

Dust Networks

ADDENDUM TEST REPORT TO 91269-7A

2.4GHz Wireless Mote, M2511

Tested To The Following Standards:

FCC PART 15.207, 15.247 and RSS-210 ISSUE 8

Report No.: 91269-7B

Date of issue: March 18, 2011

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

TESTING
CERT #803.01, 803.02,
803.05, 803.06

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
15.207 AC Conducted Emissions	7
15.247(a)(2)6dB Bandwidth	16
15.247(b)(3) RF Power Output	20
15.247(d) Conducted Spurious Emissions	23
15.247(d) Radiated Spurious Emissions	32
15.247(e) Peak Power Spectral Density	72
RSS-210	74
99% Occupied Bandwidth	74
Supplemental Information	78
Measurement Uncertainty	78
Emissions Test Details	78

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Dust Networks
30695 Huntwood Avenue
Hayward, CA 94544

Representative: Gordon Charles

REPORT PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 91269-7

DATE OF EQUIPMENT RECEIPT:

January 19, 2011

DATE(S) OF TESTING:

January 19 –March 18, 2011

Revision History

Original: Testing of the 2.4GHz Wireless Mote, M2511 to FCC PART 15.247 and RSS-210 ISSUE 8.

Addendum A: To correct references to testing with a +8 dBi instead of a +10 dBi antenna.

Addendum B: To add FCC Part 15.207 AC Conducted test data to the existing data already in the report.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive, S.E. Suite A
Bothell WA, 98021-4413

Site Registration & Accreditation Information

Location	CB #	Japan	Canada	FCC
Bothell	US0081	R-2296, C-2506, T-1489 & G-284	3082C-1	318736

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.247 and RSS-210 Issue 8

Description	Test Procedure/Method	Results
AC Conducted	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	Pass
6dB Bandwidth	FCC Part 15 Subpart C Section 15.247(a)(2) / KDB 558074	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.247(b)(3) / KDB 558074	Pass
Antenna Conducted Spurious Emissions	FCC Part 15 Subpart C Section 15.247(d) / KDB 558074	Pass
Radiated Spurious Emissions	FCC Part 15 Subpart C Section 15.247(d) / KDB 558074	Pass
Peak Power Spectral Density	FCC Part 15 Subpart C Section 15.247(e) / KDB 558074	Pass
99% Bandwidth	RSS-210 Issue 8	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions
None

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

2.4 GHz Wireless Mote

Manuf: Dust Networks
Model: M2511 with 3 antenna options
Serial: NA
FCC ID: SJC-M2511

2dBi Antenna

Manuf: NA
Model: NA
Serial: NA

6dBi Antenna

Manuf: Phoenix Contact
Model: RAD-ISM-2400-ANT-OMNI-6-0
Serial: 2003662623

8dBi Antenna

Manuf: Phoenix Contact
Model: RAD-ISM-2400-ANT-PAN-8-0
Serial: 1114211262

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

TTL Converter

Manuf: B&B Electronics
Model: 232LPTTL33
Serial: 0069810016

Laptop

Manuf: Dell
Model: Inspiron 600m
Serial: NA

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.207 AC Conducted Emissions

Test Notes: Conducted Disturbances at Mains Terminals, LISN method.

Test Procedure: ANSI C63.4

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer:	Dust Networks		
Specification:	15.207 AC Mains - Average		
Work Order #:	91269	Date:	3/18/2011
Test Type:	Conducted Emissions	Time:	1:48:50 PM
Equipment:	2.4GHz Wireless Mote	Sequence#:	4
Manufacturer:	Dust Networks	Tested By:	Benny Lovan
Model:	M2511		120V 60Hz
S/N:	193307		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00494	50uH LISN-Line (dB)	3816/NM	3/30/2009	3/30/2011
	AN00494	50uH LISN-Neutral (dB)	3816/NM	3/30/2009	3/30/2011
T2	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T3	ANP05440	Cable		3/7/2011	3/7/2013
T4	ANP05258	High Pass Filter	HE9615-150K- 50-720B	12/2/2010	12/2/2012
T5	ANP01211	Attenuator	23-10-34	5/18/2009	5/18/2011
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013

Equipment Under Test (= EUT):*

Function	Manufacturer	Model #	S/N
Power Supply	Cincon Electronics	TR15RA120	None
2.4GHz Wireless Mote*	Dust Networks	M2511	193307

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

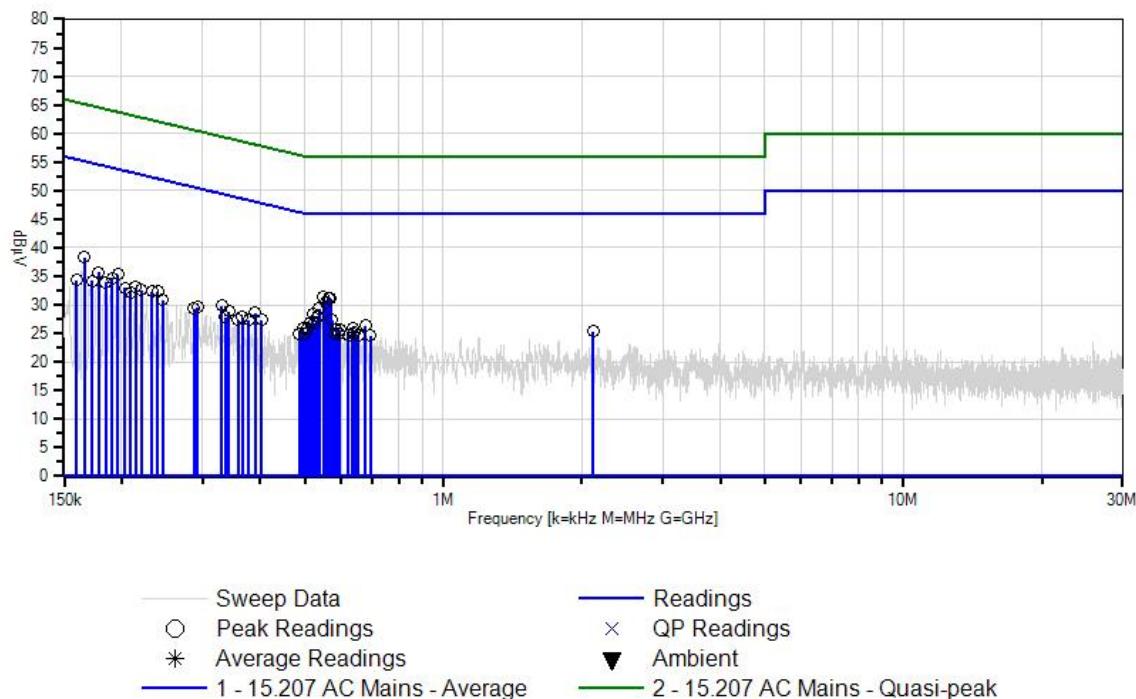
Conducted Emissions 150kHz - 30MHz

Temperature: 70.8 Degrees Fahrenheit

Humidity: 40%

Atmospheric Pressure: 102.9 kPa

The unit is on the table with the lid of the chassis removed. The unit is "advertising" where the unit looks for other devices to join the network. The unit during this mode is both transmitting and receiving.


Ext Attn: 0 dB

#	Freq MHz	Rdng dB μ V	Reading listed by margin.				Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
			T1 dB	T2 dB	T3 dB	T4 dB					
			T5 +9.8								
1	549.963k	21.2	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	31.3	46.0	-14.7	Black
2	562.326k	21.1	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	31.2	46.0	-14.8	Black
3	568.871k	21.0	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	31.1	46.0	-14.9	Black
4	555.781k	20.3	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	30.4	46.0	-15.6	Black
5	537.601k	19.3	+0.1 +9.8	+0.0	+0.0	+0.1	+0.0	29.3	46.0	-16.7	Black
6	165.999k	27.9	+0.0 +9.9	+0.0	+0.0	+0.5	+0.0	38.3	55.2	-16.9	Black
7	520.875k	18.3	+0.1 +9.8	+0.0	+0.0	+0.1	+0.0	28.3	46.0	-17.7	Black
8	533.238k	17.8	+0.1 +9.8	+0.0	+0.0	+0.1	+0.0	27.8	46.0	-18.2	Black
9	196.541k	25.0	+0.1 +10.0	+0.0	+0.0	+0.2	+0.0	35.3	53.8	-18.5	Black
10	573.234k	17.3	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	27.4	46.0	-18.6	Black
11	178.361k	25.2	+0.1 +10.0	+0.0	+0.0	+0.4	+0.0	35.7	54.6	-18.9	Black
12	513.603k	16.9	+0.1 +9.8	+0.0	+0.0	+0.1	+0.0	26.9	46.0	-19.1	Black
13	525.966k	16.9	+0.1 +9.8	+0.0	+0.0	+0.1	+0.0	26.9	46.0	-19.1	Black
14	190.724k	24.3	+0.1 +10.0	+0.0	+0.0	+0.3	+0.0	34.7	54.0	-19.3	Black
15	390.705k	18.7	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	28.6	48.0	-19.4	Black
16	330.347k	19.8	+0.1 +9.9	+0.0	+0.0	+0.1	+0.0	29.9	49.4	-19.5	Black
17	678.679k	16.2	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	26.3	46.0	-19.7	Black
18	239.446k	22.2	+0.0 +10.0	+0.0	+0.0	+0.1	+0.0	32.3	52.1	-19.8	Black

19	214.721k	22.9	+0.1 +10.0	+0.0	+0.0	+0.1	+0.0	33.1	53.0	-19.9	Black
20	507.785k	16.0	+0.1 +9.8	+0.0	+0.0	+0.1	+0.0	26.0	46.0	-20.0	Black
21	232.901k	22.2	+0.0 +10.0	+0.0	+0.0	+0.1	+0.0	32.3	52.3	-20.0	Black
22	496.150k	16.0	+0.1 +9.8	+0.0	+0.0	+0.1	+0.0	26.0	46.1	-20.1	Black
23	635.774k	15.8	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	25.9	46.0	-20.1	Black
24	220.539k	22.4	+0.1 +10.0	+0.0	+0.0	+0.1	+0.0	32.6	52.8	-20.2	Black
25	596.504k	15.5	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	25.6	46.0	-20.4	Black
26	341.982k	18.7	+0.1 +9.9	+0.0	+0.0	+0.1	+0.0	28.8	49.2	-20.4	Black
27	184.906k	23.6	+0.1 +10.0	+0.0	+0.0	+0.2	+0.0	33.9	54.3	-20.4	Black
28	586.324k	15.5	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	25.6	46.0	-20.4	Black
29	203.086k	22.8	+0.1 +10.0	+0.0	+0.0	+0.1	+0.0	33.0	53.5	-20.5	Black
30	402.340k	17.4	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	27.3	47.8	-20.5	Black
31	172.543k	23.8	+0.0 +10.0	+0.0	+0.0	+0.4	+0.0	34.2	54.8	-20.6	Black
32	365.980k	17.8	+0.1 +9.9	+0.0	+0.0	+0.1	+0.0	27.9	48.6	-20.7	Black
33	2.115M	15.0	+0.1 +10.0	+0.0	+0.1	+0.1	+0.0	25.3	46.0	-20.7	Black
34	641.591k	15.1	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	25.2	46.0	-20.8	Black
35	292.532k	19.5	+0.0 +10.0	+0.0	+0.0	+0.1	+0.0	29.6	50.5	-20.9	Black
36	378.343k	17.5	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	27.4	48.3	-20.9	Black
37	208.904k	22.0	+0.1 +10.0	+0.0	+0.0	+0.1	+0.0	32.2	53.2	-21.0	Black
38	245.264k	20.8	+0.0 +10.0	+0.0	+0.0	+0.1	+0.0	30.9	51.9	-21.0	Black
39	501.240k	14.9	+0.1 +9.8	+0.0	+0.0	+0.1	+0.0	24.9	46.0	-21.1	Black
40	579.052k	14.8	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	24.9	46.0	-21.1	Black
41	591.414k	14.8	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	24.9	46.0	-21.1	Black
42	637.955k	14.7	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	24.8	46.0	-21.2	Black
43	487.424k	15.0	+0.1 +9.8	+0.0	+0.0	+0.1	+0.0	25.0	46.2	-21.2	Black
44	287.442k	19.3	+0.0 +10.0	+0.0	+0.0	+0.1	+0.0	29.4	50.6	-21.2	Black

45	159.454k	24.0	+0.0 +9.9	+0.0	+0.0	+0.4	+0.0	34.3	55.5	-21.2	Black
46	622.684k	14.6	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	24.7	46.0	-21.3	Black
47	653.954k	14.6	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	24.7	46.0	-21.3	Black
48	336.165k	17.8	+0.1 +9.9	+0.0	+0.0	+0.1	+0.0	27.9	49.3	-21.4	Black
49	357.981k	17.3	+0.1 +9.9	+0.0	+0.0	+0.1	+0.0	27.4	48.8	-21.4	Black
50	695.404k	14.5	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	24.6	46.0	-21.4	Black

CKC Laboratories, Inc. Date: 3/18/2011 Time: 1:48:50 PM Dust Networks WO#: 91269 Model: M2511 SN: 193307
 15.207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 4 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: **Dust Networks**
 Specification: **15.207 AC Mains - Average**
 Work Order #: **91269** Date: 3/18/2011
 Test Type: **Conducted Emissions** Time: 1:47:46 PM
 Equipment: **2.4GHz Wireless Mote** Sequence#: 3
 Manufacturer: Dust Networks Tested By: Benny Lovan
 Model: M2511 120V 60Hz
 S/N: 193307

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN00494	50uH LISN-Line (dB)	3816/NM	3/30/2009	3/30/2011
T1	AN00494	50uH LISN-Neutral (dB)	3816/NM	3/30/2009	3/30/2011
T2	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T3	ANP05440	Cable		3/7/2011	3/7/2013
T4	ANP05258	High Pass Filter	HE9615-150K- 50-720B	12/2/2010	12/2/2012
T5	ANP01211	Attenuator	23-10-34	5/18/2009	5/18/2011
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power Supply	Cincon Electronics	TR15RA120	None
2.4GHz Wireless Mote*	Dust Networks	M2511	193307

Support Devices:

Function	Manufacturer	Model #	S/N
Test Conditions / Notes:			

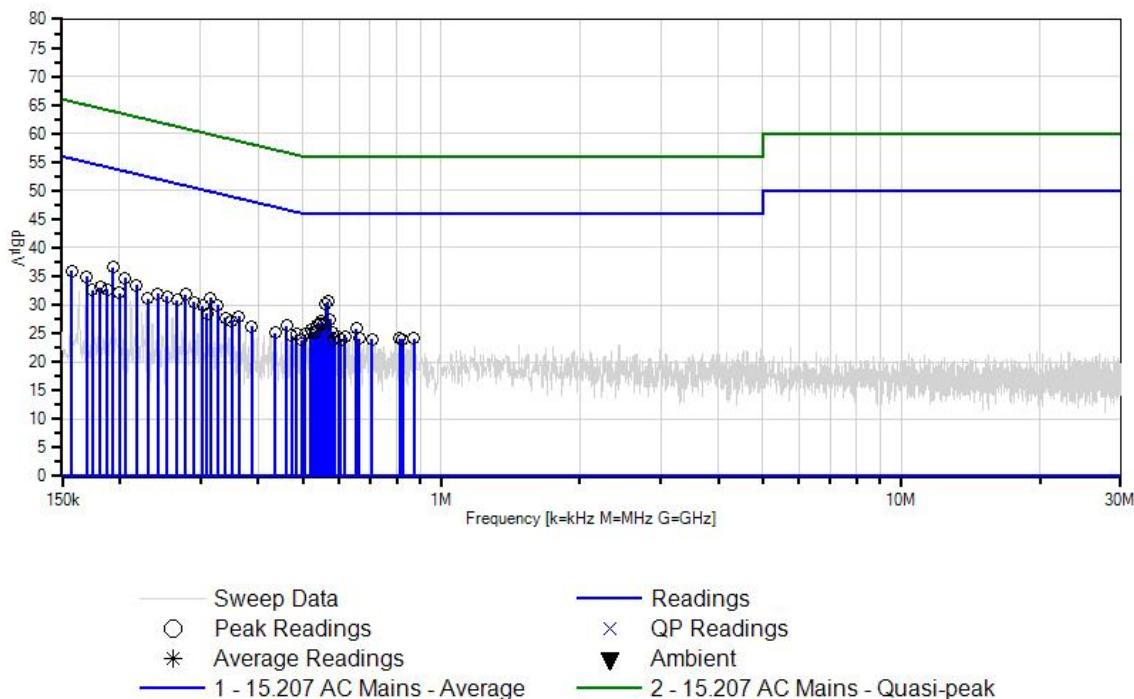
Conducted Emissions 150kHz - 30MHz

Temperature: 70.8 Degrees Fahrenheit

Humidity: 40%

Atmospheric Pressure: 102.9 kPa

The unit is on the table with the lid of the chassis removed. The unit is "advertising" where the unit looks for other devices to join the network. The unit during this mode is both transmitting and receiving.


Ext Attn: 0 dB

#	Freq	Rdng	Reading listed by margin.				Test Lead: White					
			T1	T2	T3	T4	Dist	Corr	Spec	Margin		
			T5				Table	dB μ V	dB μ V	dB		
			MHz	dB μ V	dB	dB	dB			Ant		
1	567.416k	20.6		+0.0	+0.0	+0.0	+0.2	+0.0	30.6	46.0	-15.4	White
				+9.8								
2	560.871k	20.2		+0.0	+0.0	+0.0	+0.2	+0.0	30.2	46.0	-15.8	White
				+9.8								
3	193.632k	26.4		+0.0	+0.0	+0.0	+0.2	+0.0	36.6	53.9	-17.3	White
				+10.0								
4	573.234k	17.5		+0.0	+0.0	+0.0	+0.2	+0.0	27.5	46.0	-18.5	White
				+9.8								
5	315.076k	21.1		+0.0	+0.0	+0.0	+0.1	+0.0	31.2	49.8	-18.6	White
				+10.0								
6	205.268k	24.6		+0.0	+0.0	+0.0	+0.1	+0.0	34.7	53.4	-18.7	White
				+10.0								
7	549.236k	17.1		+0.0	+0.0	+0.0	+0.2	+0.0	27.1	46.0	-18.9	White
				+9.8								
8	277.988k	21.7		+0.0	+0.0	+0.0	+0.1	+0.0	31.8	50.9	-19.1	White
				+10.0								
9	544.146k	16.8		+0.0	+0.0	+0.0	+0.1	+0.0	26.7	46.0	-19.3	White
				+9.8								
10	555.054k	16.7		+0.0	+0.0	+0.0	+0.2	+0.0	26.7	46.0	-19.3	White
				+9.8								
11	217.630k	23.3		+0.0	+0.0	+0.0	+0.1	+0.0	33.4	52.9	-19.5	White
				+10.0								
12	326.711k	20.0		+0.0	+0.0	+0.0	+0.1	+0.0	30.0	49.5	-19.5	White
				+9.9								
13	157.272k	25.4		+0.0	+0.0	+0.0	+0.6	+0.0	35.9	55.6	-19.7	White
				+9.9								
14	536.874k	16.4		+0.0	+0.0	+0.0	+0.1	+0.0	26.3	46.0	-19.7	White
				+9.8								
15	169.635k	24.6		+0.0	+0.0	+0.0	+0.4	+0.0	35.0	55.0	-20.0	White
				+10.0								
16	242.355k	21.9		+0.0	+0.0	+0.0	+0.1	+0.0	32.0	52.0	-20.0	White
				+10.0								
17	290.351k	20.4		+0.0	+0.0	+0.0	+0.1	+0.0	30.5	50.5	-20.0	White
				+10.0								
18	253.990k	21.4		+0.0	+0.0	+0.0	+0.1	+0.0	31.5	51.6	-20.1	White
				+10.0								
19	654.681k	15.8		+0.0	+0.0	+0.0	+0.2	+0.0	25.8	46.0	-20.2	White
				+9.8								
20	460.517k	16.5		+0.0	+0.0	+0.0	+0.1	+0.0	26.4	46.7	-20.3	White
				+9.8								
21	266.353k	20.7		+0.0	+0.0	+0.0	+0.1	+0.0	30.8	51.2	-20.4	White
				+10.0								
22	302.713k	19.7		+0.0	+0.0	+0.0	+0.1	+0.0	29.8	50.2	-20.4	White
				+10.0								
23	520.148k	15.7		+0.0	+0.0	+0.0	+0.1	+0.0	25.6	46.0	-20.4	White
				+9.8								

24	363.071k	18.0	+0.0 +9.9	+0.0	+0.0	+0.1	+0.0	28.0	48.7	-20.7	White
25	581.233k	15.2	+0.0 +9.8	+0.0	+0.0	+0.2	+0.0	25.2	46.0	-20.8	White
26	525.966k	15.3	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	25.2	46.0	-20.8	White
27	532.510k	15.3	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	25.2	46.0	-20.8	White
28	505.604k	14.9	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	24.8	46.0	-21.2	White
29	229.993k	21.0	+0.0 +10.0	+0.0	+0.0	+0.1	+0.0	31.1	52.4	-21.3	White
30	181.270k	22.8	+0.0 +10.0	+0.0	+0.0	+0.3	+0.0	33.1	54.4	-21.3	White
31	187.815k	22.4	+0.0 +10.0	+0.0	+0.0	+0.3	+0.0	32.7	54.1	-21.4	White
32	199.450k	22.0	+0.0 +10.0	+0.0	+0.0	+0.1	+0.0	32.1	53.6	-21.5	White
33	309.258k	18.4	+0.0 +10.0	+0.0	+0.0	+0.1	+0.0	28.5	50.0	-21.5	White
34	339.074k	17.7	+0.0 +9.9	+0.0	+0.0	+0.1	+0.0	27.7	49.2	-21.5	White
35	617.593k	14.5	+0.0 +9.8	+0.0	+0.0	+0.2	+0.0	24.5	46.0	-21.5	White
36	484.515k	14.9	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	24.8	46.3	-21.5	White
37	350.709k	17.2	+0.0 +9.9	+0.0	+0.0	+0.1	+0.0	27.2	48.9	-21.7	White
38	597.232k	14.3	+0.0 +9.8	+0.0	+0.0	+0.2	+0.0	24.3	46.0	-21.7	White
39	472.152k	14.7	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	24.6	46.5	-21.9	White
40	387.069k	16.3	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	26.2	48.1	-21.9	White
41	811.757k	14.0	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	24.1	46.0	-21.9	White
42	872.116k	14.0	+0.1 +9.8	+0.0	+0.1	+0.1	+0.0	24.1	46.0	-21.9	White
43	664.135k	14.1	+0.0 +9.8	+0.0	+0.0	+0.2	+0.0	24.1	46.0	-21.9	White
44	435.792k	15.2	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	25.1	47.1	-22.0	White
45	823.393k	13.9	+0.1 +9.8	+0.0	+0.0	+0.2	+0.0	24.0	46.0	-22.0	White
46	706.313k	14.0	+0.0 +9.8	+0.0	+0.0	+0.2	+0.0	24.0	46.0	-22.0	White

47	174.725k	22.2	+0.0 +10.0	+0.0	+0.0	+0.4	+0.0	32.6	54.7	-22.1	White
48	605.231k	13.9	+0.0 +9.8	+0.0	+0.0	+0.2	+0.0	23.9	46.0	-22.1	White
49	585.596k	13.9	+0.0 +9.8	+0.0	+0.0	+0.2	+0.0	23.9	46.0	-22.1	White
50	496.877k	14.0	+0.0 +9.8	+0.0	+0.0	+0.1	+0.0	23.9	46.1	-22.2	White

CKC Laboratories, Inc. Date: 3/18/2011 Time: 1:47:46 PM Dust Networks WO#: 91269 Model: M2511 SN: 193307
 15.207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 3 Ext ATTN: 0 dB

Test Setup Photos

15.247(a)(2)6dB Bandwidth

Test Setup

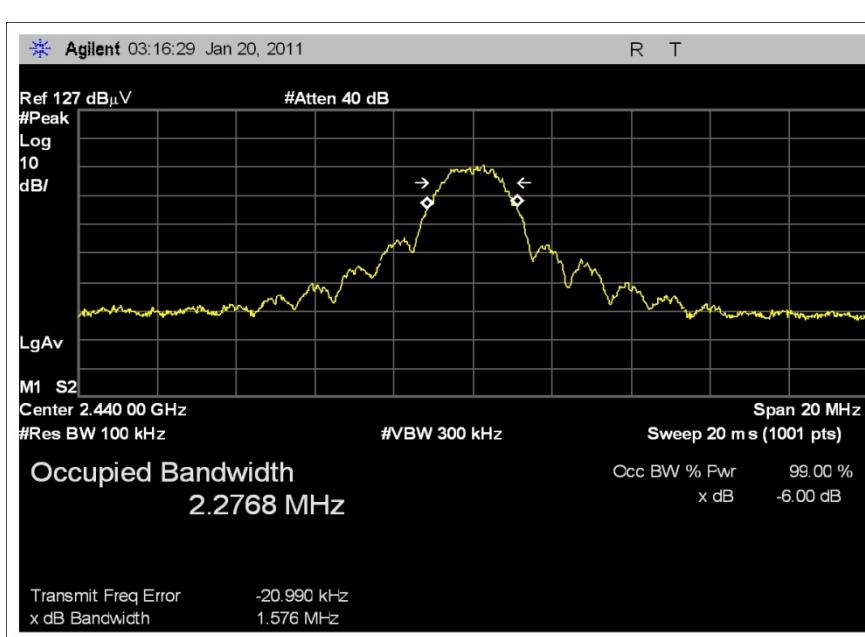
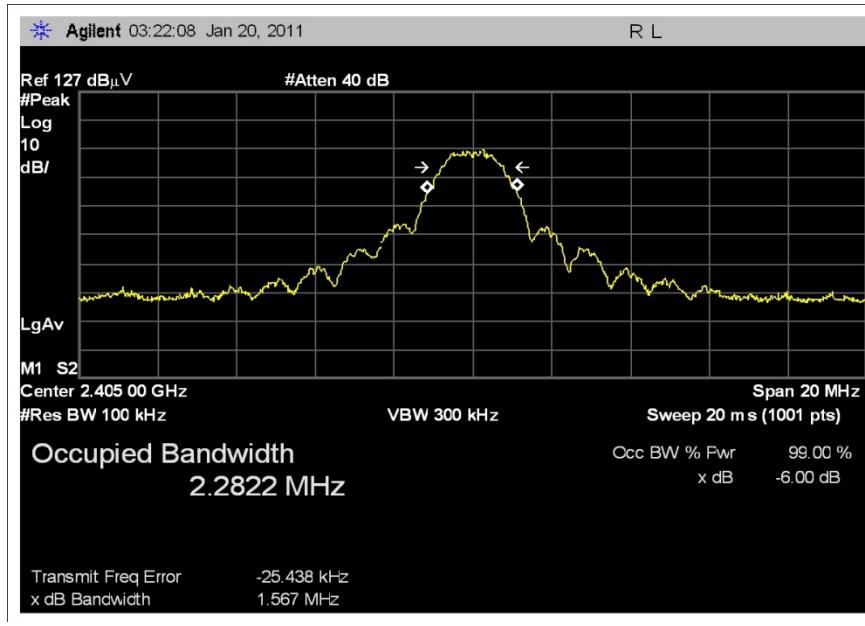
Temp: 21°C
 Humidity: 34%
 Pressure: 102.4kPa
 Frequency Range: 2405-2475MHz
 RBW: 100 kHz
 VBW: 300 kHz
 Sweep: Auto

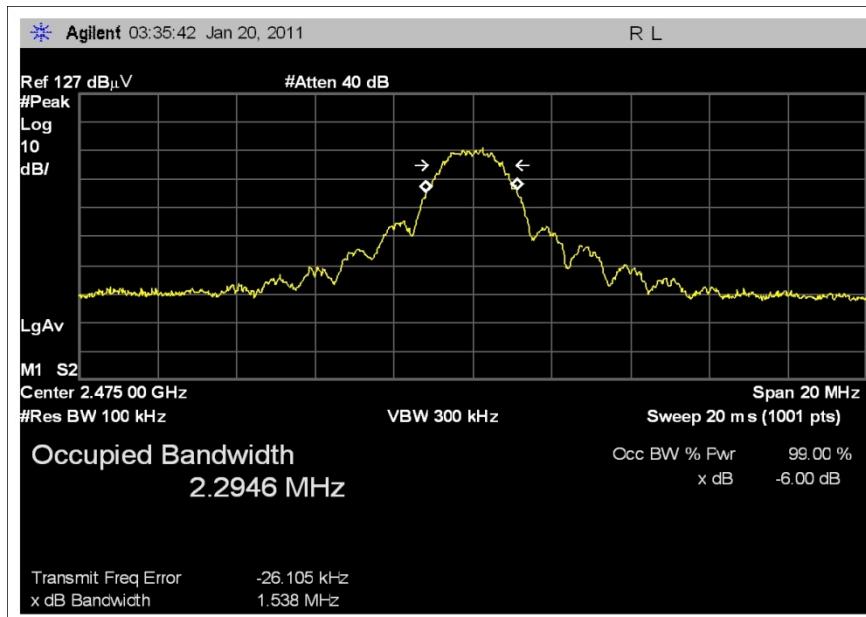
EUT's antenna port is connected to the Spectrum analyzer through a cable and a 20dB attenuator.

EUT is connected to the support laptop through a TTL RS232 adaptor.

Support laptop is setting the EUT in the proper mode (TX) and channels:

LOW: 2405MHz
 MID: 2440MHz
 HIGH: 2475MHz



Engineer Name: A. del Angel


Test Equipment

Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due
02872	Spectrum Analyzer	E4440A	Agilent	8/25/2009	8/25/2011
P05747	Attenuator	PE7004-20	Pasternack	3/18/2010	3/18/2012
03121	Cable	32026-2-29080-84	Astrolab	10/23/2009	10/23/2011

Test Data

Frequency (MHz)	6dB Bandwidth (kHz)	15.247(a)(2)Limit	Result
2405	1567	>500kHz	Pass
2440	1576	>500kHz	Pass
2475	1538	>500kHz	Pass

High

Test Setup Photos

15.247(b)(3) RF Power Output

Test Setup

Temp: 21°C
 Humidity: 34%
 Pressure: 102.4kPa
 Frequency Range: 2405-2475MHz
 RBW: 3MHz
 VBW: 8MHz
 Sweep: Auto

EUT's antenna port is connected to the Spectrum analyzer through a cable and a 20dB attenuator.

EUT is connected to the support laptop through a TTL RS232 adaptor.

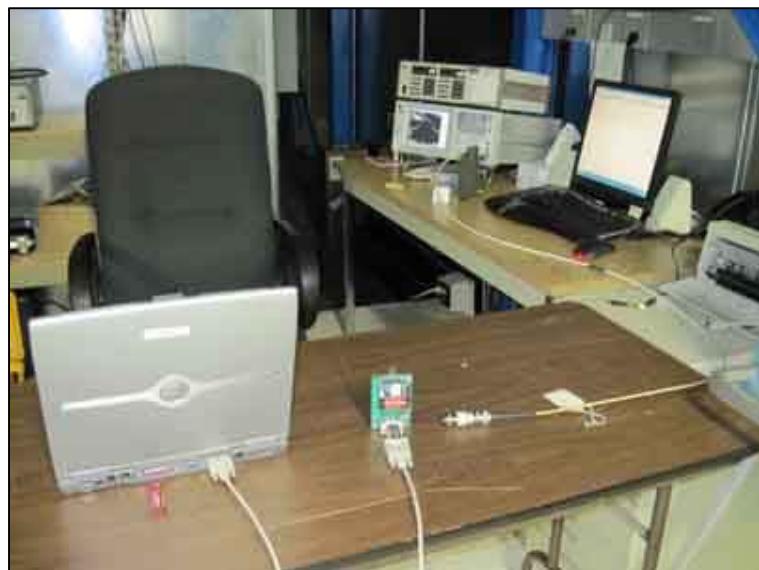
Test is being performed with a fresh battery to satisfy FCC15.31 (e) voltage variations on power.

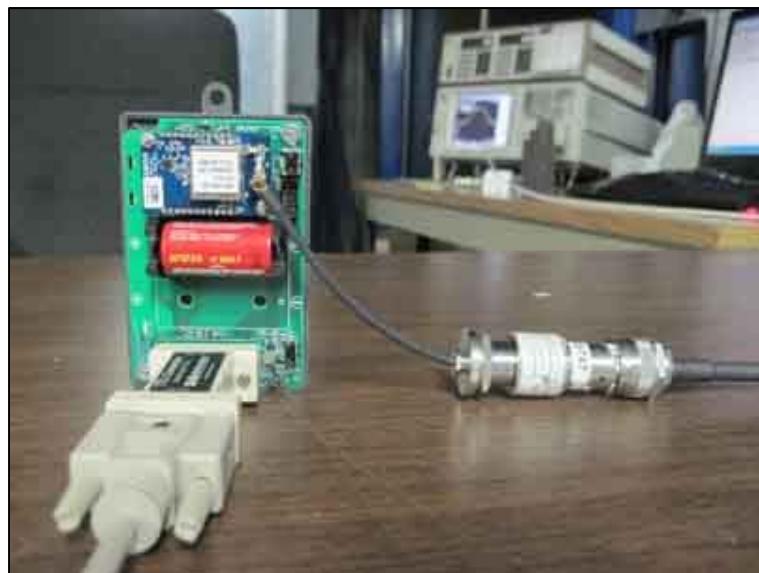
Support laptop is setting the EUT in the proper mode (TX) and channels:

LOW: 2405MHz
 MID: 2440MHz
 HIGH: 2475MHz

Engineer Name: A. del Angel

Test Equipment


Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due
02872	Spectrum Analyzer	E4440A	Agilent	8/25/2009	8/25/2011
P05747	Attenuator	PE7004-20	Pasternack	3/18/2010	3/18/2012
03121	Cable	32026-2-29080-84	Astrolab	10/23/2009	10/23/2011


Test Data

Frequency (MHz)	RF Output Power (dBm)	15.247(b)(3)Limit	Result
2405	4.6	28dBm*	Pass
2440	5.2	28dBm*	Pass
2475	5.3	28dBm*	Pass

Note: *The 30dBm limit from FCC 15.247 has been modified due to the fact that one of the antenna options has a gain of 8dBi and the specified limit is for antennas with a maximum gain of 6dBi, thus the limit has been reduced by 2dBi to account for the 8dBi antenna.

Test Setup Photos

15.247(d) Conducted Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Conducted Spurious Emissions**
 Work Order #: **91269** Date: **1/24/2011**
 Test Type: **Conducted Emissions** Time: **12:06:13**
 Equipment: **2.4 GHz Wireless Mote** Sequence#: **1**
 Manufacturer: **Dust Networks** Tested By: **Armando del Angel**
 Model: **M2511 with 3 antenna options** 3Vdc
 S/N: **NA**

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T2	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T3	ANP05747	Attenuator	PE7004-20	3/18/2010	3/18/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
2.4 GHz Wireless Mote*	Dust Networks	M2511 with 3 antenna options	NA

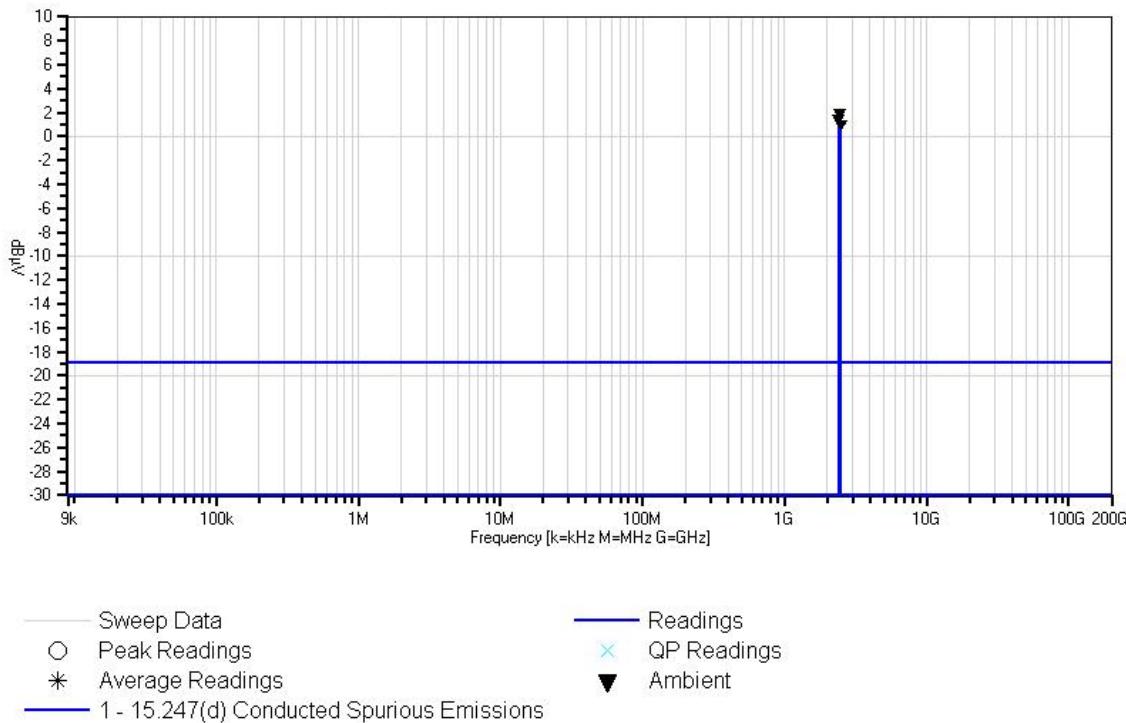
Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C
 Humidity: 34%
 Pressure: 102.1kPa
 Freq. Range: 9kHz - 26000MHz
 RBW: 100MHz
 VBW: 300kHz
 Sweep: Auto
 Mode: TX

EUT is connected to the support laptop through a TTL Converter.
 The TTL converter is connected to the support laptop through a RS233 (serial) cable.
 Support laptop is setting the EUT in the proper mode and channels:
 LOW = 2405MHz
 MID = 2440MHz
 HIGH = 2475MHz


Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB

Measurement Data:							Test Lead: Antenna Port			
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	T3 dB	Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	2440.260M Ambient	-19.4	+1.3	+0.0	+20.1	+0.0	2.0	1.1	+0.9	Anten
										Fundamental MID
2	2404.725M Ambient	-19.8	+1.3	+0.0	+20.1	+0.0	1.6	1.1	+0.5	Anten
										Fundamental LOW
3	2474.725M Ambient	-20.3	+1.3	+0.0	+20.1	+0.0	1.1	1.1	+0.0	Anten
										Fundamental HIGH
4	7213.460M	-61.0	+2.5	+0.0	+20.3	+0.0	-38.2	-18.9	-19.3	Anten
										LOW
5	7216.220M	-62.0	+2.5	+0.0	+20.3	+0.0	-39.2	-18.9	-20.3	Anten
										LOW
6	7321.460M	-62.2	+2.4	+0.0	+20.3	+0.0	-39.5	-18.9	-20.6	Anten
										MID
7	7318.420M	-62.4	+2.4	+0.0	+20.3	+0.0	-39.7	-18.9	-20.8	Anten
										MID
8	1979.000M	-61.8	+1.2	+0.0	+20.2	+0.0	-40.4	-18.9	-21.5	Anten
										HIGH
9	7423.400M	-63.4	+2.3	+0.0	+20.3	+0.0	-40.8	-18.9	-21.9	Anten
										HIGH
10	1952.800M	-62.8	+1.2	+0.0	+20.2	+0.0	-41.4	-18.9	-22.5	Anten
										MID
11	1924.700M	-62.9	+1.2	+0.0	+20.2	+0.0	-41.5	-18.9	-22.6	Anten
										LOW
12	7426.180M	-64.9	+2.3	+0.0	+20.3	+0.0	-42.3	-18.9	-23.4	Anten
										HIGH
13	4810.940M	-65.5	+2.0	+0.0	+20.2	+0.0	-43.3	-18.9	-24.4	Anten
										LOW
14	4878.980M	-65.6	+2.0	+0.0	+20.2	+0.0	-43.4	-18.9	-24.5	Anten
										MID

15	4808.980M	-65.7	+2.0	+0.0	+20.2	+0.0	-43.5	-18.9	-24.6	Anten
16	4880.980M	-66.0	+2.0	+0.0	+20.3	+0.0	-43.7	-18.9	-24.8	Anten
17	4948.980M	-66.6	+2.0	+0.0	+20.2	+0.0	-44.4	-18.9	-25.5	Anten
18	4950.960M	-67.2	+2.0	+0.0	+20.2	+0.0	-45.0	-18.9	-26.1	Anten
19	2884.800M	-67.8	+1.6	+0.0	+20.1	+0.0	-46.1	-18.9	-27.2	Anten
20	9614.120M	-71.1	+2.9	+0.0	+20.3	+0.0	-47.9	-18.9	-29.0	Anten
21	2969.100M	-70.9	+1.6	+0.0	+20.1	+0.0	-49.2	-18.9	-30.3	Anten
22	7426.180M	-73.2	+2.3	+0.0	+20.3	+0.0	-50.6	-18.9	-31.7	Anten
23	9761.460M	-74.0	+2.7	+0.0	+20.4	+0.0	-50.9	-18.9	-32.0	Anten
24	2926.500M	-72.8	+1.6	+0.0	+20.1	+0.0	-51.1	-18.9	-32.2	Anten
25	494.500M	-81.3	+0.5	+0.0	+20.1	+0.0	-60.7	-18.9	-41.8	Anten
26	488.500M	-81.5	+0.5	+0.0	+20.1	+0.0	-60.9	-18.9	-42.0	Anten
27	479.900M	-81.7	+0.5	+0.0	+20.1	+0.0	-61.1	-18.9	-42.2	Anten
28	960.900M	-84.1	+0.8	+0.0	+20.1	+0.0	-63.2	-18.9	-44.3	Anten
29	975.000M	-86.1	+0.8	+0.0	+20.1	+0.0	-65.2	-18.9	-46.3	Anten
30	990.100M	-87.1	+0.8	+0.0	+20.1	+0.0	-66.2	-18.9	-47.3	Anten

CKC Laboratories, Inc. Date: 1/24/2011 Time: 12:06:13 Dust Networks WO#: 91269
15.247(d) Conducted Spurious Emissions Test Lead: Antenna Port Antenna Port Sequence#: 1 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Conducted Spurious Emissions**
 Work Order #: **91269** Date: 1/21/2011
 Test Type: **Conducted Emissions** Time: 4:14:42 PM
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 2
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511 with 3 antenna options 3Vdc
 S/N: NA

Test Equipment:

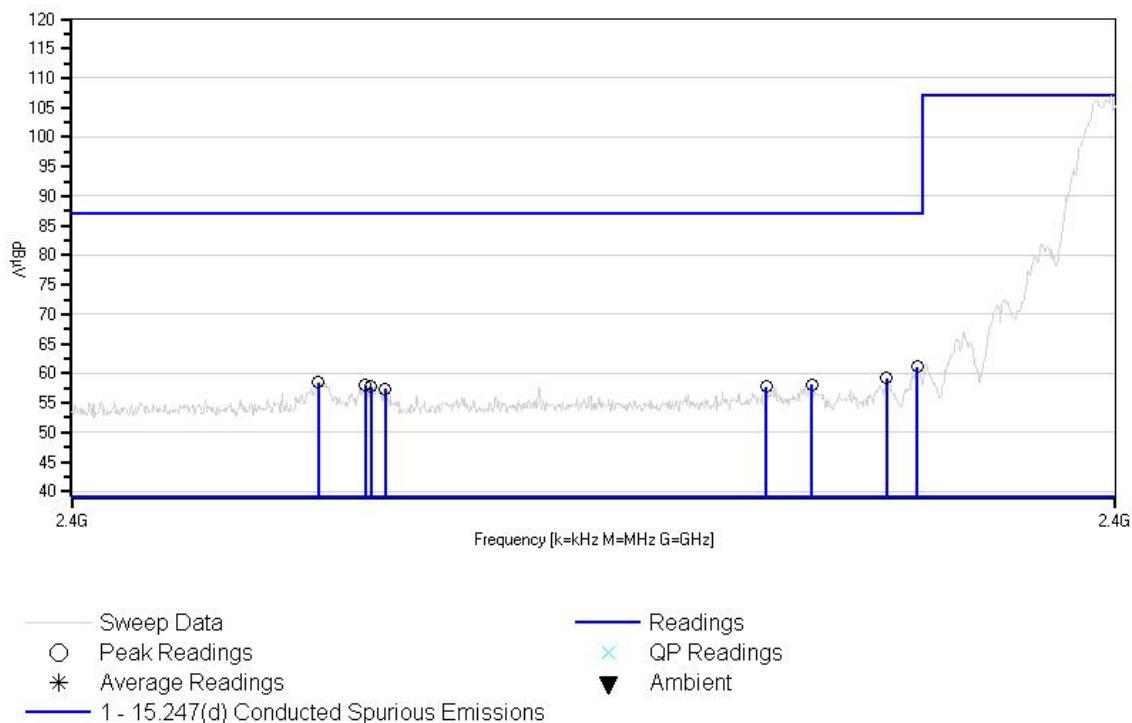
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T2	ANP05747	Attenuator	PE7004-20	3/18/2010	3/18/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
2.4 GHz Wireless Mote*	Dust Networks	M2511 with 3 antenna options	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTTL33	0069810016
Laptop	Dell	Inspiron 600m	NA


Test Conditions / Notes:

Temperature: 21°C
Humidity: 34%
Pressure: 102.1kPa
Freq. Range: 2387-2405MHz
RBW: 100MHz
VBW: 300kHz
Sweep: Auto
Mode: TX
EUT is connected to the support laptop through a TTL Converter.
The TTL converter is connected to the support laptop through a RS233 (serial) cable.
Support laptop is setting the EUT in the proper mode and channels:
LOW = 2405MHz

Ext Attn: 0 dB

Measurement Data:				Reading listed by margin.								Test Lead: Antenna Port			
#	Freq MHz	Rdng dB μ V		T1 dB	T2 dB		Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant				
1	2399.843M	39.7		+1.3	+20.1		+0.0	61.1	87.0	-25.9	Anten				
2	2399.060M	37.8		+1.3	+20.1		+0.0	59.2	87.0	-27.8	Anten				
3	2384.345M	37.1		+1.3	+20.1		+0.0	58.5	87.0	-28.5	Anten				
4	2397.116M	36.7		+1.3	+20.1		+0.0	58.1	87.0	-28.9	Anten				
5	2385.560M	36.6		+1.3	+20.1		+0.0	58.0	87.0	-29.0	Anten				

6	2395.928M	36.4	+1.3	+20.1	+0.0	57.8	87.0	-29.2	Anten
7	2385.722M	36.3	+1.3	+20.1	+0.0	57.7	87.0	-29.3	Anten
8	2386.073M	36.0	+1.3	+20.1	+0.0	57.4	87.0	-29.6	Anten

CKC Laboratories, Inc. Date: 1/21/2011 Time: 4:14:42 PM Dust Networks WO#: 91269
15.247(d) Conducted Spurious Emissions Test Lead: Antenna Port Antenna Port Sequence#: 2 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Conducted Spurious Emissions**
 Work Order #: **91269** Date: 1/21/2011
 Test Type: **Conducted Emissions** Time: 4:11:18 PM
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 3
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511 with 3 antenna options 3Vdc
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T2	ANP05747	Attenuator	PE7004-20	3/18/2010	3/18/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
2.4 GHz Wireless Mote*	Dust Networks	M2511 with 3 antenna options	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C

Humidity: 34%

Pressure: 102.1kPa

Freq. Range: 2475-2500MHz

RBW: 100MHz

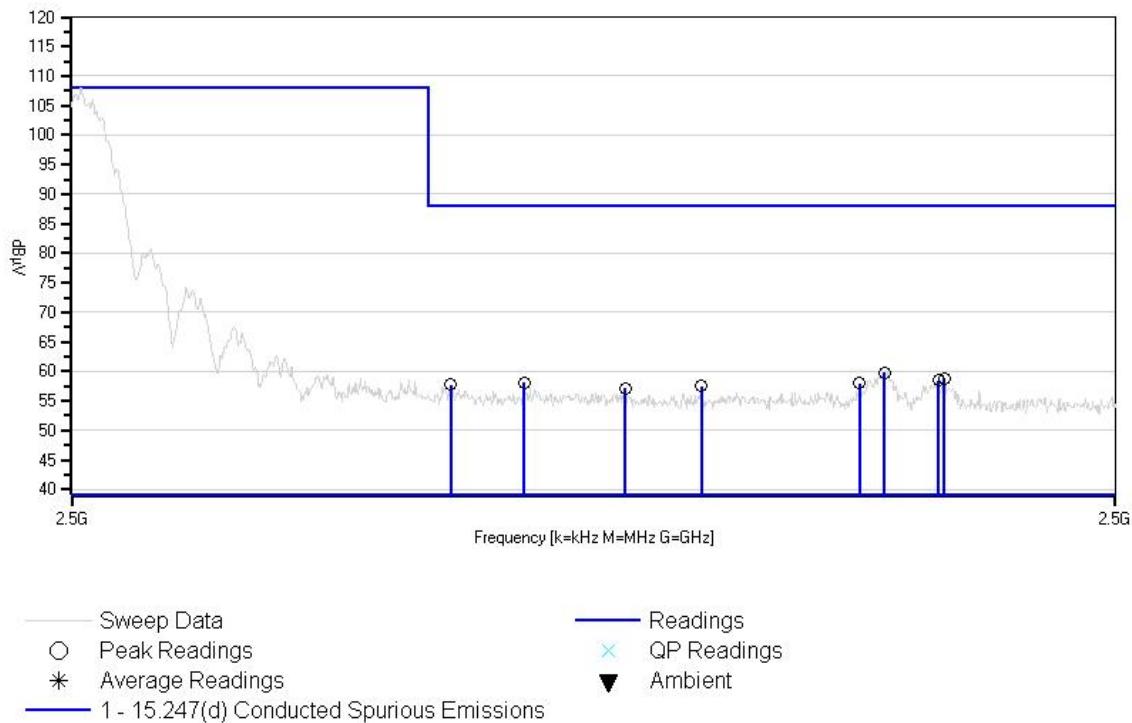
VBW: 300kHz

Sweep: Auto

Mode: TX

EUT is connected to the support laptop through a TTL Converter.

The TTL converter is connected to the support laptop through a RS233 (serial) cable.

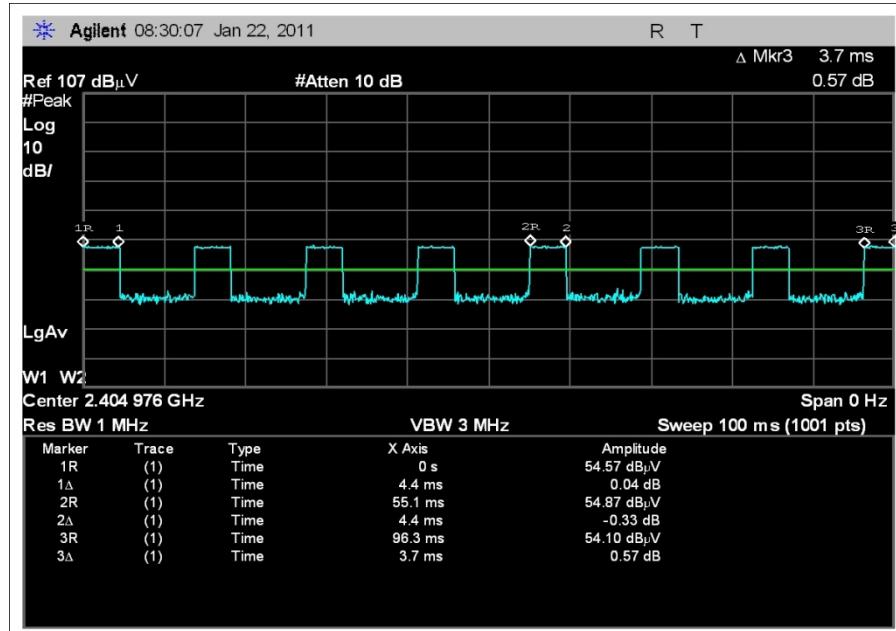

Support laptop is setting the EUT in the proper mode and channels:

HIGH = 2475MHz

Ext Attn: 0 dB

Measurement Data:				Reading listed by margin.		Test Lead: Antenna Port					
#	Freq MHz	Rdng dB μ V		T1 dB	T2 dB		Dist Table	Corr dB μ V	Spec dB μ V	Margin dB	Polar Ant
1	2494.450M	38.4		+1.3	+20.1		+0.0	59.8	88.0	-28.2	Anten
2	2495.875M	37.4		+1.3	+20.1		+0.0	58.8	88.0	-29.2	Anten
3	2495.750M	37.1		+1.3	+20.1		+0.0	58.5	88.0	-29.5	Anten
4	2485.800M	36.7		+1.3	+20.1		+0.0	58.1	88.0	-29.9	Anten
5	2493.850M	36.6		+1.3	+20.1		+0.0	58.0	88.0	-30.0	Anten

6	2484.050M	36.3	+1.3	+20.1	+0.0	57.7	88.0	-30.3	Anten
7	2490.050M	36.1	+1.3	+20.1	+0.0	57.5	88.0	-30.5	Anten
8	2488.225M	35.8	+1.3	+20.1	+0.0	57.2	88.0	-30.8	Anten


CKC Laboratories, Inc. Date: 1/21/2011 Time: 4:11:18 PM Dust Networks WO#: 91269
15.247(d) Conducted Spurious Emissions Test Lead: Antenna Port Antenna Port Sequence#: 3 Ext ATTN: 0 dB

Test Setup Photos

15.247(d) Radiated Spurious Emissions

Test Data

*DCCF transducer Duty Cycle Correction applied where needed and applicable.

2dBi Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Radiated Spurious Emissions**
 Work Order #: **91269** Date: 1/30/2011
 Test Type: **Radiated Scan** Time: 09:17:33
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 1
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00052	Loop Antenna	6502	6/8/2010	6/8/2012
T2	AN01316	Preamp	8447D	5/21/2010	5/21/2012
T3	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T4	ANP05360	Cable	RG214	11/8/2010	11/8/2012
T5	ANP05366	Cable	RG-214	10/20/2009	10/20/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T7	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T8	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	5/7/2010	5/7/2012
T9	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T10	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T11	AN03116	High Pass Filter	11SH10-00313	1/26/2011	1/26/2013
T12	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T13	ANWO91269	Duty Cycle Correction Factor		NCR	NCR
T14	AN02742	Active Horn Antenna-ANSI C63.5 Antenna Factors (dB)	AMFW-5F-18002650-20-10P	11/10/2010	11/10/2012
T15	AN02763-69	Waveguide	Multiple	9/2/2010	9/2/2012
T16	ANP05425	Cable	PE35591-120	12/17/2009	12/17/2011
T17	ANP05428	Cable	PE35591-60	12/17/2009	12/17/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
2.4 GHz Wireless Mote*	Dust Networks	M2511	NA
2dBi Antenna	NA	NA	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C

Humidity: 34%

Pressure: 102.1kPa

Freq. Range: 9kHz-26GHz

RBW: 9-250kHz = 200Hz

0.250-30MHz = 9kHz

30-1000MHz = 100kHz

1-26GHz = 1MHz

VBW: 9-250kHz = 600Hz

0.250-30MHz = 27kHz

30-1000MHz = 300kHz

1-26GHz = 10Hz

Sweep: Auto

Mode: TX

EUT is raised 80cm from the ground plane with styrofoam.

EUT is at 3m from the receive antenna.

EUT is connected to the support laptop through a TTL Converter.

The TTL converter is connected to the support laptop through a RS232 (serial) cable.

Antenna port connected to +2 dBi Type N Plug antenna.

Duty Cycle Correction Factor will be applied where the emissions are above the limit.

DCCF = 20 log (On time/100ms) = -9.2dB

Support laptop is setting the EUT in the proper mode and channels:

LOW = 2405MHz

MID = 2440MHz

HIGH = 2475MHz

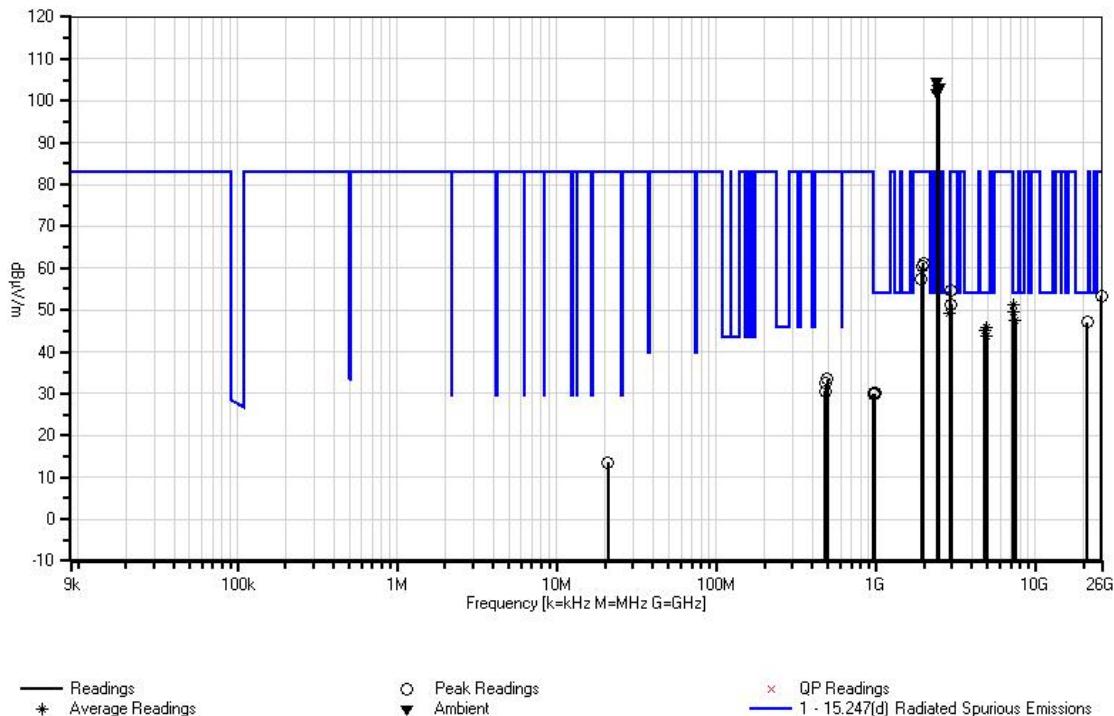
Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB

Measurement Data:

Reading listed by margin.

Test Distance: 3 Meters


#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17								
	MHz	dB μ V	dB	dB	dB	dB	Table	dB μ V/m	dB μ V/m	dB	Ant
1	2404.915M	66.7	+0.0	+0.0	+0.0	+0.0	+0.0	104.7	103.0	+1.7	Verti
	Ambient		+0.0	+1.3	+0.0	+27.9	290				
			-34.5	+0.3	+40.3	+2.7					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	2475.480M	70.8	+0.0	+0.0	+0.0	+0.0	+0.0	103.3	103.0	+0.3	Verti
	Ambient		+0.0	+1.3	+0.0	+27.9	290				
			-34.4	+0.2	+34.7	+2.8					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

3	2440.486M	67.8	+0.0	+0.0	+0.0	+0.0	+0.0	103.0	103.0	+0.0	Verti
Ambient			+0.0	+1.3	+0.0	+27.9	329		MID Fundamental		119
			-34.5	+0.3	+37.5	+2.7					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
4	2405.023M	64.0	+0.0	+0.0	+0.0	+0.0	+0.0	102.0	103.0	-1.0	Horiz
Ambient			+0.0	+1.3	+0.0	+27.9	251		LOW Fundamental		126
			-34.5	+0.3	+40.3	+2.7					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
5	7321.488M	48.2	+0.0	+0.0	+0.0	+0.0	+0.0	49.5	54.0	-4.5	Verti
Ave			+0.0	+2.4	+0.0	+36.1	190		MID		128
			-34.6	+0.5	+0.9	+5.2					
			-9.2	+0.0	+0.0	+0.0					
			+0.0								
6	2886.930M	46.9	+0.0	+0.0	+0.0	+0.0	+0.0	49.3	54.0	-4.7	Verti
Ave			+0.0	+1.6	+0.0	+28.8	293		LOW		119
			-34.3	+0.3	+3.0	+3.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
7	7426.444M	46.1	+0.0	+0.0	+0.0	+0.0	+0.0	47.4	54.0	-6.6	Verti
Ave			+0.0	+2.3	+0.0	+36.2	195		HIGH		150
			-34.6	+0.4	+0.9	+5.3					
			-9.2	+0.0	+0.0	+0.0					
			+0.0								
8	21128.000M	38.3	+0.0	+0.0	+0.0	+0.0	+0.0	47.0	54.0	-7.0	Verti
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	-12.9	+0.4	+13.9					
			+7.3								
9	4880.963M	39.1	+0.0	+0.0	+0.0	+0.0	+0.0	45.8	54.0	-8.2	Verti
Ave			+0.0	+2.0	+0.0	+33.0	180		MID		119
			-33.7	+0.4	+0.8	+4.2					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
10	4809.003M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	45.3	54.0	-8.7	Verti
Ave			+0.0	+2.0	+0.0	+32.9	219		LOW		157
			-33.8	+0.4	+0.8	+4.2					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
11	4948.966M	36.9	+0.0	+0.0	+0.0	+0.0	+0.0	43.8	54.0	-10.2	Verti
Ave			+0.0	+2.0	+0.0	+33.1	217		HIGH		135
			-33.7	+0.4	+0.8	+4.3					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
12	1980.003M	63.8	+0.0	+0.0	+0.0	+0.0	+0.0	61.2	83.0	-21.8	Verti
			+0.0	+1.2	+0.0	+28.1	290				119
			-34.7	+0.3	+0.0	+2.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

13	1951.989M	63.2	+0.0	+0.0	+0.0	+0.0	+0.0	60.4	83.0	-22.6	Verti
			+0.0	+1.2	+0.0	+28.0	329				119
			-34.8	+0.3	+0.0	+2.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
14	976.983M	29.9	+0.0	-29.0	+24.1	+2.0	+0.0	30.1	54.0	-23.9	Verti
			+2.3	+0.8	+0.0	+0.0	109		MID		105
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
15	990.965M	29.4	+0.0	-28.9	+24.3	+2.1	+0.0	30.1	54.0	-23.9	Verti
			+2.4	+0.8	+0.0	+0.0	105		HIGH		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
16	961.018M	30.1	+0.0	-29.1	+23.9	+2.0	+0.0	29.9	54.0	-24.1	Verti
			+2.2	+0.8	+0.0	+0.0	104		LOW		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
17	1924.023M	60.3	+0.0	+0.0	+0.0	+0.0	+0.0	57.2	83.0	-25.8	Verti
			+0.0	+1.2	+0.0	+27.8	290				125
			-34.9	+0.3	+0.0	+2.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
18	2927.943M	52.6	+0.0	+0.0	+0.0	+0.0	+0.0	54.8	83.0	-28.2	Verti
			+0.0	+1.6	+0.0	+28.9			MID		119
			-34.2	+0.3	+2.5	+3.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
19	25792.000 M	40.6	+0.0	+0.0	+0.0	+0.0	+0.0	53.4	83.0	-29.6	Verti
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	-11.2	+0.3	+15.6					
			+8.1								
20	7216.334M Ave	50.0	+0.0	+0.0	+0.0	+0.0	+0.0	51.4	83.0	-31.6	Verti
			+0.0	+2.5	+0.0	+36.0	203		LOW		107
			-34.6	+0.5	+1.0	+5.2					
			-9.2	+0.0	+0.0	+0.0					
			+0.0								
21	2970.047M	49.3	+0.0	+0.0	+0.0	+0.0	+0.0	51.3	83.0	-31.7	Verti
			+0.0	+1.6	+0.0	+29.0	290		HIGH		119
			-34.2	+0.3	+2.2	+3.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
22	494.875M	41.9	+0.0	-29.6	+17.9	+1.3	+0.0	33.5	83.0	-49.5	Verti
			+1.5	+0.5	+0.0	+0.0	105		HIGH		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

23	487.645M	40.9	+0.0	-29.6	+17.8	+1.3	+0.0	32.4	83.0	-50.6	Verti
			+1.5	+0.5	+0.0	+0.0	95		MID		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
24	480.880M	39.1	+0.0	-29.6	+17.7	+1.3	+0.0	30.5	83.0	-52.5	Verti
			+1.5	+0.5	+0.0	+0.0	100		LOW		110
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
25	20.935M	45.3	+7.6	+0.0	+0.0	+0.2	-40.0	13.6	83.0	-69.4	Verti
			+0.4	+0.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
26	33.466k	55.5	+11.1	+0.0	+0.0	+0.0	-80.0	-13.3	83.0	-96.3	Verti
			+0.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					

CKC Laboratories, Inc. Date: 1/30/2011 Time: 09:17:33 Dust Networks WO#: 91269
 15.247(d) Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#: 1 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Radiated Spurious Emissions**
 Work Order #: **91269** Date: 1/29/2011
 Test Type: **Radiated Scan** Time: 10:08:55
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 3
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN01316	Preamp	8447D	5/21/2010	5/21/2012
	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
	ANP05360	Cable	RG214	11/8/2010	11/8/2012
	ANP05366	Cable	RG-214	10/20/2009	10/20/2011
T1	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T2	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T3	AN02374	Horn Antenna-ANSI C63.5 Calibration	RGA-60	10/12/2009	10/12/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
	AN03116	High Pass Filter	11SH10-00313	1/26/2011	1/26/2013
T6	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
	ANWO91269	Duty Cycle Correction Factor		NCR	NCR

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
2dBi Antenna	NA	NA	NA
2.4 GHz Wireless Mote*	Dust Networks	M2511	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTT33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C

Humidity: 34%

Pressure: 102.1kPa

Freq. Range: 2378-2405MHz

RBW: 1MHz

VBW: 10Hz

Sweep: Auto

Mode: TX

EUT is raised 80cm from the ground plane with styrofoam.

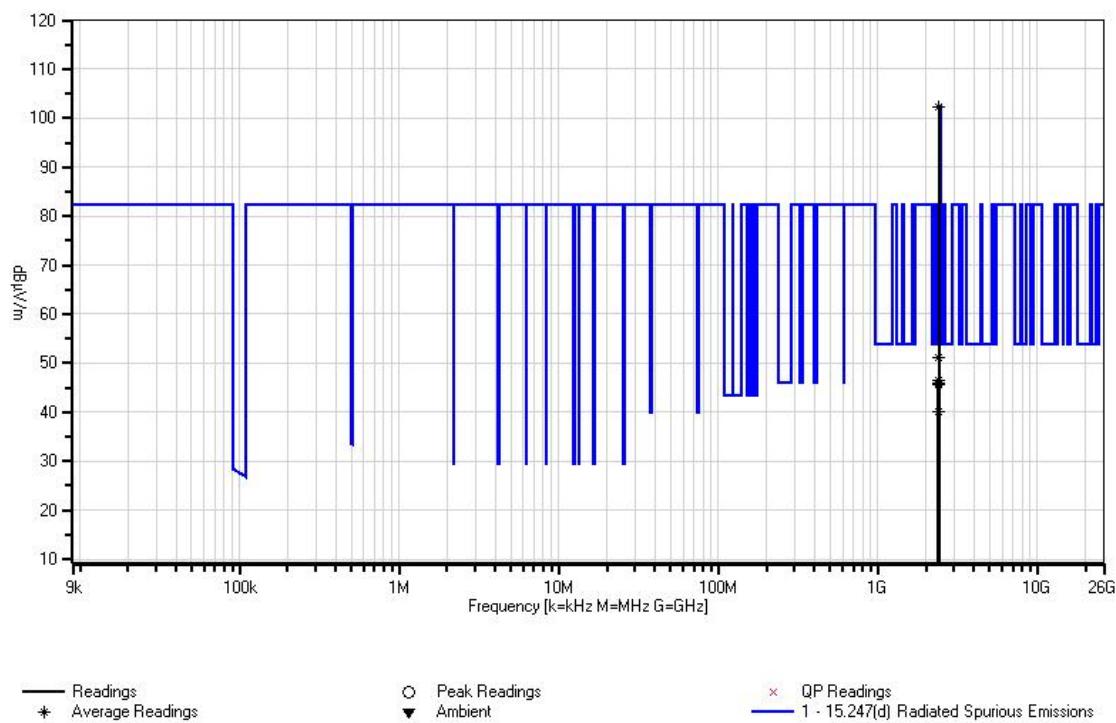
EUT is at 3m from the receive antenna.

EUT is connected to the support laptop through a TTL Converter.

The TTL converter is connected to the support laptop through a RS232 (serial) cable.

Antenna port connected to +2 dBi Type N Plug antenna.

Support laptop is setting the EUT in the proper mode and channels:


LOW = 2405MHz

Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB

#	Freq MHz	Rdng dB μ V	Reading listed by margin.				Test Distance: 3 Meters			
			T1 T5 dB	T2 T6 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB
			+1.3 +0.3	+0.0 +2.7	+28.9	-34.5	+0.0	102.3	102.3	+0.0
1	2404.946M Ave	103.6	+1.3 +0.3	+0.0 +2.7	+28.9	-34.5	+0.0 290	102.3	102.3	+0.0 Verti 125
2	2384.291M Ave	48.0	+1.3 +0.3	+0.0 +2.7	+28.8	-34.5	+0.0 290	46.6	54.0	-7.4 Verti 125
3	2385.717M Ave	46.9	+1.3 +0.3	+0.0 +2.7	+28.8	-34.5	+0.0 290	45.5	54.0	-8.5 Verti 125
4	2390.000M Ave	41.4	+1.3 +0.3	+0.0 +2.7	+28.8	-34.5	+0.0 290	40.0	54.0	-14.0 Verti 125
5	2400.000M Ave	52.6	+1.3 +0.3	+0.0 +2.7	+28.8	-34.5	+0.0 290	51.2	82.3	-31.1 Verti 125
6	2399.978M Ave	52.6	+1.3 +0.3	+0.0 +2.7	+28.8	-34.5	+0.0 290	51.2	82.3	-31.1 Verti 125
7	2396.090M Ave	47.2	+1.3 +0.3	+0.0 +2.7	+28.8	-34.5	+0.0 290	45.8	82.3	-36.5 Verti 125

CKC Laboratories, Inc. Date: 1/29/2011 Time: 10:08:55 Dust Networks WO#: 91269
15.247(d) Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#: 3 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Radiated Spurious Emissions**
 Work Order #: **91269** Date: 1/29/2011
 Test Type: **Radiated Scan** Time: 10:05:40
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 2
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN01316	Preamp	8447D	5/21/2010	5/21/2012
	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
	ANP05360	Cable	RG214	11/8/2010	11/8/2012
	ANP05366	Cable	RG-214	10/20/2009	10/20/2011
T1	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T2	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T3	AN02374	Horn Antenna-ANSI C63.5 Calibration	RGA-60	10/12/2009	10/12/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
	AN03116	High Pass Filter	11SH10-00313	1/26/2011	1/26/2013
T6	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
	ANWO91269	Duty Cycle Correction Factor		NCR	NCR

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
2dBi Antenna	NA	NA	NA
2.4 GHz Wireless Mote*	Dust Networks	M2511	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C

Humidity: 34%

Pressure: 102.1kPa

Freq. Range: 2475-2500MHz

RBW: 1MHz

VBW: 10Hz

Sweep: Auto

Mode: TX

EUT is raised 80cm from the ground plane with styrofoam.

EUT is at 3m from the receive antenna.

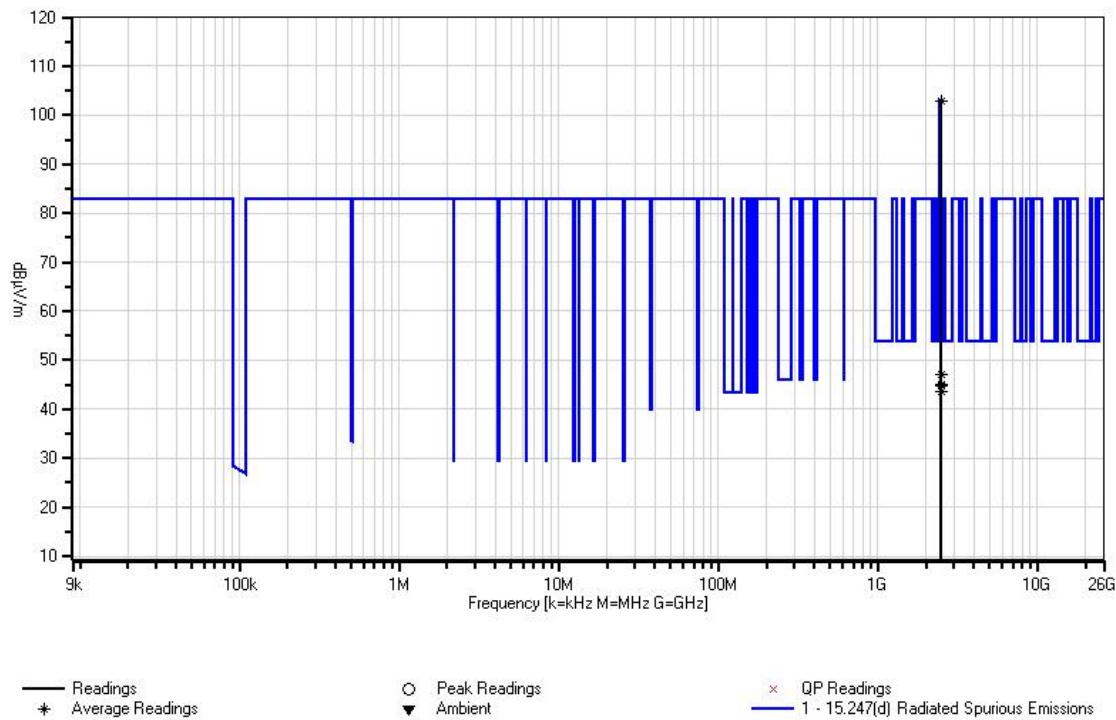
EUT is connected to the support laptop through a TTL Converter.

The TTL converter is connected to the support laptop through a RS232 (serial) cable.

Antenna port connected to +2 dBi Type N Plug antenna.

Support laptop is setting the EUT in the proper mode and channels:

HIGH = 2475MHz


Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6			Table	dB μ V/m	dB μ V/m		
	MHz	dB μ V	dB	dB	dB	dB					
1	2475.000M	104.0	+1.3	+0.0	+29.0	-34.4	+0.0	102.9	102.9	+0.0	Verti
	Ave		+0.2	+2.8			290				119
2	2494.275M	48.2	+1.3	+0.0	+29.0	-34.4	+0.0	47.1	54.0	-6.9	Verti
	Ave		+0.2	+2.8			290				119
3	2483.725M	46.0	+1.3	+0.0	+29.0	-34.4	+0.0	44.9	54.0	-9.1	Verti
	Ave		+0.2	+2.8			290				119
4	2483.500M	45.8	+1.3	+0.0	+29.0	-34.4	+0.0	44.7	54.0	-9.3	Verti
	Ave		+0.2	+2.8			290				119
5	2495.750M	44.7	+1.3	+0.0	+29.0	-34.4	+0.0	43.6	54.0	-10.4	Verti
	Ave		+0.2	+2.8			290				119

CKC Laboratories, Inc. Date: 1/29/2011 Time: 10:05:40 Dust Networks WO#: 91269
15.247(d) Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#: 2 Ext ATTN: 0 dB

6dBi Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Radiated Spurious Emissions**
 Work Order #: **91269** Date: 1/30/2011
 Test Type: **Radiated Scan** Time: 09:20:24
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 1
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00052	Loop Antenna	6502	6/8/2010	6/8/2012
T2	AN01316	Preamp	8447D	5/21/2010	5/21/2012
T3	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T4	ANP05360	Cable	RG214	11/8/2010	11/8/2012
T5	ANP05366	Cable	RG-214	10/20/2009	10/20/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T7	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T8	AN01467	Horn Antenna-ANSI C63.5	3115	5/7/2010	5/7/2012
		Calibration			
T9	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T10	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T11	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T12	AN03116	High Pass Filter	11SH10-00313	1/26/2011	1/26/2013
T13	ANWO91269	Duty Cycle Correction Factor		NCR	NCR
T14	AN02742	Active Horn Antenna-ANSI C63.5 Antenna Factors (dB)	AMFW-5F-18002650-20-10P	11/10/2010	11/10/2012
T15	AN02763-69	Waveguide	Multiple	9/2/2010	9/2/2012
T16	ANP05425	Cable	PE35591-120	12/17/2009	12/17/2011
T17	ANP05428	Cable	PE35591-60	12/17/2009	12/17/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
6dBi Antenna	Phoenix Contact	RAD-ISM-2400-ANT-OMNI-6-0	2003662623
2.4 GHz Wireless Mote*	Dust Networks	M2511	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C

Humidity: 34%

Pressure: 102.1kPa

Freq. Range: 9kHz-26GHz

RBW: 9-250kHz = 200Hz

0.250-30MHz = 9kHz

30-1000MHz = 100kHz

1-26GHz = 1MHz

VBW: 9-250kHz = 600Hz

0.250-30MHz = 27kHz

30-1000MHz = 300kHz

1-26GHz = 10Hz

Sweep: Auto

Mode: TX

EUT is raised 80cm from the ground plane with styrofoam.

EUT is at 3m from the receive antenna.

EUT is connected to the support laptop through a TTL Converter.

The TTL converter is connected to the support laptop through a RS232 (serial) cable.

Antenna port connected to +6 dBi Antenna assembly.

Duty Cycle Correction Factor will be applied where the emissions are above the limit.

DCCF = 20 log (On time/100ms) = -9.2dB

Support laptop is setting the EUT in the proper mode and channels:

LOW = 2405MHz

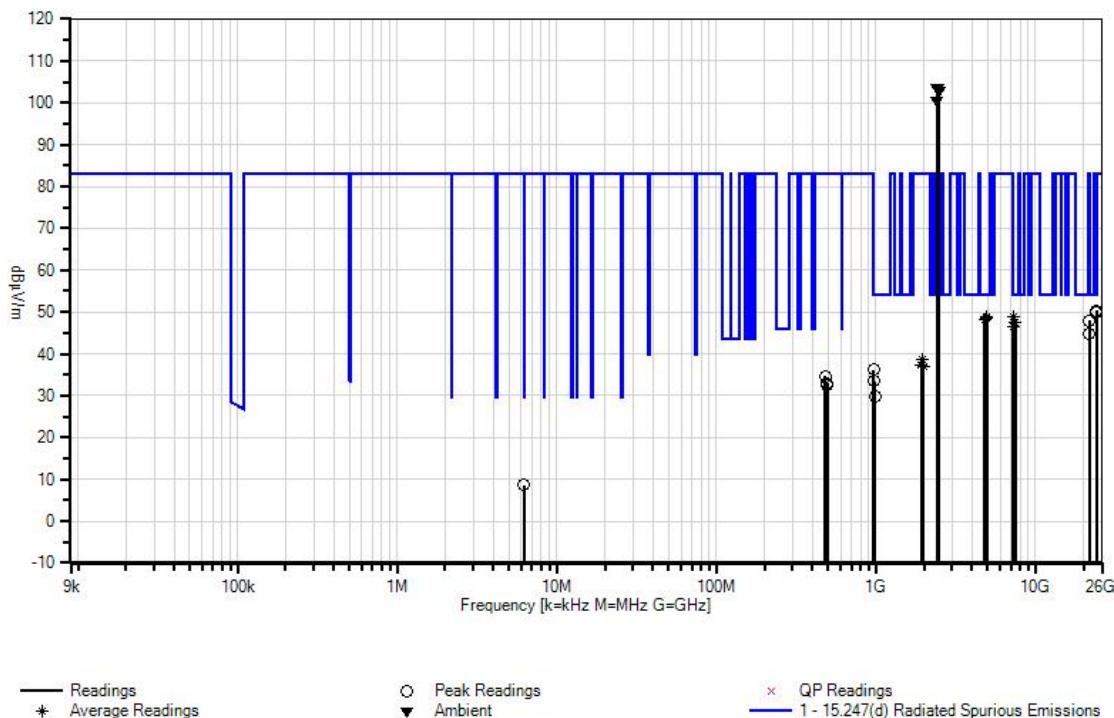
MID = 2440MHz

HIGH = 2475MHz

Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB

Measurement Data: Reading listed by margin. Test Distance: 3 Meters


#	Freq	Rdng	Reading listed by margin.				Dist	Corr	Spec	Margin	Polar
			T1	T2	T3	T4					
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17								
			MHz	dB μ V	dB	dB	dB	Table	dB μ V/m	dB μ V/m	dB
1	2405.500M	65.7		+0.0	+0.0	+0.0	+0.0	+0.0	103.6	103.0	+0.6
	Ambient			+0.0	+1.3	+0.0	+27.9	163		LOW Fundamental	Verti
				+0.3	+2.7	-34.5	+40.2				100
				+0.0	+0.0	+0.0	+0.0				
				+0.0							
2	2440.450M	68.4		+0.0	+0.0	+0.0	+0.0	+0.0	103.6	103.0	+0.6
	Ambient			+0.0	+1.3	+0.0	+27.9	175		MID Fundamental	Verti
				+0.3	+2.7	-34.5	+37.5				100
				+0.0	+0.0	+0.0	+0.0				
				+0.0							

3	2475.514M	70.5	+0.0	+0.0	+0.0	+0.0	+0.0	103.0	103.0	+0.0	Verti
Ambient			+0.0	+1.3	+0.0	+27.9	164		HIGH Fundamental		100
			+0.2	+2.8	-34.4	+34.7					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
4	2404.960M	62.8	+0.0	+0.0	+0.0	+0.0	+0.0	100.8	103.0	-2.2	Horiz
Ambient			+0.0	+1.3	+0.0	+27.9	315		LOW Fundamental		100
			+0.3	+2.7	-34.5	+40.3					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
5	4879.039M	42.3	+0.0	+0.0	+0.0	+0.0	+0.0	49.0	54.0	-5.0	Verti
Ave			+0.0	+2.0	+0.0	+33.0	192		LOW		100
			+0.4	+4.2	-33.7	+0.8					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
6	4949.001M	41.5	+0.0	+0.0	+0.0	+0.0	+0.0	48.4	54.0	-5.6	Verti
Ave			+0.0	+2.0	+0.0	+33.1	192		HIGH		100
			+0.4	+4.3	-33.7	+0.8					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
7	4810.923M	41.7	+0.0	+0.0	+0.0	+0.0	+0.0	48.2	54.0	-5.8	Verti
Ave			+0.0	+2.0	+0.0	+32.9	191		LOW		104
			+0.4	+4.2	-33.8	+0.8					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
8	7426.524M	46.1	+0.0	+0.0	+0.0	+0.0	+0.0	47.4	54.0	-6.6	Verti
Ave			+0.0	+2.3	+0.0	+36.2	192		HIGH		114
			+0.4	+5.3	-34.6	+0.9					
			-9.2	+0.0	+0.0	+0.0					
			+0.0								
9	7321.471M	45.1	+0.0	+0.0	+0.0	+0.0	+0.0	46.4	54.0	-7.6	Verti
Ave			+0.0	+2.4	+0.0	+36.1	149		MID		108
			+0.5	+5.2	-34.6	+0.9					
			-9.2	+0.0	+0.0	+0.0					
			+0.0								
10	963.005M	36.4	+0.0	-29.0	+23.9	+2.0	+0.0	36.3	54.0	-17.7	Verti
			+2.2	+0.8	+0.0	+0.0	286		LOW		115
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
11	975.000M	33.2	+0.0	-29.0	+24.1	+2.0	+0.0	33.4	54.0	-20.6	Verti
			+2.3	+0.8	+0.0	+0.0	83		MID		111
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
12	988.965M	29.2	+0.0	-28.9	+24.3	+2.1	+0.0	29.9	54.0	-24.1	Verti
			+2.4	+0.8	+0.0	+0.0	101		HIGH		126
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

13	24051.510	40.3	+0.0	+0.0	+0.0	+0.0	+0.0	50.3	83.0	-32.7	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0	242				116
			+0.0	-13.5	+0.4	+15.1					
			+8.0								
14	24048.870	39.9	+0.0	+0.0	+0.0	+0.0	+0.0	49.9	83.0	-33.1	Verti
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0	242				116
			+0.0	-13.5	+0.4	+15.1					
			+8.0								
15	7216.536M	47.4	+0.0	+0.0	+0.0	+0.0	+0.0	48.8	83.0	-34.2	Verti
	Ave		+0.0	+2.5	+0.0	+36.0	191		LOW		100
			+0.5	+5.2	-34.6	+1.0					
			-9.2	+0.0	+0.0	+0.0					
			+0.0								
16	21643.680	40.2	+0.0	+0.0	+0.0	+0.0	+0.0	48.0	83.0	-35.0	Horiz
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0	242				116
			+0.0	-14.3	+0.6	+14.1					
			+7.4								
17	21647.340	37.0	+0.0	+0.0	+0.0	+0.0	+0.0	44.8	83.0	-38.2	Verti
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0	242				116
			+0.0	-14.3	+0.6	+14.1					
			+7.4								
18	1952.013M	41.3	+0.0	+0.0	+0.0	+0.0	+0.0	38.5	83.0	-44.5	Verti
	Ave		+0.0	+1.2	+0.0	+28.0	235		MID		100
			+0.3	+2.5	-34.8	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
19	1924.014M	40.4	+0.0	+0.0	+0.0	+0.0	+0.0	37.3	83.0	-45.7	Verti
	Ave		+0.0	+1.2	+0.0	+27.8	154		LOW		174
			+0.3	+2.5	-34.9	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
20	1980.017M	39.4	+0.0	+0.0	+0.0	+0.0	+0.0	36.8	83.0	-46.2	Verti
	Ave		+0.0	+1.2	+0.0	+28.1	242		HIGH		116
			+0.3	+2.5	-34.7	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
21	480.900M	43.3	+0.0	-29.6	+17.7	+1.3	+0.0	34.7	83.0	-48.3	Verti
			+1.5	+0.5	+0.0	+0.0	193		LOW		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
22	495.220M	41.4	+0.0	-29.6	+17.9	+1.3	+0.0	33.0	83.0	-50.0	Verti
			+1.5	+0.5	+0.0	+0.0	191		HIGH		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

23	488.199M	41.0	+0.0	-29.6	+17.8	+1.3	+0.0	32.5	83.0	-50.5	Verti
			+1.5	+0.5	+0.0	+0.0	191		MID		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
24	6.200M	38.9	+9.5	+0.0	+0.0	+0.1	-40.0	8.7	83.0	-74.3	Verti
			+0.2	+0.0	+0.0	+0.0	360				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
25	25.999k	55.1	+11.9	+0.0	+0.0	+0.0	-80.0	-12.9	83.0	-95.9	Verti
			+0.1	+0.0	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					

CKC Laboratories, Inc. Date: 1/30/2011 Time: 09:20:24 Dust Networks WO#: 91269
 15.247(d) Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#: 1 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Radiated Spurious Emissions**
 Work Order #: **91269** Date: 1/25/2011
 Test Type: **Radiated Scan** Time: 16:00:05
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 2
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN01316	Preamp	8447D	5/21/2010	5/21/2012
	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
	ANP05360	Cable	RG214	11/8/2010	11/8/2012
	ANP05366	Cable	RG-214	10/20/2009	10/20/2011
T1	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T2	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T3	AN03209	Preamp	83051A	10/29/2010	10/29/2012
T4	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	5/7/2010	5/7/2012
T5	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T6	ANP05542	Cable	Heliax	10/23/2009	10/23/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
6dBi Antenna	Phoenix Contact	RAD-ISM-2400-ANT-OMNI-6-0	2003662623
2.4 GHz Wireless Mote*	Dust Networks	M2511	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C
 Humidity: 34%
 Pressure: 102.1kPa
 Freq. Range: 2378-2405MHz
 RBW: 1MHz
 VBW: 10Hz
 Sweep: Auto
 Mode: TX

EUT is raised 80cm from the ground plane with styrofoam.

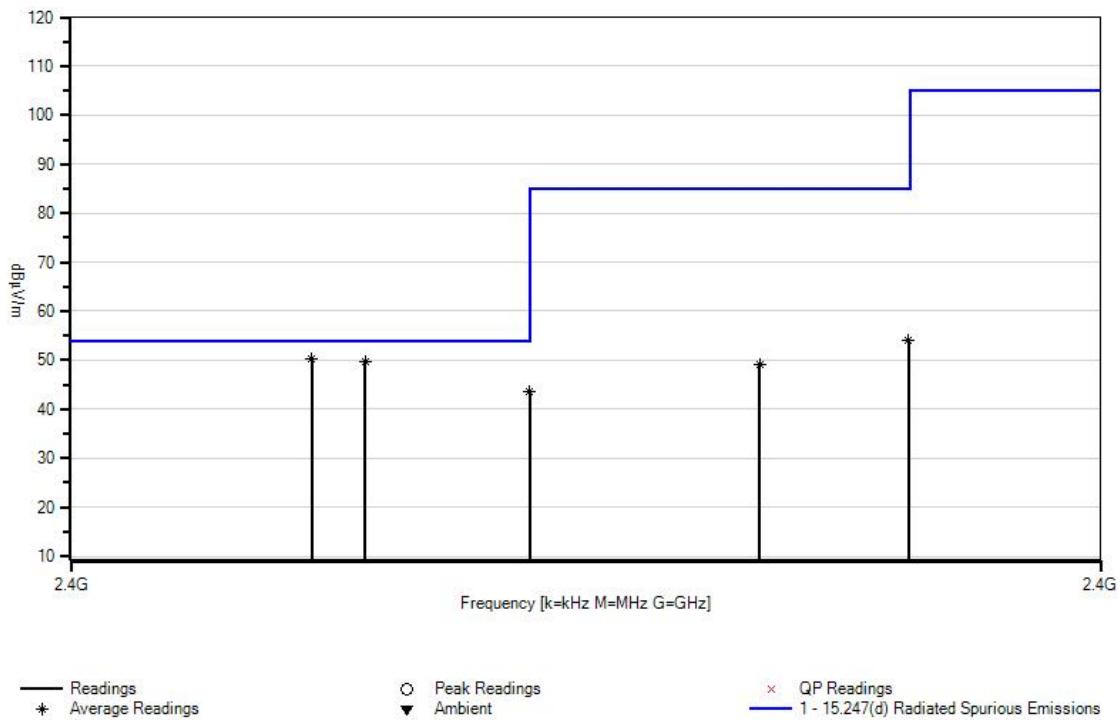
EUT is at 3m from the receive antenna.

EUT is connected to the support laptop through a TTL Converter.

The TTL converter is connected to the support laptop through a RS232 (serial) cable.

Antenna port connected to +6 dBi Antenna assembly.

Support laptop is setting the EUT in the proper mode and channels:


LOW = 2405MHz

Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB

#	Freq MHz	Rdng dB μ V	Reading listed by margin.				Test Distance: 3 Meters				
			T1 T5 dB	T2 T6 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
			+1.3 +0.3	+0.0 +2.7	-26.7	+28.0	+0.0 302	50.4	54.0	-3.6	Verti 107
1	2384.291M Ave	44.8	+1.3 +0.3	+0.0 +2.7	-26.7	+28.0	+0.0 302	49.6	54.0	-4.4	Verti 107
2	2385.695M Ave	44.0	+1.3 +0.3	+0.0 +2.7	-26.7	+28.0	+0.0 302	43.7	54.0	-10.3	Verti 107
3	2390.000M Ave	38.1	+1.3 +0.3	+0.0 +2.7	-26.7	+28.0	+0.0 302	54.0	85.1	-31.1	Verti 107
4	2399.951M Ave	48.5	+1.3 +0.3	+0.0 +2.7	-26.7	+27.9	+0.0 302	54.0	85.1	-36.1	Verti 107
5	2396.036M Ave	43.4	+1.3 +0.3	+0.0 +2.7	-26.7	+28.0	+0.0 302	49.0	85.1	-36.1	Verti 107

CKC Laboratories, Inc. Date: 1/25/2011 Time: 16:00:05 Dust Networks WO#: 91269
15.247(d) Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#: 2 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Radiated Spurious Emissions**
 Work Order #: **91269** Date: 1/25/2011
 Test Type: **Radiated Scan** Time: 16:08:43
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 3
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN01316	Preamp	8447D	5/21/2010	5/21/2012
	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
	ANP05360	Cable	RG214	11/8/2010	11/8/2012
	ANP05366	Cable	RG-214	10/20/2009	10/20/2011
T1	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T2	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T3	AN03209	Preamp	83051A	10/29/2010	10/29/2012
T4	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	5/7/2010	5/7/2012
T5	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T6	ANP05542	Cable	Heliax	10/23/2009	10/23/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
6dBi Antenna	Phoenix Contact	RAD-ISM-2400-ANT-OMNI-6-0	2003662623
2.4 GHz Wireless Mote*	Dust Networks	M2511	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C

Humidity: 34%

Pressure: 102.1kPa

Freq. Range: 2475-2500MHz

RBW: 1MHz

VBW: 10Hz

Sweep: Auto

Mode: TX

EUT is raised 80cm from the ground plane with styrofoam.

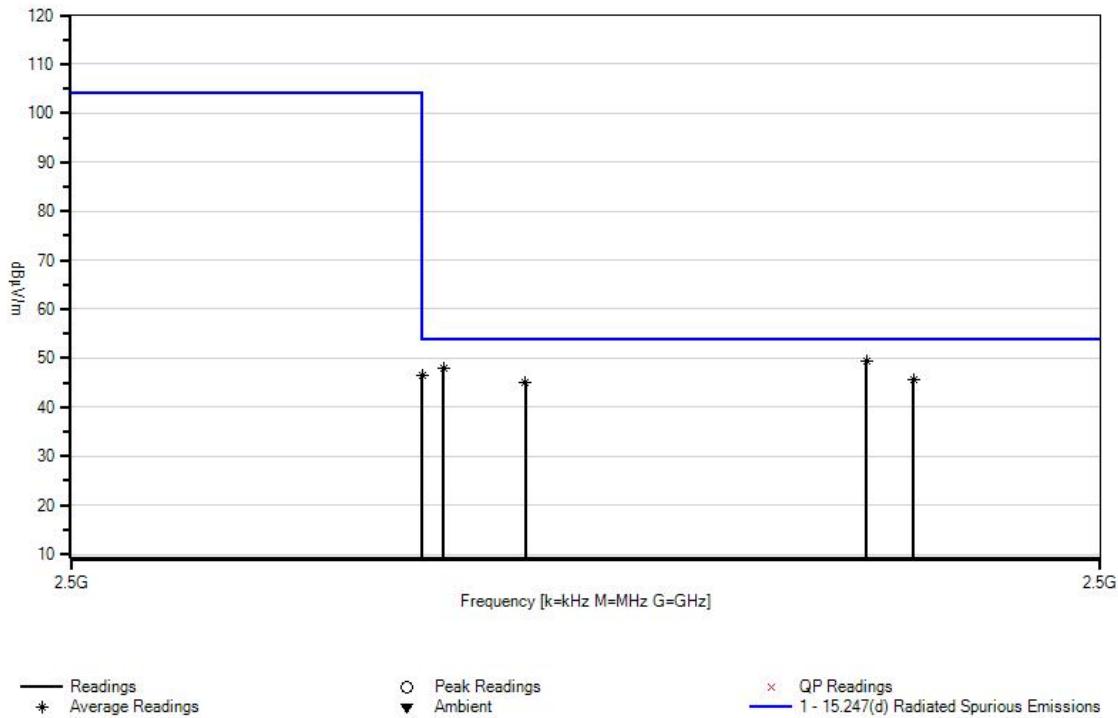
EUT is at 3m from the receive antenna.

EUT is connected to the support laptop through a TTL Converter.

The TTL converter is connected to the support laptop through a RS232 (serial) cable.

Antenna port connected to +6 dBi Antenna assembly.

Support laptop is setting the EUT in the proper mode and channels:


HIGH = 2475MHz

Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB

#	Freq MHz	Rdng dB μ V	Reading listed by margin.				Test Distance: 3 Meters				
			T1 T5 dB	T2 T6 dB	T3 dB	T4 dB	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
			+1.3 +0.2	+0.0 +2.8	-26.8	+27.9	+0.0 177	49.3	54.0	-4.7 112	Verti 112
1	2494.300M	43.9	+1.3 +0.2	+0.0 +2.8	-26.8	+27.9	+0.0 177	49.3	54.0	-4.7 112	Verti 112
2	2484.025M	42.4	+1.3 +0.2	+0.0 +2.8	-26.8	+27.9	+0.0 177	47.8	54.0	-6.2 112	Verti 112
3	2483.500M	41.0	+1.3 +0.2	+0.0 +2.8	-26.8	+27.9	+0.0 177	46.4	54.0	-7.6 112	Verti 112
4	2495.450M	40.1	+1.3 +0.2	+0.0 +2.8	-26.8	+27.9	+0.0 177	45.5	54.0	-8.5 112	Verti 112
5	2486.000M	39.5	+1.3 +0.2	+0.0 +2.8	-26.8	+27.9	+0.0 177	44.9	54.0	-9.1 112	Verti 112

CKC Laboratories, Inc. Date: 1/25/2011 Time: 16:08:43 Dust Networks WO#: 91269
15.247(d) Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#: 3 Ext ATTN: 0 dB

8dBi Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Radiated Spurious Emissions**
 Work Order #: **91269** Date: 1/30/2011
 Test Type: **Radiated Scan** Time: 09:33:49
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 1
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00052	Loop Antenna	6502	6/8/2010	6/8/2012
T2	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T3	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T4	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	5/7/2010	5/7/2012
T5	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T6	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T7	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T8	AN03116	High Pass Filter	11SH10-00313	1/26/2011	1/26/2013
T9	ANWO91269	Duty Cycle Correction Factor		NCR	NCR
T10	AN01316	Preamp	8447D	5/21/2010	5/21/2012
T11	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T12	ANP05360	Cable	RG214	11/8/2010	11/8/2012
T13	ANP05366	Cable	RG-214	10/20/2009	10/20/2011
T14	AN02742	Active Horn Antenna-ANSI C63.5 Antenna Factors (dB)	AMFW-5F-18002650-20-10P	11/10/2010	11/10/2012
T15	AN02763-69	Waveguide	Multiple	9/2/2010	9/2/2012
T16	ANP05425	Cable	PE35591-120	12/17/2009	12/17/2011
T17	ANP05428	Cable	PE35591-60	12/17/2009	12/17/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
8dBi Antenna	Phoenix Contact	RAD-ISM-2400-ANT-PAN-8-0	1114211262
2.4 GHz Wireless Mote*	Dust Networks	M2511	N/A

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LPTTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C

Humidity: 34%

Pressure: 102.1kPa

Freq. Range: 9kHz-26GHz

RBW: 9-250kHz = 200Hz

0.250-30MHz = 9kHz

30-1000MHz = 100kHz

1-26GHz = 1MHz

VBW: 9-250kHz = 600Hz

0.250-30MHz = 27kHz

30-1000MHz = 300kHz

1-26GHz = 10Hz

Sweep: Auto

Mode: TX

EUT is raised 80cm from the ground plane with styrofoam.

EUT is at 3m from the receive antenna.

EUT is connected to the support laptop through a TTL Converter.

The TTL converter is connected to the support laptop through a RS232 (serial) cable.

Antenna port connected to +8 dBi Antenna assembly.

Duty Cycle Correction Factor will be applied where the emissions are above the limit.

DCCF = 20 log (On time/100ms) = -9.2dB

Support laptop is setting the EUT in the proper mode and channels:

LOW = 2405MHz

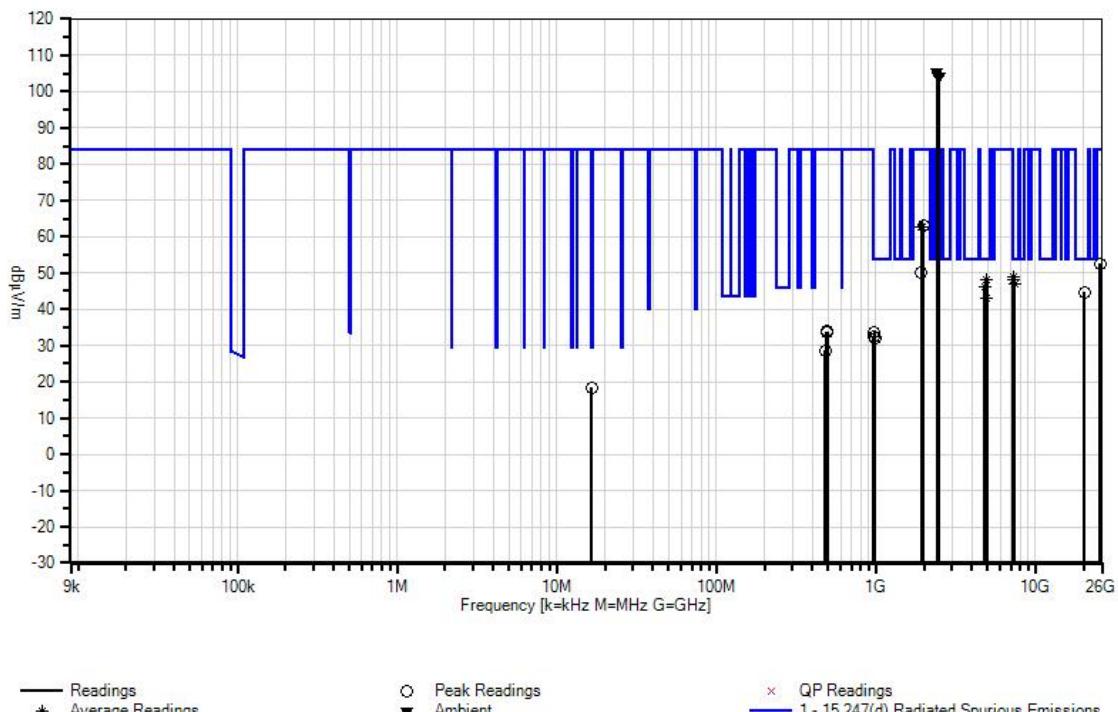
MID = 2440MHz

HIGH = 2475MHz

Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB

Measurement Data: Reading listed by margin. **Test Distance: 3 Meters**


#	Freq	Rdng	Reading listed by margin.				Dist	Corr	Spec	Margin	Polar
			T1	T2	T3	T4					
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17								
MHz		dB μ V		dB		dB		dB		dB	
1	2404.484M	67.3	+0.0	+1.3	+0.0	+27.9	+0.0	105.3	104.1	+1.2	Verti
			+0.3	+2.7	-34.5	+40.3	102	LOW Fundamental			117
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	2475.480M	71.7	+0.0	+1.3	+0.0	+27.9	+0.0	104.2	104.1	+0.1	Verti
			+0.2	+2.8	-34.4	+34.7	103	HIGH Fundamental			147
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
			+0.0								

3	2440.450M	68.9	+0.0	+1.3	+0.0	+27.9	+0.0	104.1	104.1	+0.0	Verti
Ambient			+0.3	+2.7	-34.5	+37.5	103		MID Fundamental		119
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
4	7321.404M	47.0	+0.0	+2.4	+0.0	+36.1	+0.0	48.3	54.0	-5.7	Verti
Ave			+0.5	+5.2	-34.6	+0.9	193		MID		152
			-9.2	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
5	4949.000M	41.1	+0.0	+2.0	+0.0	+33.1	+0.0	48.0	54.0	-6.0	Verti
Ave			+0.4	+4.3	-33.7	+0.8	167		HIGH		102
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
6	7423.507M	45.4	+0.0	+2.3	+0.0	+36.2	+0.0	46.8	54.0	-7.2	Verti
Ave			+0.5	+5.3	-34.6	+0.9	167		HIGH		136
			-9.2	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
7	4808.909M	39.6	+0.0	+2.0	+0.0	+32.9	+0.0	46.1	54.0	-7.9	Verti
Ave			+0.4	+4.2	-33.8	+0.8	137		LOW		142
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
8	20128.000M	36.4	+0.0	+0.0	+0.0	+0.0	+0.0	44.8	54.0	-9.2	Verti
M			+0.0	+0.0	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0	360				
			+0.0	-12.3	+0.3	+13.4					
			+7.0								
9	4878.906M	36.4	+0.0	+2.0	+0.0	+33.0	+0.0	43.1	54.0	-10.9	Verti
Ave			+0.4	+4.2	-33.7	+0.8	344		MID		212
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
10	974.805M	33.7	+0.0	+0.8	+0.0	+0.0	+0.0	33.8	54.0	-20.2	Verti
			+0.0	+0.0	+0.0	+0.0	360		MID		100
			+0.0	-29.0	+24.1	+2.0					
			+2.2	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
11	1980.021M	65.5	+0.0	+1.2	+0.0	+28.1	+0.0	62.9	84.1	-21.2	Verti
			+0.3	+2.5	-34.7	+0.0	85		HIGH		112
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
12	1923.949M	65.7	+0.0	+1.2	+0.0	+27.8	+0.0	62.6	84.1	-21.5	Verti
Ave			+0.3	+2.5	-34.9	+0.0	125		LOW		122
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					

13	961.992M	32.7	+0.0	+0.8	+0.0	+0.0	+0.0	32.5	54.0	-21.5	Verti
			+0.0	+0.0	+0.0	+0.0			LOW		153
			+0.0	-29.1	+23.9	+2.0					
			+2.2	+0.0	+0.0	+0.0					
			+0.0								
14	1952.088M	65.3	+0.0	+1.2	+0.0	+28.0	+0.0	62.5	84.1	-21.6	Verti
	Ave		+0.3	+2.5	-34.8	+0.0	95		MID		112
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
15	988.905M	31.2	+0.0	+0.8	+0.0	+0.0	+0.0	31.9	54.0	-22.1	Verti
			+0.0	+0.0	+0.0	+0.0	360		HIGH		100
			+0.0	-28.9	+24.3	+2.1					
			+2.4	+0.0	+0.0	+0.0					
			+0.0								
16	25472.000M	40.5	+0.0	+0.0	+0.0	+0.0	+0.0	52.6	84.1	-31.5	Verti
			+0.0	+0.0	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	-11.8	+0.3	+15.5					
			+8.1								
17	1923.959M	53.4	+0.0	+1.2	+0.0	+27.8	+0.0	50.3	84.1	-33.8	Horiz
			+0.3	+2.5	-34.9	+0.0	10		LOW		251
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
18	7216.462M	47.4	+0.0	+2.5	+0.0	+36.0	+0.0	48.8	84.1	-35.3	Verti
	Ave		+0.5	+5.2	-34.6	+1.0	190		LOW		120
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
19	487.905M	42.5	+0.0	+0.5	+0.0	+0.0	+0.0	34.0	84.1	-50.1	Verti
			+0.0	+0.0	+0.0	+0.0	360		MID		100
			+0.0	-29.6	+17.8	+1.3					
			+1.5	+0.0	+0.0	+0.0					
			+0.0								
20	495.027M	42.1	+0.0	+0.5	+0.0	+0.0	+0.0	33.7	84.1	-50.4	Verti
			+0.0	+0.0	+0.0	+0.0	360		HIGH		100
			+0.0	-29.6	+17.9	+1.3					
			+1.5	+0.0	+0.0	+0.0					
			+0.0								
21	480.905M	37.3	+0.0	+0.5	+0.0	+0.0	+0.0	28.7	84.1	-55.4	Verti
			+0.0	+0.0	+0.0	+0.0	360		LOW		100
			+0.0	-29.6	+17.7	+1.3					
			+1.5	+0.0	+0.0	+0.0					
			+0.0								

22	109.182k	40.1	+9.7	+0.0	+0.0	+0.0	-80.0	-30.1	26.9	-57.0	Verti
			+0.0	+0.0	+0.0	+0.0	360				100
			+0.0	+0.0	+0.0	+0.0					
			+0.1	+0.0	+0.0	+0.0					
			+0.0								
23	16.494M	49.0	+8.8	+0.0	+0.0	+0.0	-40.0	18.3	84.1	-65.8	Verti
			+0.0	+0.0	+0.0	+0.0					100
			+0.0	+0.0	+0.0	+0.2					
			+0.3	+0.0	+0.0	+0.0					
			+0.0								

CKC Laboratories, Inc. Date: 1/30/2011 Time: 09:33:49 Dust Networks WO#: 91269
 15.247(d) Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#: 1 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Radiated Spurious Emissions**
 Work Order #: **91269** Date: 1/28/2011
 Test Type: **Radiated Scan** Time: 15:09:20
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 3
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T2	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T3	AN01467	Horn Antenna-ANSI	3115	5/7/2010	5/7/2012
		C63.5 Calibration			
T4	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN01271	Preamp	83017A	9/17/2009	9/17/2011
	AN03116	High Pass Filter	11SH10-00313	1/26/2011	1/26/2013

Equipment Under Test (* = EUT):

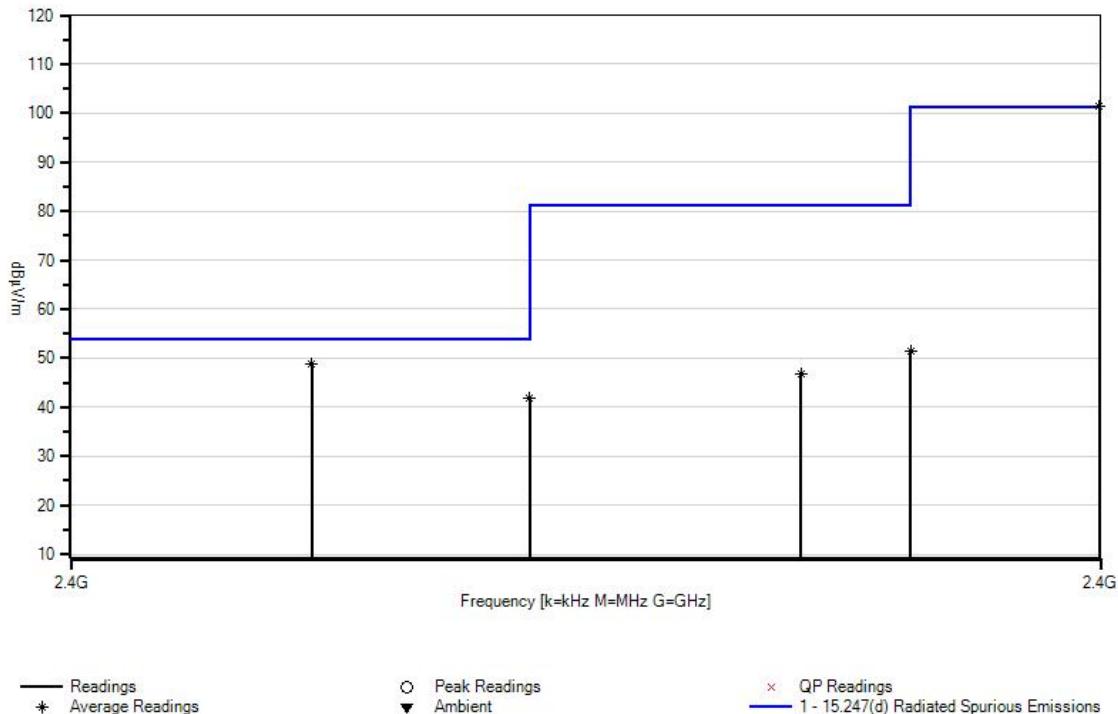
Function	Manufacturer	Model #	S/N
8dBi Antenna	Phoenix Contact	RAD-ISM-2400-ANT-PAN-8-0	1114211262
2.4 GHz Wireless Mote*	Dust Networks	M2511	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LP TTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

Test Conditions / Notes:

Temperature: 21°C
 Humidity: 34%
 Pressure: 102.1kPa
 Freq. Range: 2378-2405MHz
 RBW: 1MHz
 VBW: 10Hz
 Sweep: Auto
 Mode: TX


EUT is raised 80cm from the ground plane with styrofoam.
 EUT is at 3m from the receive antenna.
 EUT is connected to the support laptop through a TTL Converter.
 The TTL converter is connected to the support laptop through a RS232 (serial) cable.
 Antenna port connected to +8 dBi Antenna assembly.
 Support laptop is setting the EUT in the proper mode and channels:
 LOW = 2405MHz

Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB

#	Freq MHz	Rdng dB μ V	Reading listed by margin.				Test Distance: 3 Meters				
			T1 T5	T2 T6	T3	T4	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar
			dB	dB	dB	dB					Ant
1	2404.973M	103.6	+1.3 Ave	+0.0 +2.7	+27.9 -34.5	+0.3	+0.0 102	101.3	101.3	+0.0	Verti 147
2	2384.291M	51.0	+1.3 Ave	+0.0 +2.7	+28.0 -34.5	+0.3	+0.0 102	48.8	54.0	-5.2	Verti 147
3	2390.000M	44.1	+1.3 Ave	+0.0 +2.7	+28.0 -34.5	+0.3	+0.0 102	41.9	54.0	-12.1	Verti 147
4	2400.000M	53.8	+1.3 Ave	+0.0 +2.7	+27.9 -34.5	+0.3	+0.0 102	51.5	81.3	-29.8	Verti 147
5	2397.116M	49.1	+1.3 Ave	+0.0 +2.7	+27.9 -34.5	+0.3	+0.0 102	46.8	81.3	-34.5	Verti 147

CKC Laboratories, Inc. Date: 1/28/2011 Time: 15:09:20 Dust Networks WO#: 91269
 15.247(d) Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#: 3 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Dust Networks**
 Specification: **15.247(d) Radiated Spurious Emissions**
 Work Order #: **91269** Date: 1/28/2011
 Test Type: **Radiated Scan** Time: 15:13:43
 Equipment: **2.4 GHz Wireless Mote** Sequence#: 2
 Manufacturer: Dust Networks Tested By: Armando del Angel
 Model: M2511
 S/N: NA

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T2	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011
T3	AN01467	Horn Antenna-ANSI	3115	5/7/2010	5/7/2012
		C63.5 Calibration			
T4	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN01271	Preamp	83017A	9/17/2009	9/17/2011
	AN03116	High Pass Filter	11SH10-00313	1/26/2011	1/26/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
8dBi Antenna	Phoenix Contact	RAD-ISM-2400-ANT-PAN-8-0	1114211262
2.4 GHz Wireless Mote*	Dust Networks	M2511	NA

Support Devices:

Function	Manufacturer	Model #	S/N
TTL Converter	B&B Electronics	232LP TTL33	0069810016
Laptop	Dell	Inspiron 600m	NA

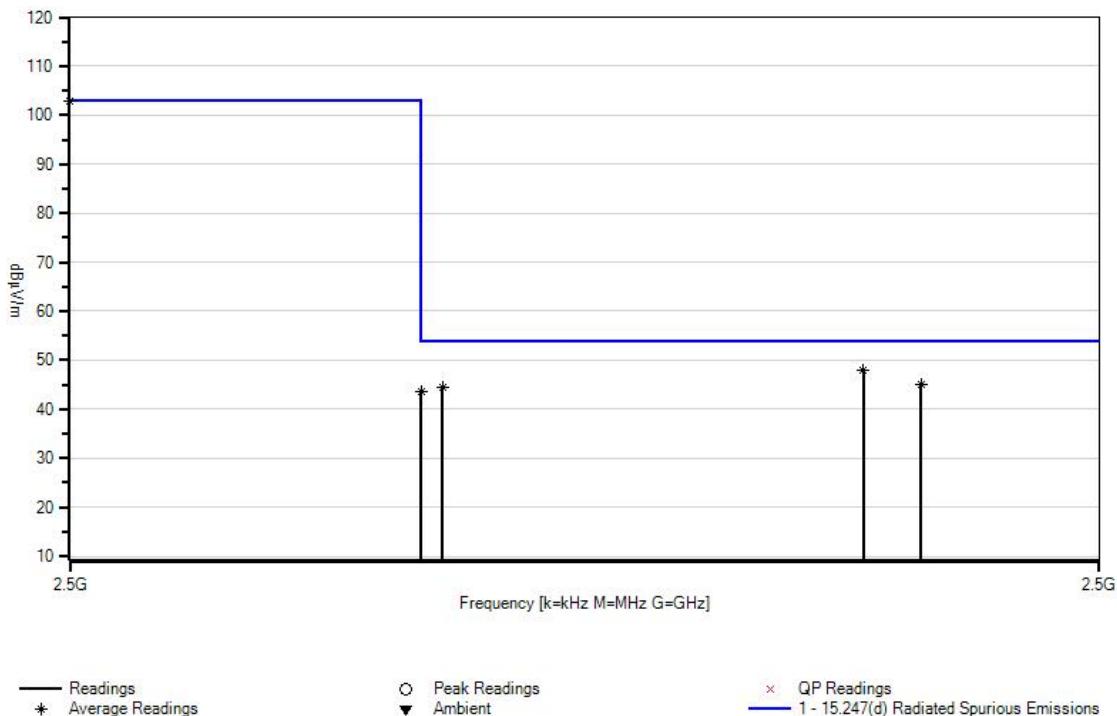
Test Conditions / Notes:

Temperature: 21°C
 Humidity: 34%
 Pressure: 102.1kPa
 Freq. Range: 2475-2500MHz
 RBW: 1MHz
 VBW: 10Hz
 Sweep: Auto
 Mode: TX

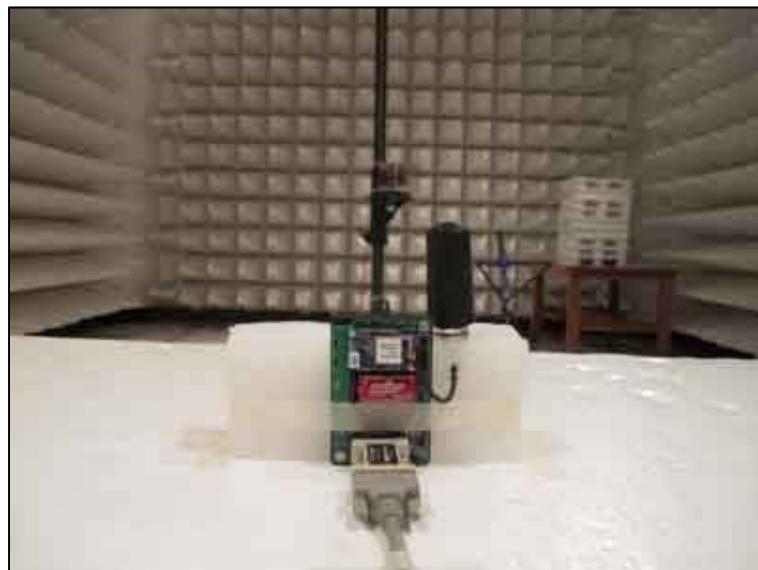
EUT is raised 80cm from the ground plane with styrofoam.
 EUT is at 3m from the receive antenna.
 EUT is connected to the support laptop through a TTL Converter.
 The TTL converter is connected to the support laptop through a RS232 (serial) cable.
 Antenna port connected to +8 dBi Antenna assembly.
 Support laptop is setting the EUT in the proper mode and channels:
 HIGH = 2475MHz

Note: Due to runtime limitations on the EUT (Modulated signal runtime <1 min), emission maximization is being performed with CW signals in both vertical & horizontal polarizations. Recorded results are only for the polarization(s) where the highest emissions were found.

Ext Attn: 0 dB


Measurement Data:

Reading listed by margin.


Test Distance: 3 Meters

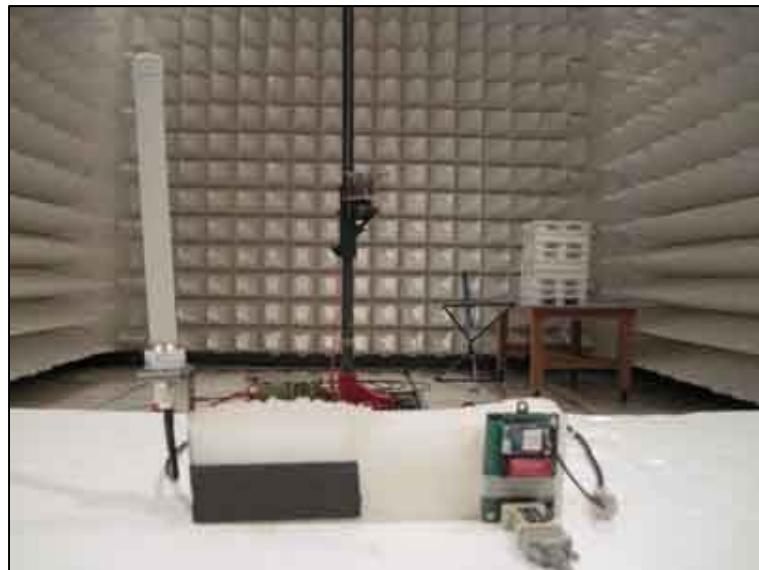
#	Freq MHz	Rdng dB μ V	Reading listed by margin.				Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
			T1 T5 dB	T2 T6 dB	T3 dB	T4 dB					
1	2475.000M Ave	105.1	+1.3 +2.8	+0.0 -34.4	+27.9	+0.2	+0.0	102.9	102.9	+0.0	Verti 147
2	2494.250M Ave	50.1	+1.3 +2.8	+0.0 -34.4	+27.9	+0.2	+0.0	47.9	54.0	-6.1	Verti 147
3	2495.650M Ave	47.1	+1.3 +2.8	+0.0 -34.4	+27.9	+0.2	+0.0	44.9	54.0	-9.1	Verti 147
4	2484.025M Ave	46.7	+1.3 +2.8	+0.0 -34.4	+27.9	+0.2	+0.0	44.5	54.0	-9.5	Verti 147
5	2483.500M Ave	45.9	+1.3 +2.8	+0.0 -34.4	+27.9	+0.2	+0.0	43.7	54.0	-10.3	Verti 147

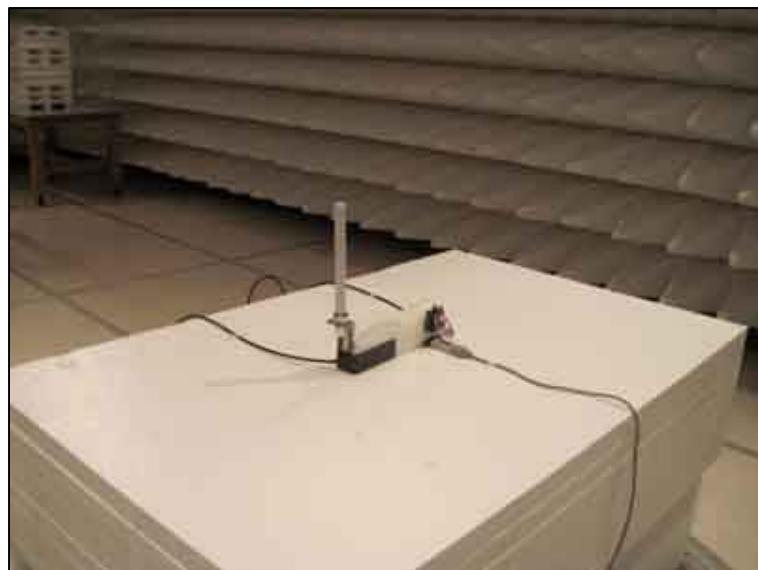
CKC Laboratories, Inc. Date: 1/28/2011 Time: 15:13:43 Dust Networks WO#: 91269
 15.247(d) Radiated Spurious Emissions Test Distance: 3 Meters Vertical Sequence#: 2 Ext ATTN: 0 dB

Test Setup Photos

2dBi

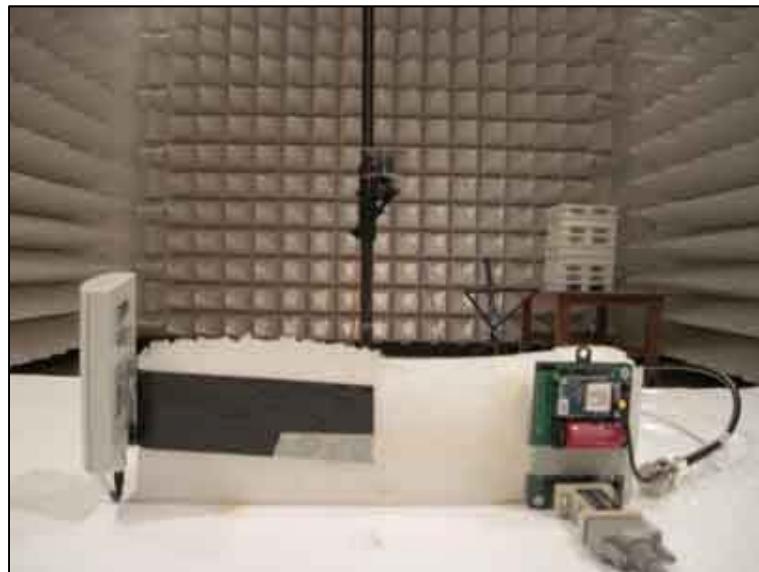

2dBi


2dBi


2dBi

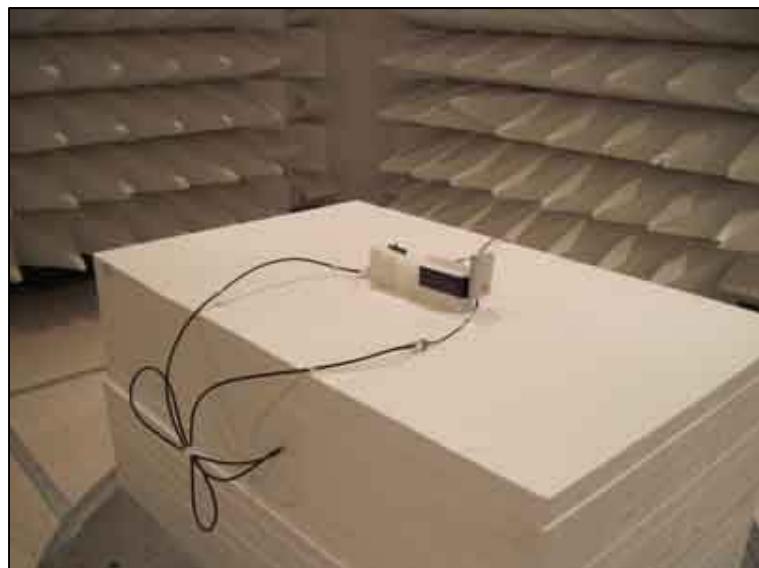
2dBi

6dBi


6dBi**6dBi**

6dBi

6dBi


8dBi

8dBi

8dBi

8dBi

8dBi

15.247(e) Peak Power Spectral Density

Test Setup

Temp: 21°C
 Humidity: 34%
 Pressure: 102.4kPa
 Frequency Range: 2405-2475MHz
 RBW: 3 kHz
 VBW: 9 kHz
 Span: 300 kHz
 Sweep: 100 s

EUT's antenna port is connected to the Spectrum analyzer through a cable and a 20dB attenuator.

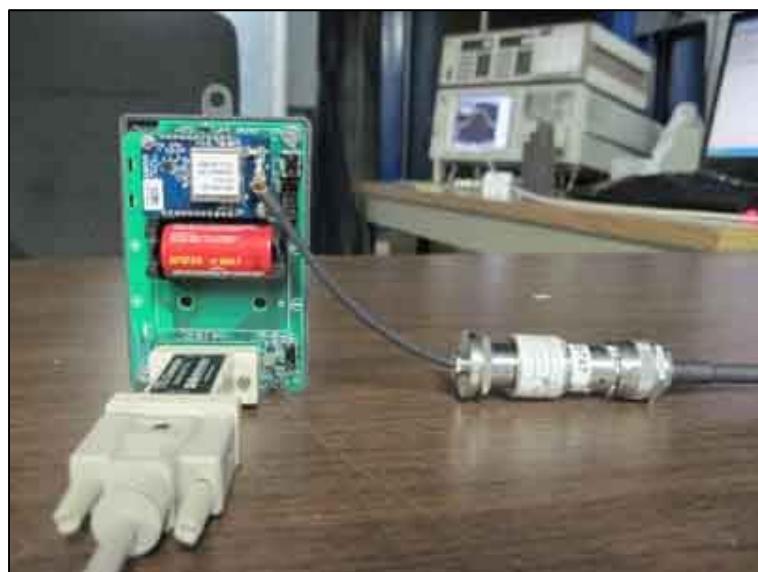
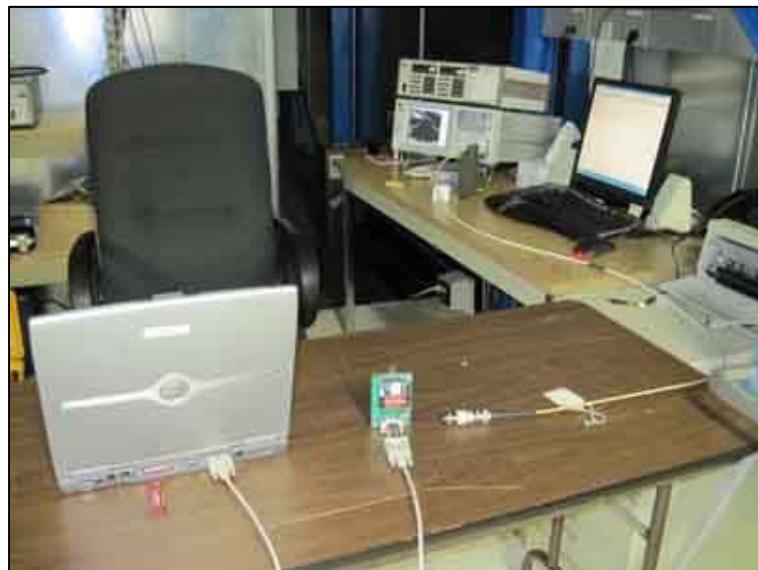
EUT is connected to the support laptop through a TTL RS232 adaptor.

Support laptop is setting the EUT in the proper mode (TX) and channels:

LOW: 2405MHz
 MID: 2440MHz
 HIGH: 2475MHz

Engineer Name: A. del Angel

Test Equipment



Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due
02872	Spectrum Analyzer	E4440A	Agilent	8/25/2009	8/25/2011
P05747	Attenuator	PE7004-20	Pasternack	3/18/2010	3/18/2012
03121	Cable	32026-2-29080-84	Astrolab	10/23/2009	10/23/2011

Test Data

Frequency (MHz)	PSD (dBm)	15.247(e) Limit	Result
2405	-5.6	8dBm/3kHz*	Pass
2440	-5.3	8dBm/3kHz*	Pass
2475	-4.7	8dBm/3kHz*	Pass

Note: *The 8dBm/3kHz limit from FCC 15.247 has been modified due to the fact that one of the antenna options has a gain of 8dBi and the specified limit is for antennas with a maximum gain of 6dBi, thus the limit has been reduced by 2dBi to account for the 8dBi antenna.

Test Setup Photos

RSS-210

99% Occupied Bandwidth

Test Setup

Temp: 21°C
 Humidity: 34%
 Pressure: 102.4kPa
 Frequency Range: 2405-2475MHz
 RBW: 100 kHz
 VBW: 300 kHz
 Sweep: Auto

EUT's antenna port is connected to the Spectrum analyzer through a cable and a 20dB attenuator.

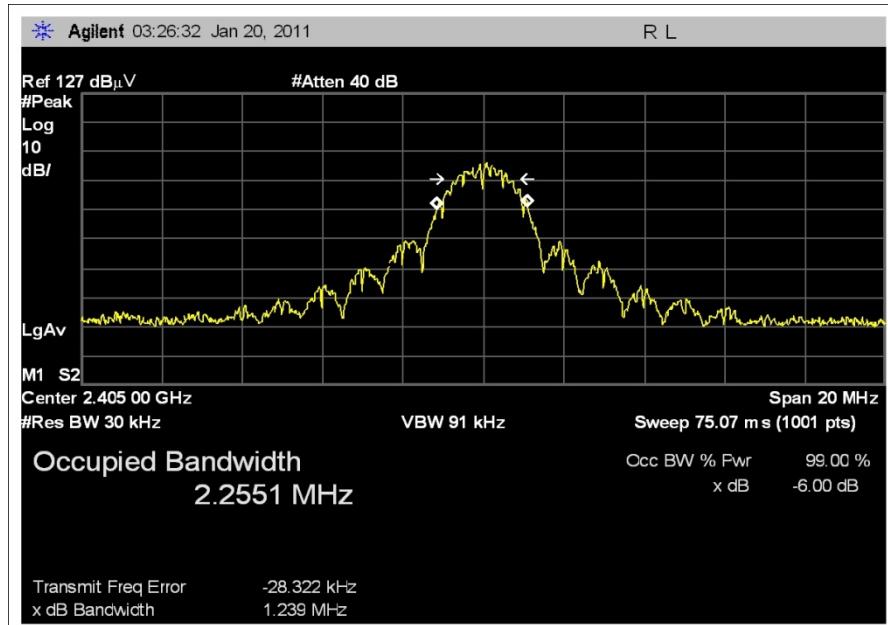
EUT is connected to the support laptop through a TTL RS232 adaptor.

Support laptop is setting the EUT in the proper mode (TX) and channels:

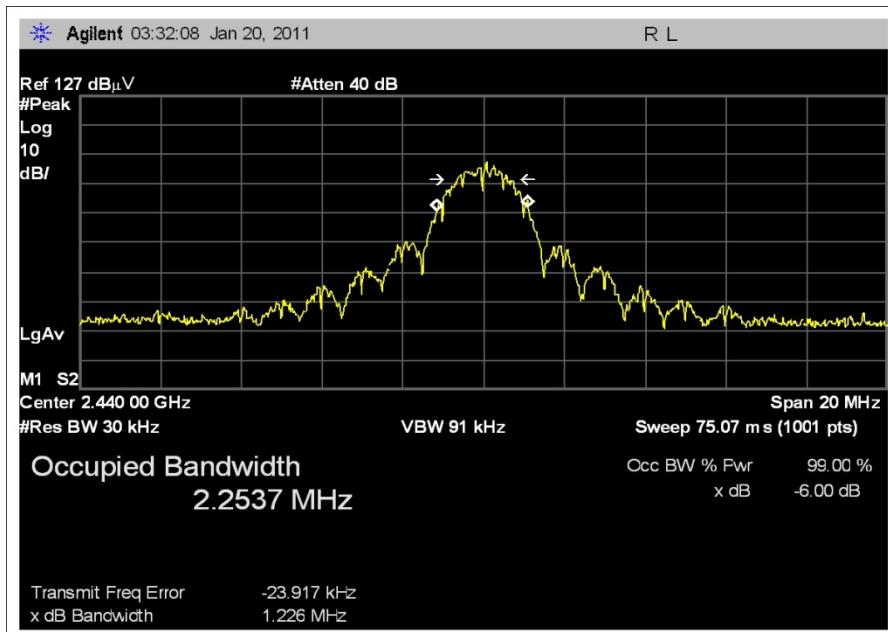
LOW: 2405MHz

MID: 2440MHz

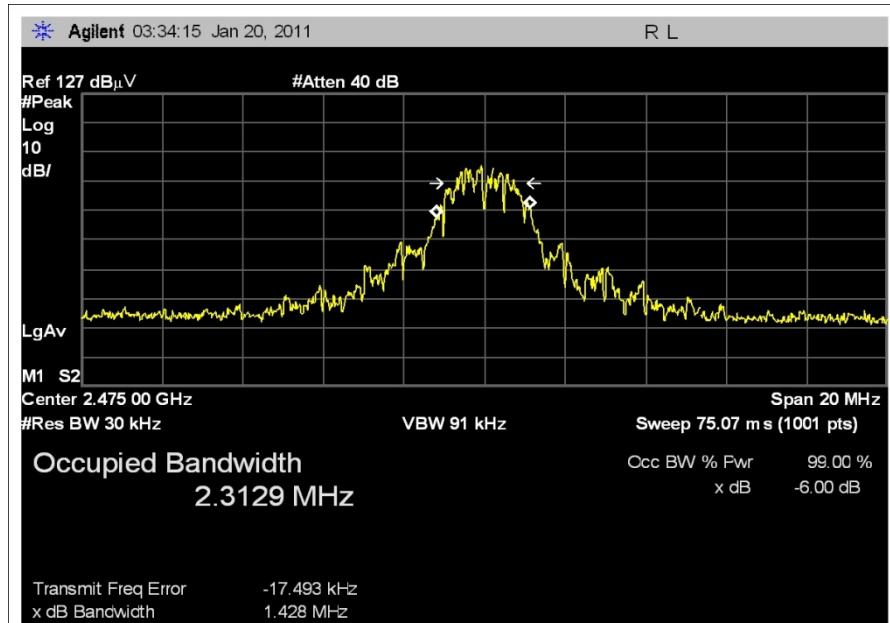
HIGH: 2475MHz


Engineer Name: A. del Angel

Test Equipment


Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due
02872	Spectrum Analyzer	E4440A	Agilent	8/25/2009	8/25/2011
P05747	Attenuator	PE7004-20	Pasternack	3/18/2010	3/18/2012
03121	Cable	32026-2-29080-84	Astrolab	10/23/2009	10/23/2011

Test Data


Frequency (MHz)	99% Bandwidth (kHz)	RSS-210 99% Bandwidth Limit	Result
2405	2255	>500kHz	Pass
2440	2253	>500kHz	Pass
2475	2312	>500kHz	Pass

Low


Mid

High

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS	
Meter reading	(dB μ V)
+ Antenna Factor	(dB)
+ Cable Loss	(dB)
- Distance Correction	(dB)
- Preamplifier Gain	(dB)
= Corrected Reading	(dB μ V/m)

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.