

STS

L
A
B

FCC SAR TEST REPORT

Report No.: STS1807040H01

Issued for

Canon Electronic Business Machines (H.K.) Co., Ltd.
17/F, Tower One, Ever Gain Plaza, 82-100 Container Port
Road, Kwai Chung, New Territories, Hong Kong

Product Name:	Wireless Presenter
Brand Name:	Canon
Model Name:	PR3
Series Model:	N/A
FCC ID:	Y7J-PR3
Test Standard:	ANSI/IEEE Std. C95.1 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013
Max. Report SAR (1g):	Body: 0.127 W/kg

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS. All Test Data Presented in this report is only applicable to presented Test sample.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Test Report Certification

Applicant's name : Canon Electronic Business Machines (H.K.) Co., Ltd.
Address : 17/F, Tower One, Ever Gain Plaza, 82-100 Container Port Road,
Kwai Chung, New Territories, Hong Kong

Manufacture's Name : Canon Electronic Business Machines (H.K.) Co., Ltd.
Address : 17/F, Tower One, Ever Gain Plaza, 82-100 Container Port Road,
Kwai Chung, New Territories, Hong Kong

Product description

Product name : Wireless Presenter

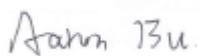
Brand name : Canon

Model name : PR3

Series Model : N/A

ANSI/IEEE Std. C95.1-1992

Standards : FCC 47 CFR Part 2 (2.1093)
IEEE 1528: 2013


The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test :

Date (s) of performance of tests : 15 Dec. 2018

Date of Issue : 16 Dec. 2018

Test Result : **Pass**

Testing Engineer :
(Aaron Bu)

Technical Manager :
(Jason Lu)

Authorized Signatory :
(Vita Li)

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2. Test Standards And Limits	7
3. SAR Measurement System	8
3.1 Definition Of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	13
5.1 Validation System	13
5.2 Validation Result	13
6. SAR Evaluation Procedures	14
7. EUT Test Position	15
7.1 Define Two Imaginary Lines On The Handset	15
7.2 Hotspot mode exposure position condition	15
8. Uncertainty	16
8.1 Measurement Uncertainty	16
8.2 System validation Uncertainty	17
9. Conducted Power Measurement	18
9.1 Test Result	18
9.2 Tune-up Power	18
9.3 SAR Test Exclusions Applied	19
10. EUT And Test Setup Photo	20
10.1 EUT Photo	20
10.2 Setup Photo	23
11. SAR Result Summary	27
11.1 Body-worn SAR	27
12. Equipment List	28
Appendix A. System Validation Plots	29
Appendix B. SAR Test Plots	31
Appendix C. Probe Calibration And Dipole Calibration Report	32

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	16 Dec. 2018	STS1807040H01	ALL	Initial Issue

Note: **Format version** of the report -V01

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Product Name	Wireless Presenter		
Brand Name	Canon		
Model Name	PR3		
Series Model	N/A		
FCC ID	Y7J-PR3		
Model Difference	N/A		
Battery	Rated Voltage: 3.7V; Charge Limit: 4.2V; Capacity: 125mAh		
Device Category	Portable		
Product stage	Production unit		
Exposure Environment	General Population / Uncontrolled		
Hardware Version	T000		
Software Version	V02		
Frequency Range	Bluetooth: 2402~ 2480 MHz 2.4G RF: 2405~2460 MHz		
Max. Reported SAR(1g) (Limit:1.6W/kg)	Band	Mode	Body Worn (W/kg)
	DTS	BLE	0.127
FCC Equipment Class	Digital Transmission System (DTS)		
Operating Mode	BLE: GFSK 2.4G RF: GFSK		
Antenna Specification	PCB Antenna		
<p>Note:</p> <p>1. The USB power of the computer while charging is higher than the working state of the lithium battery alone, so select the test under the USB working state of the computer.</p>			

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Shenzhen STS Test Services Co., Ltd.

Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,
Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

FCC Registration No.: 625569

IC Registration No.: 12108A

A2LA Certificate No.: 4338.01

2. Test Standards And Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE

GENERAL POPULATION/UNCONTROLLED EXPOSURE

PARTIAL BODY LIMIT

1.6 W/kg

3. SAR Measurement System

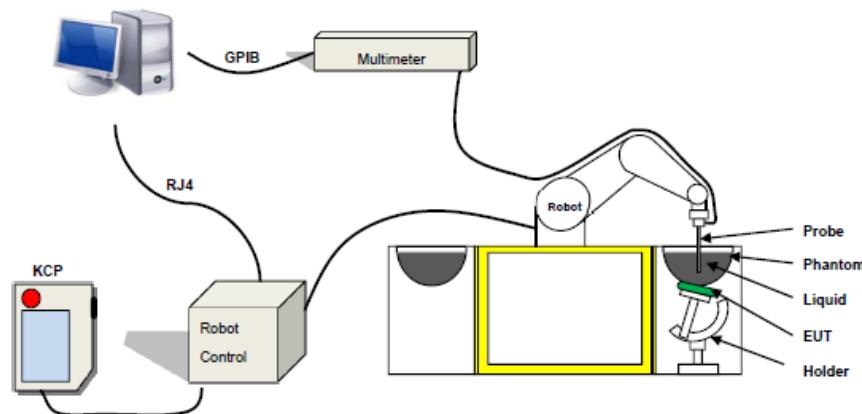
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$\text{SAR} = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

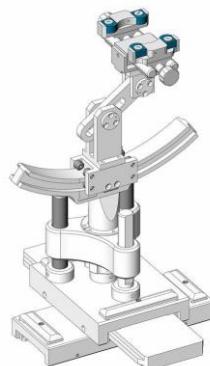
For the measurements the Specific Dosimetric E-Field Probe SN 14/16 EP309 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 5 mm
- Length of Individual Dipoles: 4.5 mm
- Maximum external diameter: 8 mm
- Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 2.7mm)
- Probe linearity: 0±2.27%(±0.10dB)
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 400 MHz to 3 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.


SN 32/14 SAM115

SN 32/14 SAM116

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Head Tissue

Frequency (MHz)	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	ϵ_r
750	0.2	/	/	1.4	0.2	57.0	/	41.1	0.89	41.9
835	0.2	/	/	1.4	0.2	57.9	/	40.3	0.90	41.5
900	0.2	/	/	1.4	0.2	57.9	/	40.3	0.97	41.5
1800	/	44.5	/	0.3	/	/	30.45	55.2	1.4	40.0
1900	/	44.5	/	0.3	/	/	30.45	55.2	1.4	40.0
2000	/	44.5	/	0.3	/	/	/	55.2	1.4	40.0
2450	/	44.9	/	0.1	/	/	/	55.0	1.80	39.2
2600	/	45.0	/	0.1	/	/	/	54.9	1.96	39.0

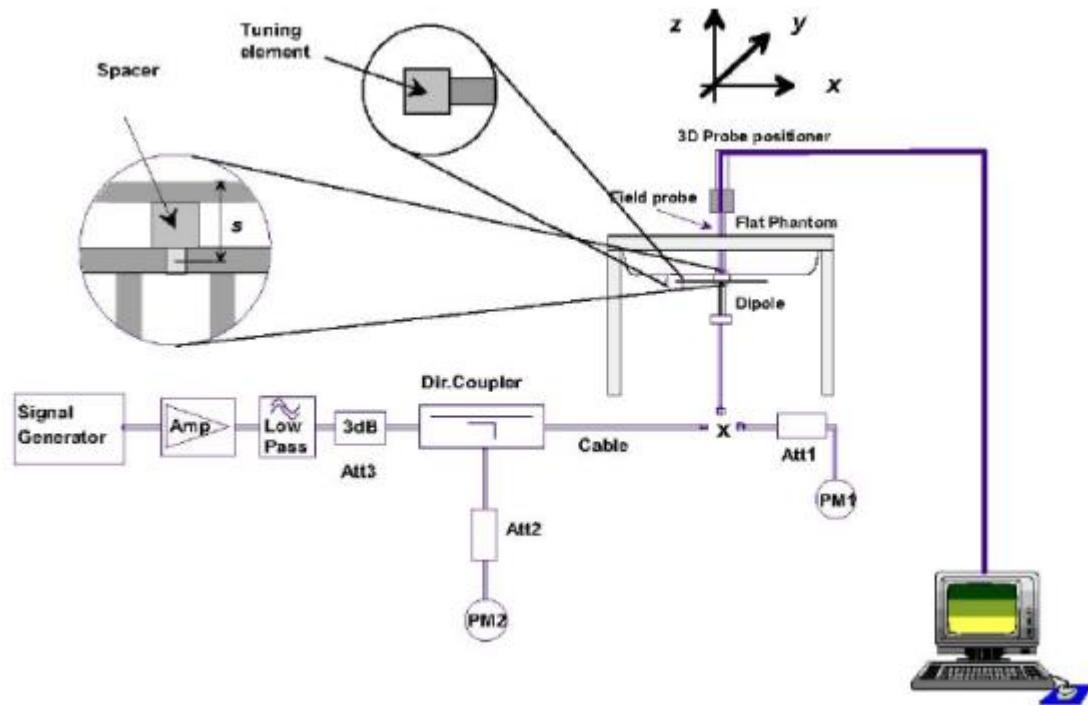
Body Tissue

Frequency (MHz)	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
	%	%	%	%	%	%	%	%	σ	ϵ_r
750	0.2	/	/	0.9	0.1	47.2	/	51.7	0.96	55.5
835	0.2	/	/	0.9	0.1	48.2	/	50.8	0.97	55.2
900	0.2	/	/	0.9	0.1	48.2	/	50.8	1.05	55.0
1800	/	29.4	/	0.4	/	/	30.45	70.2	1.52	53.3
1900	/	29.4	/	0.4	/	/	30.45	70.2	1.52	53.3
2000	/	29.4	/	0.4	/	/	/	70.2	1.52	53.3
2450	/	31.3	/	0.1	/	/	/	68.6	1.95	52.7
2600	/	31.7	/	0.1	/	/	/	68.2	2.16	52.3

Tissue dielectric parameters for head and body phantoms				
Frequency	ϵ_r		σ S/m	
	Head	Body	Head	Body
300	45.3	58.2	0.87	0.92
450	43.5	56.7	0.87	0.94
900	41.5	55.0	0.97	1.05
1450	40.5	54.0	1.20	1.30
1800	40.0	53.3	1.40	1.52
2450	39.2	52.7	1.80	1.95
3000	38.5	52.0	2.40	2.73
5800	35.3	48.2	5.27	6.00

LIQUID MEASUREMENT RESULTS

Date	Ambient condition		Body Simulating Liquid		Parameters	Target	Measured	Deviation [%]	Limited [%]
	Temp. [°C]	Humidity [%]	Frequency	Temp. [°C]					
2018-12-15	23.3	59	2450 MHz	23.0	Permittivity:	52.70	53.26	1.06	± 5
					Conductivity	1.95	1.89	-3.08	± 5



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg)	Target(W/Kg)	Tolerance(%)	Date
2450 Body	100	5.104	51.04	52.4	-2.60	2018-12-15

Note:

1. The tolerance limit of System validation $\pm 10\%$.
2. The dipole input power (forward power) was 100 mW.
3. The results are normalized to 1 W input power.

6. SAR Evaluation Procedures

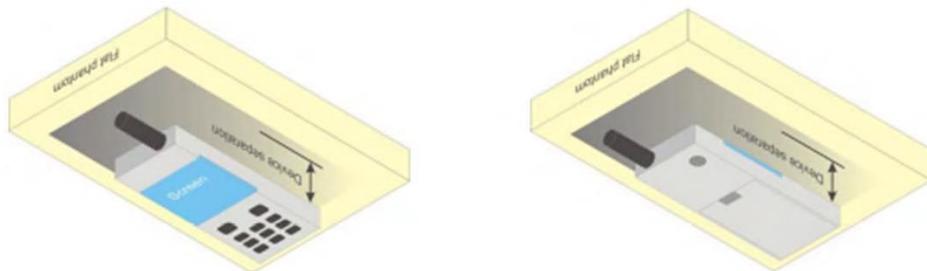
The procedure for assessing the average SAR value consists of the following steps:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan:

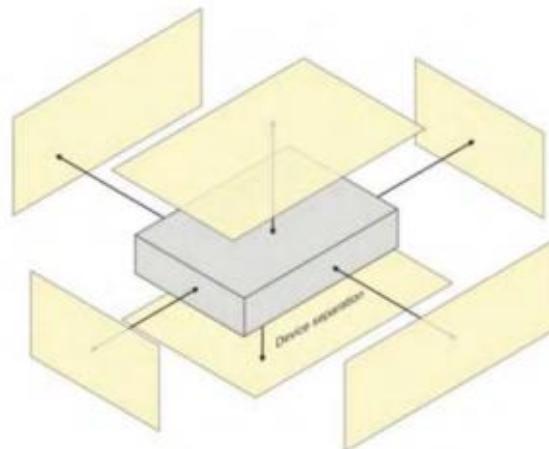
First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.


7. EUT Test Position

This EUT was tested in Front Face and Rear Face.

7.1 Define Two Imaginary Lines On The Handset


Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative test separation distance configuration may be used to support both SAR conditions. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is $> 1.2 \text{ W/kg}$, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

7.2 Hotspot mode exposure position condition

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25mm from that surface or edge. When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm) is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration(surface).

8. Uncertainty

8.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System								
Probe calibration	5.831	N	1	1	1	5.83	5.83	∞
Axial Isotropy	0.695	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	0.28	0.28	∞
Hemispherical Isotropy	1.045	R	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	0.43	0.43	∞
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	0.685	R	$\sqrt{3}$	1	1	0.40	0.40	∞
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Readout Electronics	0.021	N	1	1	1	0.021	0.021	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF ambient conditions-Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient conditions-reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mechanical tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Post-processing	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Test sample Related								
Test sample positioning	2.6	N	1	1	1	2.6	2.6	∞
Device holder uncertainty	3	N	1	1	1	3	3	∞
SAR drift measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Phantom and tissue parameters								
Phantom uncertainty(shape and thickness uncertainty)	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	1.9	N	1	1	0.84	1.90	1.60	∞
Liquid conductivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid conductivity (measured)	4	N	1	0.78	0.71	3.12	2.84	M
Liquid permittivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Liquid permittivity (measured)	5	N	1	0.23	0.26	1.15	1.30	M
Combined Standard Uncertainty		RSS				9.79	9.59	
Expanded Uncertainty (95% Confidence interval)		K=2				19.58	19.18	

8.2 System validation Uncertainty

Uncertainty Component	Tol (+ - %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+ - %)	10g Ui (+ - %)	vi
Measurement System								
Probe calibration	5.831	N	1	1	1	5.83	5.83	∞
Axial Isotropy	0.695	R	$\sqrt{3}$	1	1	0.40	0.40	∞
Hemispherical Isotropy	1.045	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	0.685	R	$\sqrt{3}$	1	1	0.40	0.40	∞
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Readout Electronics	0.021	N	1	1	1	0.021	0.021	∞
Response Time	0.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient conditions-reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mechanical tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Post-Processing	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
System validation source								
Deviation of experimental dipole from numerical dipole	5.0	N	1	1	1	5.00	5.00	∞
Input power and SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Other source contribution Uncertainty	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and set-up								
Phantom uncertainty (shape and thickness uncertainty)	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	1.9	N	1	1	0.84	1.90	1.60	∞
Liquid conductivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid conductivity (measured)	4	N	1	0.78	0.71	3.12	2.84	M
Liquid permittivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Liquid permittivity (measured)	5	N	1	0.23	0.26	1.15	1.30	M
Combined Standard Uncertainty		RSS				9.718	9.517	
Expanded Uncertainty (95% Confidence interval)		K=2				19.44	19.04	

9. Conducted Power Measurement

9.1 Test Result

2.4G RF

Mode	Frequency (MHz)	Average Power (dB μ V/m)
GFSK(1Mbps)	2405	66.25
	2430	65.23
	2460	64.52

BLE

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
GFSK(1Mbps)	37	2402	8.24
	17	2440	7.08
	39	2480	6.05

9.2 Tune-up Power

BLE

Mode	Channel Number	BLE(AVG)
GFSK(1Mbps)	37	8±1dBm
	17	7±1dBm
	39	6±1dBm

9.3 SAR Test Exclusions Applied

Per FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is $<$ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

$$\frac{\text{Max Power of Channel (mW)}}{\text{Test Separation Dist (mm)}} \cdot \sqrt{\text{Frequency(GHz)}} \leq 3.0$$

Based on the maximum conducted power of **2.4G RF Body** (rounded to the nearest mW) and the antenna to user separation distance,

2.4G RF Body SAR was not required; $[(66.25-95.3)/5] \cdot \sqrt{2.460} = 0.0004 < 3.0$.

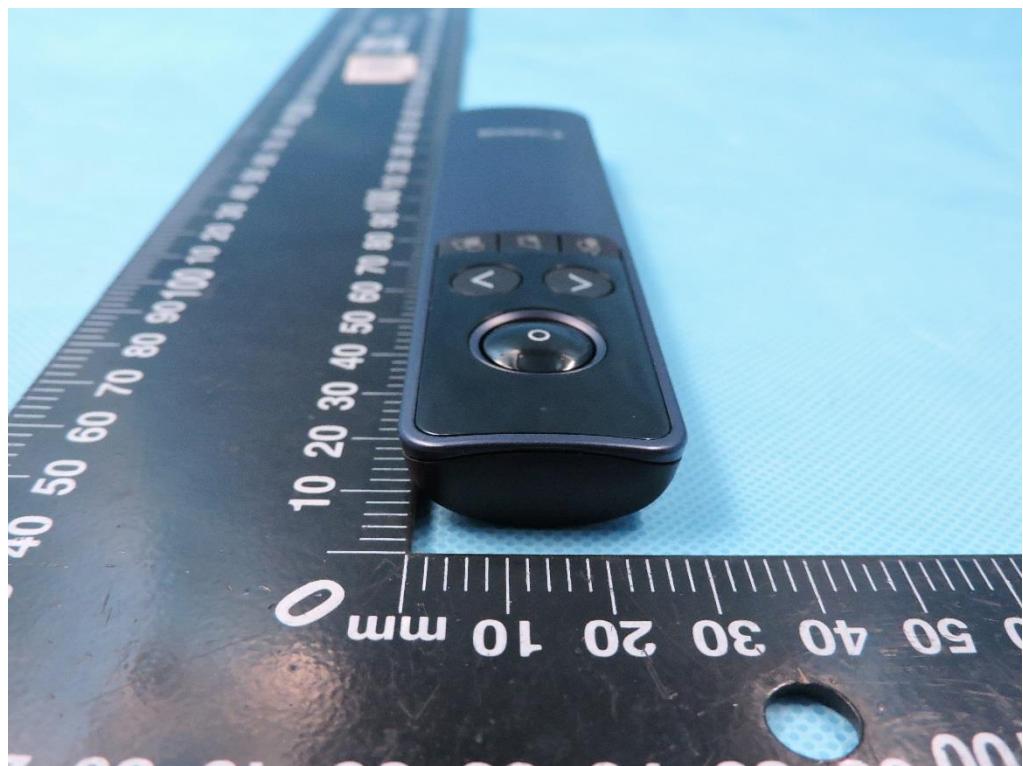
Based on the maximum conducted power of **BLE Body** (rounded to the nearest mW) and the antenna to user separation distance,

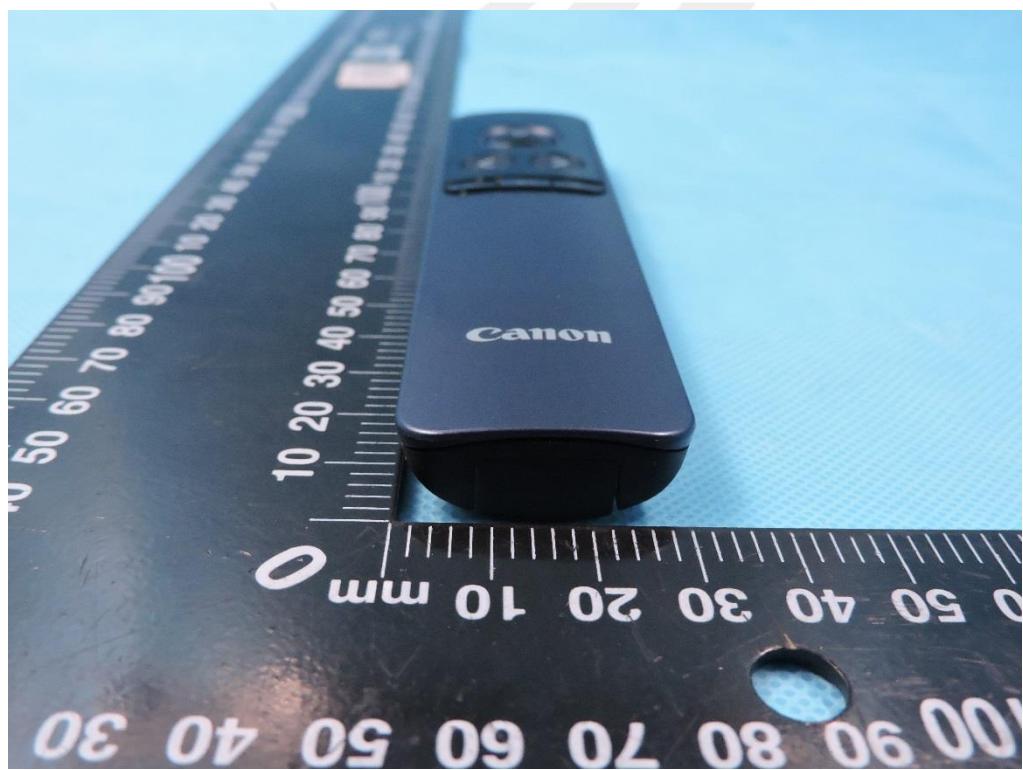
BLE Body SAR was not required; $[(7.943/5) \cdot \sqrt{2.480}] = 2.5 < 3.0$.^{Note}

Note: this mode has been tested in this report, although it satisfies KDB447498 section 4.3.1 exclusion procedures.

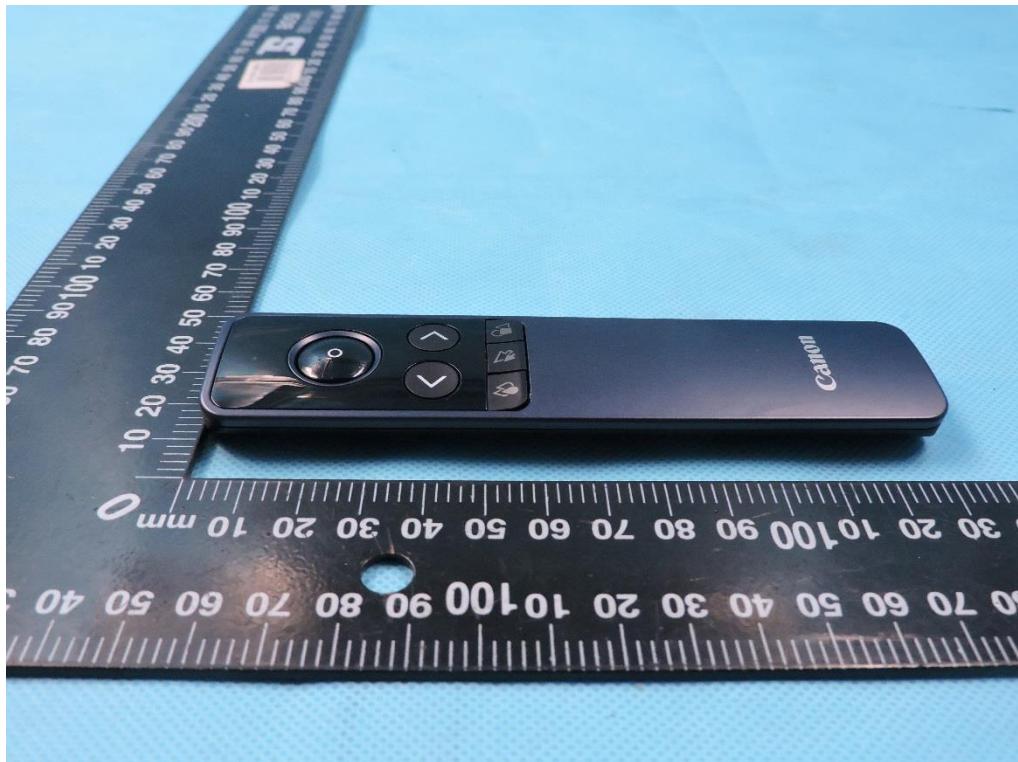
10. EUT And Test Setup Photo

10.1 EUT Photo

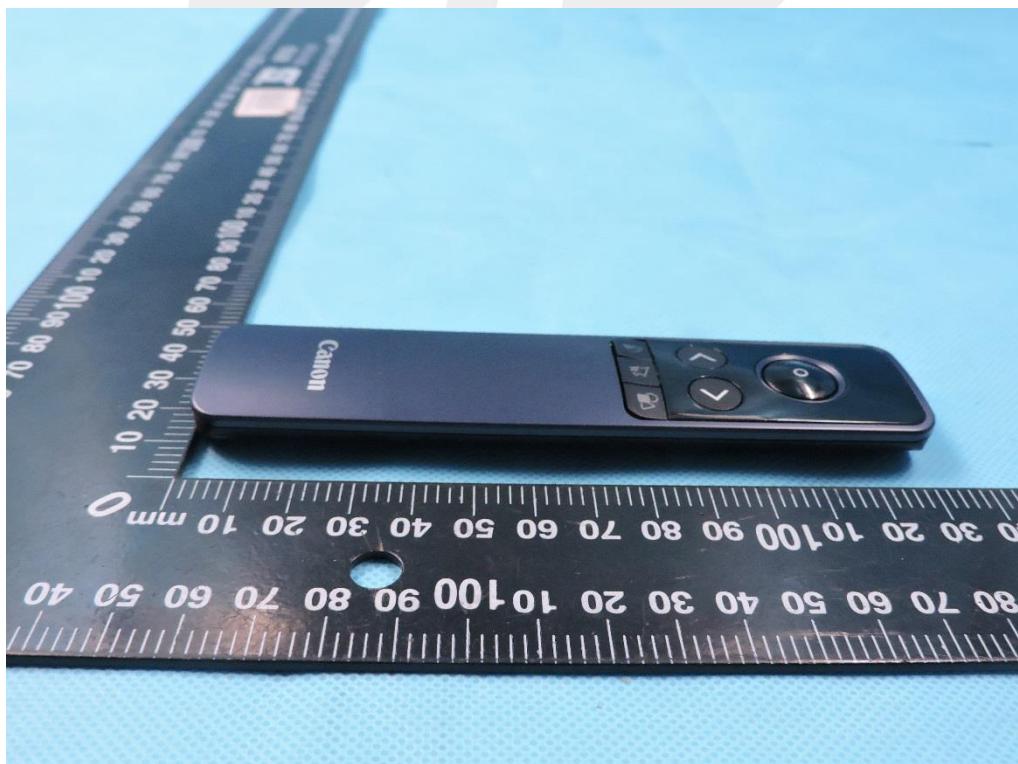

Front side


Back side

Top side



Bottom side

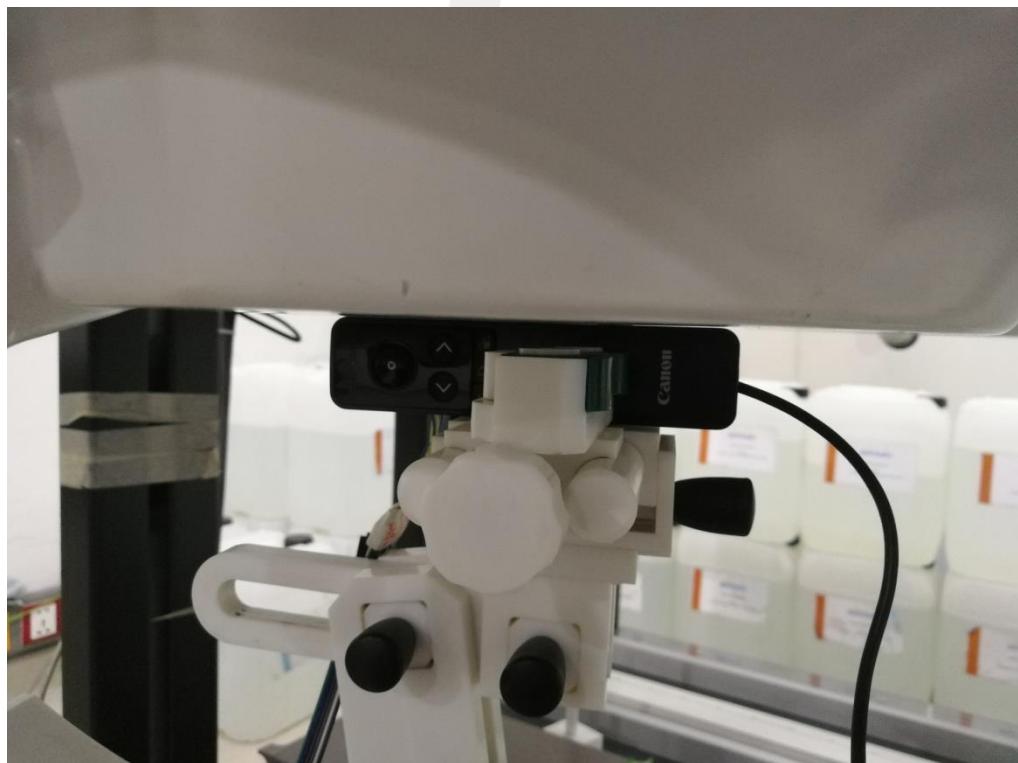


Left side

Right side

10.2 Setup Photo

Body Front side(separation distance is 0mm)


Body Back side(separation distance is 0mm)

Body Left side(separation distance is 0mm)

Body Right side(separation distance is 0mm)

Body Top side(separation distance is 0mm)

Liquid depth (15 cm)

11. SAR Result Summary

11.1 Body-worn SAR

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas. No.
BLE	GFSK	Front side	2402	0.082	-2.50	9	8.24	0.098	/
		Back side	2402	0.107	1.01	9	8.24	0.127	1
		Right side	2402	0.038	-3.96	9	8.24	0.045	/
		Left side	2402	0.035	-3.14	9	8.24	0.042	/
		Top side	2402	0.029	-1.40	9	8.24	0.035	/

Note:

1. The test separation of all above table is 0mm.
2. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
3. Per KDB865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg

12. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHzDipole	MVG	SID2450	SN 30/14 DIP2G450-335	2017.08.15	2020.08.14
E-Field Probe	MVG	SSE5	SN 14/16 EP309	2018.12.13	2019.12.12
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	N/A	N/A
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	N/A	N/A
Phantom2	MVG	SAM	SN 32/14 SAM116	N/A	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	N/A	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	N/A	N/A
Attenuator	Agilent	99899	DC-18GHz	N/A	N/A
Directional coupler	Narda	4226-20	3305	N/A	N/A
Network Analyzer	Agilent	8753ES	US38432810	2019.03.02	2020.03.01
Multi Meter	Keithley	Multi Meter 2000	4050073	2018.10.13	2019.10.12
Signal Generator	Agilent	N5182A	MY50140530	2018.10.16	2019.10.15
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2018.10.16	2019.10.15
Wireless Communication Test Set	R&S	CMW500	117239	2018.10.13	2019.10.12
Power Amplifier	DESAY	ZHL-42W	9638	2018.10.13	2019.10.12
Power Meter	R&S	NRP	100510	2018.10.26	2019.10.25
Power Meter	Agilent	E4418B	GB43312526	2018.10.26	2019.10.25
Power Sensor	R&S	NRP-Z11	101919	2018.10.13	2019.10.12
Power Sensor	Agilent	E9301A	MY41497725	2018.10.13	2019.10.12
hygrothermograph	MiEO	HH660	N/A	2018.10.11	2019.10.10
Thermograph	Elitech	RC-4	S/N EF7176501537	2018.10.15	2019.10.14

Note:

Per KDB 865664 D01, Dipole SAR Validation Verification, STS LAB has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole
2. System validation with specific dipole is within 10% of calibrated value

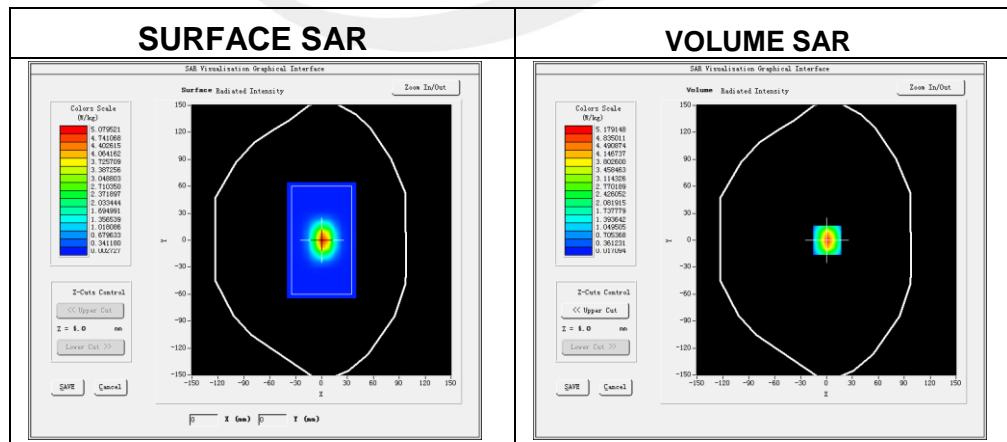
Return-loss is within 20% of calibrated measurement

Appendix A. System Validation Plots

System Performance Check Data (2450MHz Body)

Type: Phone measurement (Complete)

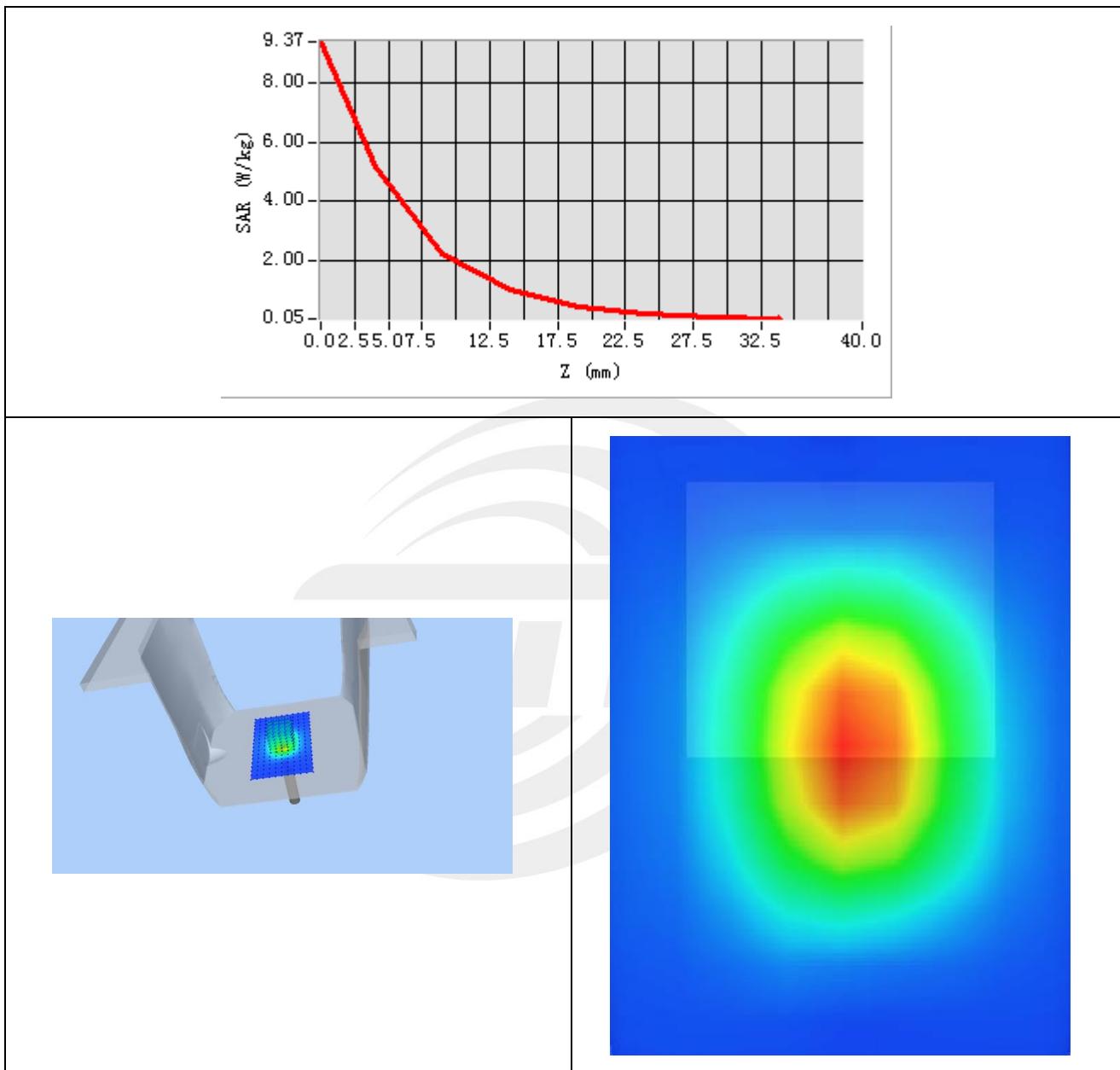
Area scan resolution: dx=8mm,dy=8mm


Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018-12-15

Measurement duration: 14 minutes 23 seconds

Experimental conditions.

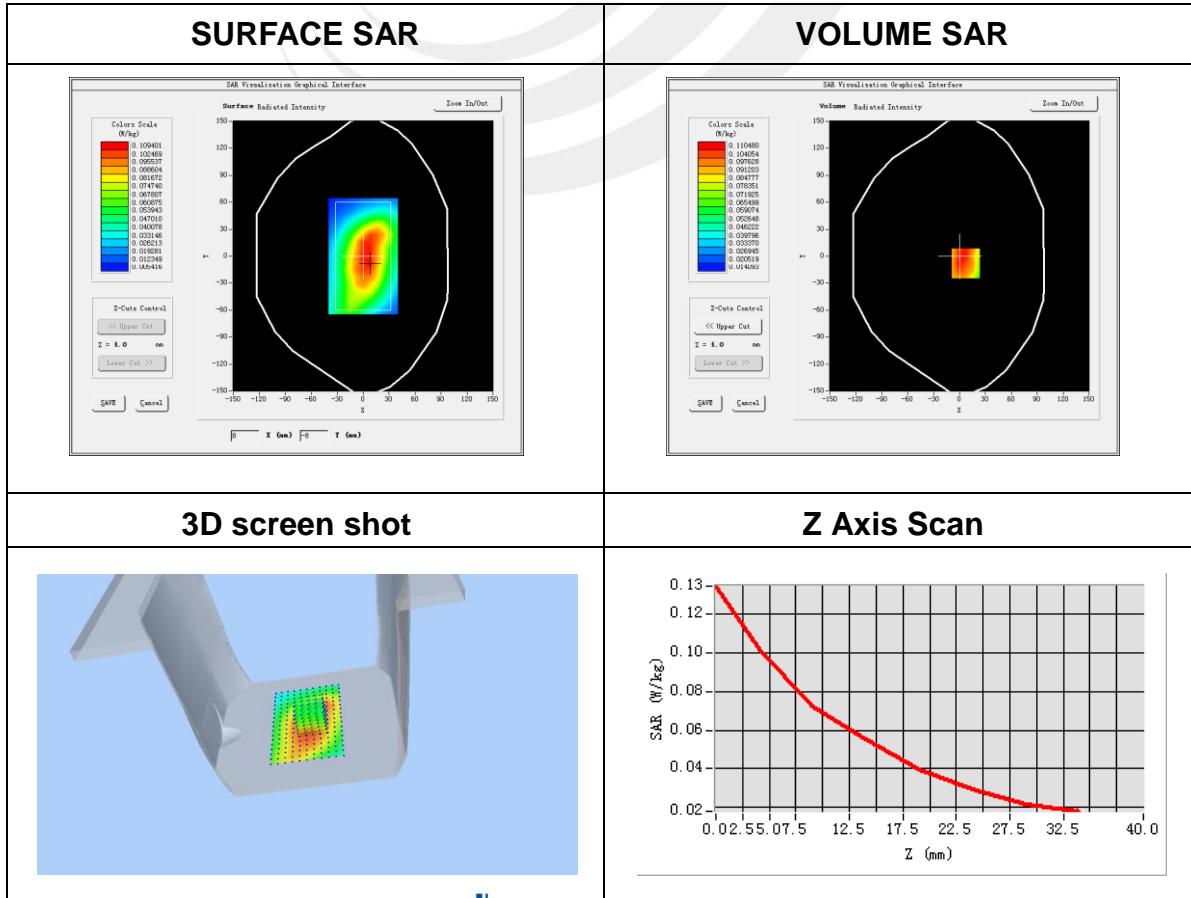

Device Position	Validation plane
Band	2450 MHz
Channels	-
Signal	CW
Frequency (MHz)	2450
Relative permittivity	53.26
Conductivity (S/m)	1.89
Power drift (%)	-0.07
Probe	SN 14/16 EP309
ConvF	5.24
Crest factor:	1:1

Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	2.415486
SAR 1g (W/Kg)	5.104257

Z Axis Scan

Appendix B. SAR Test Plots

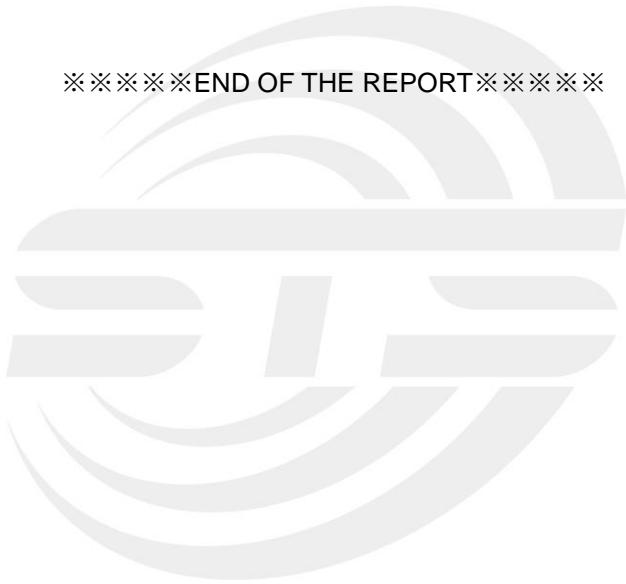

Plot 1: DUT: Wireless Presenter; EUT Model: PR3

Test Date	2018-12-15
Probe	SN 14/16 EP309
ConvF	5.67
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7, dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body Back
Band	BLE
Channels	37
Signal	Bluetooth (Crest factor: 1.0)
Frequency (MHz)	2402
Relative permittivity (real part)	52.70
Conductivity (S/m)	1.95
Variation (%)	1.01

Maximum location: X=7.00, Y=-8.00

SAR Peak: 0.15 W/kg

SAR 10g (W/Kg)	0.072764
SAR 1g (W/Kg)	0.106926



Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT*****

