

TPMS203-CANBUS Specification		TEST ITEM	TEST CONDITION	UNIT	Typical	LIMIT
DC operating voltage				V	24	9—30
DC current drain		Standby Arm		mA	15	18 max.
		Transmitting		mA	18	22 max.
Transmitting/Receiving frequency				MHz	433.92	+/-85KHz
Modulation mode	FSK					
Receiving sensitivity				dBm	-105	-95 max.

Once the device was powered, the device will transmit the CANBUS's ID information to TPMS Smart tool automatically, the data transmission will be stopped after 120ms. The TPMS smart tool got the CANBUS ID and stored in EEPROM, then the smart tool goes to learn all sensor's ID from tires by RF, after all the sensor and CANBUS's ID are located in the TPMS smart tool, the TPMS smart tool will send these information to CANBUS for registration.

Power conversion circuit converts input power into each module's working electric level. RF receiving circuit receives RF signals and sends to MCU after decoding. MCU analyzes received signal, pick up the tires sensor IDs and compare the IDs with those reserved in the EEPROM. If the IDs are consistent, the MCU continues to check the pressure and temperature data and send these data through 6pins CANBUS wires to vehicle's display system to display.

MCU is the core part of a CANBUS receiver, processing all the data.