power Port

N/E = Non-Electrical

ANT = Antenna Port

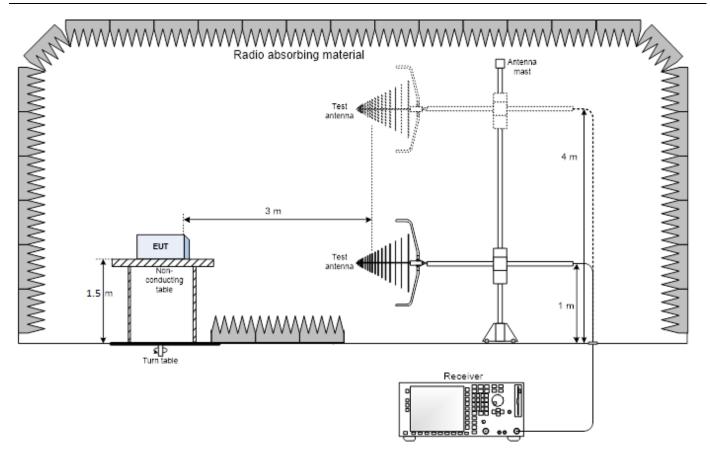
I/O = Signal/Control Input or Output Port

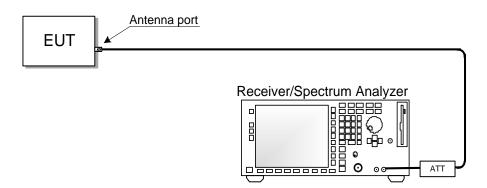
TP = Wired network or telecommunication Port


5.5.4 Support equipment

Product Type	Manufacturer	Model	Comments	
Notebook	DELL	Latitude	_	

Report reference ID: REP040275 Page 11 of 99


5.5.5 Radiated testing block diagram (below 1 GHz)


Report reference ID: REP040275 Page 12 of 99

5.5.6 Radiated testing block diagram (above 1 GHz)

5.5.7 Antenna port testing block diagram

Report reference ID: REP040275 Page 13 of 99

Section 6 Summary of test results

6.1 Testing location

Test location (s) Nemko Spa

6.2 Testing period

Test start date	May 06, 2024	Test end date	May 16, 2024

6.3 Sample information

Receipt date	May 06, 2024	Nemko sample ID number(s)	PRJ00572000001
	Iviay 00, 2024	Nemko sample io mamber(s)	(Assigned by Nemko S.p.A.)

6.4 FCC Part 2 and 90 Subpart I test requirements results

Table 6.4-1: FCC requirements results

Part	Test description	Verdict
§2.1047	Modulation characteristics	Pass
§90.205(h)	Transmitter output power	Pass
§90.209(b)	Bandwidth limitations	Pass
§90.210	Spectrum mask and spurious emissions	Pass
§90.214	Transient frequency behavior	Pass
§90.213(a)	Transmitter frequency stability	Pass

Notes:

Section 7 Testing data

7.1 Number of frequencies

7.1.1 References, definitions and limits

ANSI C63.26, Clause 5.1.2:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in table below.

Table 7.1-1: Frequency Range of Operation

Frequency range over which the device		Location of measurement frequency inside the
operates (in each band)	Number of test frequencies required	operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

7.1.2 Test summary

Verdict	Pass		
Tested by	O. Frau	Test date	May 6, 2024

7.1.3 Observations, settings and special notes

None

7.1.4 Test data

Table 7.1-2: Test channels selection

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz 24.0	Low channel, MHz	Mid channel, MHz	High channel, MHz
150.0	174.0	24.0	150.1	162.0	173.9

7.2 Modulation characteristic

7.2.1 References, definitions and limits

FCC §2.1047:

- (a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
- (b) Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed

7.2.2 Test summary

Verdict	Pass		
Tested by	O. Frau	Test date	May 07, 2024

7.2.3 Observations, settings and special notes

Per ANSI C63.26 Subclause 5.3.1: The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic.

Spectrum analyser settings:

Receiver mode	RMS deviation
Audio frequency generator	100 Hz and 5000 Hz
tone	

Reference voltage measurement: Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation. Record the DMM reading as VREF.

Calculation of the audio frequency response at the present frequency: 20 × Log₁₀ (V_{FREQ.} / V_{REF})

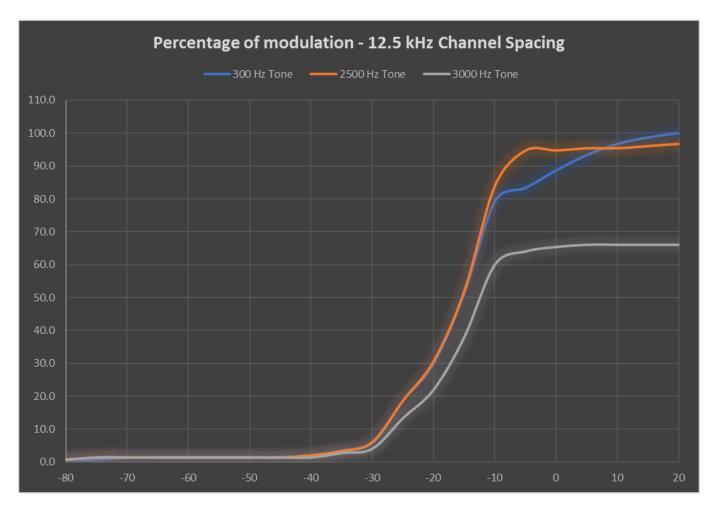
Per ANSI C63.26 Subclause 5.3.2: Modulation limiting is the ability of a transmitter circuit to limit the transmitter from producing deviations in excess of a rated system deviation.

Spectrum analyser settings:

Receiver mode	Peak positive and negative deviation
Audio frequency generator	300 Hz, 2500 Hz and 3000 Hz
tone	

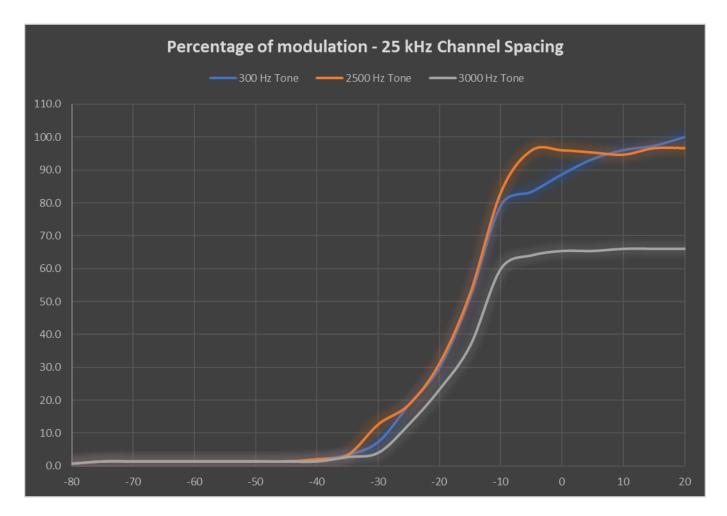
Reference voltage measurement: Apply a 1000 Hz tone and adjust the audio frequency generator to produce 60% of the rated system deviation. This is the 0 dB reference level. Plot the data set as a percentage of deviation relative to the 0 dB reference point versus input voltage.

Report reference ID: REP040275 Page 16 of 99

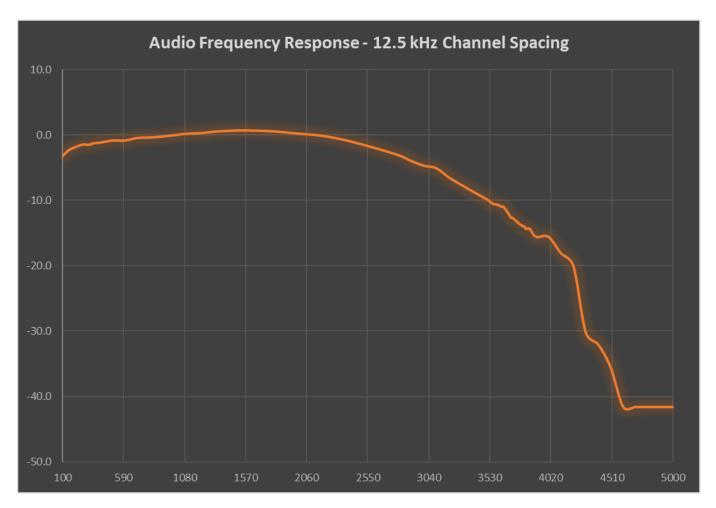

7.2.4 Test equipment list

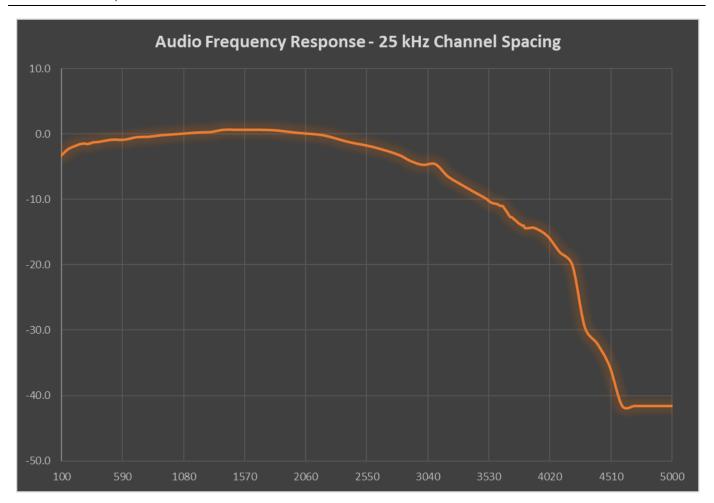
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2023-09	2024-09
Shielded room	Siemens	10m control room	1947	NCR	NCR
Radiocommunication Tester	R&S	CMT	883152/001	2024-01	2027-01
Audio Generator	Rohde & Schwarz	APN04	860 093/017	2023-12	2025-12
Cable set	Rosenberger	ST.ALO-02	1.650	2023-10	2024-10

Note: NCR - no calibration required, VOU - verify on use



7.2.5 Test data


Modulation Limiting at 162.0 MHz (12.5 kHz)


Modulation Limiting at 162.0 MHz (25 kHz)

Audio frequency response at 162.0 MHz (12.5 kHz)

Audio frequency response at 162.0 MHz (25 kHz)

7.3 Transmitter Output Power

7.3.1 References, definitions and limits

FCC §90.205:

- (d) 150-174 MHz.
 - (1) The maximum allowable station ERP is dependent upon the station's antenna HAAT and required service area and will be authorized in accordance with table 1. Applicants requesting an ERP in excess of that listed in table 1 must submit an engineering analysis based upon generally accepted engineering practices and standards that includes coverage contours to demonstrate that the requested station parameters will not produce coverage in excess of that which the applicant requires.
 - (2) Applications for stations where special circumstances exist that make it necessary to deviate from the ERP and antenna heights in Table 1 will be submitted to the frequency coordinator accompanied by a technical analysis, based upon generally accepted engineering practices and standards, that demonstrates that the requested station parameters will not produce a signal strength in excess of 37 dBu at any point along the edge of the requested service area. The coordinator may then recommend any ERP appropriate to meet this condition.
 - (3) An applicant for a station with a service area radius greater than 40 km (25 mi) must justify the requested service area radius, which will be authorized only in accordance with table 1, note 4. For base stations with service areas greater than 80 km, all operations 80 km or less from the base station will be on a primary basis and all operations outside of 80 km from the base station will be on a secondary basis and will be entitled to no protection from primary operations

Table 1: Maximum ERP/Reference HAAT for a Specific Service Area Radius (FCC)

Service area radius (km):	3	8	13	16	24	32	40 ⁴	48 ⁴	64 ⁴	80 ⁴
Maximum ERP (w)1:	2	28	² 178	² 500						
Up to reference HAAT (m) ³ :	15	15	15	15	33	65	110	160	380	670

Notes:

¹Maximum ERP indicated provides for a 37 dBu signal strength at the edge of the service area per FCC Report R-6602, Fig. 19 (See § 73.699, Fig. 10).

²Maximum ERP of 500 watts allowed. Signal strength at the service area contour may be less than 37 dBu.

 3 When the actual antenna HAAT is greater than the reference HAAT, the allowable ERP will be reduced in accordance with the following equation: $ERP_{allow} = ERP_{max} \times (HAAT_{ref} / HAAT_{actual})^2.$

⁴Applications for this service area radius may be granted upon specific request with justification and must include a technical demonstration that the signal strength at the edge of the service area does not exceed 37 dBu.

- (r) All other frequency bands. Requested transmitter power will be considered and authorized on a case by case basis.
- (s) The output power shall not exceed by more than 20 percent either the output power shown in the Radio Equipment List [available in accordance with § 90.203(a)(1)] for transmitters included in this list or when not so listed, the manufacturer's rated output power for the particular transmitter specifically listed on the authorization.

Report reference ID: REP040275 Page 22 of 99

7.3.2 Test summary

Verdict	Pass		
Tested by	O. Frau	Test date	May 07, 2024

7.3.3 Observations, settings and special notes

Manufacturer's rated output power is 50 W or 47 dBm. 20% of the output power is 47.8 dBm

Measurement of peak power was performed per ANSI C63.26 subclause 5.2.3.3. Spectrum analyser settings:

Resolution bandwidth	≥ OBW
Video bandwidth	≥ 3 × RBW
Frequency span	≥ 2 × OBW
Detector mode	Peak
Trace mode	Max Hold
Sweep time	≥ 10 × (number of points in sweep) × (transmission symbol period)

7.3.4 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2024-01	2025-01
Shielded room	Siemens	10m control room	1947	NCR	NCR
Cable set	Rosenberger	ST.ALO-02	1.650	2023-10	2024-10

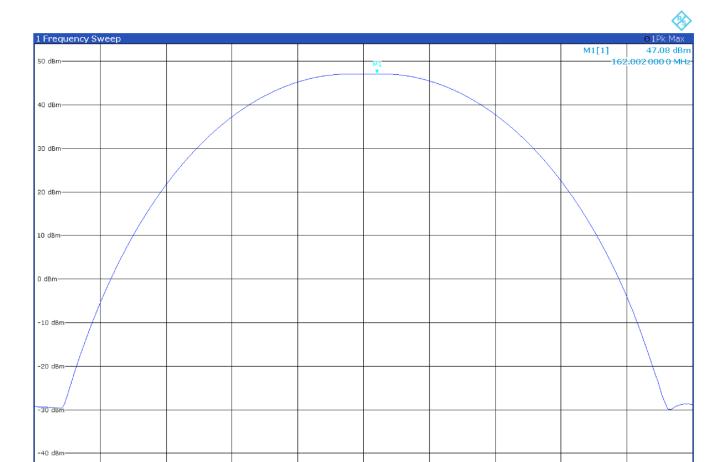
Note: NCR - no calibration required, VOU - verify on use

7.3.5 Test data

Table 7.3-1: Transmitter power results

			Max	
Modulation	Frequency, MHz	Output power, dBm	Antenna gain, dB	ERP limit, dBm
FM 12.5 kHz	150.1	47.28	3.72	51
FM 25.0 kHz	150.1	47.27	3.73	51
DMR 4FSK	150.1	47.30	3.70	51
P25 C4FM	150.1	47.29	3.71	51
FM 12.5 kHz	162.0	47.08	3.92	51
FM 25.0 kHz	162.0	47.07	3.93	51
DMR 4FSK	162.0	47.08	3.92	51
P25 C4FM	162.0	47.05	3.95	51
FM 12.5 kHz	173.9	47.12	3.88	51
FM 25.0 kHz	173.9	47.12	3.88	51
DMR 4FSK	173.9	47.12	3.88	51
P25 C4FM	173.9	47.08	3.92	51

Table 7.3-2: Rated vs measured power


		Rated output	Measured output		Difference limit,	
Modulation	Frequency, MHz	power, dBm	power, dBm	Difference, dB	dB	Margin, dB
FM 12.5 kHz	150.1	47	47.28	0.28	+0.8	0.52
FM 25.0 kHz	150.1	47	47.27	0.27	+0.8	0.53
DMR 4FSK	150.1	47	47.30	0.30	+0.8	0.50
P25 C4FM	150.1	47	47.29	0.29	+0.8	0.51
FM 12.5 kHz	162.0	47	47.08	0.08	+0.8	0.72
FM 25.0 kHz	162.0	47	47.07	0.07	+0.8	0.73
DMR 4FSK	162.0	47	47.08	0.08	+0.8	0.72
P25 C4FM	162.0	47	47.05	0.05	+0.8	0.75
FM 12.5 kHz	173.9	47	47.12	0.12	+0.8	0.68
FM 25.0 kHz	173.9	47	47.12	0.12	+0.8	0.68
DMR 4FSK	173.9	47	47.12	0.12	+0.8	0.68
P25 C4FM	173.9	47	47.08	0.08	+0.8	0.72

Report reference ID: REP040275 Page 24 of 99

CF 162.0 MHz

Test data, continued

Example of output power (modulation DMR 4FSK @ 162.0 MHz)

1001 pts

10.0 kHz/

Span 100.0 kHz

7.4 Bandwidth limitations

7.4.1 References, definitions and limits

FCC §90.209:

- (b) The maximum authorized single channel bandwidth of emission corresponding to the type of emission specified in §90.207 is as follows:
- (5) Unless specified elsewhere, channel spacings and bandwidths that will be authorized in the following frequency bands are given in the following table.

Table 7.4-1: Standard Channel Spacing/Bandwidth

	Frequency band, MHz	Channel spacing, kHz	Authorized bandwidth ¹ , kHz
	150-174	7.5	20 / 11.25 / 6
Note:	¹ Operations using equipment designed to	operate with a 25 kHz channel handwidth will be authorize	ed a 20 kHz handwidth. Operations using equipment

designed to operate with a 12.5 kHz channel bandwidth will be authorized a 11.25 kHz bandwidth. Operations using equipment designed to operate with a 6.25 kHz channel bandwidth will be authorized a 6 kHz bandwidth. All stations must operate on channels with a bandwidth of 12.5 kHz or less beginning January 1, 2013

(6)(i) Beginning January 1, 2011, no new applications for the 150-174 MHz bands will be acceptable for filing if the applicant utilizes channels with an authorized bandwidth exceeding 11.25 kHz, unless specified elsewhere or the operations meet the efficiency standards of §90.203(j)(3).

7.4.2 Test summary

Verdict	Pass		
Tested by	O. Frau	Test date	May 08, 2024

7.4.3 Observations, settings and special notes

The test was performed as per ANSI C63.26, subclause 5.4.4.

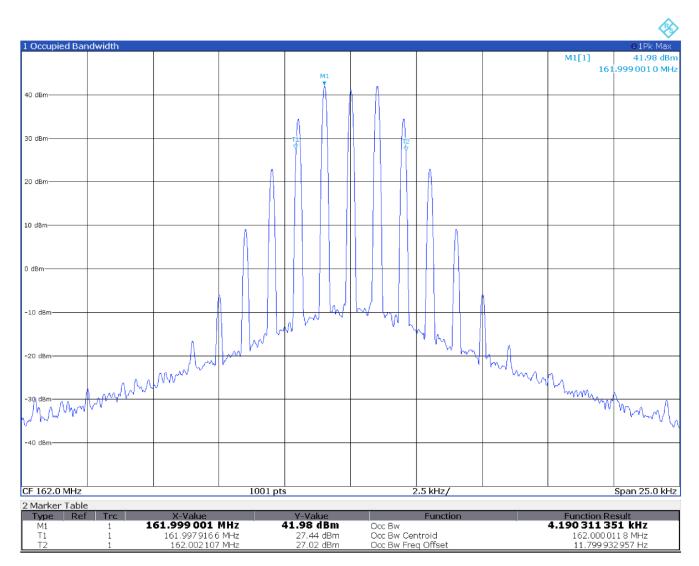
Spectrum analyser settings:

Resolution bandwidth	1-5% of OBW
Video bandwidth	≥3 × RBW
Frequency span	1.5 × OBW
Detector mode	Peak
Trace mode	Max Hold

7.4.4 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2023-09	2024-09
Shielded room	Siemens	10m control room	1947	NCR	NCR
Cable set	Rosenberger	ST.ALO-02	1.650	2023-10	2024-10

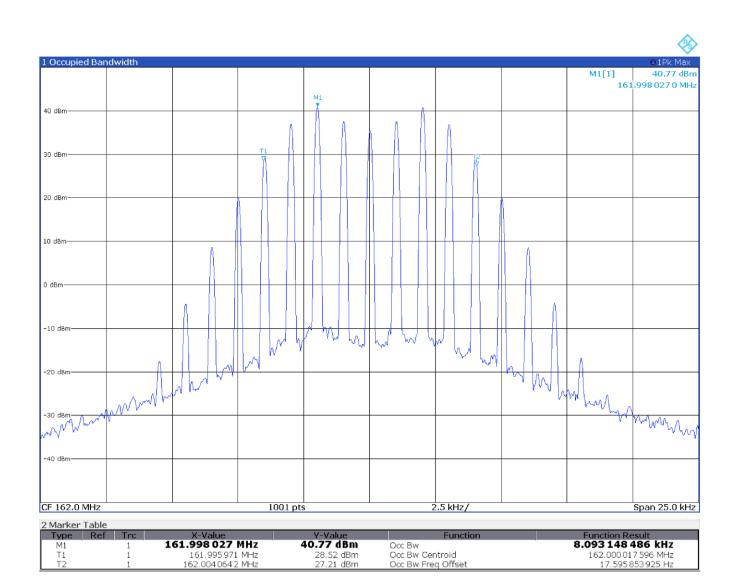
Note: NCR - no calibration required, VOU - verify on use



7.4.5 Test data

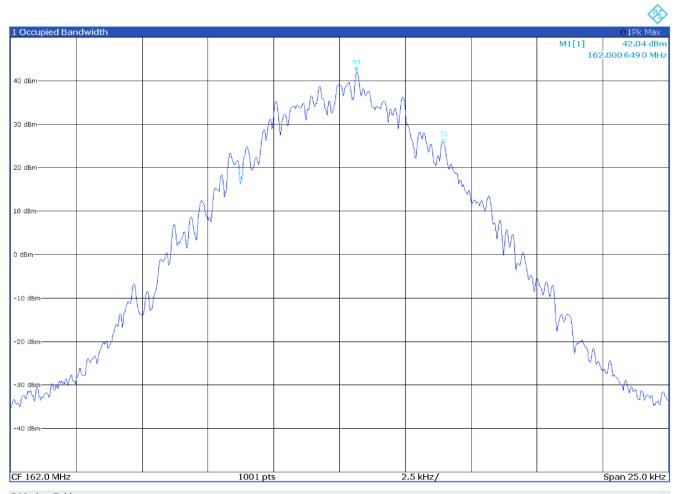
Table 7.4-2: 99% occupied bandwidth results

Modulation	Frequency, MHz	99% occupied bandwidth, kHz	Limit, kHz	Margin, kHz
FM 12.5 kHz	162.0	4.190	11.25	-7.06
FM 25.0 kHz	162.0	8.093	20.00	-11.91
DMR 4FSK	162.0	7.702	11.25	-3.55
P25 C4FM	162.0	5.895	11.25	-5.36



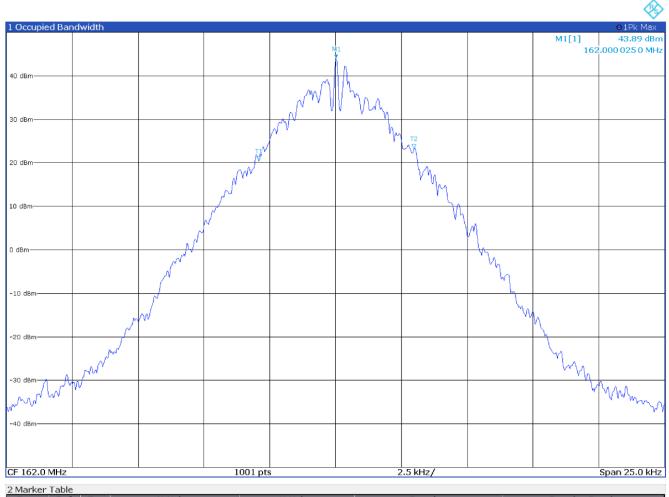
99% occupied bandwidth with modulation FM 12.5 kHz at 162.0 MHz

Report reference ID: REP040275 Page 28 of 99



99% occupied bandwidth with modulation FM 25 kHz at 162.0 MHz

Report reference ID: REP040275 Page 29 of 99



ı	2 Marker	Table					
	Type	Ref	Trc	X-Value	Y-Value	Function	Function Result
	M1		1	162.000 649 MHz	42.04 dBm	Occ Bw	7.701 997 745 kHz
	T1		1	161.996 258 5 MHz	16.40 dBm	Occ Bw Centroid	162.000 109 458 MHz
	T2		1	162.0039605 MHz	25.51 dBm	Occ Bw Freq Offset	109.458134711 Hz

99% occupied bandwidth with modulation DMR 4FSK at 162.0 MHz

Report reference ID: REP040275 Page 30 of 99

 2 Marker Table

 Type
 Ref
 Trc
 X-Value
 Y-Value
 Function
 Function Result

 M1
 1
 162.000 025 MHz
 43.89 dBm
 Occ Bw
 5.894 686 25 kHz

 T1
 1
 161.9970777 MHz
 20.38 dBm
 Occ Bw Centroid
 162.000 025 03 MHz

 T2
 1
 162.000 2972 4 MHz
 23.24 dBm
 Occ Bw Freq Offset
 25.030 131 34 Hz

99% occupied bandwidth with modulation P25 C4FM at 162.0 MHz

7.5 Spectrum mask and spurious emissions

7.5.1 References, definitions and limits

FCC §90.210:

Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (o) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating under this part.

Table 7.5-1: Applicable Emission Masks

Frequency band, MHz	Mask for equipment with audio low pass filter	Mask for equipment with audio low pass filter
150–174 ^{1,2}	B, D, or E	C, D, or E
All other bands	В	С

¹Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

²Equipment designed to operate on 25 kilohertz bandwidth channels must meet the requirements of either Emission Mask B or G, whichever is applicable, while equipment designed to operate on 12.5 kilohertz bandwidth channels must meet the requirements of Emission Mask D. Equipment designed to operate on 25 kilohertz bandwidth channels may alternatively meet the Adjacent Channel Power limits of §90.221.

- (b) **Emission Mask B.** For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:
- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.
- (c) **Emission Mask C.** For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:
- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: At least 83 log (fd/5) dB;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: At least 29 log (f_d²/11) dB or 50 dB, whichever is the lesser attenuation;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.
- (d) **Emission Mask D**—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
- (1) On any frequency from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 : Zero dB.
- On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(f_d–2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is

Report reference ID: REP040275 Page 32 of 99

obtained.

- (e) **Emission Mask E**—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
- (1) On any frequency from the center of the authorized bandwidth f₀ to 3.0 kHz removed from f₀: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(f_d -3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- (3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

7.5.2 Test summary

Verdict	Pass		
Tested by	O. Frau	Test date	From May 08, 2024 to May 16, 2024

7.5.3 Observations, settings and special notes

Spectrum analyser settings for spectrum mask:

Resolution bandwidth:	100 Hz / 300 Hz	
Video bandwidth:	> RBW	
Detector mode:	Peak	
Trace mode:	Max Hold	

Spectrum analyser settings for spurious emissions:

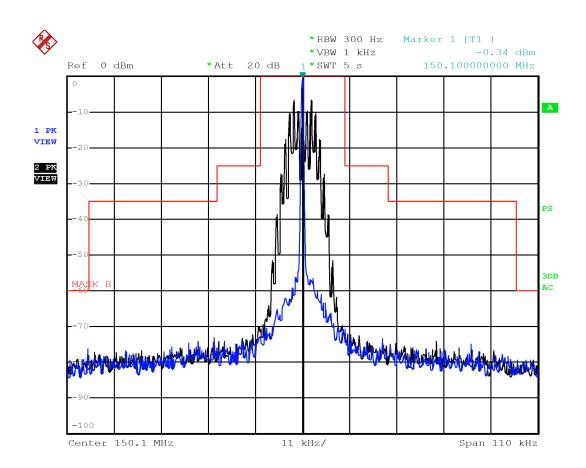
Resolution bandwidth:	100 kHz (below 1 GHz); 1 MHz (above 1 GHz)
Video bandwidth:	> RBW
Detector mode:	Peak
Trace mode:	Max Hold

Report reference ID: REP040275 Page 33 of 99

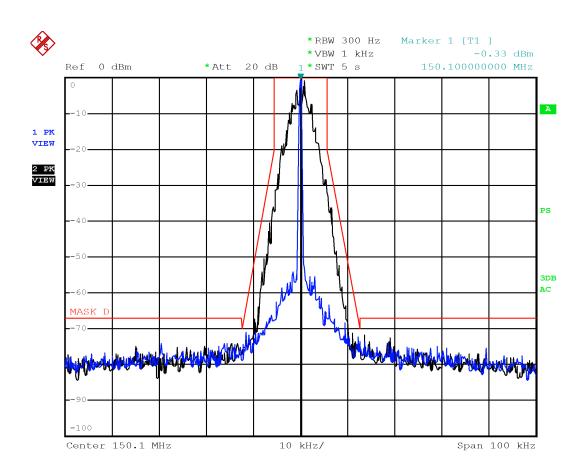
7.5.4 Test equipment list

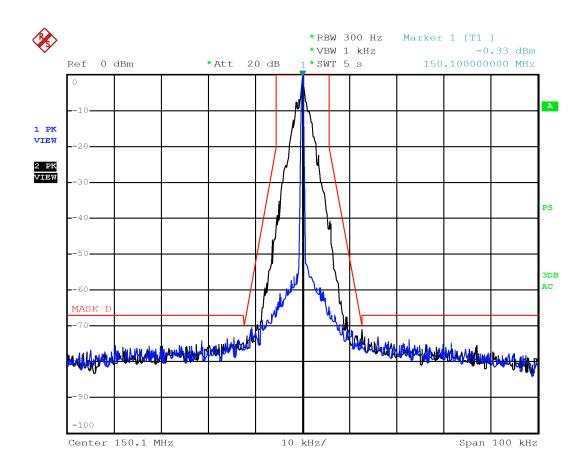
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Receiver	Rohde & Schwarz	ESW44	101620	2023-09	2024-09
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2023-09	2024-09
Trilog Broadband Antenna	Schwarzbeck	VULB 9162	9162-025	2021-07	2024-07
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152	2021-09	2024-09
Broadband Amplifier	Schwarzbeck Mess-Elektronik	BBV9718C	00121	2024-03	2025-03
Controller	Maturo	FCU3.0	10041	NCR	NCR
Tilt antenna mast	Maturo	TAM4.0-E	10042	NCR	NCR
Turntable	Maturo	TT4.0-5T	2.527	NCR	NCR
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	2023-09	2025-09
Shielded room	Siemens	10m control room	1947	NCR	NCR
3m Semi anechoic chamber	Comtest	SAC-3	1711-150	2022-09	2024-09
Software turntable and mast	Maturo	mcApp	8.1.0.5410	NCR	NCR
Cable set	Rosenberger and Huber + Suhner	RE01+RE02	1.654+1.655	2023-09	2024-09

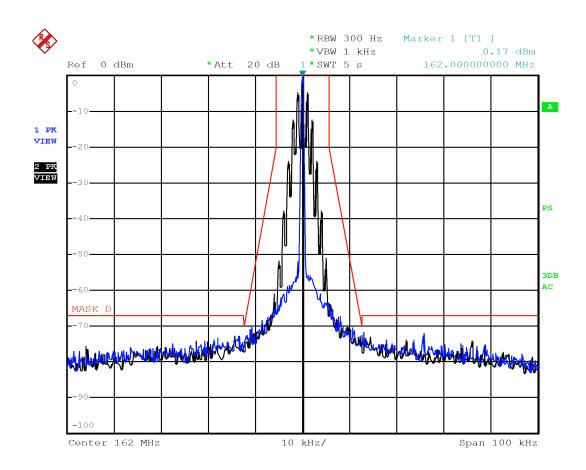
Note: NCR - no calibration required, VOU - verify on use

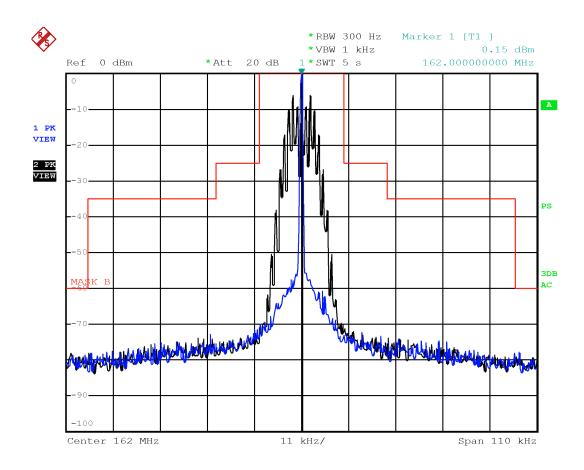


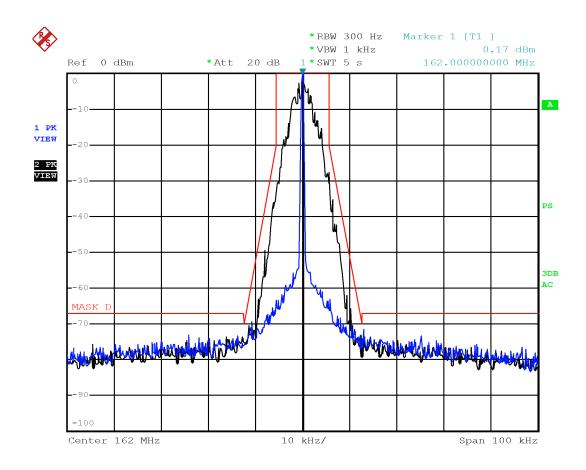
7.5.5 Test data

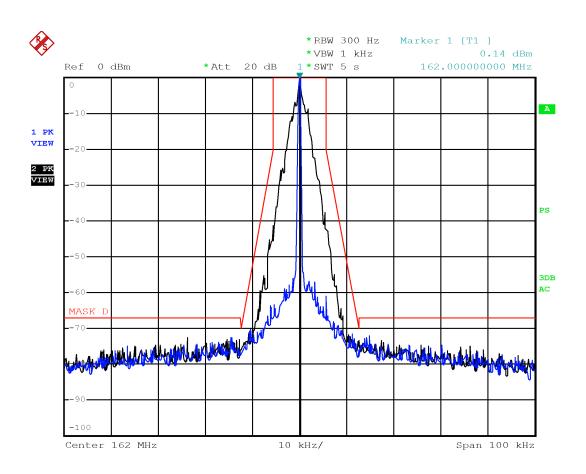

Emission mask D with modulation FM 12.5 kHz at 150.1 MHz

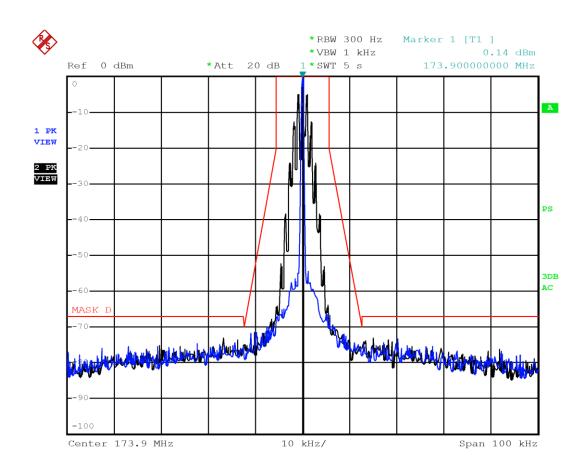

Emission mask B with modulation FM 25.0 kHz at 150.1 MHz

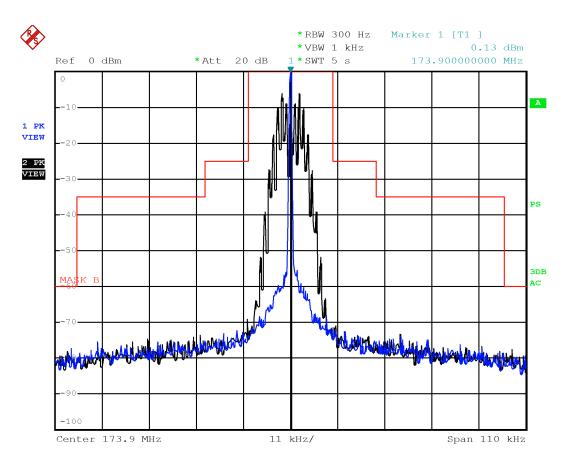

Emission mask D with modulation DMR 4FSK at 150.1 MHz

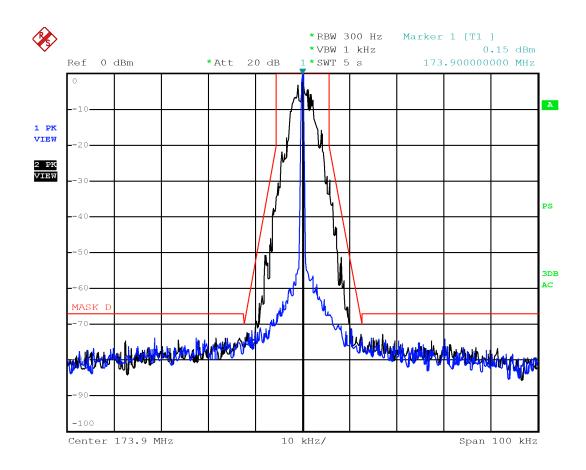

Emission mask D with modulation P25 C4FM at 150.1 MHz

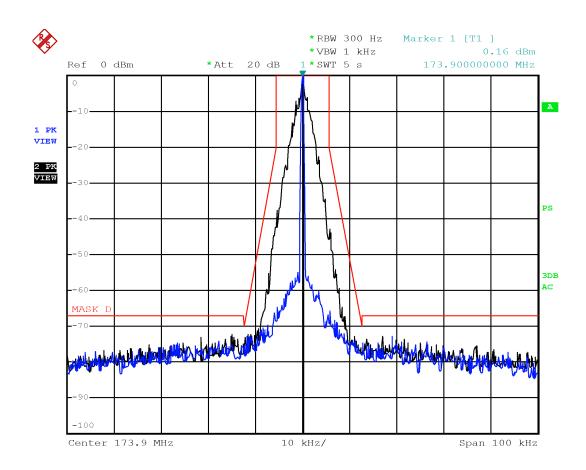

Emission mask D with modulation FM 12.5 kHz at 162.0 MHz

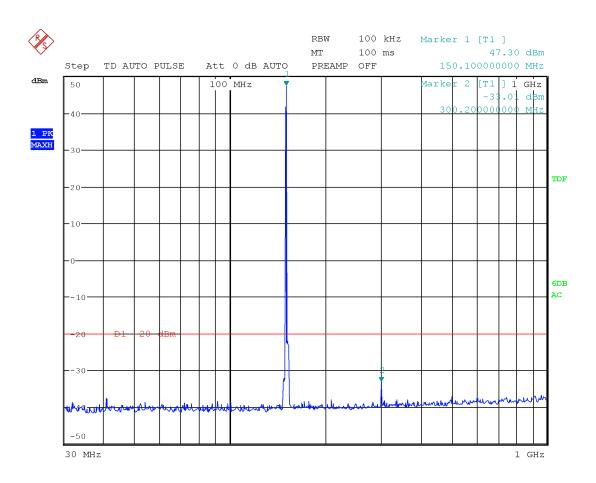

Emission mask B with modulation FM 25 kHz at 162.0 MHz

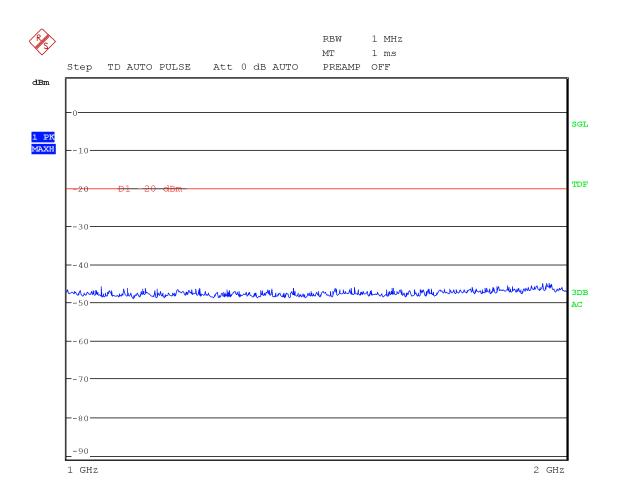

Emission mask D with modulation DMR 4FSK at 162.0 MHz

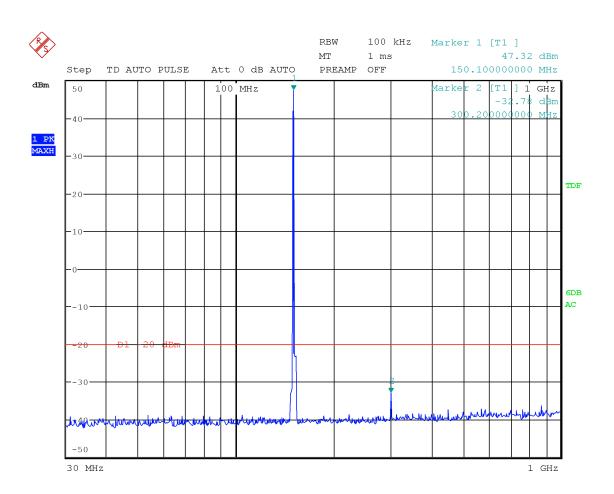

Emission mask D with modulation P25 C4FM at 162.0 MHz

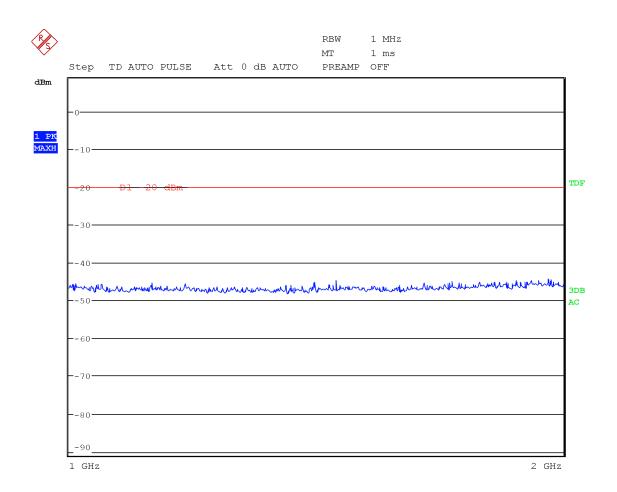

Emission mask D with modulation FM 12.5 kHz at 173.9 MHz

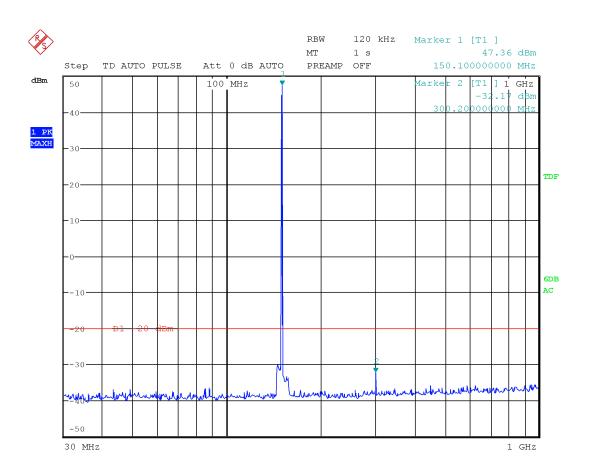

Emission mask B with modulation FM 25 kHz at 173.9 MHz

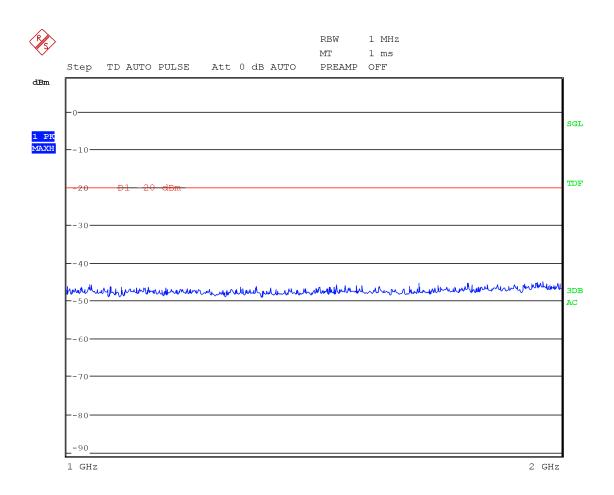

Emission mask D with modulation DMR 4FSK at 173.9 MHz

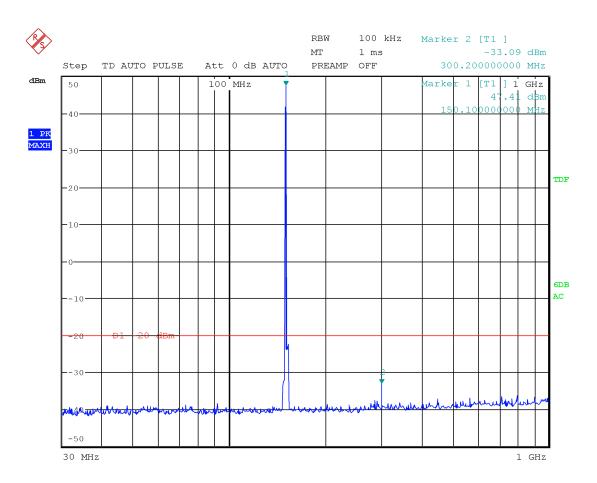

Emission mask D with modulation P25 C4FM at 173.9 MHz

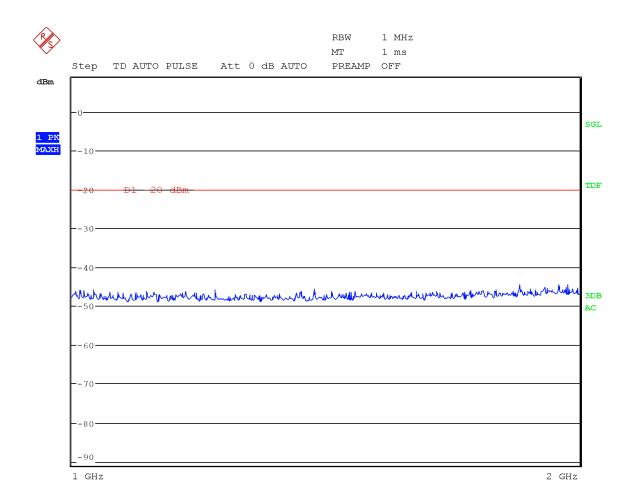

Conducted spurious emissions with modulation FM 12.5 kHz at 150.1 MHz (30 MHz to 1 GHz)

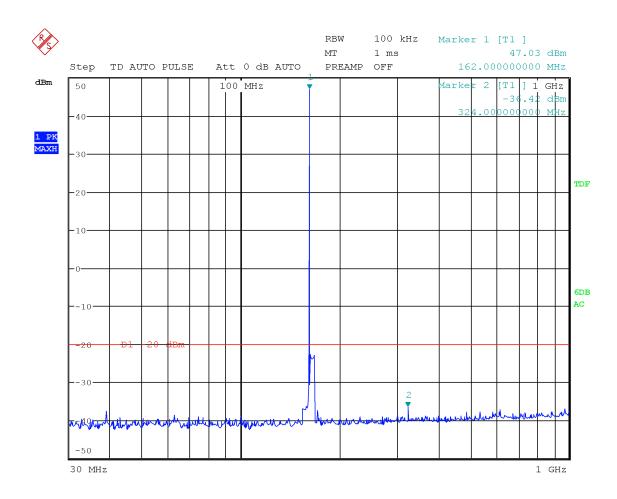

Conducted spurious emissions with modulation FM 12.5 kHz at 150.1 MHz (1 to 2 GHz)

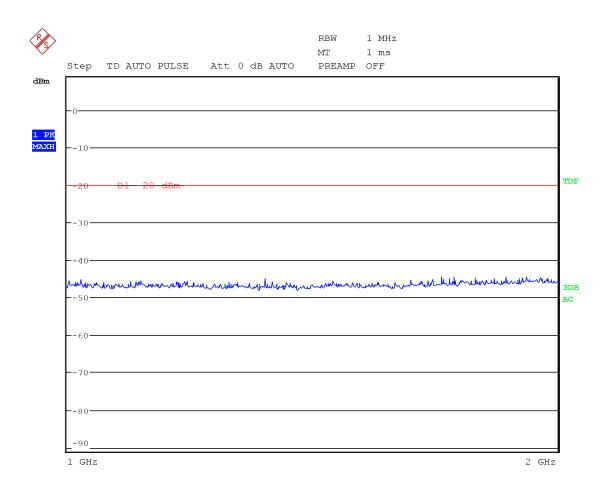

Conducted spurious emissions with modulation FM 25 kHz at 150.1 MHz (30 MHz to 1 GHz)

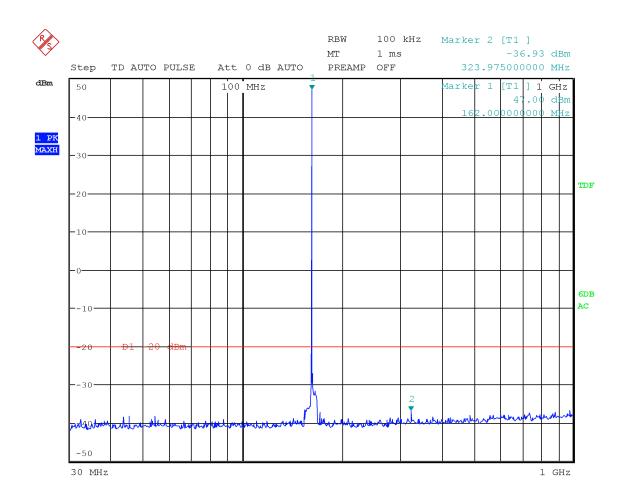

Conducted spurious emissions with modulation FM 25 kHz at 150.1 MHz (1 to 2 GHz)

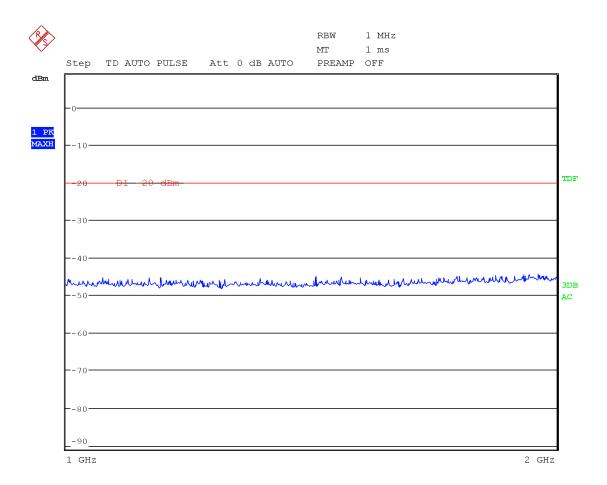

Conducted spurious emissions with modulation DMR 4FSK at 150.1 MHz (30 MHz to 1 GHz)

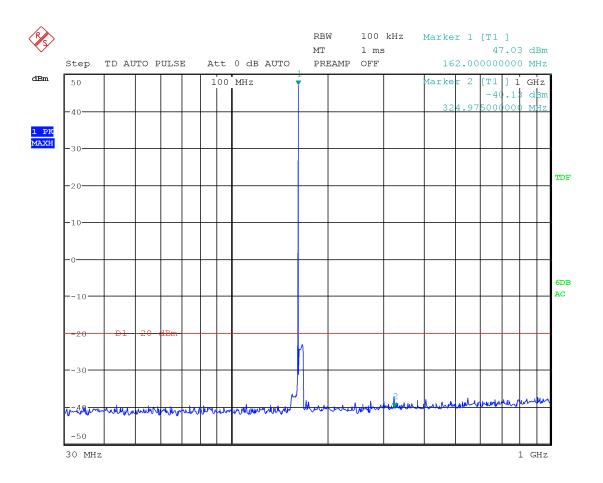

Conducted spurious emissions with modulation DMR 4FSK at 150.1 MHz (1 to 2 GHz)


Conducted spurious emissions with modulation P25 C4FM at 150.1 MHz (30 MHz to 1 GHz)

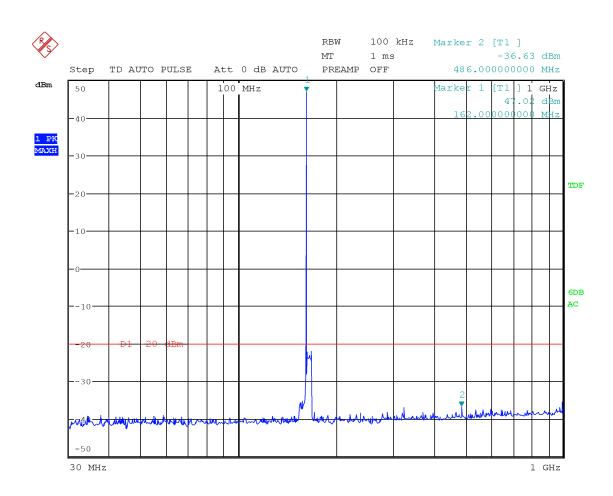

Conducted spurious emissions with modulation P25 C4FM at 150.1 MHz (1 to 2 GHz)

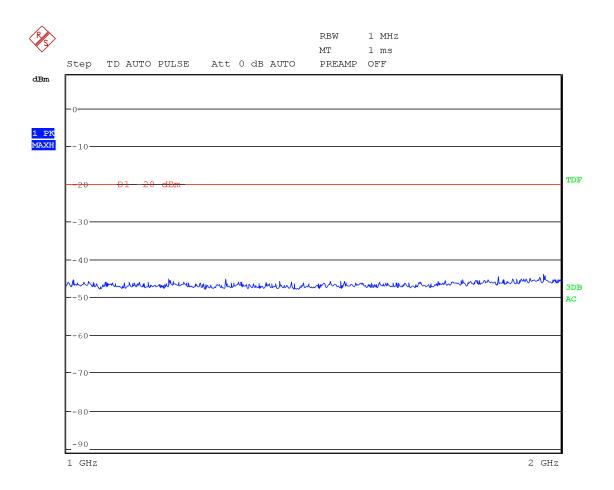

Conducted spurious emissions with modulation FM 12.5 kHz at 162.0 MHz (30 MHz to 1 GHz) $\,$

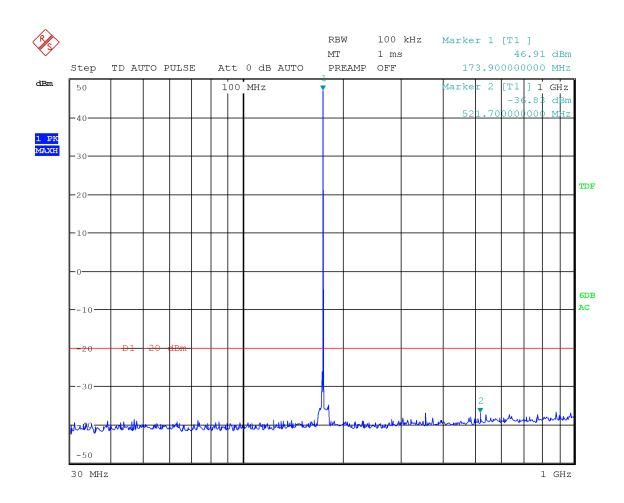

Conducted spurious emissions with modulation FM 12.5 kHz at 162.0 MHz (1 to 2 GHz)

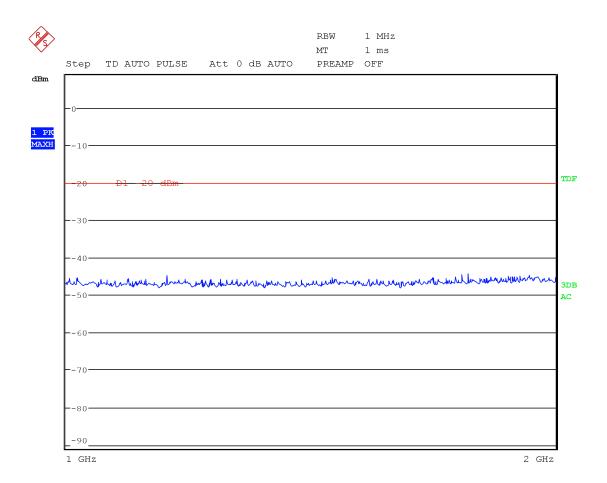

Conducted spurious emissions with modulation FM 25 kHz at 162.0 MHz (30 MHz to 1 GHz)

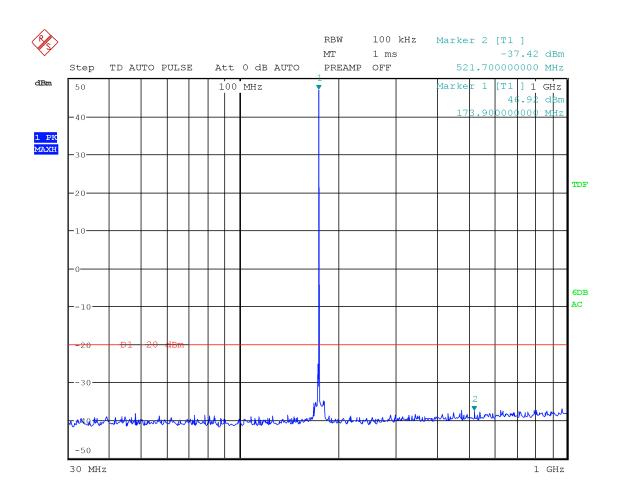
Conducted spurious emissions with modulation FM 25 kHz at 162.0 MHz (1 to 2 GHz)

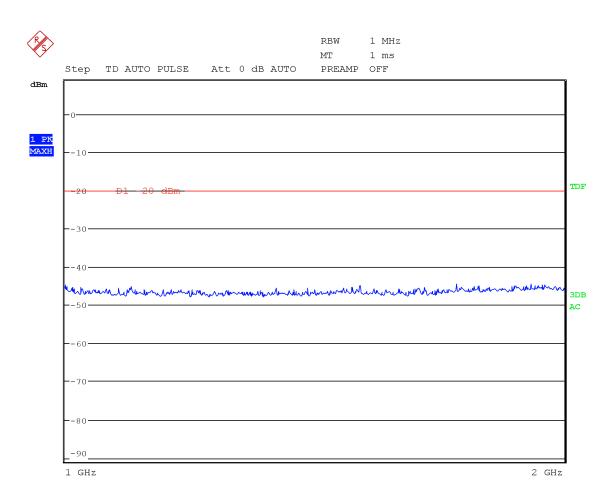


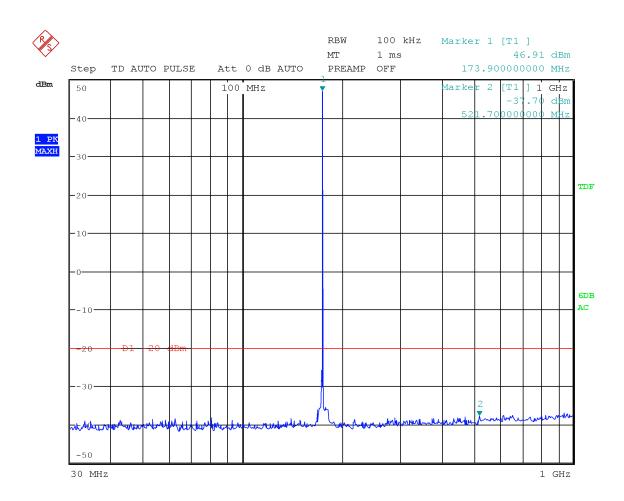

Conducted spurious emissions with modulation DMR 4FSK at 162.0 MHz (1 to 2 GHz)

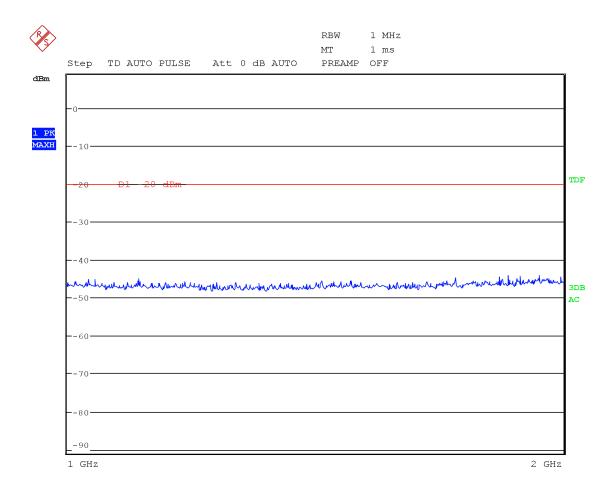

Conducted spurious emissions with modulation P25 C4FM at 162.0 MHz (30 MHz to 1 GHz)

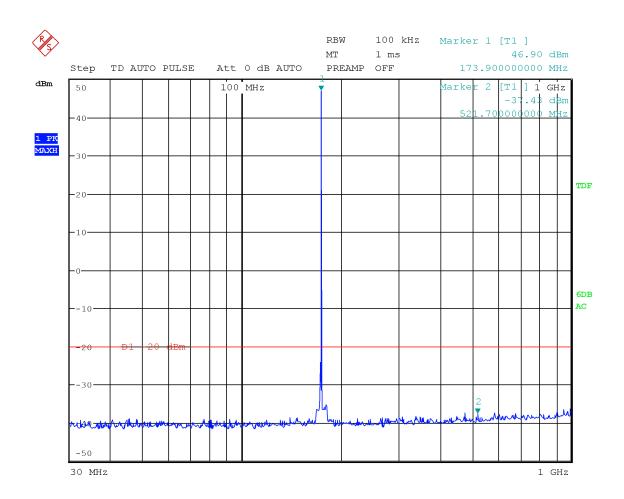

Conducted spurious emissions with modulation P25 C4FM at 162.0 MHz (1 to 2 GHz)

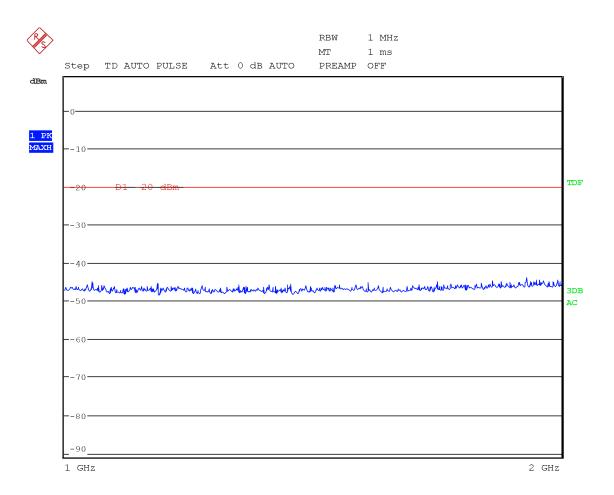

Conducted spurious emissions with modulation FM 12.5 kHz at 173.9 MHz (30 MHz to 1 GHz)

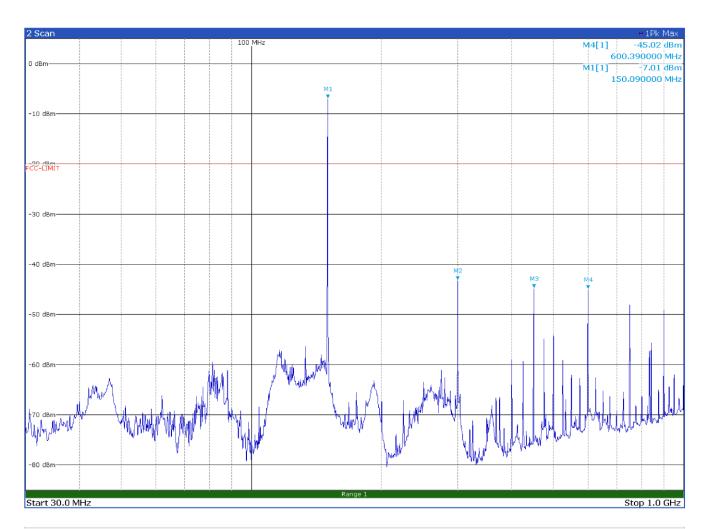

Conducted spurious emissions with modulation FM 12.5 kHz at 173.9 MHz (1 to 2 GHz)


Conducted spurious emissions with modulation FM 25 kHz at 173.9 MHz (30 MHz to 1 GHz)

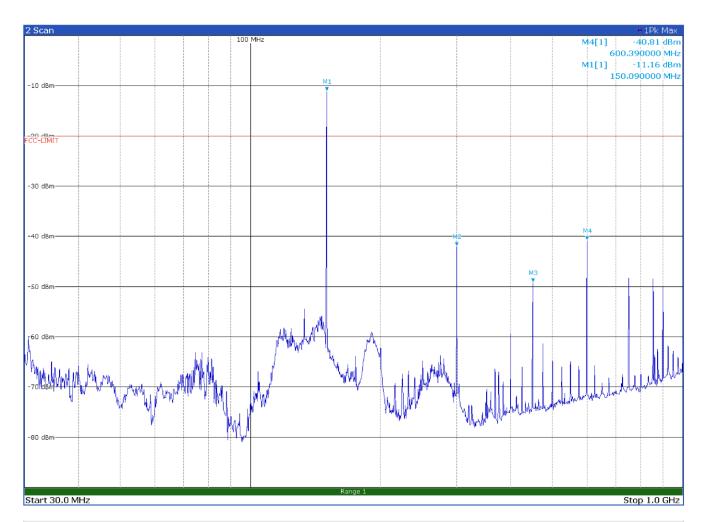

Conducted spurious emissions with modulation FM 25 kHz at 173.9 MHz (1 to 2 GHz)


Conducted spurious emissions with modulation DMR 4FSK at 173.9 MHz (30 MHz to 1 GHz)


Conducted spurious emissions with modulation DMR 4FSK at 173.9 MHz (1 to 2 GHz)

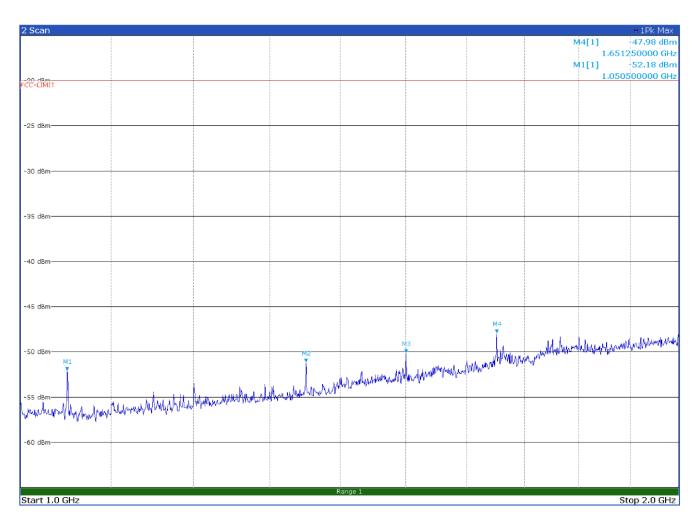

Conducted spurious emissions with modulation P25 C4FM at 173.9 MHz (30 MHz to 1 GHz)

Conducted spurious emissions with modulation P25 C4FM at 173.9 MHz (1 to 2 GHz)



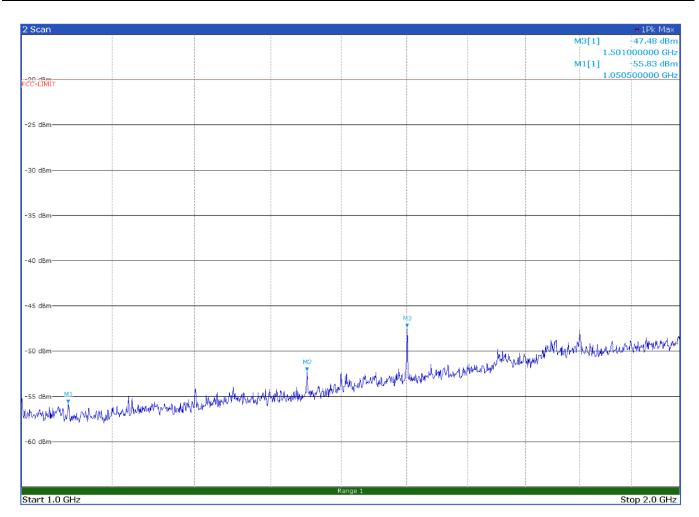
1 Marker Table	:				
Wnd	Туре	Ref	Trc	X-value	Y-value
Scan	M1		1	150.09 MHz	-7.01 dBm
Scan	M2		1	300.21 MHz	-43.26 dBm
Scan	M3		1	450.3 MHz	-44.87 dBm
Scan	M4		1	600.39 MHz	-45.02 dBm

Radiated spurious emissions with modulation FM 12.5 kHz at 150.1 MHz – Antenna in horizontal polarization (30 MHz to 1 GHz) (worst frequency case from conducted emissions)



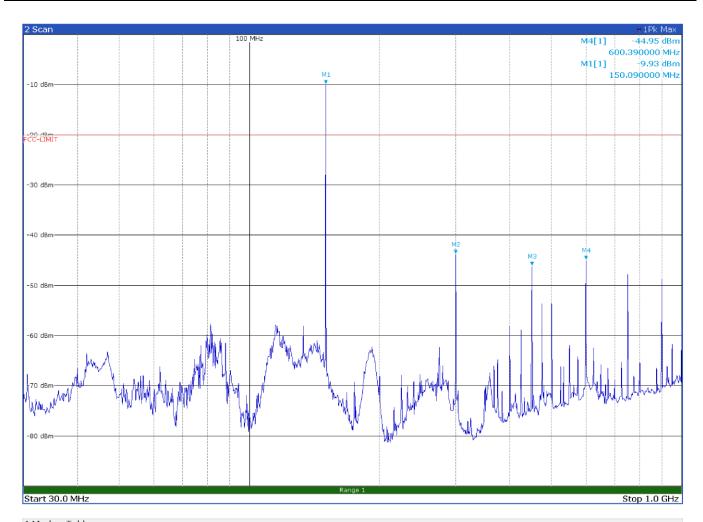
3 Marker Table								
Wnd	Type	Ref	Trc	X-value	Y-value			
Scan	M1		1	150.09 MHz	-11.16 dBm			
Scan	M2		1	300.21 MHz	-42.03 dBm			
Scan	М3		1	450.3 MHz	-49.2 dBm			
Scan	M4		1	600.39 MHz	-40.81 dBm			

Radiated spurious emissions with modulation FM 12.5 kHz at 150.1 MHz – Antenna in vertical polarization (30 MHz to 1 GHz) (worst frequency case from conducted emissions)



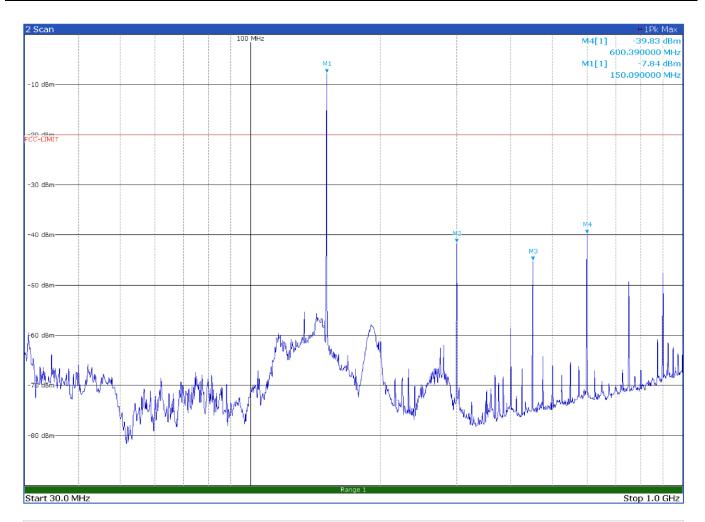
3 Marker Table								
Wnd	Type	Ref	Trc	X-value	Y-value			
Scan	M1		1	1.0505 GHz	-52.18 dBm			
Scan	M2		1	1.351 GHz	-51.23 dBm			
Scan	МЗ		1	1.50075 GHz	-50.21 dBm			
Scan	M4		1	1.65125 GHz	-47.98 dBm			

Radiated spurious emissions with modulation FM 12.5 kHz at 150.1 MHz – Antenna in horizontal polarization (1 to 2 GHz) (worst frequency case from conducted emissions)



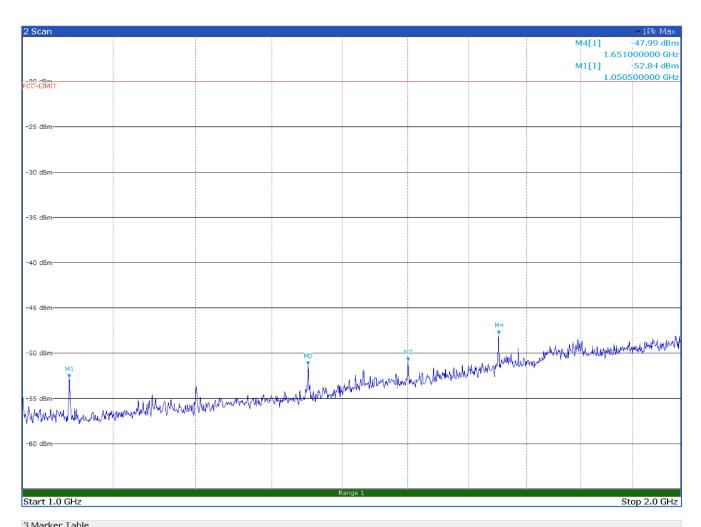
3 Marker Table							
Wnd	Type	Ref	Trc	X-value	Y-value		
Scan	M1	,	1	1.0505 GHz	-55.83 dBm		
Scan	M2		1	1.35075 GHz	-52.29 dBm		
Scan	M3		1	1.501 GHz	-47.48 dBm		

Radiated spurious emissions with modulation FM 12.5 kHz at 150.1 MHz – Antenna in vertical polarization (1 to 2 GHz) (worst frequency case from conducted emissions)



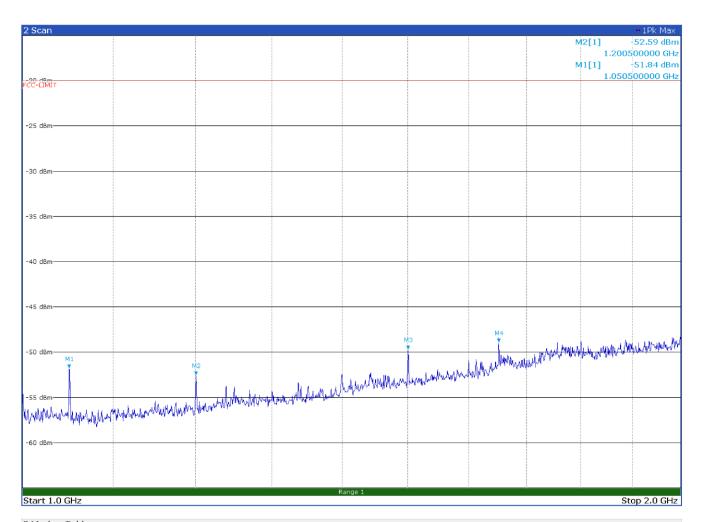
1 Marker Table					
Wnd	Type	Ref	Trc	X-value	Y-value
Scan	M1		1	150.09 MHz	-9.93 dBm
Scan	M2		1	300.21 MHz	-43.84 dBm
Scan	M3		1	450.3 MHz	-46.14 dBm
Scan	M4		1	600.39 MHz	-44.95 dBm

Radiated spurious emissions with modulation FM 25.0 kHz at 150.1 MHz – Antenna in horizontal polarization (30 MHz to 1 GHz) (worst frequency case from conducted emissions)



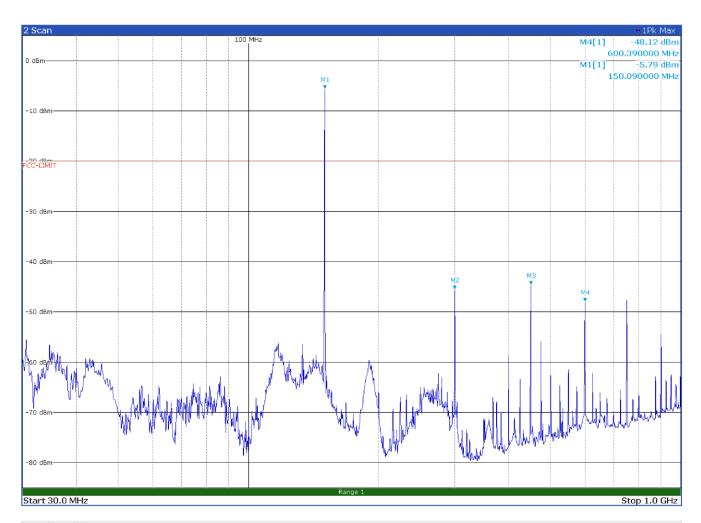
3 Marker Table	:				
Wnd	Type	Ref	Trc	X-value	Y-value
Scan	M1	,	1	150.09 MHz	-7.84 dBm
Scan	M2		1	300.21 MHz	-41.6 dBm
Scan	M3		1	450.3 MHz	-45.17 dBm
Scan	M4		1	600.39 MHz	-39.83 dBm

Radiated spurious emissions with modulation FM 25.0 kHz at 150.1 MHz – Antenna in vertical polarization (30 MHz to 1 GHz) (worst frequency case from conducted emissions)



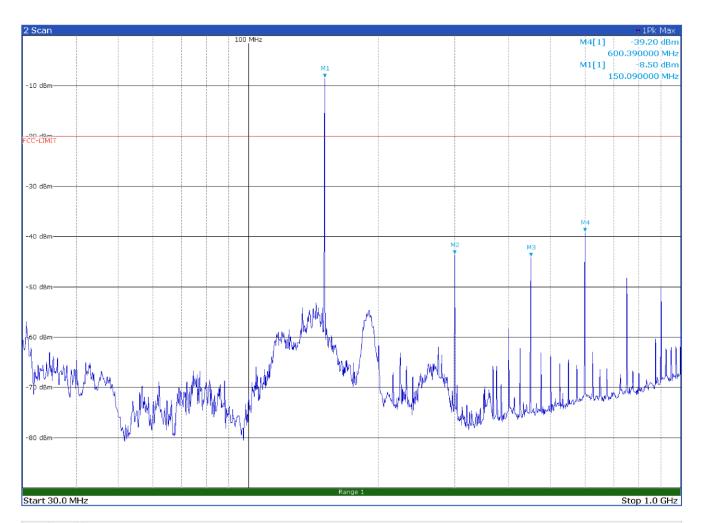
3 Marker Table								
Wnd	Type	Ref	Trc	X-value	Y-value			
Scan	M1		1	1.0505 GHz	-52.84 dBm			
Scan	M2		1	1.351 GHz	-51.41 dBm			
Scan	M3		1	1.501 GHz	-50.98 dBm			
Scan	M4		1	1.651 GHz	-47.99 dBm			

Radiated spurious emissions with modulation FM 25.0 kHz at 150.1 MHz – Antenna in horizontal polarization (1 to 2 GHz) (worst frequency case from conducted emissions)



3 Marker Table								
Type	Ref	Trc	X-value	Y-value				
M1		1		-51.84 dBm				
M2		1	1.2005 GHz	-52.59 dBm				
МЗ		1	1.501 GHz	-49.77 dBm				
M4		1	1.651 GHz	-48.97 dBm				
	Type M1 M2 M3	Type Ref Mi M2 M3	Type Ref Trc M1 1 M2 1 M3 1	Type Ref Trc X-value M1 1 1.0505 GHz M2 1 1.2005 GHz M3 1 1.501 GHz				

Radiated spurious emissions with modulation FM 25.0 kHz at 150.1 MHz – Antenna in vertical polarization (1 to 2 GHz) (worst frequency case from conducted emissions)



1 Marker Table					
Wnd	Type	Ref	Trc	X-value	Y-value
Scan	M1		1	150.09 MHz	-5.79 dBm
Scan	M2		1	300.21 MHz	-45.64 dBm
Scan	M3		1	450.3 MHz	-44.7 dBm
Scan	M4		1	600.39 MHz	-48.12 dBm

Radiated spurious emissions with modulation DMR 4FSK at 150.1 MHz – Antenna in horizontal polarization (30 MHz to 1 GHz) (worst frequency case from conducted emissions)

3 Marker Table					
Wnd	Type	Ref	Trc	X-value	Y-value
Scan	M1		1	150.09 MHz	-8.5 dBm
Scan	M2		1	300.21 MHz	-43.6 dBm
Scan	M3		1	450.3 MHz	-44.08 dBm
Scan	M4		1	600.39 MHz	-39.2 dBm

Radiated spurious emissions with modulation DMR 4FSK at 150.1 MHz – Antenna in vertical polarization (30 MHz to 1 GHz) (worst frequency case from conducted emissions)