

 Project No.:
 TM-2112000126P
 FCC ID:
 Y40-HG06
 Page:
 1 / 161

Report No.: TMTN2112000722NR Rev.: 00

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.10: 2013

TEST REPORT

For

Audio Device

Model: HG06

Brand: Headrush

Issued for

inMusic Brands, Inc.

200 Scenic View Drive, Cumberland, RI 02864 United States

Issued by

Compliance Certification Services Inc.

Tainan Lab.
No.8, Jiucengling, Xinhua Dist.,
Tainan City, Taiwan
Issued Date: April 30, 2022

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 161 Rev.: 00

REVISION HISTORY

Rev.	Rev. Issue Date Revisions		Effect Page	Revised By
00	April 30, 2022 Initial Issue		ALL	Gina Lin

Page: 3 / 161 Rev.: 00

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
3. DESCRIPTION OF TEST MODES	6
4. TEST METHODOLOGY	7
5. FACILITIES AND ACCREDITATIONS	7
5.1 FACILITIES	7
5.2 EQUIPMENT	7
5.3 LABORATORY ACCREDITATIONS LISTINGS	7
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	8
6. CALIBRATION AND UNCERTAINTY	9
6.1 MEASURING INSTRUMENT CALIBRATION	9
6.2 MEASUREMENT UNCERTAINTY	9
7. SETUP OF EQUIPMENT UNDER TEST	10
7.1 SETUP CONFIGURATION OF EUT	10
7.2 SUPPORT EQUIPMENT	11
7.3 EUT OPERATING CONDITION	12
8. APPLICABLE LIMITS AND TEST RESULTS	15
8.1 6dB BANDWIDTH	15
8.2 MAXIMUM PEAK OUTPUT POWER	
8.3 DUTY CYCLE	55
8.4 POWER SPECTRAL DENSITY	
8.5 CONDUCTED SPURIOUS EMISSION	
8.6 RADIATED EMISSIONS	
8.6.2 WORST-CASE RADIATED EMISSION BELOW 1 GHZ	
8.6.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHZ	
8.6.4 RESTRICTED BAND EDGES	
8.7 POWERLINE CONDUCTED EMISSIONS	
9. ANTENNA REQUIREMENT	
9.1 STANDARD APPLICABLE	155
9.2 ANTENNA CONNECTED CONSTRUCTION	
APPENDIX I SETUP PHOTOS	156

Page: 4 / 161 Rev.: 00

Report No.: TMTN2112000722NR

1. TEST REPORT CERTIFICATION

Applicant : inMusic Brands, Inc.

200 Scenic View Drive, Cumberland, RI 02864 United

States

Manufacturer : inMusic Brands, Inc.

200 Scenic View Drive, Cumberland, RI 02864 United

States

Equipment Under Test : Audio Device

Model : HG06

Brand : Headrush

Date of Test : December 08, 2021 ~ March 03, 2022

APPLICABLE STANDARD			
STANDARD TEST RESULT			
FCC Part 15 Subpart C AND ANSI C63.10: 2013	No non-compliance noted		

Statements of Conformity

Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

Approved by:

John Chen

Supervisor

Page: 5 / 161 Rev.: 00

2. EUT DESCRIPTION

Z. EUT DESCRIP	11014
Product Name	Audio Device
Model	HG06
Brand	Headrush
Received Date	December 07, 2021
Frequency Range	IEEE 802.11b/g, 802.11n HT20: 2412MHz~2462MHz Bluetooth 5.0: 2402MHz~2480MHz
Transmit Power	IEEE 802.11b Mode: 18.57dBm (71.945mW) IEEE 802.11g Mode: 20.00dBm (100.000mW) IEEE 802.11n HT20 Mode: 19.26dBm (84.333mW) Bluetooth 4.0 Mode: 4.21dBm (2.636mW) Bluetooth 5.0 Mode: 4.43dBm (2.773mW)
Channel Spacing	IEEE 802.11b/g, 802.11n HT20: 5MHz Bluetooth 5.0: 2MHz
Channel Number	IEEE 802.11b/g, 802.11n HT20: 11 Channels Bluetooth 5.0 : 40 Channels
Transmit Data Rate	IEEE 802.11b: 11, 5.5, 2, 1 Mbps IEEE 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps IEEE 802.11n HT20: 130, 117, 104, 78, 65, 58.5, 52, 39, 26, 19.5,13, 6.5 Mbps Bluetooth 5.0: 2 Mbps
Type of Modulation	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK) Bluetooth 5.0: GFSK
Antenna Type	Type: WLAN ANTENNA Model: DB1EM60-I0300-S Manufacturer: BRITO Gain: 4.6 dBi
Power Rating	AC 100-240V
Hardware Version	INM-AZ05-Carrier Board
Software Version	N/A
Firmware Version	hg06-2021-09-08-03-13-unified-1c43f5c-AZ01-master-863f253
Temperature Range	0°C ~ +35°C
Reported Date	April 22, 2022

REMARK.

- The sample (HG06) selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>Y4O-HG06</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the User's manual of the EUT.

Page: 6 / 161

Report No.: TMTN2112000722NR Rev.: 00

3. DESCRIPTION OF TEST MODES

The EUT is a Audio Device. It has one transmitter chains and one receive chains (1x1 configurations) and BT5.0. The 1x1 configuration is implemented with one outside chains (Chain 0).

The RF chipset is manufactured by Broadcom.

The antenna peak gain 4.6dBi (highest gain) were chosen for full testing.

IEEE 802.11 b ,802.11g ,802.11n HT20 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b mode: 1Mbps long data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing. IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing.

GFSK mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2402	
Middle	2442	
High	2480	

Bluetooth 5.0 (GFSK) mode: 1Mbps data rate (worst case) were chosen for full testing.

Page: 7 / 161

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10 and FCC CFR 47 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW1109).

Page: 8 / 161

Report No.: TMTN2112000722NR Rev.: 00

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada Industry Canada (TW1109)

Germany TUV NORD

Taiwan BSMI

USA FCC

Page: 9 / 161

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

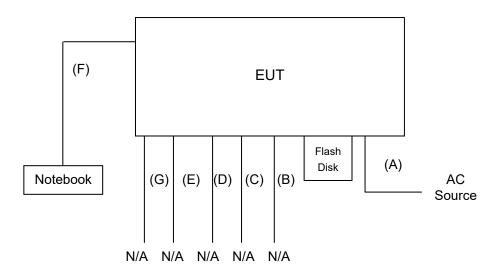
The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

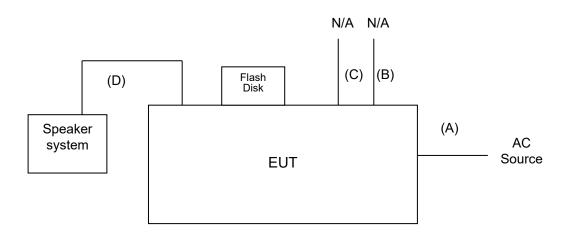
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz Test Site : OATS-6	±3.3456dB
Radiated Emission, 200 to 1000 MHz Test Site : OATS-6	±2.6828dB
Radiated Emission, 1 to 8 GHz	± 2.6485dB
Radiated Emission, 8 to 18 GHz	± 2.6852dB
Radiated Emission, 18 to 26.5 GHz	± 2.6485dB
Radiated Emission, 26 to 40 GHz	± 3.0295dB
Power Line Conducted Emission	±1.91dB
Band Width	136.49kHz
Peak Output Power MU	±1.904dB
Band Edge MU	±0.302dBuV
Channel Separation MU	361.69Hz
Duty Cycle MU	0.064ms
Frequency Stability MU	0.223kHz

Uncertainty figures are valid to a confidence level of 95%, K=2



Page: 10 / 161 Rev.: 00


7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

FOR RF TEST

FOR EMITEST

Page: 11 / 161 Rev.: 00

7.2 SUPPORT EQUIPMENT

RF test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable		
1	Flash Disk	Transcend	Jet Flash700	DOC	N/A		
2	Notebook	Acer	MS2229	1 1 1 1 1 1	Unshielded, 1.4m Unshielded, 1.6m with one core		

No.	Signal cable description				
Α	AC Power cable	cable Unshielded, 1.8m, 1pcs.			
В	USB	Shielded, 1.4m, 1pcs. with one core			
С	MIC	Shielded, 1.0m, 2pcs.			
D	Audio 6.4m	m Shielded, 0.5m, 9pcs.			
Е	Audio 3.5m Shielded, 1.0m, 2pcs.				
F	USB	Unshielded, 2.0m, 1pcs.			
G	MIC	Shielded, 0.5m, 2pcs.			

EMI test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Speaker System	T.C.SATR	TCS2285	DOC	N/A
2	Flash Disk	Transcend	Jet Flash700	DOC	N/A

No.	Signal cable description				
Α	AC Power cable	C Power cable Unshielded, 1.7m, 1pcs.			
В	Audio Shielded, 1.0m, 13pcs.				
С	USB Shielded, 2.0m, 1pcs.				
D	Audio	Shielded, 1.0m, 1pcs.			

REMARK:

- 1. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page: 12 / 161 Rev.: 00

7.3 EUT OPERATING CONDITION

RF Setup

- 1. Set up a whole system as the setup diagram.
- 2. The "Tera Term" software was used for testing
- 3. Key in "root", "connmanctl enable wifi".

TX Mode Key in:

B Mode:

wl down

wl mpc 0

wl country ALL

wl band b

wl up

wl 2g rate -r 01 -b 20

wl channel 01 (01,06,11)

wl phy_watchdog 0

wl scansuppress 1

wl phy_forcecal 1

wl phy txpwrctrl 1

wl txpwr1 -o -d 15

wl pkteng_start 00:90:4c:14:43:19 tx 100 1000 0

G Mode:

wl down

wl mpc 0

wl country ALL

wl band b

wl up

wl 2g_rate -r 06 -b 20

wl channel 01 (01,06,11)

wl phy_watchdog 0

wl scansuppress 1

wl phy_forcecal 1

wl phy_txpwrctrl 1

wl txpwr1 -o -d 13 (13,12,11)

wl pkteng start 00:90:4c:14:43:19 tx 100 1000 0

Page: 13 / 161

Report No.: TMTN2112000722NR Rev.: 00

HT20 Mode:

wl down

wl mpc 0

wl country ALL

wl band b

wl up

wl 2g_rate -h 0 -b 20

wl channel 01 (01,06,11)

wl phy_watchdog 0

wl scansuppress 1

wl phy forcecal 1

wl phy_txpwrctrl 1

wl txpwr1 -o -d 12 (12,11)

wl pkteng_start 00:90:4c:14:43:19 tx 100 1000 0

RX Mode Key in:

wl down

wl band auto

wl mpc 0

wl country ALL

wl channel 01 (01,06,11)

wl bi 65535

wl up

wl phy_watchdog 0

wl scansuppress 1

wl phy_forcecal 1

- 4. All of the function are under run.
- 5. Start test.

Page: 14 / 161

Bluetooth:

- 1. Set up a whole system as the setup diagram.
- 2. The "Tera Term" software was used for testing.
- 3. Key in:

root

cd /sys/class/bluetooth/hci0

ls -al

cd rfkill2/

echo 1 >state

echo 0 > /sys/class/rfkill/rfkill1/soft

bluetoothctl

power on

4. Press "Ctrl + z"

TX Mode

BLE 1M Key in:

hciconfig hci0 up

hcitool cmd 0x03 0x0003

hcitool cmd 0x08 0X0001e 00(00,14,27) 25 00

BLE 2M

BLE 2M Key in:

hciconfig hci0 up

hcitool cmd 0x03 0x0003

hcitool cmd 0x08 0x0034 00(00,14,27) 25 00 02

RX Mode

BLE1M Key in:

hciconfig hci0 up

hcitool cmd 0x03 0x0003

hcitool cmd 0x3f 0x0052 EE FF C0 88 00 00 E8 03 00(00,27,4E) 04 00 01 FF FF

BLE2M Key in:

hciconfig hci0 up

hcitool cmd 0x03 0x0003

hcitool cmd 0x08 0x0033 00(00,14,27) 02 00

- 5. All of the function are under run.
- 6. Start test.

Page: 15 / 161 Rev.: 00

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6dB BANDWIDTH

LIMIT

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST EQUIPMENTS

Chamber Room #966							
Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration							
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/22/2021	07/21/2022		
Power Meter	Anritsu	ML2487A	6K00003888	05/18/2021	05/17/2022		
Power Sensor	Anritsu	MA2491A	033265	05/18/2021	05/17/2022		
SMA Cable+10dB Attenuator	ccs	SMA+10dB ATT	SMA/10dB	01/28/2022	01/27/2023		
Software	Excel(ccs-o6-2020 v1.1)						

TEST SETUP

TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = 1-5 % of the emission bandwidth (EBW).
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is 1-5 %.

Page: 16 / 161 Rev.: 00

TEST RESULTS

No non-compliance noted.

Model Name	odel Name HG06		Ted Huang	
Temp & Humidity	23.4°ℂ , 65%	Test Date	2022/03/03	

IEEE 802.11b mode

Channel	Channel Frequency (MHz) 6dB Bandwidt (MHz)		Minimum Limit (kHz)	Pass / Fail
Low	2412	8.06	500	PASS
Middle	2437	7.59	500	PASS
High	2462	8.04	500	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 1Mbps long.
- 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	15.51	500	PASS
Middle	2437	15.53	500	PASS
High	2462	15.20	500	PASS

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Page: 17 / 161

Report No.: TMTN2112000722NR Rev.: 00

IEEE 802.11n HT20 mode

Channel	Channel Frequency (MHz)	Frequency 6dB Bandwidth Minimum (kHz)		Pass / Fail
Low	2412	15.22	500	PASS
Middle	2437	15.39	500	PASS
High	2462	15.21	500	PASS

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Page: 18 / 161 Rev.: 00

 Model Name
 HG06
 Test By
 Ted Huang

 Temp & Humidity
 23.4°C, 65%
 Test Date
 2022/03/03

Bluetooth 4.0 (GFSK) mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2402	714	500	PASS
Middle	2442	714	500	PASS
High	2480	715	500	PASS

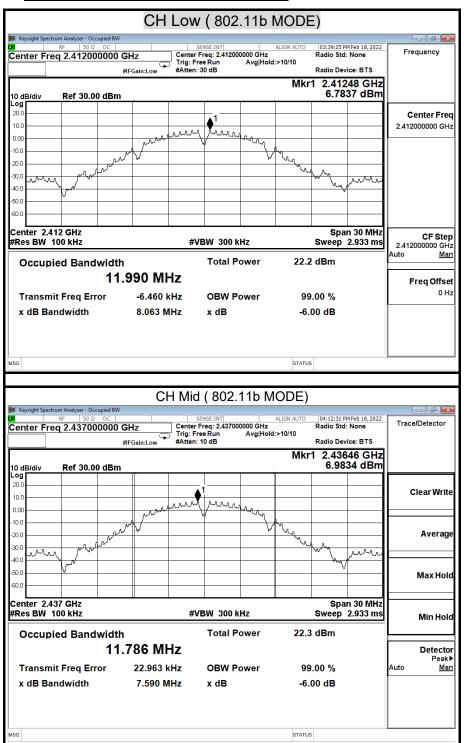
NOTE:

- 1. At finial test to get the worst-case emission at 1Mbps.
- 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Model Name	odel Name HG06		Ted Huang
Temp & Humidity	23.4℃, 65%	Test Date	2022/03/03

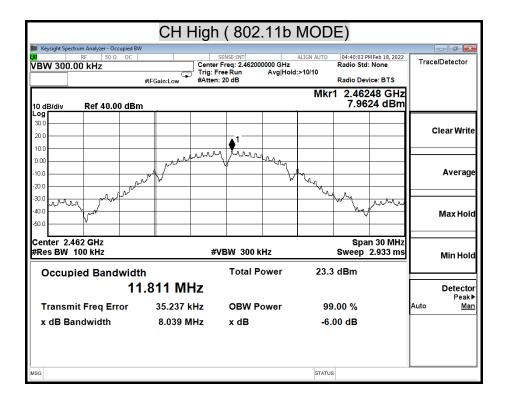
Bluetooth 5.0 (GFSK) mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2402	1160	500	PASS
Middle	dle 2442 1160		500	PASS
High	2480	1130	500	PASS


- 1. At finial test to get the worst-case emission at 2Mbps.
- 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power.

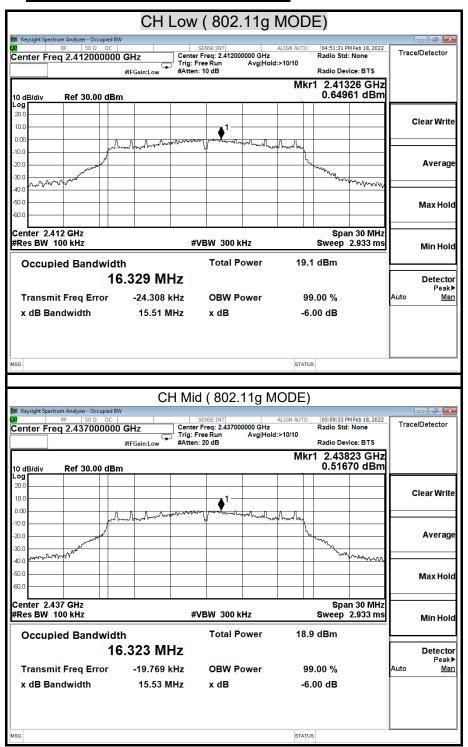
Page: 19 / 161 Rev.: 00

6dB BANDWIDTH (802.11b MODE)



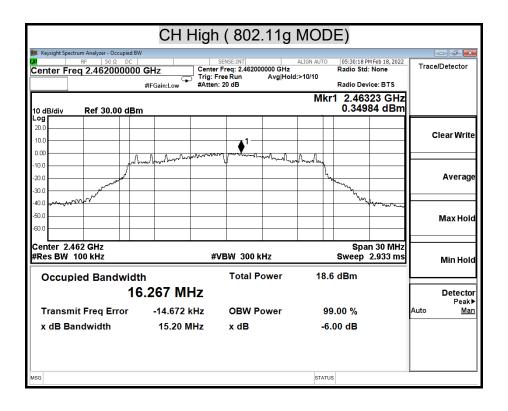
Page: 20 / 161

Rev.: 00



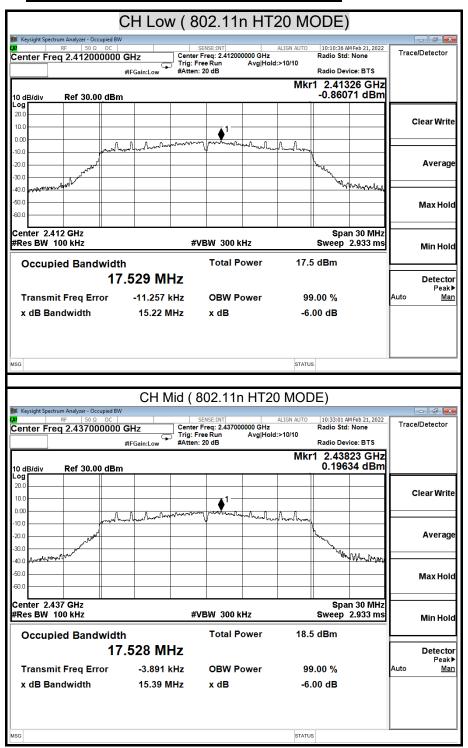
Page: 21 / 161 Rev.: 00

6dB BANDWIDTH (802.11g MODE)



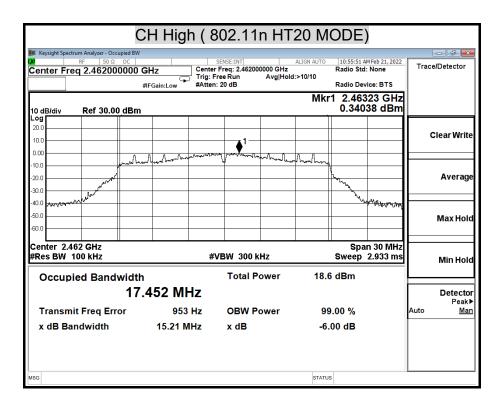
Page: 22 / 161

Rev.: 00



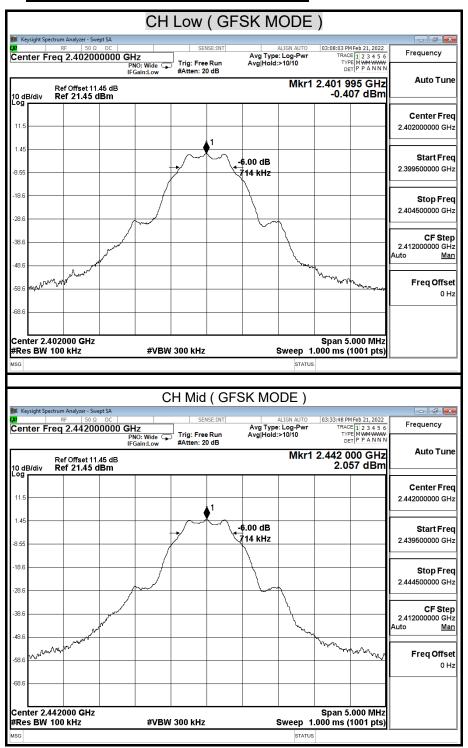
Page: 23 / 161 Rev.: 00

6dB BANDWIDTH (802.11n HT20 MODE)



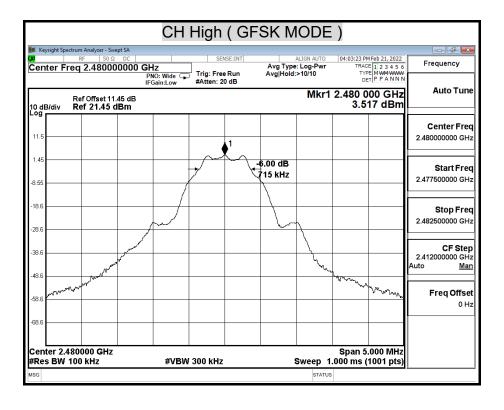
Page: 24 / 161

Rev.: 00



Page: 25 / 161 Rev.: 00

6dB BANDWIDTH (GFSK(4.0) MODE)



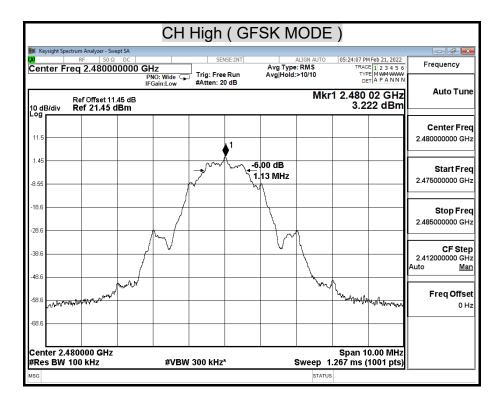
Page: 26 / 161

Rev.: 00



Page: 27 / 161 Rev.: 00

6dB BANDWIDTH (GFSK(5.0) MODE)



Page: 28 / 161

Rev.: 00

Page: 29 / 161 Rev.: 00

8.2 MAXIMUM PEAK OUTPUT POWER

LIMIT

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section , if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section , as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENTS

Chamber Room #966									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due				
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/22/2021	07/21/2022				
Power Meter	Anritsu	ML2487A	6K00003888	05/18/2021	05/17/2022				
Power Sensor	Anritsu	MA2491A	033265	05/18/2021	05/17/2022				
SMA Cable+10dB Attenuator	ccs	SMA+10dB ATT	SMA/10dB	01/28/2022	01/27/2023				
Software		Excel(ccs-o6-2020 v1.1)							

Page: 30 / 161 Rev.: 00

TEST SETUP

TEST PROCEDURE

The tests were performed in accordance with KDB 558074 8.3.1.1.

11.9.1.1 RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than

the DTS bandwidth is available to perform the measurement:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq [3 × RBW].
- c) Set span ≥ [3 × RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Page: 31 / 161

Report No.: TMTN2112000722NR Rev.: 00

Average Power

TEST PROCEDURE

1. Set span to at least 1.5 times the OBW.

- 2. Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- 3. Set VBW \geq [3 \times RBW].
- 4. Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- 5. Manually set sweep time \geq [10 \times (number of points in sweep) \times (transmission symbol period)],

but not less than the automatic default sweep time.

- 6. Set detector = RMS (power averaging).
- 7. The EUT shall be operated at ≥98% duty cycle or sweep triggering/signal gating shall be employed such that the sweep time is less than or equal to the transmission duration T.
- 8. Perform a single sweep.
- 9. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Page: 32 / 161 Report No.: TMTN2112000722NR Rev.: 00

TEST RESULTS

No non-compliance noted

Model Name	del Name HG06		Ted Huang
Temp & Humidity	23.4℃, 65%	Test Date	2022/03/03

IEEE 802.11b mode

Channel	Frequency	Data Rate	Power Set	Output Power (dBm)	Output Power Total		Limit	Result
	(MHz)			ChainA	(dBm)	(W)	(dBm)	
Low	2412	1	15	17.43	17.43	0.0553		PASS
Middle	2437	1	15	17.62	17.62	0.0578	30.00	PASS
High	2462	1	15	18.57	18.57	0.0719		PASS

NOTE:

- 1. At finial test to get the worst-case emission at 1Mbps long.
- 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

IEEE 802.11a mode

Channel	Frequency	Data Rate	Power Set	Output Power (dBm)	Output Power Total		Limit	Result
	(MHz)			ChainA	(dBm)	(W)	(dBm)	
Low	2412	6	13	20.00	20.00	0.1000		PASS
Middle	2437	6	12	19.83	19.83	0.0962	30.00	PASS
High	2462	6	11	19.63	19.63	0.0918		PASS

- **NOTE**: 1.At finial test to get the worst-case emission at 6Mbps.
 - 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

IEEE 802.11n HT20 mode

Channel	Frequency	Data Rate	Power Set	Output Power (dBm)	Output Power Total		•		Limit	Result
	(MHz)			ChainA	(dBm)	(W)	(dBm)			
Low	2412	MCS1	12	18.39	18.39	0.0690		PASS		
Middle	2437	MCS1	12	19.15	19.15	0.0822	30.00	PASS		
High	2462	MCS1	11	19.26	19.26	0.0843		PASS		

- 1. At finial test to get the worst-case emission at 6.5Mbps.
- 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

Page: 33 / 161

Rev.: 00

Model Name	HG06	Test By	Ted Huang
Temp & Humidity	23.4℃, 65%	Test Date	2022/03/03

Bluetooth 4.0 (GFSK) mode

2.00.000				
Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	0.42	30.00	PASS
Middle	2442	2.61	30.00	PASS
High	2480	4.21	30.00	PASS

- **NOTE**: 1. At finial test to get the worst-case emission at 1Mbps.
 - 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

Bluetooth 5.0 (GFSK) mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	0.58	30.00	PASS
Middle	2442	2.76	30.00	PASS
High	2480	4.43	30.00	PASS

- **NOTE**: 1. At finial test to get the worst-case emission at 2Mbps.
 - 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

Page: 34 / 161

Rev.: 00

Report No.: TMTN2112000722NR

Average Power Data IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	14.51
Middle	2437	14.71
High	2462	15.69

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Average Power (dBm)	
Low	2412	11.74	
Middle	2437	11.57	
High	2462	11.36	

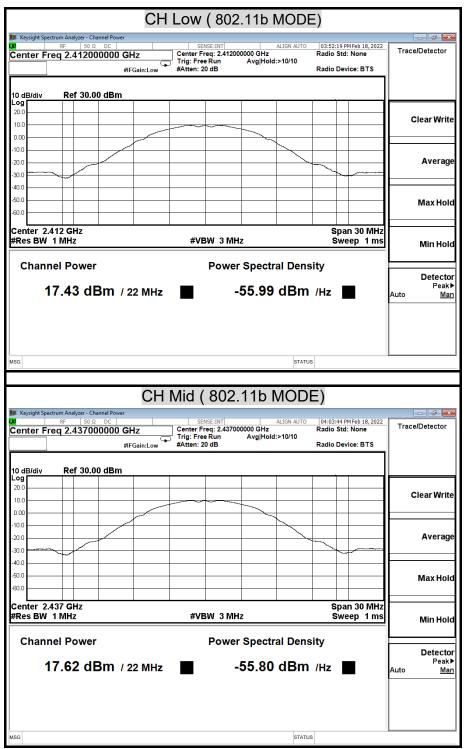
IEEE 802.11n HT20 mode

Channal	Channel	Average Power (dBm)	
Channel	Frequency (MHz)	Chain 0	
Low	2412	9.82	
Middle	2437	10.82	
High	2462	10.67	

Bluetooth 4.0 (GFSK) mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2402	0.07
Middle	2442	2.29
High	2480	3.78

Bluetooth 5.0 (GFSK) mode

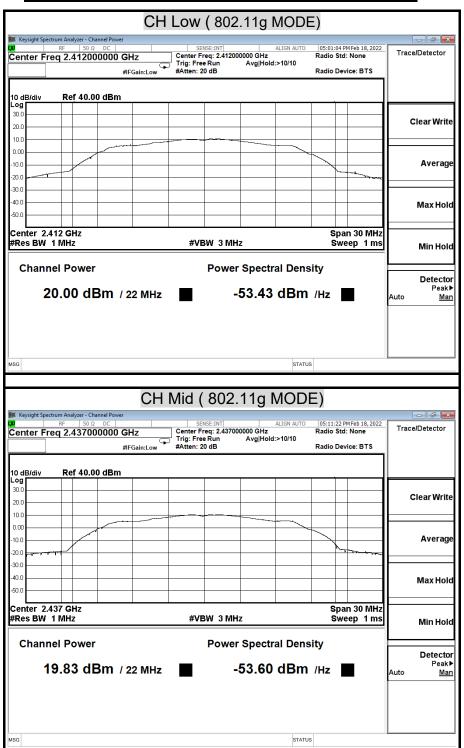

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2402	0.19
Middle	2442	2.35
High	2480	3.96

Page: 35 / 161 Rev.: 00

MAXIMUM PEAK OUTPUT POWER (802.11b MODE)

Page: 36 / 161 Rev.: 00

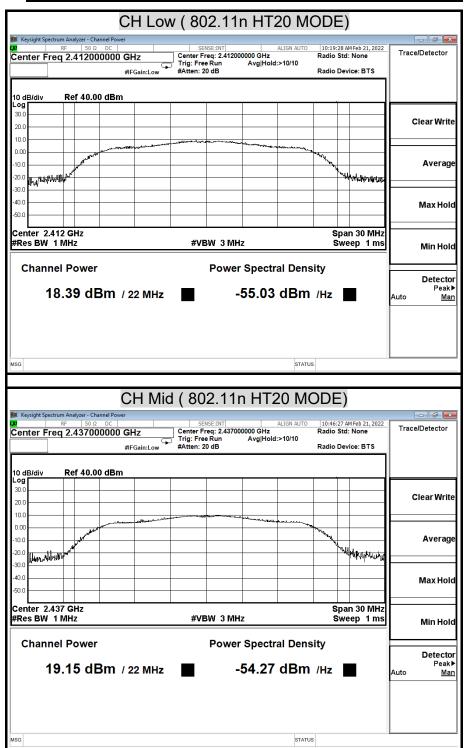
CH High (802.11b MODE) 04:41:26 PM Feb 18, 2022 Radio Std: None Trace/Detector Center Freq 2.462000000 GHz Radio Device: BTS Ref 30.00 dBm 20.0 Clear Write 10.0 0.00 -10.0 -20.0 Average -30.0 -40.0 Max Hold Center 2.462 GHz #Res BW 1 MHz Span 30 MHz Sweep 1 ms #VBW 3 MHz Min Hold **Channel Power Power Spectral Density** Detector Peak▶ <u>Man</u> 18.57 dBm / 22 MHz -54.85 dBm /Hz


STATUS

Page: 37 / 161 Rev.: 00

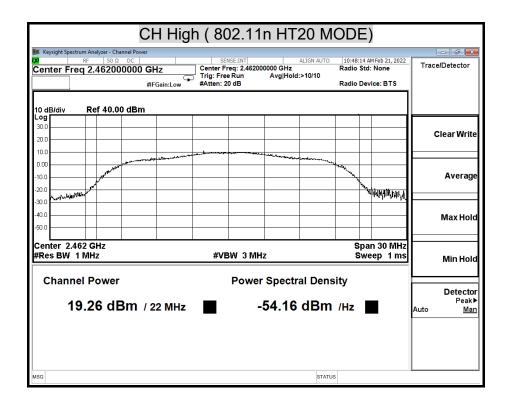

MAXIMUM PEAK OUTPUT POWER (802.11g MODE)

Page: 38 / 161 Rev.: 00

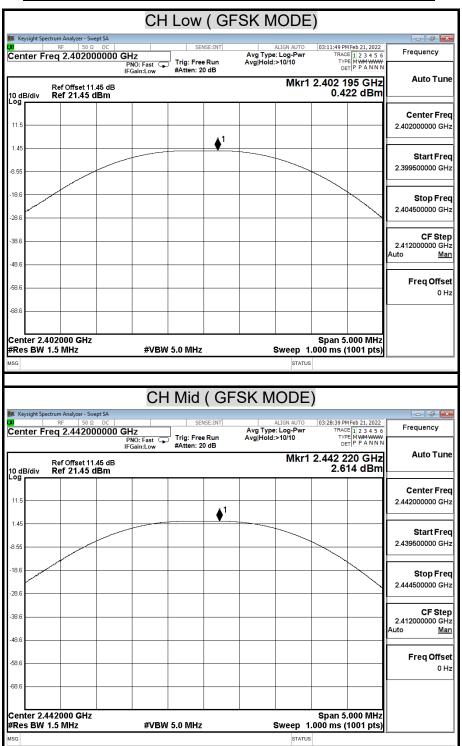


Page: 39 / 161

Report No.: TMTN2112000722NR Rev.: 00

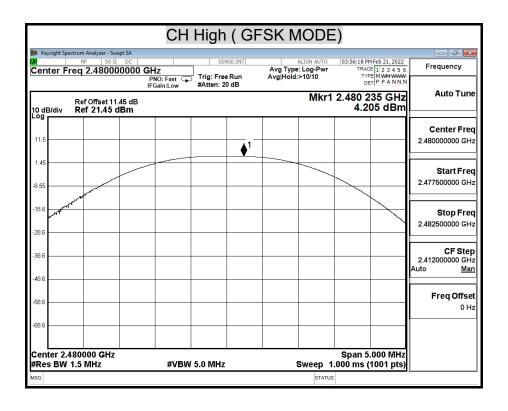

MAXIMUM PEAK OUTPUT POWER (802.11n HT20 MODE)

Page: 40 / 161 Rev.: 00

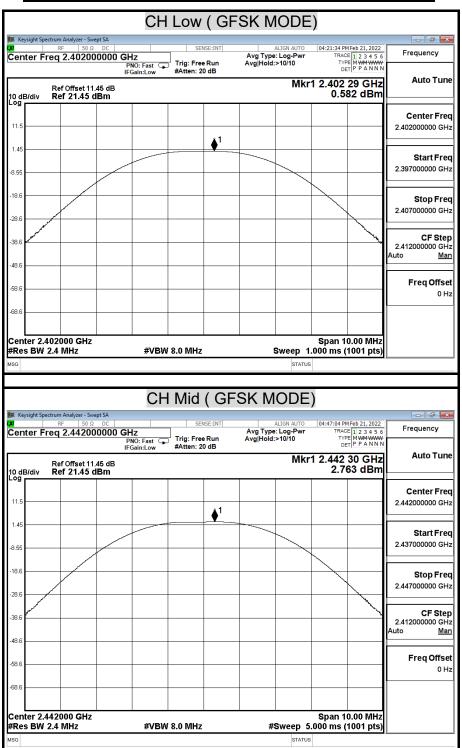


Page: 41 / 161

Report No.: TMTN2112000722NR Rev.: 00

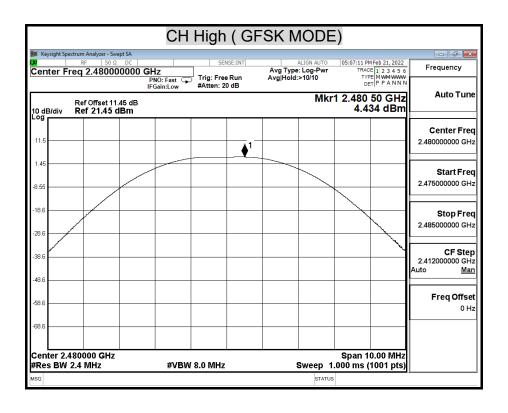

MAXIMUM PEAK OUTPUT POWER (GFSK(4.0) MODE)

Page: 42 / 161

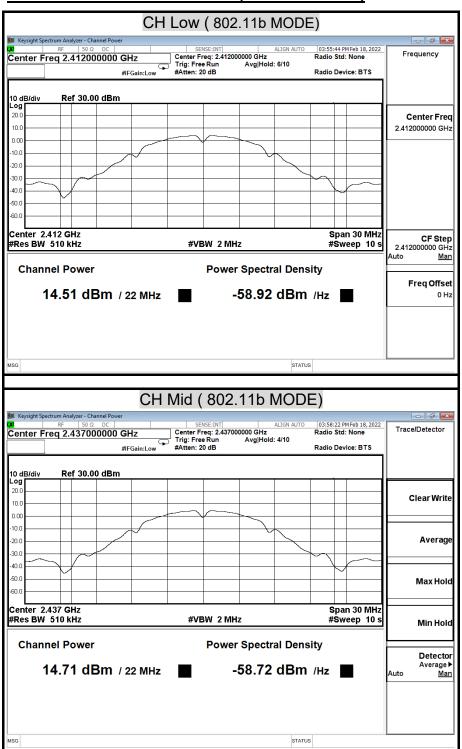


Page: 43 / 161

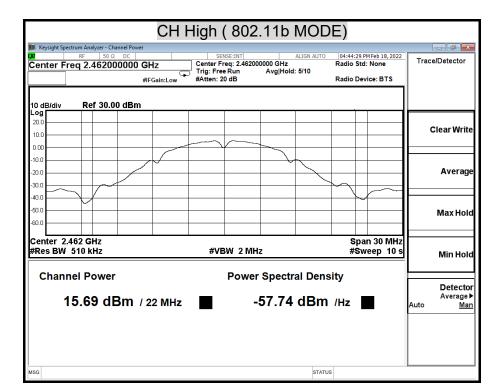
Report No.: TMTN2112000722NR Rev.: 00


MAXIMUM PEAK OUTPUT POWER (GFSK(5.0) MODE)

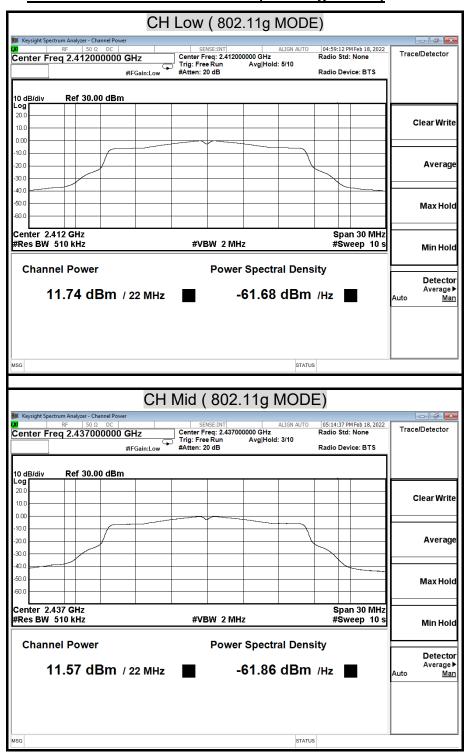
Page: 44 / 161



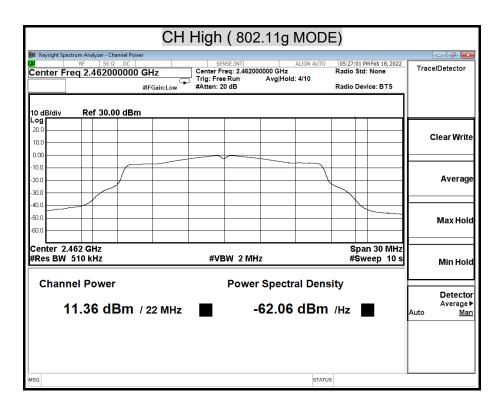
Page: 45 / 161 Rev.: 00


MAXIMUM AVERAGE POWER (802.11b MODE)

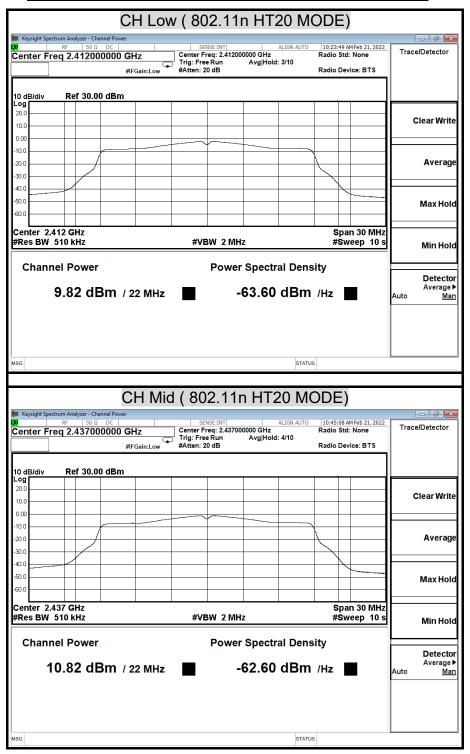
Page: 46 / 161 Rev.: 00



Page: 47 / 161 Rev.: 00

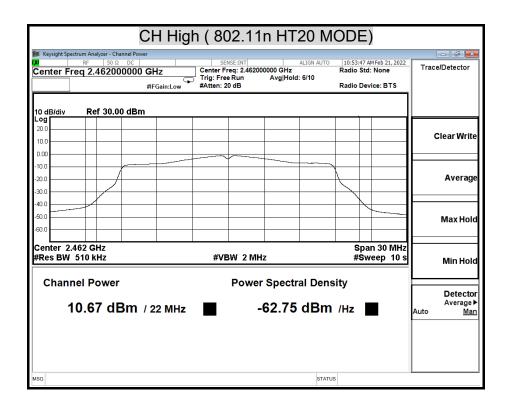

MAXIMUM AVERAGE POWER (802.11g MODE)

Page: 48 / 161 Rev.: 00

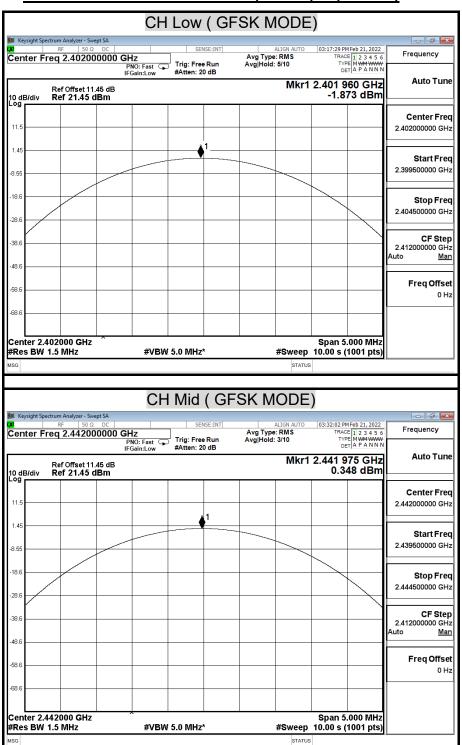


Page: 49 / 161

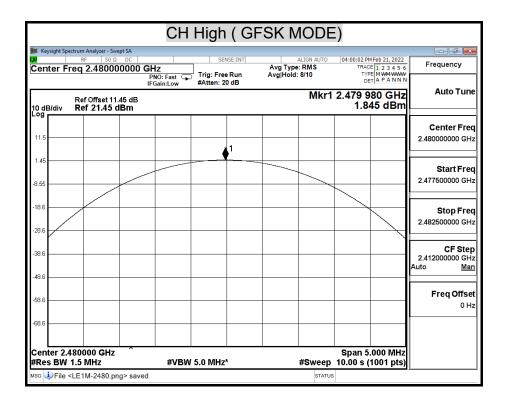
Rev.: 00


MAXIMUM AVERAGE POWER (802.11n HT20 MODE)

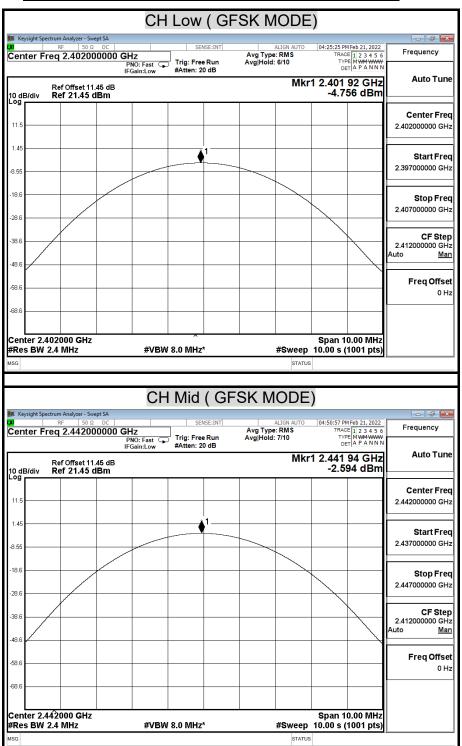
Page: 50 / 161 Rev.: 00



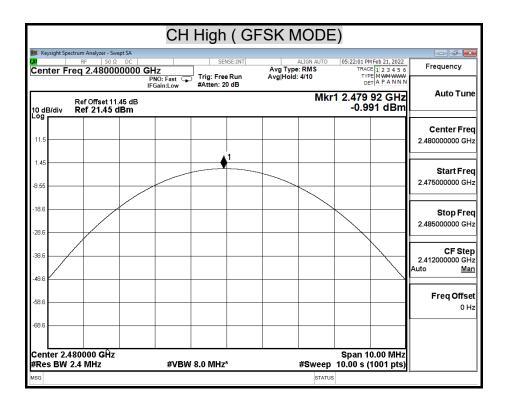
Page: 51 / 161 Rev.: 00


MAXIMUM AVERAGE POWER (GFSK(4.0) MODE)

Page: 52 / 161



Page: 53 / 161 Rev.: 00


MAXIMUM AVERAGE POWER (GFSK(5.0) MODE)

Page: 54 / 161

Page: 55 / 161 Rev.: 00

8.3 DUTY CYCLE

LIMIT

Nil (No dedicated limit specified in the Rules)

TEST EQUIPMENTS

Chamber Room #966					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/22/2021	07/21/2022
Power Meter	Anritsu	ML2487A	6K00003888	05/18/2021	05/17/2022
Power Sensor	Anritsu	MA2491A	033265	05/18/2021	05/17/2022
SMA Cable+10dB Attenuator	ccs	SMA+10dB ATT	SMA/10dB	01/28/2022	01/27/2023
Software	Excel(ccs-o6-2020 v1.1)				

TEST SETUP

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)

Page: 56 / 161

Rev.: 00

TEST RESULTS

No non-compliance noted.

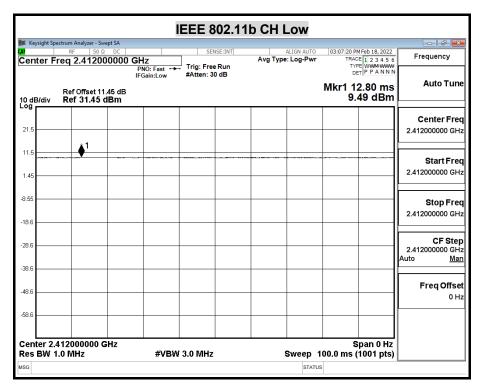
TEST DATA

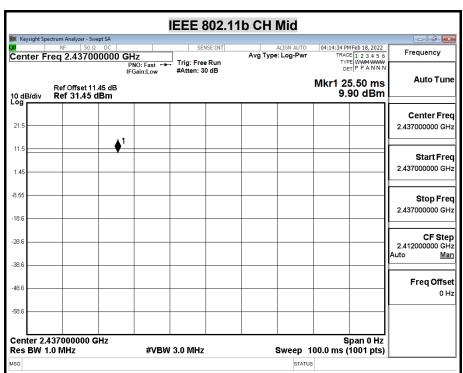
<u>WIFI</u>

Model Name HG06		Test By	Ted Huang
Temp & Humidity	23.4℃, 65%	Test Date	2022/03/03

	us	Times	Ton	Total Ton time(ms)
Ton1	100000.000	1	100000	
Ton2		0	0	
Ton3			0	100
Тр				100

Ton	100
Tp(Ton+Toff)	100
Duty Cycle	1
10 * log (1/x) =	0

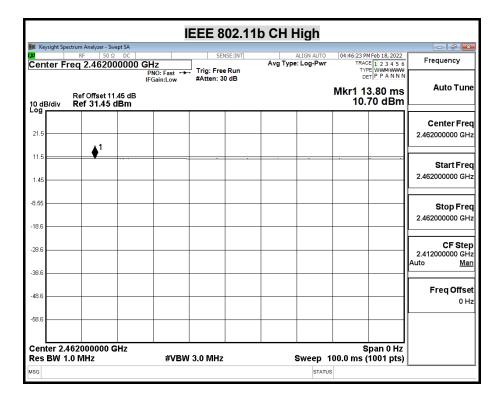


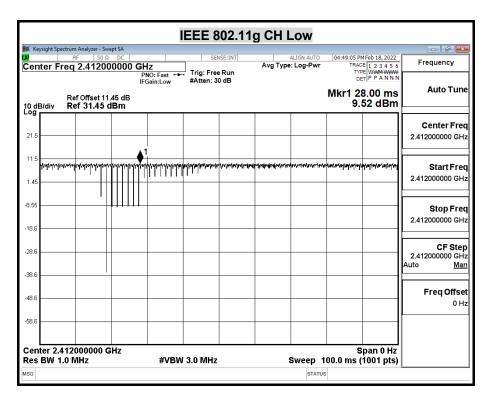


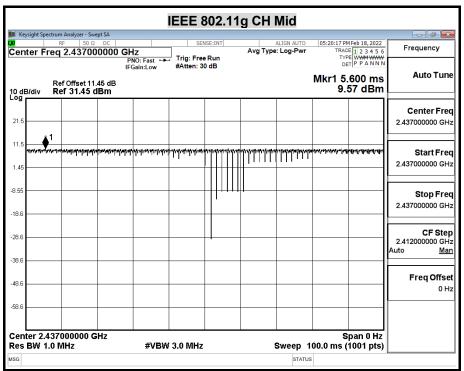
Page: 57 / 161 Rev.: 00

TEST PLOT

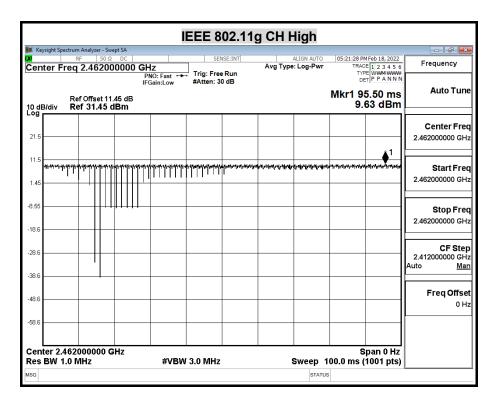
Plot

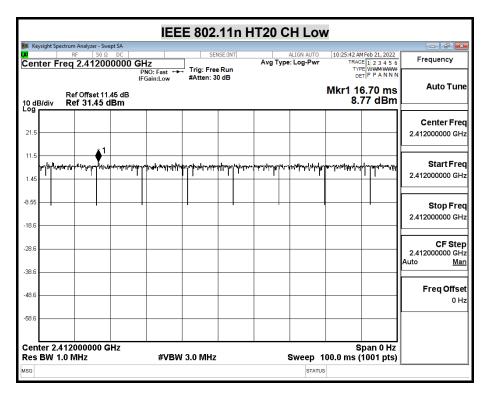


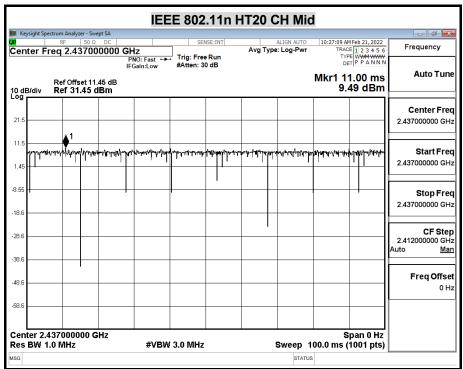

Page: 58 / 161 Rev.: 00



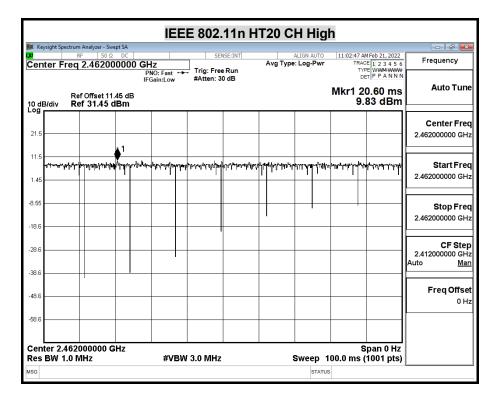
Page: 59 / 161 Rev.: 00




Page: 60 / 161 Rev.: 00



Page: 61 / 161 Rev.: 00



Page: 62 / 161 Rev.: 00

Page: 63 / 161

Rev.: 00

Bluetooth 4.0:

Model Name	odel Name HG06		Ted Huang
Temp & Humidity	23.4°ℂ , 65%	Test Date	2022/03/03

	us	Times	Ton	Total Ton time(ms)
Ton1	400	1	400	
Ton2		0	0	
Ton3			0	0.4
Тр				0.625

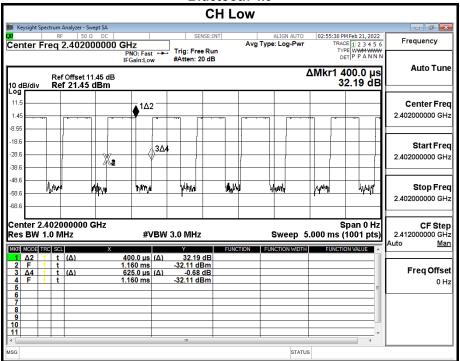
Ton	0.4
Tp(Ton+Toff)	0.625
Duty Cycle	0.64
10 * log (1/x) =	1.94

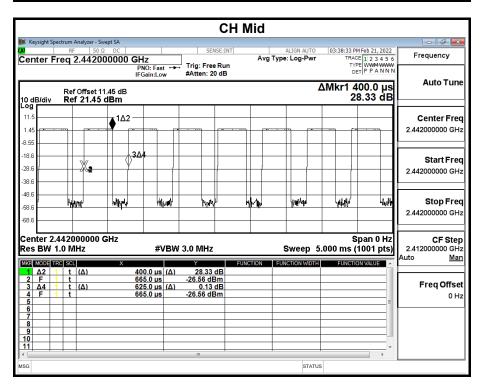
Bluetooth 5.0:

Model Name	odel Name HG06		Ted Huang
Temp & Humidity	23.4℃, 65%	Test Date	2022/03/03

	us	Times	Ton	Total Ton time(ms)
Ton1	200	1	200	
Ton2		0	0	
Ton3			0	0.2
Тр				0.625

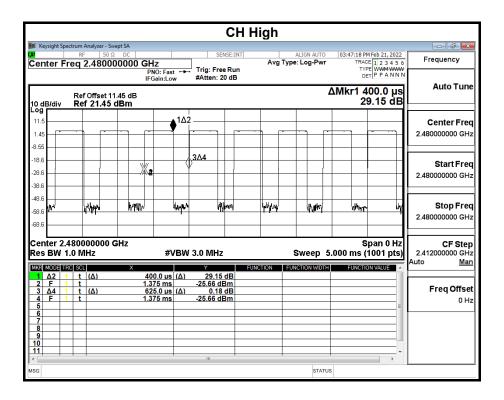
Ton	0.2
Tp(Ton+Toff)	0.625
Duty Cycle	0.32
10 * log (1/x) =	4.95



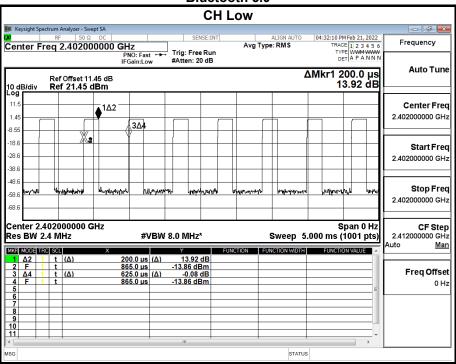

Page: 64 / 161

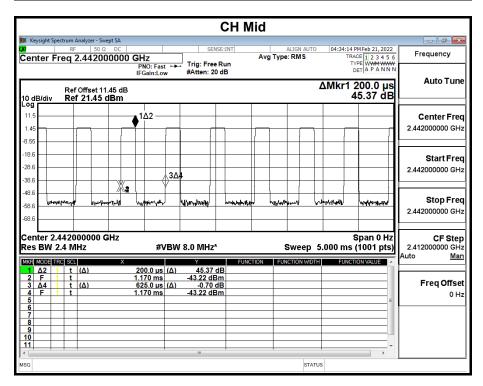
Rev.: 00

Plot

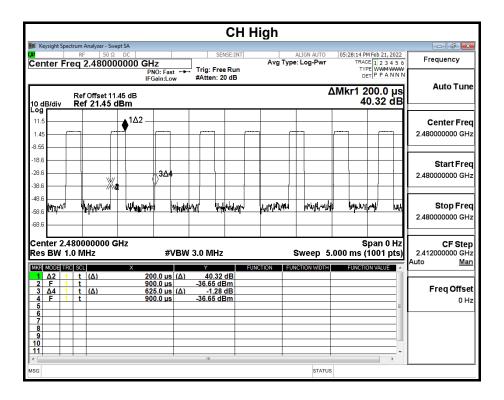


Page: 65 / 161





Page: 66 / 161



Page: 67 / 161

Page: 68 / 161

Rev.: 00

8.4 POWER SPECTRAL DENSITY

LIMIT

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENTS

Chamber Room #966					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/22/2021	07/21/2022
Power Meter	Anritsu	ML2487A	6K00003888	05/18/2021	05/17/2022
Power Sensor	Anritsu	MA2491A	033265	05/18/2021	05/17/2022
SMA Cable+10dB Attenuator	ccs	SMA+10dB ATT	SMA/10dB	01/28/2022	01/27/2023
Software	Excel(ccs-o6-2020 v1.1)				

TEST SETUP

Page: 69 / 161

Report No.: TMTN2112000722NR Rev.: 00

TEST PROCEDURE

The tests were performed in accordance with KDB 558074 5.3.1.

5.3.1 Measurement Procedure PKPSD:

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the *DTS bandwidth*.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 \times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RRW
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Page: 70 / 161 Rev.: 00

TEST RESULTS

Model Name HG06		Test By	Ted Huang
Temp & Humidity	23.4°ℂ, 65%	Test Date	2022/03/03

IEEE 802.11b mode

Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
Low	2412	-6.96	8.00	-14.96	PASS
Middle	2437	-7.51	8.00	-15.51	PASS
High	2462	-5.51	8.00	-13.51	PASS

- **NOTE**: 1. At finial test to get the worst-case emission at 1long Mbps long.
 - 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

IEEE 802.11a mode

Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
Low	2412	-10.81	8.00	-18.81	PASS
Middle	2437	-10.82	8.00	-18.82	PASS
High	2462	-10.96	8.00	-18.96	PASS

- **NOTE**: 1. At finial test to get the worst-case emission at 6long Mbps long.
 - 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

IEEE 802.11n HT20 mode

Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
Low	2412	-13.18	8.00	-21.18	PASS
Middle	2437	-12.08	8.00	-20.08	PASS
High	2462	-11.35	8.00	-19.35	PASS

- **NOTE**: 1. At finial test to get the worst-case emission at 6.5long Mbps long.
 - 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

Page: 71 / 161

Rev.: 00

Model Name	HG06	Test By	Ted Huang
Temp & Humidity	23.4℃, 65%	Test Date	2022/03/03

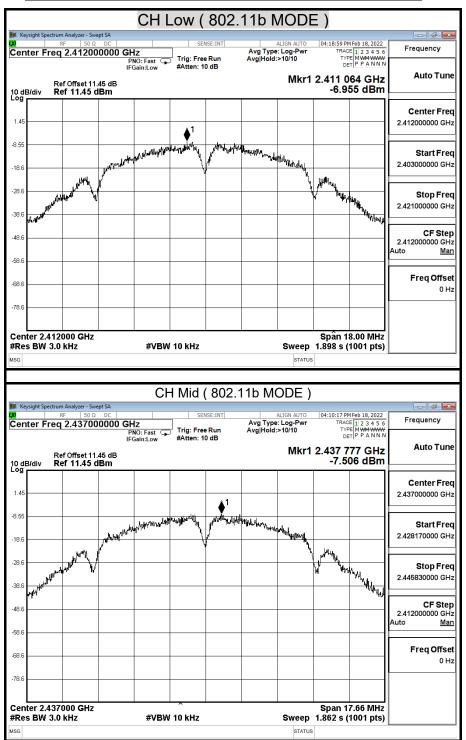
Bluetooth 4.0 (GFSK) mode

Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
Low	2402	-13.92	8.00	-21.92	PASS
Middle	2442	-11.55	8.00	-19.55	PASS
High	2480	-9.98	8.00	-17.98	PASS

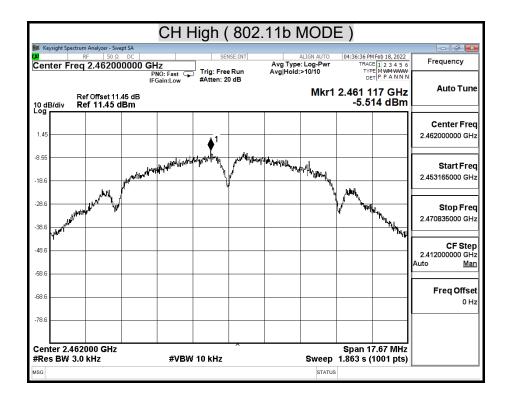
- **NOTE**: 1. At finial test to get the worst-case emission at 1long Mbps long.
 - 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

Bluetooth 5.0 (GFSK) mode

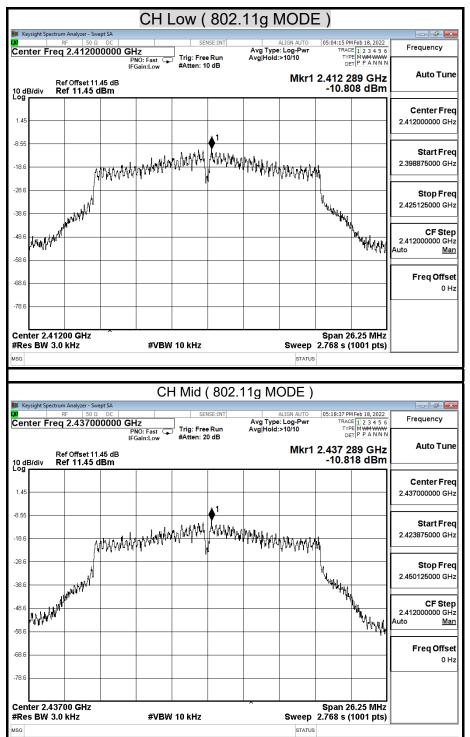
Channel	Frequency (MHz)	PPSD/3kHz (dBm)	Limit (dBm)	Margin (dB)	Pass / Fail
Low	2402	-16.72	8.00	-24.72	PASS
Middle	2442	-14.20	8.00	-22.20	PASS
High	2480	-12.73	8.00	-20.73	PASS


- **NOTE**: 1. At finial test to get the worst-case emission at 2long Mbps long.
 - 2. The cable assembly insertion loss of 11.45dB was entered as an offset in the spectrum analyzer to allow for direct reading of power, it was not displayed on the plot due to the instrument.

Page: 72 / 161 Rev.: 00

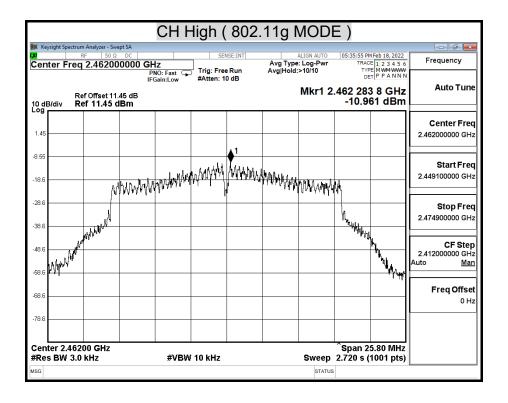

POWER SPECTRAL DENSITY (IEEE 802.11b MODE)

Page: 73 / 161

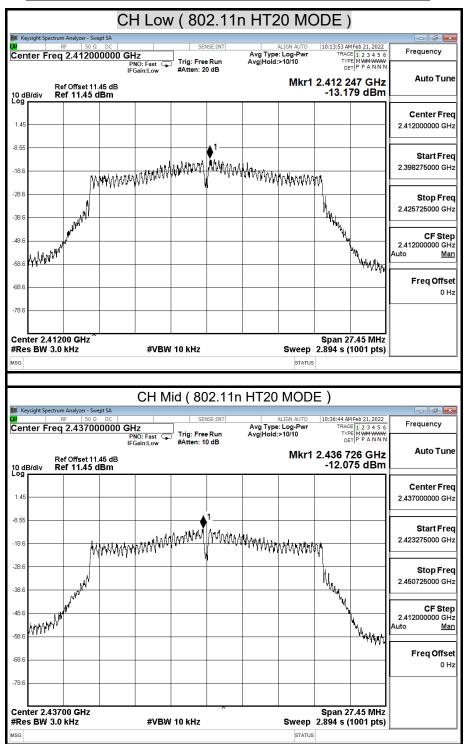


Page: 74 / 161

Rev.: 00

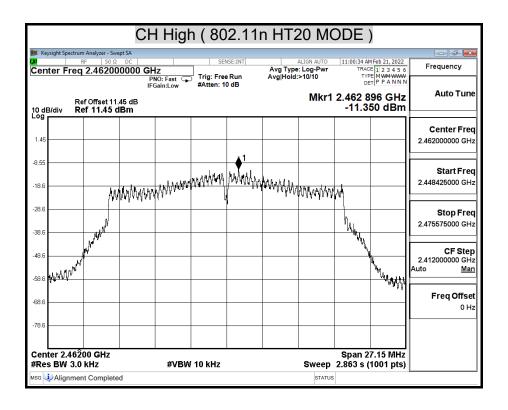

POWER SPECTRAL DENSITY (IEEE 802.11g MODE)

Page: 75 / 161

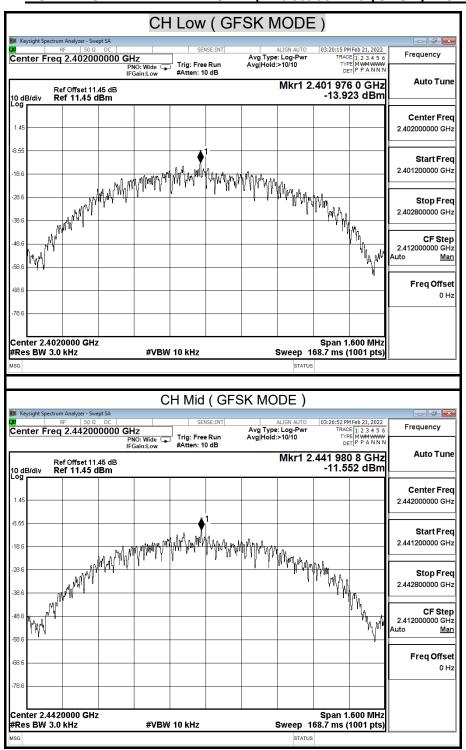


Page: 76 / 161

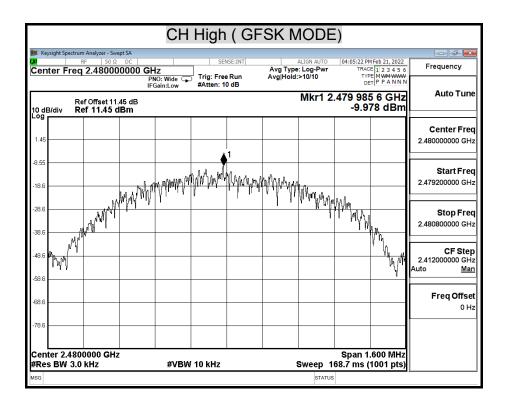
Rev.: 00


POWER SPECTRAL DENSITY (802.11n HT20 MODE)

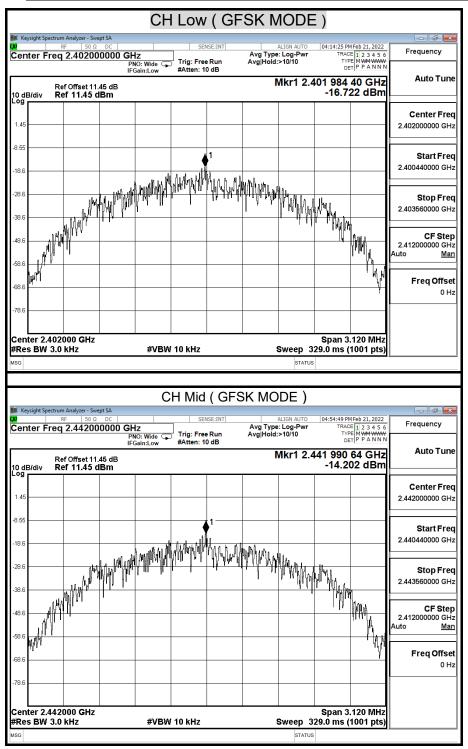
Page: 77 / 161



Page: 78 / 161 Rev.: 00

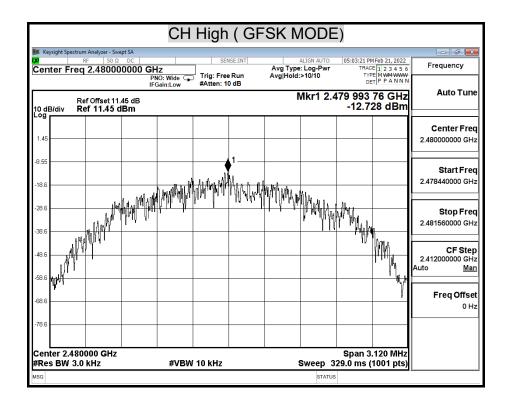

POWER SPECTRAL DENSITY (Bluetooth 4.0 (GFSK) MODE)

Page: 79 / 161



Page: 80 / 161

Rev.: 00


POWER SPECTRAL DENSITY (Bluetooth 5.0 (GFSK) MODE)

Page: 81 / 161

