

ELECTROMAGNETIC COMPATIBILITY
CLASS II PERMISSIVE CHANGE TEST REPORT TO
CFR 47 FCC Part 2, Subpart J, Section 2.1043
CFR 47 FCC Part 15, Subpart C, Section 15.249
Industry Canada RSS 210, Issue 8
Industry Canada RSS-Gen, Issue 3
Industry Canada RSP-100 Issue 9

CHANGES IN CERTIFIED EQUIPMENT FOR LICENCE-EXEMPT RADIO
APPARATUS & INTENTIONAL RADIATORS OPERATING WITHIN THE BAND
2400-2483.5 MHz

Report Number:	E10456-1301
Issue:	Revision 0.1
Date of Issue:	March 19 th , 2013
Number of Pages:	29
Testing Laboratory:	Quality Auditing Institute
Address:	#16 – 211 Schoolhouse Street, Coquitlam, BC, V3K 4X9, Canada

ISO 17025 Accreditation:

Standard Council of Canada: Accredited Laboratory No. 743

International Accreditation Service Inc.: Accredited Laboratory No. TL-239

This report has been completed in accordance with the requirements of ISO/IEC 17025. Test results contained in this report are within QAI Laboratories ISO/IEC 17025 accreditation. QAI Laboratories authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for the use by the company's employees only.

Applicant's Name:	Nyce Control Inc.
Address:	#103 – 8525 Baxter Place, Burnaby, BC, V5A 4V7, Canada.
Phone:	(604) 473-9800 x250
Fax:	
Primary Contact:	Michael Vogel
E-mail:	mvogel@nycecontrol.com

Test Specifications

Standards:	CFR 47 FCC Part 2, Subpart J, Section 2.1043
	CFR 47 FCC Part 15, Subpart C, Section 15.249
	Industry Canada RSS 210, Issue 8
	Industry Canada RSS-Gen, Issue 3
	Industry Canada RSP-100 Issue 9
Procedures:	ANSI C63.4:2009 & ANSI C63.10:2009
Non-Standard Test Methods:	NA

Test Item Description:	Garage Door Sensor and Asset Sensor
-------------------------------	-------------------------------------

Trade Mark:	
--------------------	--

INVISIBLE SENSORS FOR LIFE

Manufacturer:	Nyce Control Inc.
Model Numbers:	NCZ-3014
FCC ID #	Y8R-Z30111
IC ID #	9488A-Z30111

Table of Contents

Section I:	EMC Test Description	5
	Testing Location.....	5
	EUT Receiving Details	5
	Environmental Test Conditions: Indoors	5
	EMC Test Summary.....	6
	Revision History.....	7
	Measurement Uncertainty	8
	Test Equipment List	8
	Semi-Anechoic Chamber Equipment List.....	8
	Measurement Software List	8
Section II:	Equipment Under Test Information.....	9
	EUT Testing Information	9
	Auxiliary Equipment	10
	EUT Cabling Configuration.....	10
	Product Description.....	10
	EUT Testing Configuration	10
Section III:	Requirements for the Canadian Market – Industry Canada.....	11
	Digital Circuits Radiated Emission Testing	12
	Radiated Peak Power of the Fundamental and Harmonics.....	13
	Spurious Radiated Emissions Testing	14
Section IV:	Requirements for the US Market - FCC.....	15
	Digital Circuits Radiated Emission Testing	16
	Radiated Peak Power of the Fundamental and Harmonics.....	17
	Spurious Radiated Emissions and Bandedge Testing	18
Appendix A:	Report of Measurement Data and Plots.....	19
	Radiated Emissions: 30 MHz – 1 GHz.....	19
	NCZ-3014 Low Channel.....	19

NCZ-3014 Mid Channel	20
NCZ-3014 High Channel.....	21
Radiated Emissions: 1 GHz – 18 GHz.....	22
NCZ-3014 Low Channel.....	22
NCZ-3014 Mid Channel	22
NCZ-3014 High Channel.....	23
Bandwidth and Bandedge Plots.....	24
NCZ-3014 99% Occupied Bandwidth.....	24
NCZ-3014 Low Channel Bandedge	25
NCZ-3014 High Channel Bandedge.....	26
Appendix B: EUT Photos During EMC Testing	27

Section I: EMC Test Description

Testing Location

Testing Laboratory: Quality Auditing Institute
Laboratory Address: #16 – 211 Schoolhouse Street, Coquitlam, BC, V3K 4X9, Canada
Associated EMC Laboratory: Quality Auditing Institute: Pitt Meadows & Maple Ridge Locations
Testing Location & Address: 19473 Fraser Way, Pitt Meadows, BC, V3Y 2V4, Canada
Phone Number: (604) 527-8378

FCC Test Site Registration Number: 10 Meter Open Air Test Site and 3 Meter Semi-Anechoic Chamber:
226383

Industry Canada Site Registration Number:3 Meter SAC: 9543B-1
Industry Canada Test Site Registration Number: 10 Meter OATS: 9543C-1

EUT Receiving Details

Model Numbers: NCZ-3014
Company: Nyce Control Inc.
Received Date: January 18th, 2013
Received By: Simon Howkins
Test Sample Log: QAI Product Control Log: QM 1301 -Test Sample Inventory

Environmental Test Conditions: Indoors

Day 1: January 18 th , 2013 25%	Temperature: 22°C R.H.:
Day 2: January 21 st , 2013 24%	Temperature: 22°C R.H.:
Day 3: January 22 nd , 2013 23%	Temperature: 22°C R.H.:
Day 4: January 23 rd , 2013 30%	Temperature: 23°C R.H.:
Day 5: January 24 th , 2013 33%	Temperature: 22°C R.H.:

EMC Test Summary

The following tests demonstrate testimony to apply the FCC & IC Identification numbers and marks to the intentional transmitters **NCZ-3014** manufactured by **Nyce Control Inc.** under the FCC and IC permissive change rules to model **NCZ-3011** manufactured by **Nyce Control Inc.**

Test / Requirement Description	Deviations from:		Pass / Fail	Applicable FCC Rule Parts	Applicable Industry Canada Rule Parts
	Base Standard	Test Basis			
Radiated Emissions, 30 MHz to 1000 MHz	No	No	Pass	FCC Subpart C 15.209 & 15.249 & 2.1043	RSS-Gen Issue 3 7.2.5 & 7.1.4 RSS-210 Issue 8 Annex A2.9(b)
Field Strength of Fundamental & Spurious Emissions 1 GHz – 18 GHz	No	No	Pass	FCC Subpart C 15.209 & 15.249 & 2.1043	RSS-Gen Issue 3 7.2.5 & RSS-210 Issue 8 Annex A2.9(a)(b)
Occupied Bandwidth (99% emissions bandwidth)	No	No	NA	N/A	RSS-Gen Issue 3 4.6.1
Band Edge Measurement	No	No	Pass	FCC Subpart C 15.249 (d)	RSS-Gen Issue 3 7.2.5 & 7.1.4 RSS-210 Issue 8 Annex A8.5

X

Tested By & Report Written By
Simon Howkins, EMC Engineer

X

Reviewed By
David Johanson RF/ EMC Test Engineer

Tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with CFR 47 FCC Part 2 Subpart J Section 2.1043, Industry Canada RSS 210 Issue 8, Industry Canada RSS-Gen Issue 3, & Industry Canada RSP-100 Issue 9: Changes in Certified Equipment for Licence-Exempt Radio Apparatus & Intentional Radiators Operating within the Band 2400-2483.5 MHz. The manufacturer is responsible for the tested product configuration, continued product compliance with these standards listed, and for the appropriate auditing of subsequent products as required.

Revision History

Date	Report Number	Rev. #	Details	Author
Jan. 23 rd , 2013	E10456-1301	0.0	Draft Test Report	Simon Howkins
Mar. 19 th , 2013	E10456-1301	0.1	Draft Test Report	Andrei Moldavanov

All previous versions of this Report have been superseded by the latest dated Revision as listed in the above table. Please dispose of all previous electronic and paper printed revisions accordingly.

Measurement Uncertainty

Radio Frequency:	±1.5 x 10-5
Total RF Power: Conducted:	±1 dB
RF Power Density: Conducted	±2.75 dB
Spurious Emissions: Conducted	±3 dB
All Emissions: Radiated	±3.5 dB
Temperature	±1°C
Humidity	±5 %
DC and Low Frequency Voltages	±3 %

Test Equipment List

Semi-Anechoic Chamber Equipment List

Manufacturer	Model	Description	Serial No.	Last Cal	Cal Due Date
ETS Lindgren	2165	Turntable	00043677	N/A	N/A
ETS Lindgren	2125	Mast	00077487	N/A	N/A
Sunol Sciences	JB3	Antenna	A042004	31-Oct-2012	31-Oct-2014
Rohde & Schwarz	ESU40	EMI Receiver	100011	26-June-2012	26-June-2015
ETS Lindgren	S201	5 meter Semi-Anechoic Chamber	1030	N/A	N/A
A.H. Systems	PAM-0118	Preamplifier	189	13-Dec-2006	N/A
A.H. Systems	PAM-0118	Preamplifier	189	Verified: 11-Sept-2011	
COM-POWER	AHA-118	Pre-Amp & Dual Ridge Horn Antenna	711040	11-Mar-2011	11-Mar-2014
Mini-Circuits	VHF-5500+	High Pass Filter	10550	Verified: 24-Sept-2013	

Measurement Software List

Manufacturer	Model	Version	Description
Rhode & Schwarz	EMC 32	6.20.0	Emissions Pre-scan Test Software
VI Automation	Via EMC Immunity Executive	1.0.308	Radiated and Conducted Immunity Test Program

Section II: Equipment Under Test Information

EUT Testing Information

NCZ-3014

Note: Wires coming off the devices are for DC power and for EMC testing only. These devices are battery powered.

Manufacturer	Nyce Control Inc.
EUT Descriptions	Garage Door Sensor and Asset Sensor
EUT Names	Garage Door Sensor and Asset Sensor
Model Number	NCZ-3014
Product Software/Firmware Revision	??
Serial Number	EMC Test Unit
FCC Classification	FCC Part 15 Subpart C Section 15.249 &

	FCC Part 2 Subpart J Section 2.1043
IC Classification	RSS-210 Issue 8 & RSS-Gen Issue 3
Antenna	PCB Antenna
Modulation	ZigBee OQPSK
Power Ratings	3.0VDC Lithium, 50 mA. CR2032 type
EUT Size (L x W x H) (cm)	3.2 x 2.9 x 1.1
EUT Weight	11 grams with battery
Channels/Frequency Range	16 / 2.405 – 2.480 GHz

Auxiliary Equipment

Description	Manufacturer	Model Number	Serial Number
DC Power Supply	Xantrex	XT 30-2	47665
Laptop	Compact	HSTNN-170C	CNU9512Y98
Laptop Power Supply	HP	PA-1400-18HB	0Y12021303 HB REV:A02
Ethernet Switch	Netgear	FS728TP	1PG279410006B
Ethernet to InSight Port Converter	Ember	EM-ISA-01	00:0D:6F:00:13:5D

EUT Cabling Configuration

Description	Number of Lines	Length (m)	Connection Type	Load or Termination	Shielded	Ferrites
DC Power Supply to EUT	2	10	Solder	Yes	No	At chamber Interface.

Note: Laptop, Ethernet switch and Ember unit were used to set the channel, continuous mode and modulation settings and were not present during the testing.

Product Description

The NCZ-3014 garage door sensor solution combines the features of an orientation sensor and ZigBee (802.15.4) radio in a single tiny device. Packed with intelligent features, the Garage Door Sensor expands Control4's network possibilities, reporting the open/closed state of a garage door, and all without any wires. Devices can be paired to indicate Fully Open, Fully Closed, and Ajar states.

EUT Testing Configuration

For the purpose of compliance testing, the EUT was powered using an auxiliary 3 VDC power supply since the battery would not have enough power to complete the testing. The EUT was programmed to transmit the maximum output power at the low, mid and high channels of the ZigBee band (2405, 2440 and 2480 MHz respectively) in a continuous transmission mode, with modulation. Programming was done by using an Ember programming module that was connected to a PC via POE Ethernet. The programming module was disconnected after programming and all auxiliary equipment was removed from the test area.

Section III: Requirements for the Canadian Market – Industry Canada

Summary for RSS-Gen Issue 3, RSS-210 Issue 8 & RSP-100 Issue 9 Class II Permission Change Requirements

Testing was performed pursuant to Industry Canada standards. For the purpose of verifying compliance for a Class II Permissive Change the radiated emissions were verified to ensure compliance. It was noted that there has been a sensor change compared to the previous version of this product. There was no change to the radio circuitry.

Test	Standard	Description	Result
Digital Circuits Radiated Emissions	RSS-Gen (7.1.4) ICES-003	The radiated emissions are measured in the 30-1000MHz range	Complies
Radiated Peak Power and Harmonics	RSS-210 (A2.9)(a)	Peak Power and Harmonics shall be measured at 3meters	Complies
Spurious Emissions outside of the band	RSS-210 (A2.9)(b)	Radiated Spurious emissions shall be 50dBc or 54dBuV in accordance with table 2, whichever is less stringent 30-18000MHz	Complies

Digital Circuits Radiated Emission Testing

DATE: January 18th, 2013

TEST STANDARD: ICES-003 Issue 5

TEST METHOD: RSS-Gen (7.1.4)

TEST VOLTAGE: 3 VDC

MINIMUM STANDARD: Class B Limit:

Frequency (MHz)	Maximum Field Strength (calculated) dB μ V/m at 3 m	Maximum Field Strength dB μ V/m at 10 m
30 - 230	40.45	30.0
230 - 1000	47.45	37.0

Note 1. The lower limit shall apply at the transition frequency
Note 2. Additional provisions may be required for cases where interference occurs
Note 3. The 3meter calculation is done for measurements performed at 3meters.

METHOD OF MEASUREMENT: The equipment was set up in 3m Semi Anechoic Chamber for preliminary and final measurements; Radiated Emissions were performed at 3 meters for this unit. A typical application was tested.

Emissions in both horizontal and vertical polarizations were measured while rotating the EUT on a turntable to maximize the emissions signal strength.

The EUT was investigated in 3 orthogonal planes and the worst case data and plots were taken.

The transmitter was set to continuous mode of transmission and modulation on for this test. The transmitter was tested in its low, mid, and high channels within the band.

MODIFICATIONS: The EUT did not require any modifications.

MEASUREMENT DATA: The plots and data are contained in Appendix A.

PERFORMANCE: Complies.

Radiated Peak Power of the Fundamental and Harmonics

DATE: January 22nd, 2013 & January 23rd, 2013

TEST STANDARD: RSS-210 Annex 2 Section (A2.9)(a)

TEST VOLTAGE: 3 VDC

MINIMUM STANDARD: (a) The field strengths measured at 3 meters shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength (millivolts/m)	
	Fundamental	Harmonics
2400-2483.5	50 (94 dBuV)	0.5 (54 dBuV)

TEST SETUP: The EUT was tested in our 3meter SAC and was positioned on the center of the Turntable and connected to a 3 VDC power supply. The Transmitter was set for Continuous transmission. The lowest, middle and highest channels in the 2400-2483.5MHz band were measured for all radiated emissions 9kHz to 18 GHz in three orthogonal planes

MEASUREMENT METHOD: Measurements were made using an EMI Receiver with a 1 MHz RBW and average detector above 1 GHz as required and using the appropriate antennas, amplifiers and filters. The EUT was investigated in 3 orthogonal planes and the worst case data and plots were taken.

DEVICE DESCRIPTIONS: As described in the above EUT description and setup Section.

EMISSIONS DATA: See data in Appendix A.

OBSERVATIONS: The EUT performed as expected.

PERFORMANCE: Complies.

Spurious Radiated Emissions Testing

DATE: January 22nd, 2013 & January 23rd, 2013

TEST STANDARD: RSS-210 Annex 2 Section (A2.9)(b)
RSS-Gen Section (7.2.5)

TEST VOLTAGE: 3 VDC

MINIMUM STANDARD: (b) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

General Field Strength Limits for Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength	
	uV/m @ 3-m	Calculated dB μ V/m at 3m
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
960 +	500	54.0

TEST SETUP: The EUT was tested in a 3 meter semi-anechoic chamber and was positioned in the center of the turntable and connected to a 3 VDC power supply. The transmitter was set for continuous transmission. The lowest, middle and highest channels in the 2400-2483.5MHz band were measured for all radiated emissions 30 MHz to 18 GHz.

MEASUREMENT METHOD: Measurements were made using an EMI Receiver with a 120 kHz RBW and a quasi-peak detector below 1 GHz and with a 1 MHz RBW and average detector above 1 GHz as required and using the appropriate antennas, amplifiers and filters. The EUT was investigated in 3 orthogonal planes and the worst case data and plots were taken.

DEVICE DESCRIPTIONS: As described in the above EUT description and setup Section.

EMISSIONS DATA: See data in Appendix A

OBSERVATIONS: The EUT performed as expected.

PERFORMANCE: Complies.

Section IV: Requirements for the US Market - FCC

For the purpose of verifying compliance for a Class II Permissive Change the radiated emissions were verified to ensure compliance. It was noted that there has been a sensor change compared to the previous version of this product. There was no change to the radio circuitry.

Tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC CFR 47 Part 15 Subpart C – Intentional Radiators

Summary for FCC CFR 47, Part 15 Subpart C Section 15.249

Test	Standard	Description	Result
Digital Circuits Radiated Emissions	15.249(d)	The radiated emissions are measured in the 30-18000MHz range	Complies
Radiated Fundamental and Harmonics Emissions	15.249(a)	Peak Fundamental and Harmonics shall be measured at 3meters	Complies
Spurious Emissions outside of the band and Bandedge	15.249(d) and (e)	Radiated Spurious emissions shall be 50dBc or the levels in 15.209	Complies

Digital Circuits Radiated Emission Testing

DATE: January 18th, 2013

TEST STANDARD: FCC Part 15 Subpart C Section 15.249(d)

TEST VOLTAGE: 3 VDC

MINIMUM STANDARD: Class B Limit:

Frequency (MHz)	Field Strength	
	uV/m @ 3-m	dB μ V/m at 3m
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
960 - 1000	500	54.0

METHOD OF MEASUREMENT: The equipment was set up in 3m Semi Anechoic Chamber for preliminary and final measurements; Radiated Emissions were performed at 3 meters for this unit. A typical application was tested.

Emissions in both horizontal and vertical polarizations were measured while rotating the EUT on a turntable to maximize the emissions signal strength.

The EUT was investigated in 3 orthogonal planes and the worst case data and plots were taken.

The transmitter was set to continuous mode of transmission and modulation on for this test. The transmitter was tested in its low, mid, and high channels within the band.

MODIFICATIONS: The EUT did not require any modifications.

MEASUREMENT DATA: See Appendix A for emissions plots and corresponding data

PERFORMANCE: Complies.

Radiated Peak Power of the Fundamental and Harmonics

DATE: January 22nd, 2013 & January 23rd, 2013

TEST STANDARD: CFR 47 FCC Part 15 Subpart C Section 15.249(a)

TEST VOLTAGE: 3 VDC

MINIMUM STANDARD: (a) The field strengths measured at 3 meters shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength (millivolts/m)	
	Fundamental	Harmonics
2400-2483.5	50 (94 dBuV)	0.5 (54 dBuV)

TEST SETUP: The EUT was tested in our 3meter SAC and was positioned on the center of the Turntable and connected to a 3 VDC power supply. The Transmitter was set for Continuous transmission. The lowest, middle and highest channels in the 2400-2483.5MHz band were measured for all radiated emissions 9kHz to 18 GHz in three orthogonal planes

MEASUREMENT METHOD: Measurements were made using an EMI Receiver with a 1 MHz RBW and average detector above 1 GHz as required and using the appropriate antennas, amplifiers and filters. The EUT was investigated in 3 orthogonal planes and the worst case data and plots were taken.

DEVICE DESCRIPTIONS: As described in the above EUT description and setup Section.

EMISSIONS DATA: See data in Appendix A.

OBSERVATIONS: The EUT performed as expected.

PERFORMANCE: Complies.

Spurious Radiated Emissions and Bandedge Testing

DATE: January 22nd, 2013 & January 23rd, 2013

TEST STANDARD: FCC Part 15.249(d) & (e).

TEST VOLTAGE: 3 VDC

MINIMUM STANDARD: (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.
(e) As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20dB under any condition of modulation.

15.209 General Field Strength Limits

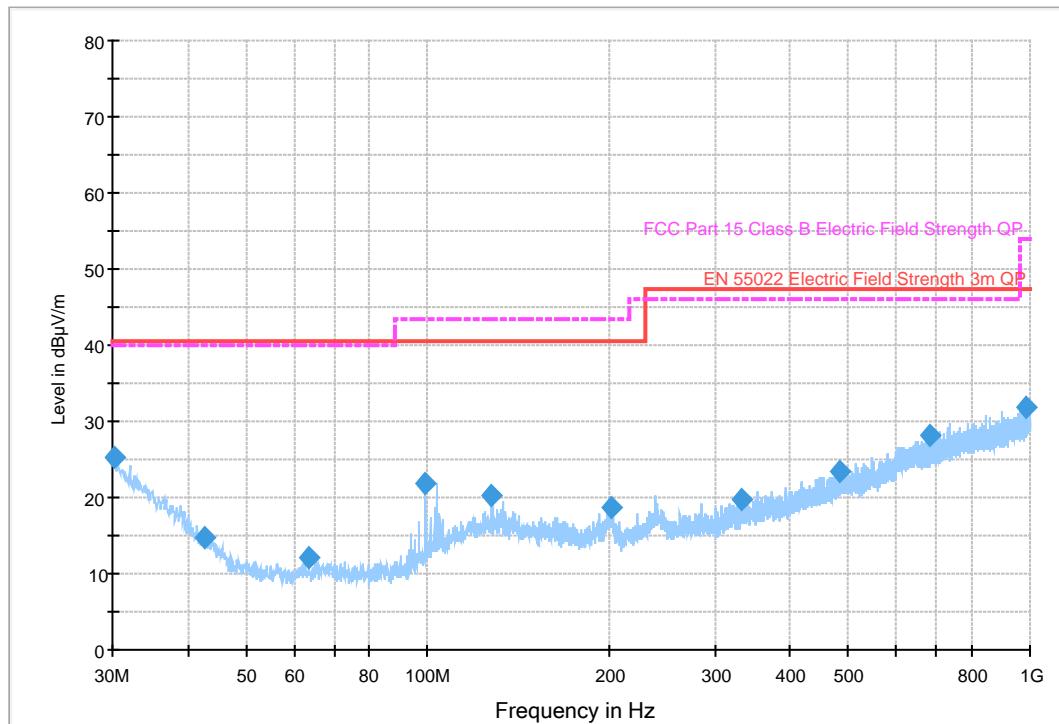
Frequency (MHz)	Field Strength	
	uV/m @ 3-m	Calculated dB μ V/m at 3m
30 – 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
960 +	500	54.0

TEST SETUP: The EUT was tested in a 3 meter semi-anechoic chamber and was positioned in the center of the turntable and connected to a 3 VDC power supply. The transmitter was set for continuous transmission. The lowest, middle and highest channels in the 2400-2483.5MHz band were measured for all radiated emissions 30 MHz to 18 GHz.

MEASUREMENT METHOD: Measurements were made using an EMI Receiver with a 120 kHz RBW and a quasi-peak detector below 1 GHz and with a 1 MHz RBW and average detector above 1 GHz as required and using the appropriate antennas, amplifiers and filters. The EUT was investigated in 3 orthogonal planes and the worst case data and plots were taken.

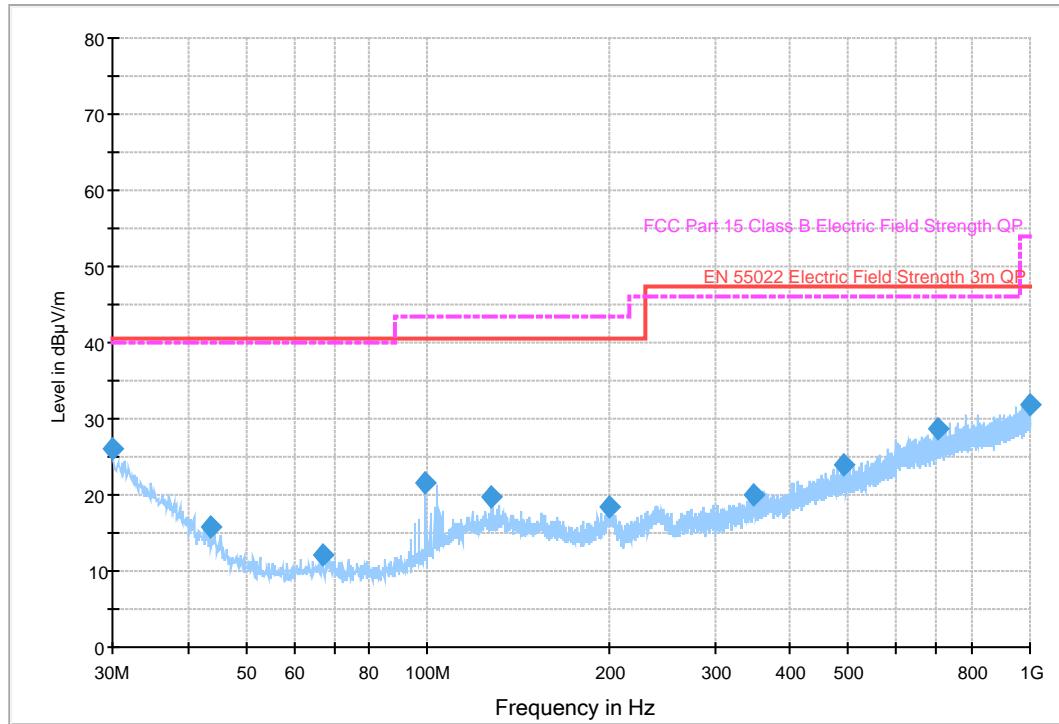
DEVICE DESCRIPTIONS: As described in the above EUT description and setup section.

EMISSIONS DATA: See data in Appendix A

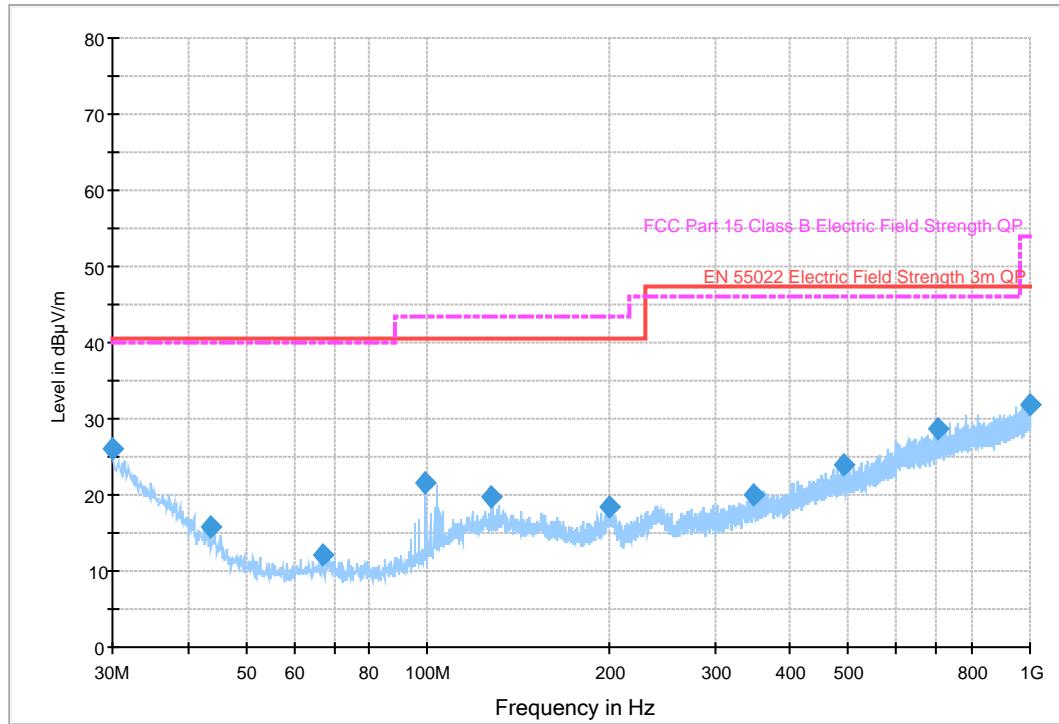

OBSERVATIONS: The EUT performed as expected.

PERFORMANCE: Complies.

Appendix A: Report of Measurement Data and Plots


Radiated Emissions: 30 MHz – 1 GHz

NCZ-3014 Low Channel



NCZ-3014 Mid Channel

NCZ-3014 High Channel

Radiated Emissions: 1 GHz – 18 GHz

NCZ-3014 Low Channel

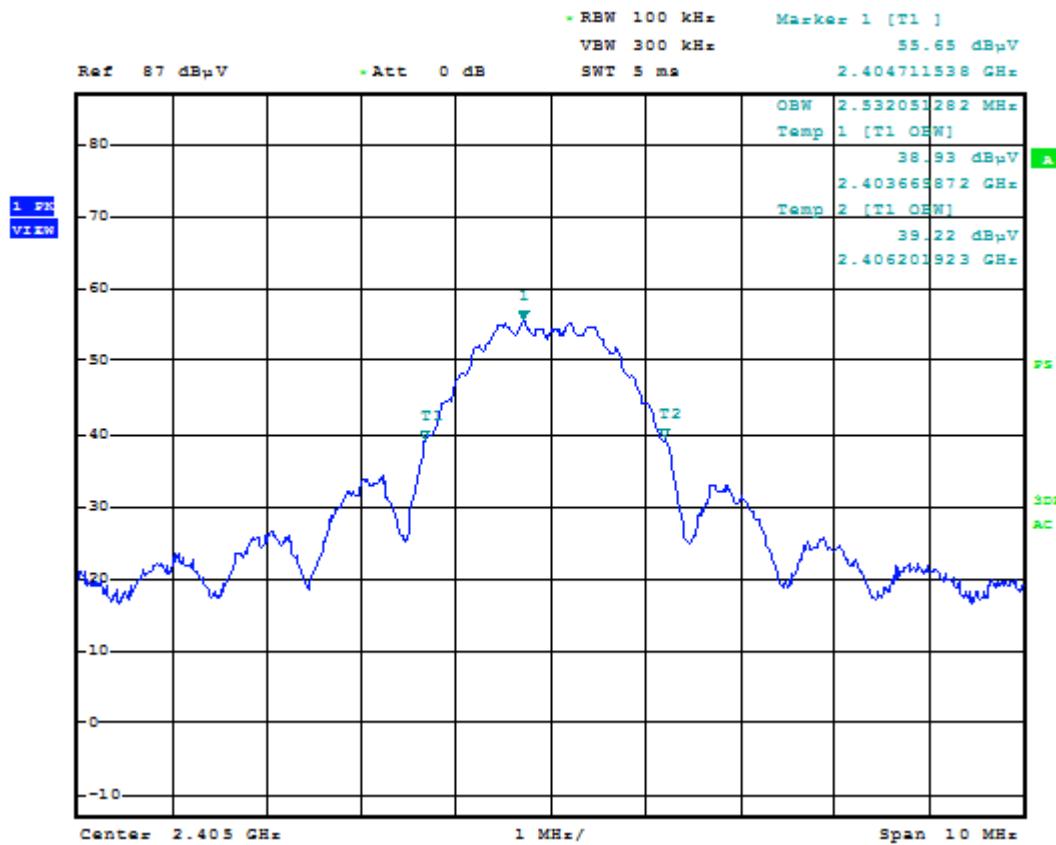
Frequency (MHz)	Average (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dB μ V/m)
2.404490	79.2	1000.000	106	V	90	30.1	14.8	94.0
4.808914	46.0	1000.000	115	H	342	16.1	8.0	54.0
7.213310	30.0	1000.000	100	H	37	8.6	24.0	54.0
9.617828	38.8	1000.000	100	H	309	21.0	15.2	54.0
12.025	NM	NA	NA	NA	NA	NA	NA	NA

Frequency (MHz)	Peak (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dB μ V/m)
2.404490	84.9	1000.000	106	V	90	30.1	29.1	114.0
4.808914	55.3	1000.000	115	H	342	16.1	18.7	74.0
7.213310	43.2	1000.000	100	H	37	8.6	30.8	74.0
9.617828	52.9	1000.000	100	V	110	21.0	21.1	74.0
12.025	NM	NA	NA	NA	NA	NA	NA	NA

NCZ-3014 Mid Channel

Frequency (MHz)	Average (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dB μ V/m)
2.439474	78.3	1000.000	107	V	92	30.1	15.7	94.0
4.880921	45.3	1000.000	127	H	345	16.1	8.7	54.0
7.32	NM	NA	NA	NA	NA	NA	NA	NA
9.76	NM	NA	NA	NA	NA	NA	NA	NA
12.2	NM	NA	NA	NA	NA	NA	NA	NA

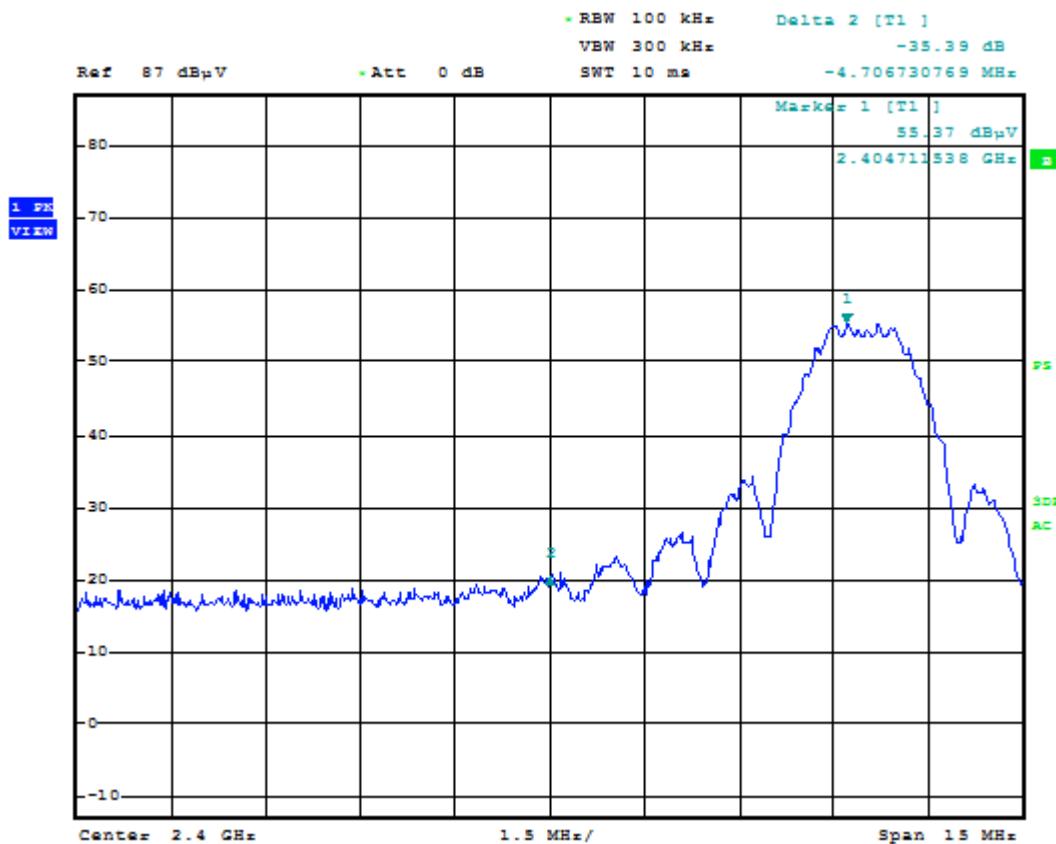
Frequency (MHz)	Peak (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dB μ V/m)
2.439474	84.2	1000.000	107	V	92	30.1	29.8	114.0
4.880921	54.1	1000.000	127	H	345	16.1	19.9	74.0
7.32	NM	NA	NA	NA	NA	NA	NA	NA
9.76	NM	NA	NA	NA	NA	NA	NA	NA
12.2	NM	NA	NA	NA	NA	NA	NA	NA


NCZ-3014 High Channel

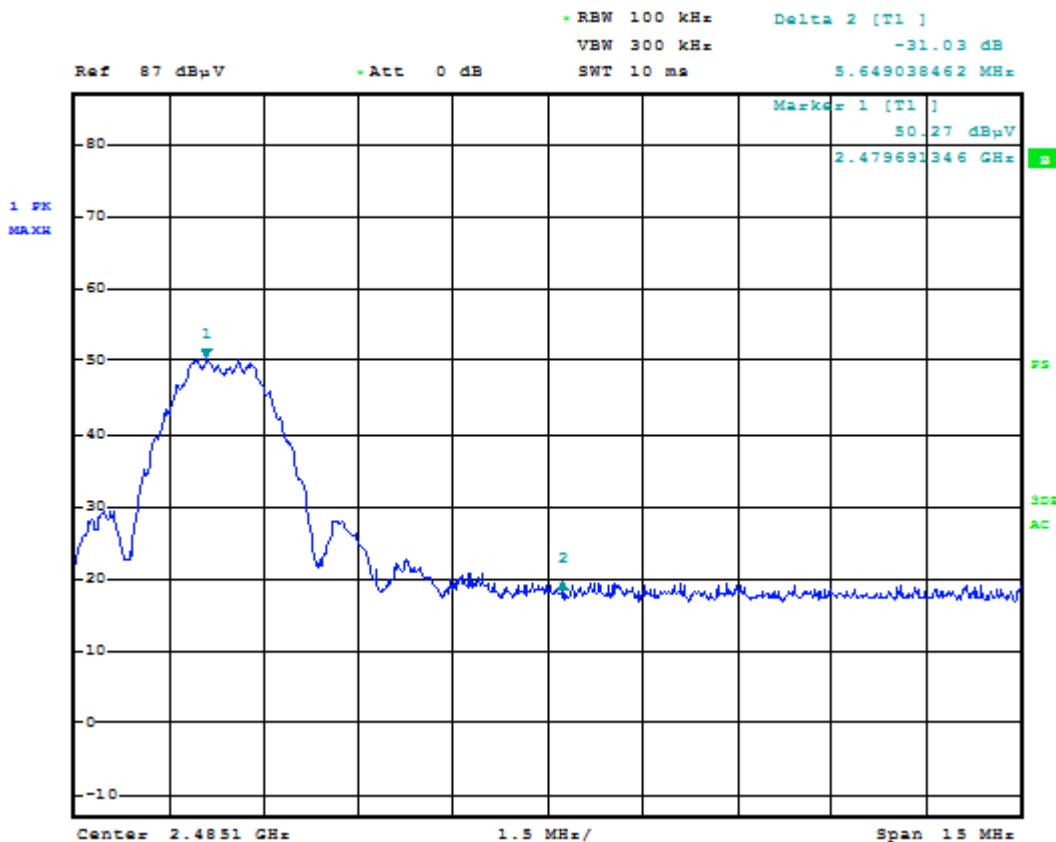
Frequency (MHz)	Average (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dB μ V/m)
2.479484	75.6	1000.000	133	V	89	30.1	18.4	94.0
4.958910	49.5	1000.000	113	H	13	16.1	4.5	54.0
7.441432	31.0	1000.000	100	V	268	8.6	23.0	54.0
9.92	NM	NA	NA	NA	NA	NA	NA	NA
12.4	NM	NA	NA	NA	NA	NA	NA	NA

Frequency (MHz)	Peak (dB μ V/m)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dB μ V/m)
2.479484	81.5	1000.000	133	V	89	30.1	32.5	114.0
4.958910	57.7	1000.000	113	H	13	16.1	16.3	74.0
7.441432	44.0	1000.000	100	V	268	8.6	30.0	74.0
9.92	NM	NA	NA	NA	NA	NA	NA	NA
12.4	NM	NA	NA	NA	NA	NA	NA	NA

Bandwidth and Bandedge Plots


NCZ-3014 99% Occupied Bandwidth

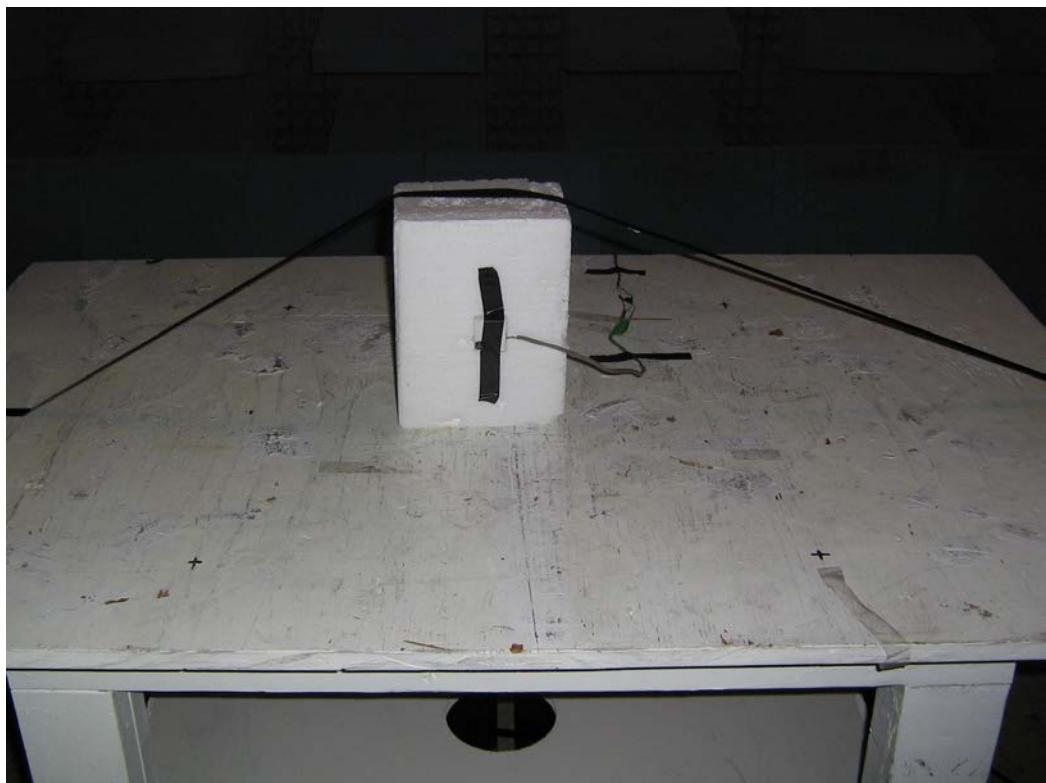
Note: Correction factors have not been applied to this plot.


99% Occupied Bandwidth = 2.532051 MHz

NCZ-3014 Low Channel Bandedge

Note: Correction factor not applied to this plot.

NCZ-3014 High Channel Bandedge



Note: Correction factor not applied to this plot.

Appendix B: EUT Photos During EMC Testing

Radiated Emission Test Setup in the Semi-Anechoic Chamber: NCZ-3014

Radiated Emissions Test Set-Up in the Semi-Anechoic Chamber: NCZ-3014

Radiated Emission Test Setup in the Semi-Anechoic Chamber: NCZ-3014