

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Xtreme

MODEL: E05

Brand Name: Xtreme

Test Report Number:

SZ101027B04-RP

Prepared for

Xtreme Technologies Corp.

#200 4616 Valiant Dr NW Calgary Alberta T3A 0X9 Canada

Prepared by

Compliance Certification Services (Shenzhen) Inc.

No.10-1 Mingkeda Logistics park, No.18 Huanguan South Road.
Guan Lan Town, Baoan District, Shenzhen, China

TEL: 86-755-28055000

FAX: 86-755-28055221

Issued Date: December 06, 2010

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue No.	Revisions	Effect Page	Revised By
00	SZ101027B04-RP	Initial Issue	ALL	Vincent Yao

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION	4
2. EUT DESCRIPTION.....	5
3. TEST METHODOLOGY.....	6
3.1 DESCRIPTION OF TEST MODES.....	6
4. FACILITIES AND ACCREDITATIONS	7
4.1 FACILITIES.....	7
4.2 ACCREDITATIONS	7
4.3 MEASUREMENT UNCERTAINTY.....	7
5. SETUP OF EQUIPMENT UNDER TEST.....	8
5.1 SETUP CONFIGURATION OF EUT	8
5.2 SUPPORT EQUIPMENT	8
6. FCC PART 15.247 REQUIREMENTS	9
6.1 20dB BANDWIDTH	9
6.2 PEAK POWER	12
6.3 PEAK POWER SPECTRAL DENSITY	14
6.4 BAND EDGES MEASUREMENT	15
6.5 FREQUENCY SEPARATION	21
6.6 NUMBER OF HOPPING FREQUENCY	23
6.7 TIME OF OCCUPANCY (DWELL TIME).....	25
6.8 SPURIOUS EMISSIONS.....	32
6.9 POWERLINE CONDUCTED EMISSIONS.....	43
7. ANNEX DECLARATION FOR BLUETOOTH DEVICE ACC.....	46

1. TEST RESULT CERTIFICATION

Product:	Xtreme
Model:	E05
Brand:	Xtreme
Tested:	October 16- December 06, 2010
Applicant:	Xtreme Technologies Corp. #200 4616 Valiant Dr NWCalgary Alberta T3A 0X9 Canada
Manufacturer:	Xtreme Technologies Corp. #200 4616 Valiant Dr NWCalgary Alberta T3A 0X9 Canada

APPLICABLE STANDARDS	
STANDARD	TEST RESULT
FCC 47 CFR Part 15 Subpart C	No non-compliance noted

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.207, 15.209 and 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Vincent Yao
Assistant Manager
Compliance Certification Service Inc.

Reviewed by:

Aven Zhou
Supervisor of Report Dept.
Compliance Certification Service Inc.

2. EUT DESCRIPTION

Product	Xtreme
Model Number	E05
Trade Name	Xtreme
Model Discrepancy	N/A
Identify Number	SZ101027B04-RP
Power Supply	DC9V supplied by the adapter
Frequency Range	2402-2480MHz
Transmit Power	-2.03dBm
Modulation Technique	GFSK
Number of Channels	79 Channels
Antenna Specification	PCB antenna with 2.00dBi gain (Max)
Temperature Range	0°C ~ +50°C

Note:

1. This submittal(s) (test report) is intended for FCC ID: Y3TE05 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
2. Although the device chip could compliant V2.1 Bluetooth, but for this module it only operates at a transmission rate of 1Mbps, and only use the GFSK modulation).

3. TEST METHODOLOGY

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

The following test mode(s) were scanned during the preliminary test below 1G:

Test Item	Test mode	Worse mode
Conducted Emission	Mode 1: Normal Link	■
Radiated Emission	Mode 1: Normal Link	■

Above 1G, Channel Low (2402MHz)、Mid (2441MHz) and High (2480MHz) were chosen for full testing.

4. FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at
 No10-1, Mingkeda Logistics Park, No.18 Huanguan South RD. Guan Ian Town, Baoan District, Shenzhen China

The sites are constructed in conformance with the requirements of ANSI C63.4:2003, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA	A2LA
Taiwan	TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA	FCC
Japan	VCCI
Canada	INDUSTRY CANADA
Taiwan	BSMI
Norway	Nemko

Copies of granted accreditation certificates are available for downloading from our web site, <http://www.ccsrf.com>

MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions	9kHz~30MHz	+/- 3.18dB
Radiated emissions	30MHz ~ 200MHz	+/- 3.79dB
	200MHz ~1000MHz	+/- 3.62dB
	Above 1000MHz	+/- 5.04dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

5. SETUP OF EQUIPMENT UNDER TEST

SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

SUPPORT EQUIPMENT

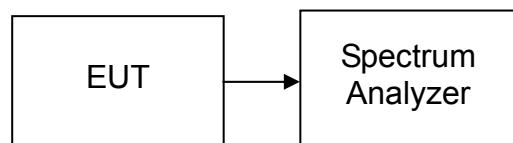
No.	Equipment	Model No.	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1	Notebook	2672	992F2VG	N/A	IBM	Unshielded 1.20m	Unshielded 1.80m
2	Adapter 1	N/A	N/A	N/A	N/A	N/A	Unshielded 2.50m
3	Adapter 2	N/A	N/A	N/A	N/A	N/A	Unshielded 2.50m
4	Test Fixture	N/A	N/A	N/A	N/A	N/A	1.00m

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6. FCC PART 15.247 REQUIREMENTS

6.1 20DB BANDWIDTH


None; for reporting purpose only.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2010	03/21/2011

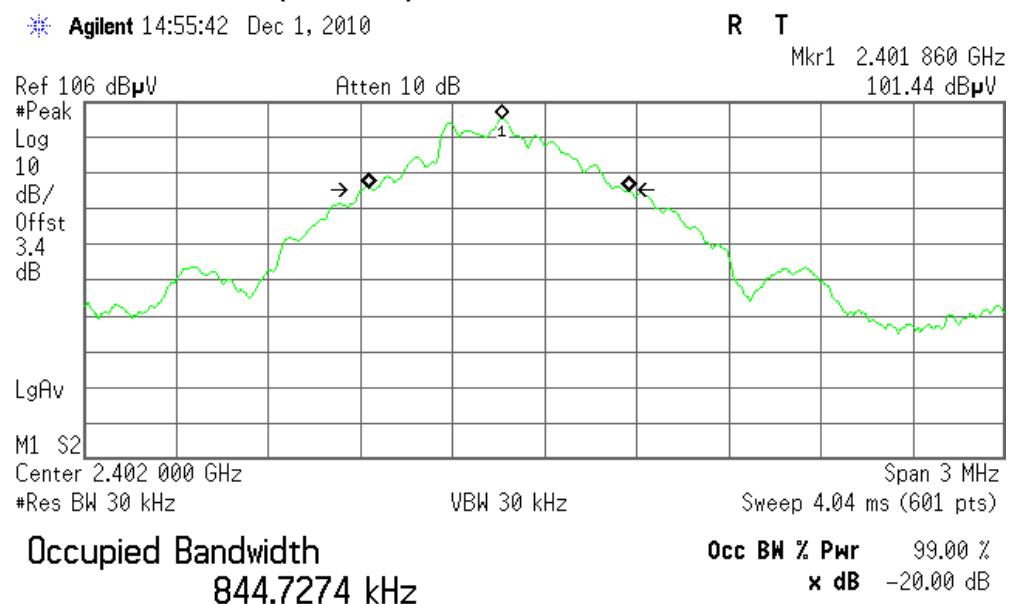
Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE

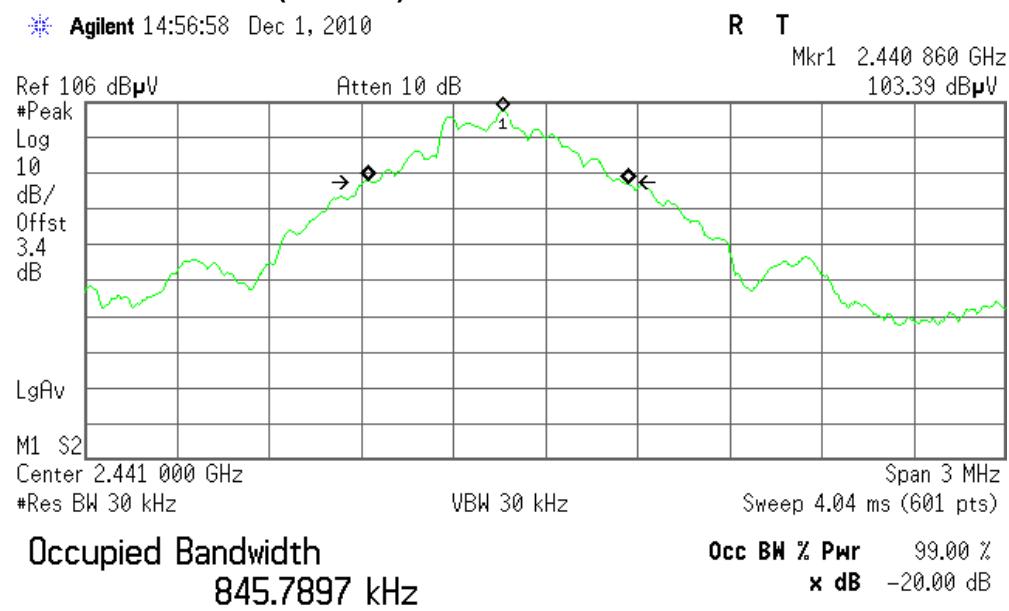
1. Place the EUT on the table and set it in the transmitting mode.
2. Remove the antenna from the EUT, then connect a low loss RF cable from antenna port to the spectrum analyzer.
3. Set the spectrum analyzer as RBW=30kHz, VBW=30kHz, Span=3MHz, Sweep = auto.
4. Mark the peak frequency and 20dB (upper and lower) frequency.
5. Repeat until all the test channels are investigated.

TEST RESULTS


No non-compliance noted

Test plot

20dB Bandwidth (CH Low)

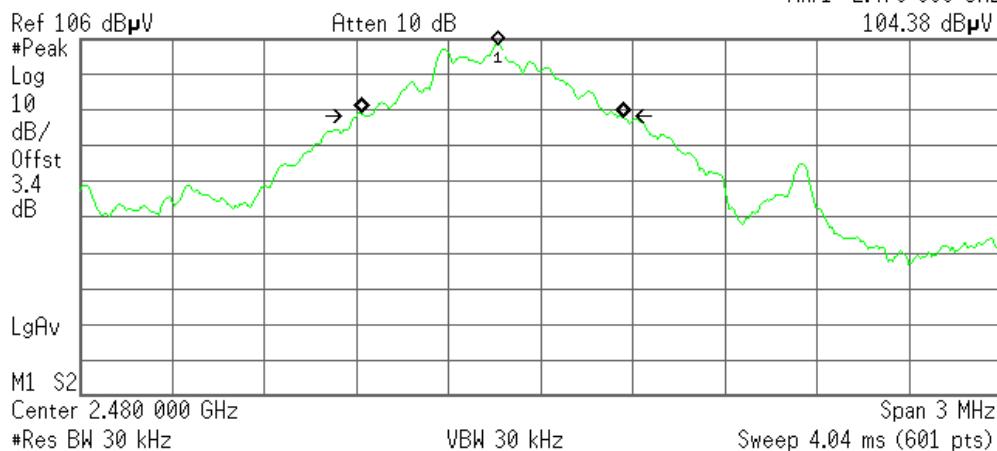

* Agilent 14:55:42 Dec 1, 2010

Transmit Freq Error -148.306 kHz
x dB Bandwidth 843.572 kHz

20dB Bandwidth (CH Mid)

* Agilent 14:56:58 Dec 1, 2010

Transmit Freq Error -150.531 kHz
x dB Bandwidth 845.796 kHz



20dB Bandwidth (CH High)

Agilent 15:05:40 Dec 1, 2010

R T

Mkr1 2.479 860 GHz
104.38 dB μ V

Occupied Bandwidth
850.8791 kHz

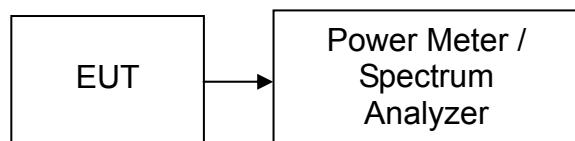
Occ BW % Pwr 99.00 %
x dB -20.00 dB

Transmit Freq Error -154.452 kHz
x dB Bandwidth 857.475 kHz

6.2. PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:


1. For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.
3. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
RF Power Meter & Sensor	Anritsu	ML2487A	6K00001491	06/18/2010	06/18/2011
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2010	03/21/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

TEST RESULTS

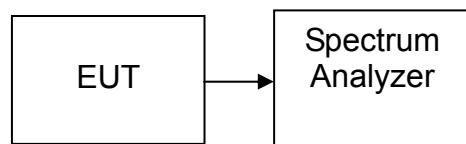
No non-compliance noted

Test Data

Channel	Frequency (MHz)	Reading Power (dBm)	Factor (dB)	Output Power (dBm)	Output Power (W)	Limit (mW)	Result
Low	2402	-8.56	3.50	-5.06	0.00031	1	Pass
Mid	2441	-6.61	3.50	-3.11	0.00049		Pass
High	2480	-5.53	3.50	-2.03	0.00063		Pass

6.3. PEAK POWER SPECTRAL DENSITY

LIMIT


1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2010	03/21/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

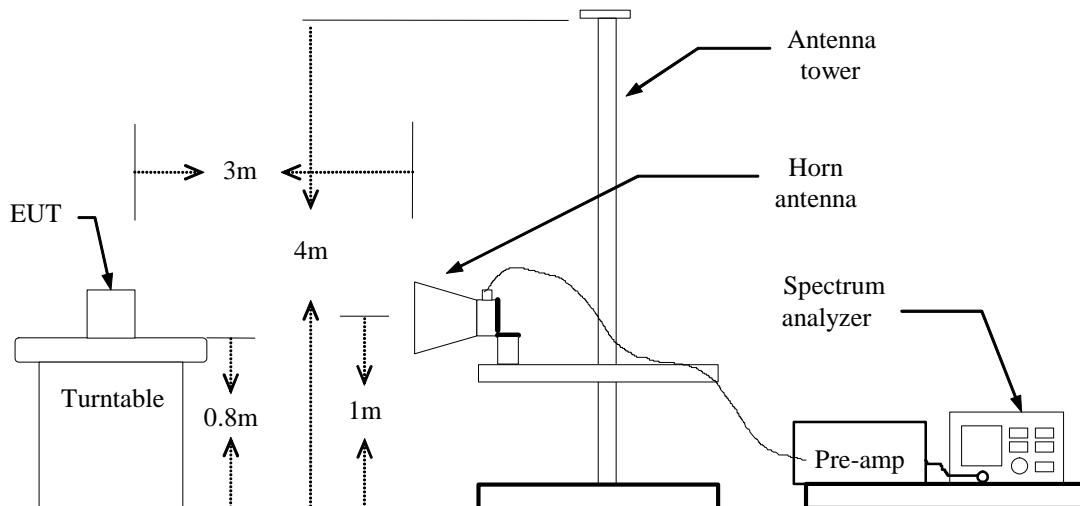
TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
4. Record the max. reading.
5. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

Not applicable. Since EUT is the FHSS modulation technique device.

6.4. BAND EDGES MEASUREMENT

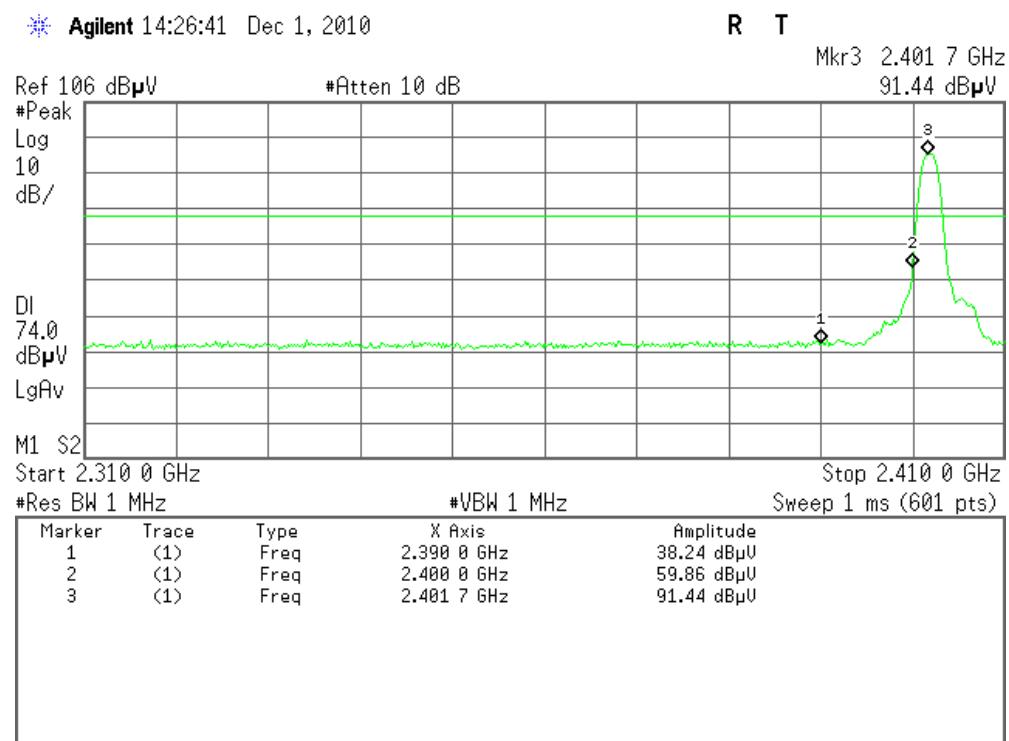
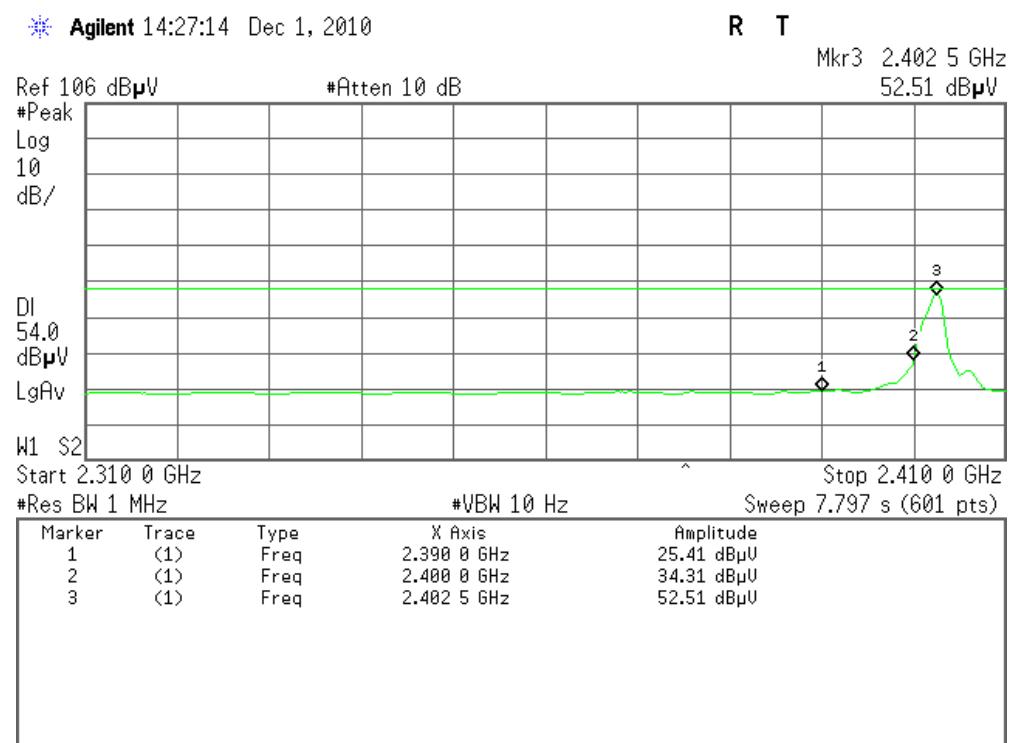

LIMIT

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

MEASUREMENT EQUIPMENT USED

Radiated Emission Test Site 966 (2)					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2010	03/21/2011
Amplifier	MITEQ	AM-1604-3000	1411843	03/21/2010	03/21/2011
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R
Controller	CT	N/A	N/A	N.C.R	N.C.R
High Noise Amplifier	Agilent	8449B	3008A01838	06/18/2010	06/18/2011
Site NSA	C&C	N/A	N/A	N.C.R	N.C.R
Bilog Antenna	SCHAFFNER	CBL6143	5082	06/18/2010	06/18/2011
Horn Antenna	SCHWARZBECK	BBHA9120D	D286	03/19/2010	03/19/2011
Signal Generator	Anritsu	MG3694A	#050125	03/21/2010	03/21/2011
Horn Antenna	TRC	HA0301	N/A	03/19/2010	03/19/2011
Loop Antenna	A.R.A	PLA-1030/B	1029	03/19/2010	03/19/2011
Power Sensor	Anritsu	MA2491A	030619	06/18/2010	06/18/2011
Power Meter	Anritsu	ML2487A	6K00001491	06/18/2010	06/18/2011
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/30/2010	03/30/2011

Test Configuration

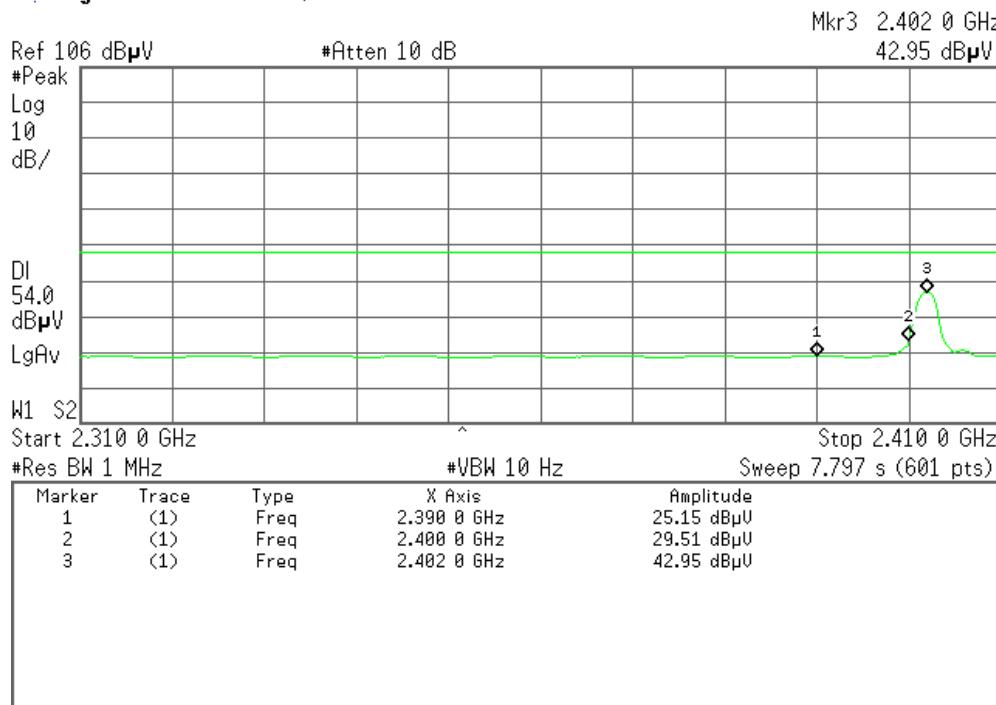



TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

Refer to attach spectrum analyzer data chart.

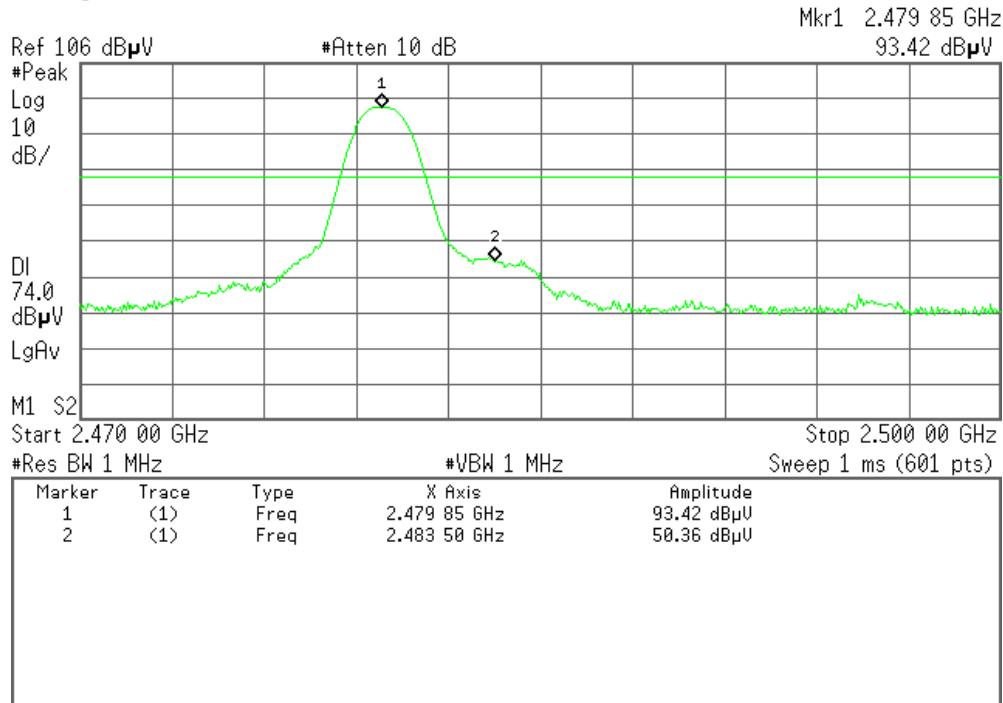

Test Data**Band Edges (CH-Low)****Detector mode: Peak****Polarity: Vertical****Detector mode: Average****Polarity: Vertical**

Detector mode: Peak**Polarity: Horizontal**

* Agilent 14:30:15 Dec 1, 2010

Detector mode: Average**Polarity: Horizontal**

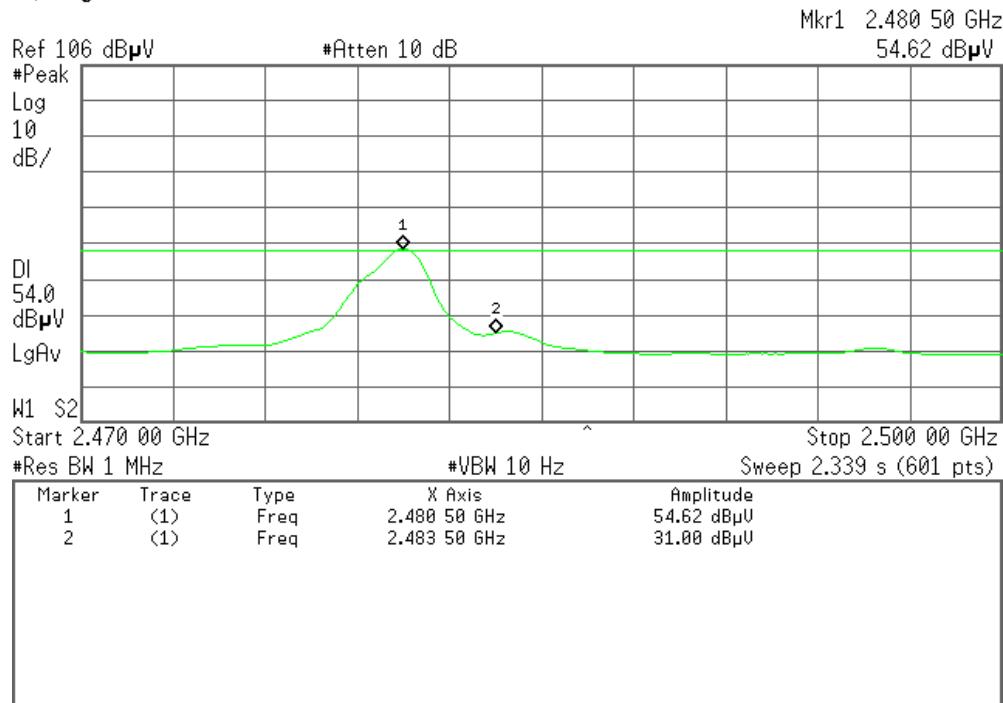
* Agilent 14:30:46 Dec 1, 2010



Band Edges (CH-High)

Detector mode: Peak

Polarity: Vertical


* Agilent 14:36:27 Dec 1, 2010

Detector mode: Average

Polarity: Vertical

* Agilent 14:37:02 Dec 1, 2010

Detector mode: Peak**Polarity: Horizontal**

* Agilent 14:35:08 Dec 1, 2010

R T

Mkr2 2.483 50 GHz
41.62 dB μ V

Ref 106 dB μ V

#Atten 10 dB

#Peak

Log
10
dB/

DI
74.0
dB μ V

LgAv

M1 S2

Start 2.470 00 GHz

Stop 2.500 00 GHz

#Res BW 1 MHz

VBW 8 MHz

Sweep 1 ms (601 pts)

Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.479 65 GHz	81.84 dB μ U
2	(1)	Freq	2.483 50 GHz	41.62 dB μ U

Detector mode: Average**Polarity: Horizontal**

* Agilent 14:35:43 Dec 1, 2010

R T

Mkr1 2.480 25 GHz
44.62 dB μ V

Ref 106 dB μ V

#Atten 10 dB

#Peak

Log
10
dB/

DI
54.0
dB μ V

LgAv

W1 S2

Start 2.470 00 GHz ^

Stop 2.500 00 GHz

#Res BW 1 MHz

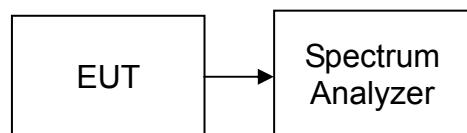
#VBW 10 Hz

Sweep 2.339 s (601 pts)

Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.480 25 GHz	44.62 dB μ U
2	(1)	Freq	2.483 50 GHz	27.00 dB μ U

6.5. FREQUENCY SEPARATION

LIMIT


According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2010	03/21/2011
Spectrum Analyzer	R&S	FSP30	1093.4495.30	07/22/2010	07/22/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

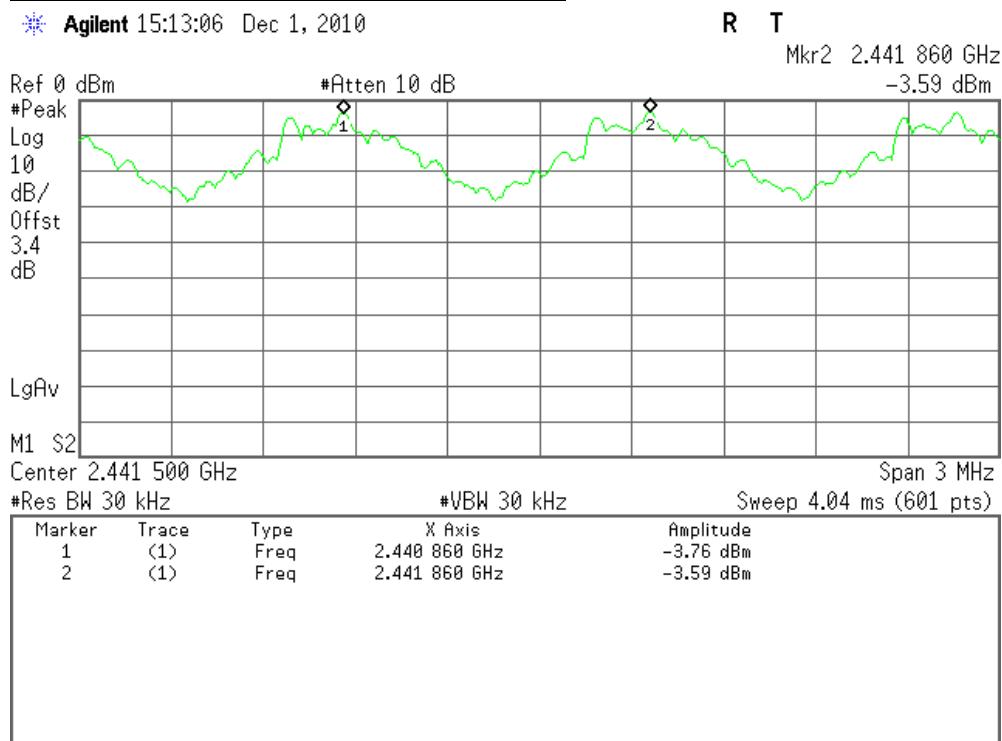
Test Configuration

TEST PROCEDURE

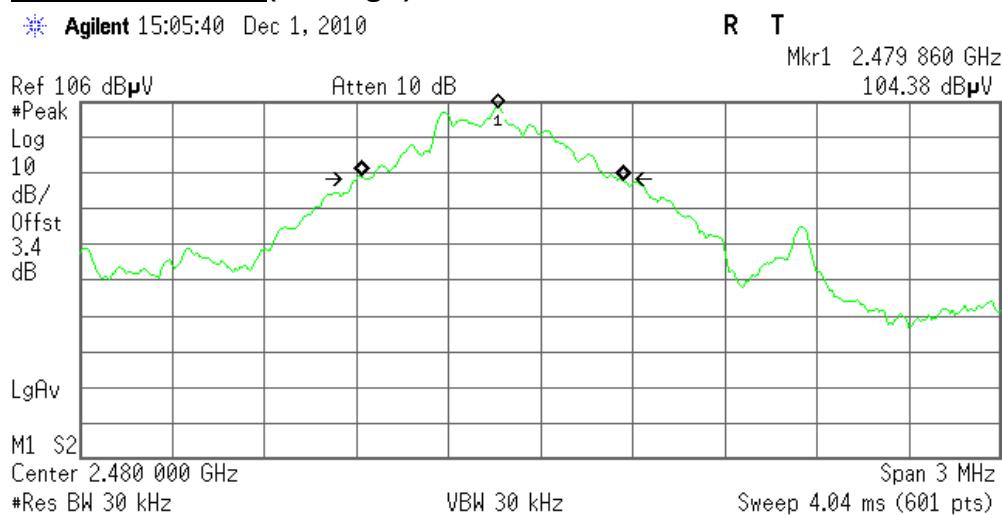
1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = middle of hopping channel.
4. Set the spectrum analyzer as RBW=30kHz, VBW=30kHz, Adjust Span to 3 MHz, Sweep = auto.
5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

TEST RESULTS

No non-compliance noted


Test Data

Channel Separation (MHz)	Two-thirds of the 20 dB Bandwidth (kHz)	Channel Separation Limit	Result
1.000	572	> Two-thirds of the 20 dB Bandwidth	Pass



Test Plot

Measurement of Channel Separation

20 dB bandwidth(CH High)

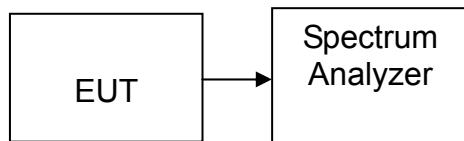
Occupied Bandwidth
850.8791 kHz

Occ BW % Pwr 99.00 %
x dB -20.00 dB

Transmit Freq Error -154.452 kHz
x dB Bandwidth 857.475 kHz

6.6. NUMBER OF HOPPING FREQUENCY

LIMIT


According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2010	03/21/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

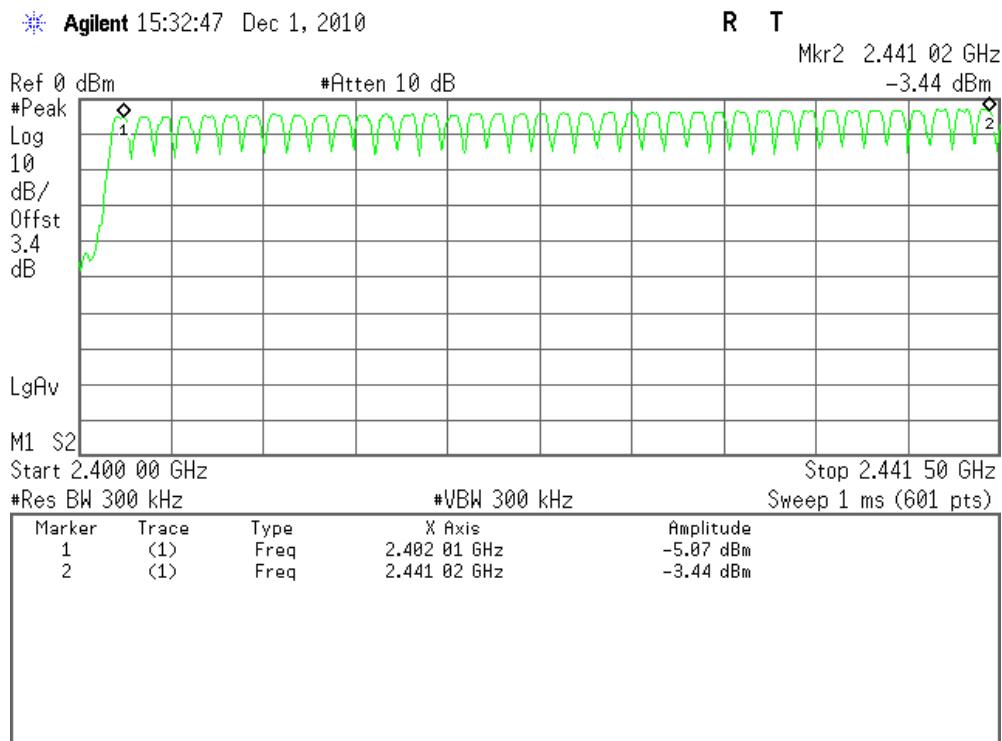
TEST PROCEDURE

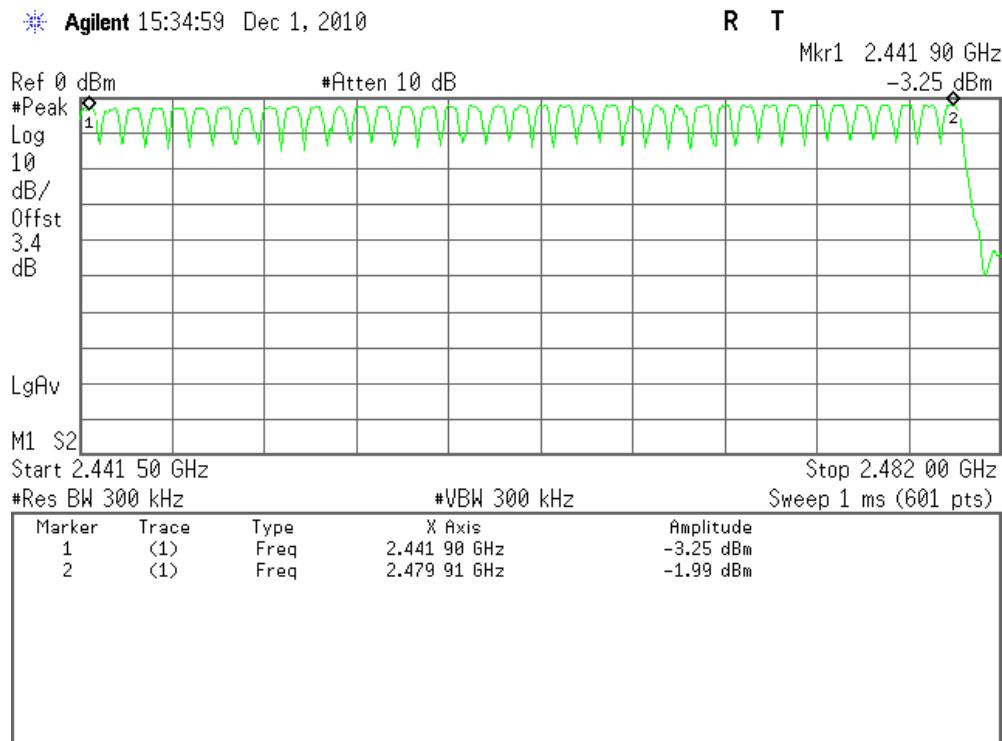
1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set spectrum analyzer Start=2400MHz, Stop = 2441.5MHz, Sweep = 1ms and Start=2441.5MHz, Stop = 2482MHz, Sweep = 1ms.
4. Set the spectrum analyzer as RBW, VBW=300kHz,
5. Max hold, view and count how many channel in the band.

TEST RESULTS

No non-compliance noted

Test Data


Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS


Test Plot

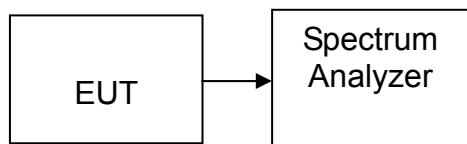
Channel Number

2.400 GHz – 2.441 GHz

2.441 GHz – 2.482 GHz

6.7. TIME OF OCCUPANCY (DWELL TIME)

LIMIT


According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2010	03/21/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = operating frequency.
4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

No non-compliance noted

Test Data

DH 1

CH Low: $0.503 * (1600/2)/79 * 31.6 = 161.0\text{ms}$

CH Mid: $0.503 * (1600/2)/79 * 31.6 = 161.0 (\text{ms})$

CH High: $0.503 * (1600/2)/79 * 31.6 = 161.0 (\text{ms})$

CH	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Low	0.503	161.0	31.60	400.00	PASS
Mid	0.503	161.0	31.60		PASS
High	0.503	161.0	31.60		PASS

DH 3

CH Low: $1.76 * (1600/4)/79 * 31.6 = 282.0(\text{ms})$

CH Mid: $1.76 * (1600/4)/79 * 31.6 = 282.0(\text{ms})$

CH High: $1.76 * (1600/4)/79 * 31.6 = 282.0 (\text{ms})$

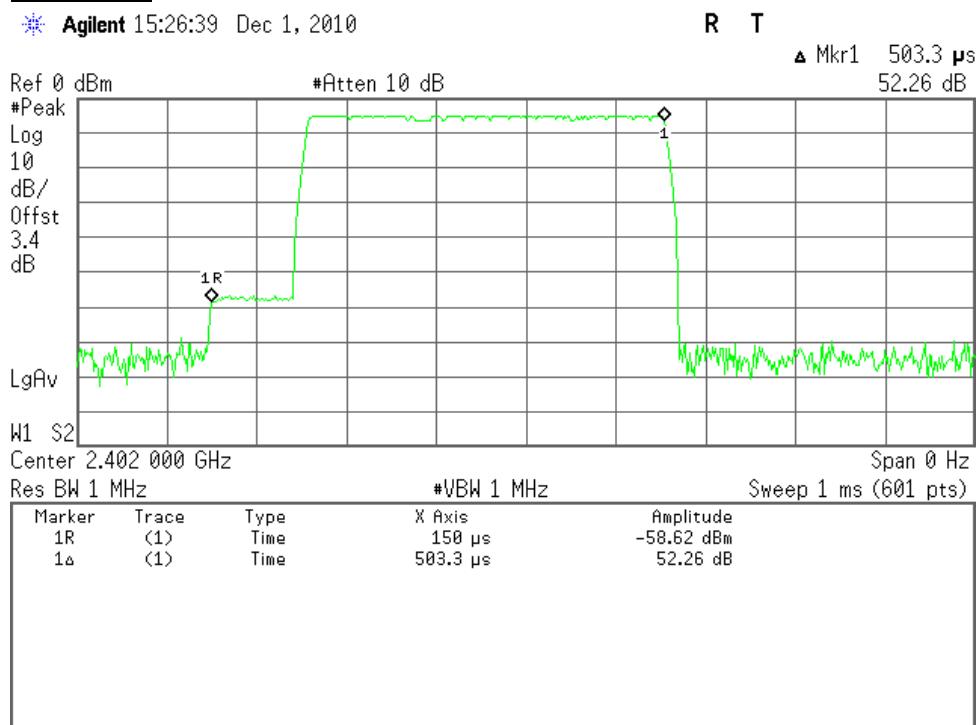
CH	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Low	1.76	282.0	31.60	400.00	PASS
Mid	1.76	282.0	31.60		PASS
High	1.76	282.0	31.60		PASS

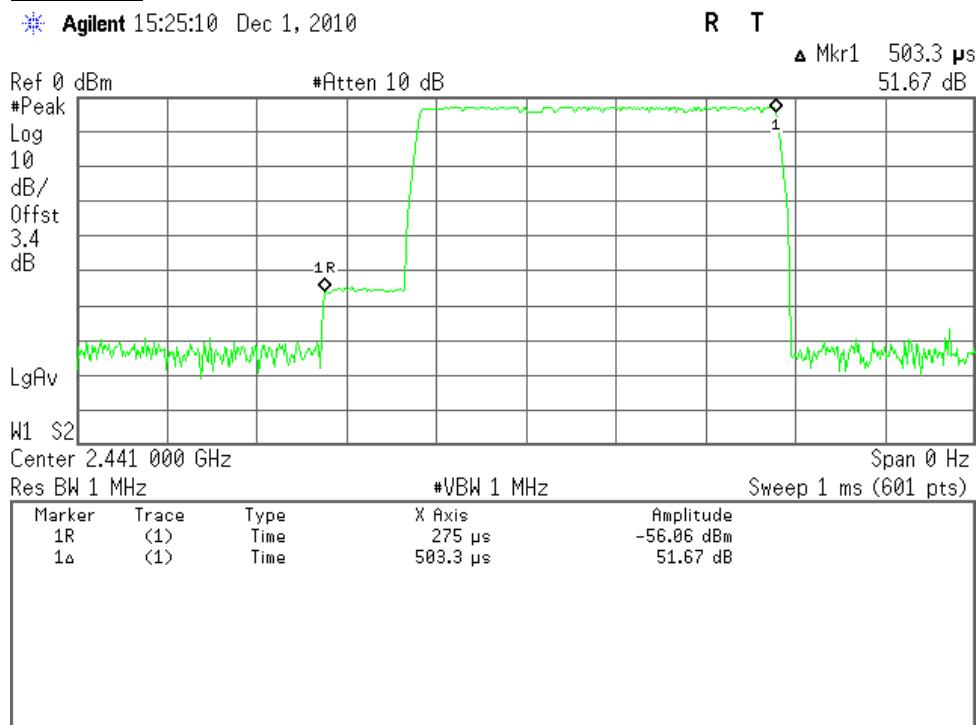
DH 5

CH Low: $3.00 * (1600/6)/79 * 31.6 = 320.0 (\text{ms})$

CH Mid: $3.00 * (1600/6)/79 * 31.6 = 320.0 (\text{ms})$

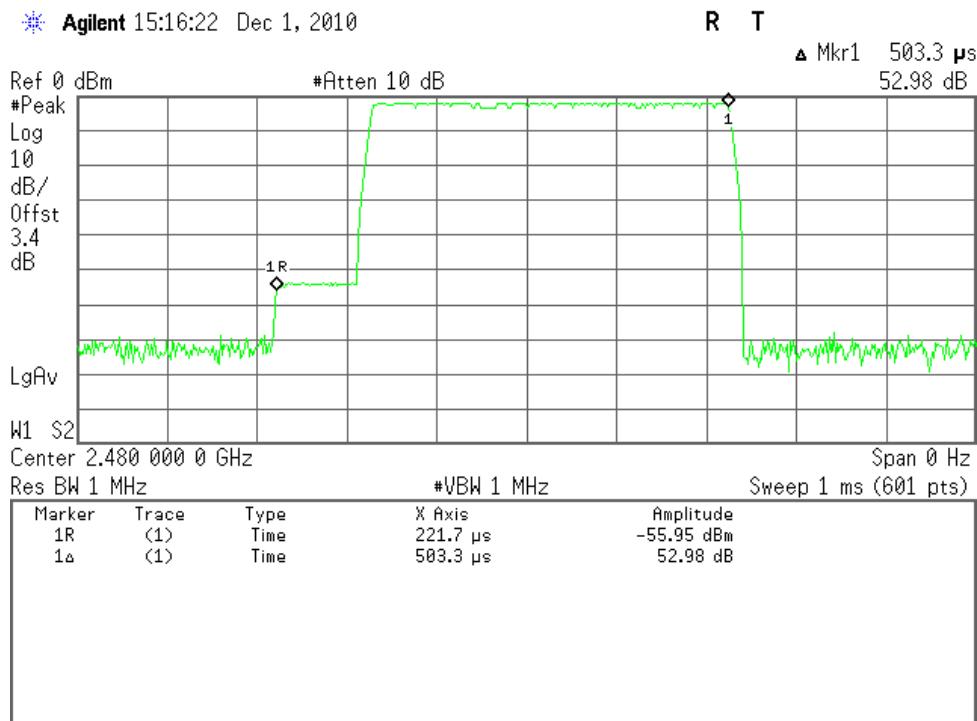
CH High: $3.00 * (1600/6)/79 * 31.6 = 320.0 (\text{ms})$


CH	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Low	3.00	320.0	31.60	400.00	PASS
Mid	3.00	320.0	31.60		PASS
High	3.00	320.0	31.60		PASS

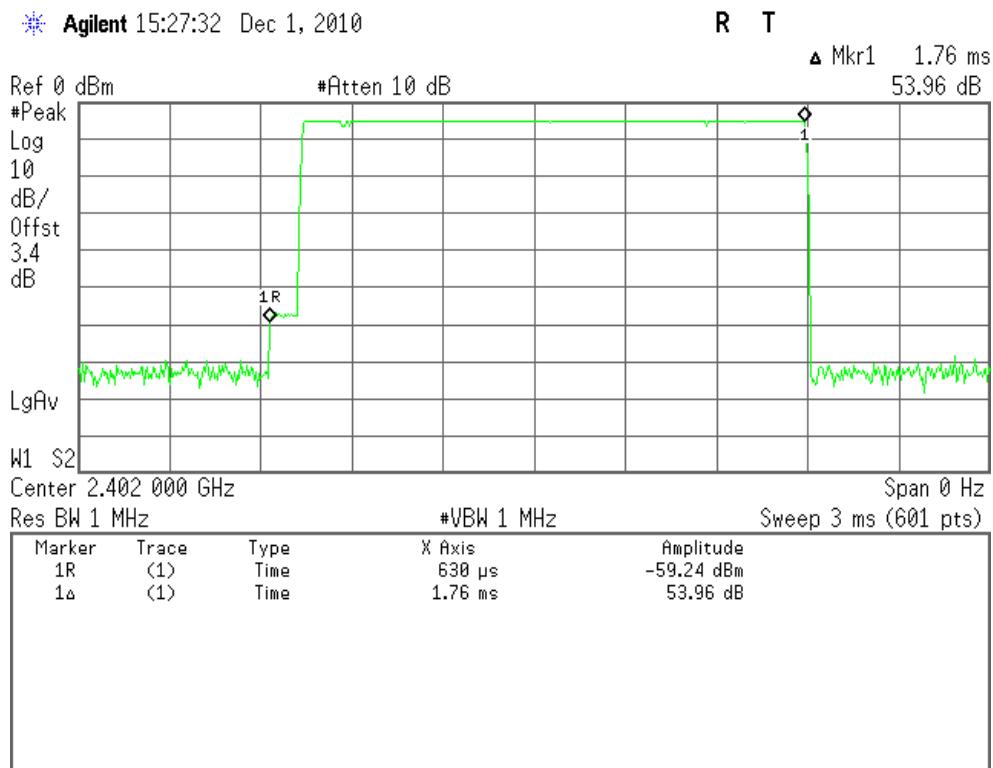

Test Plot

DH 1

(CH Low)

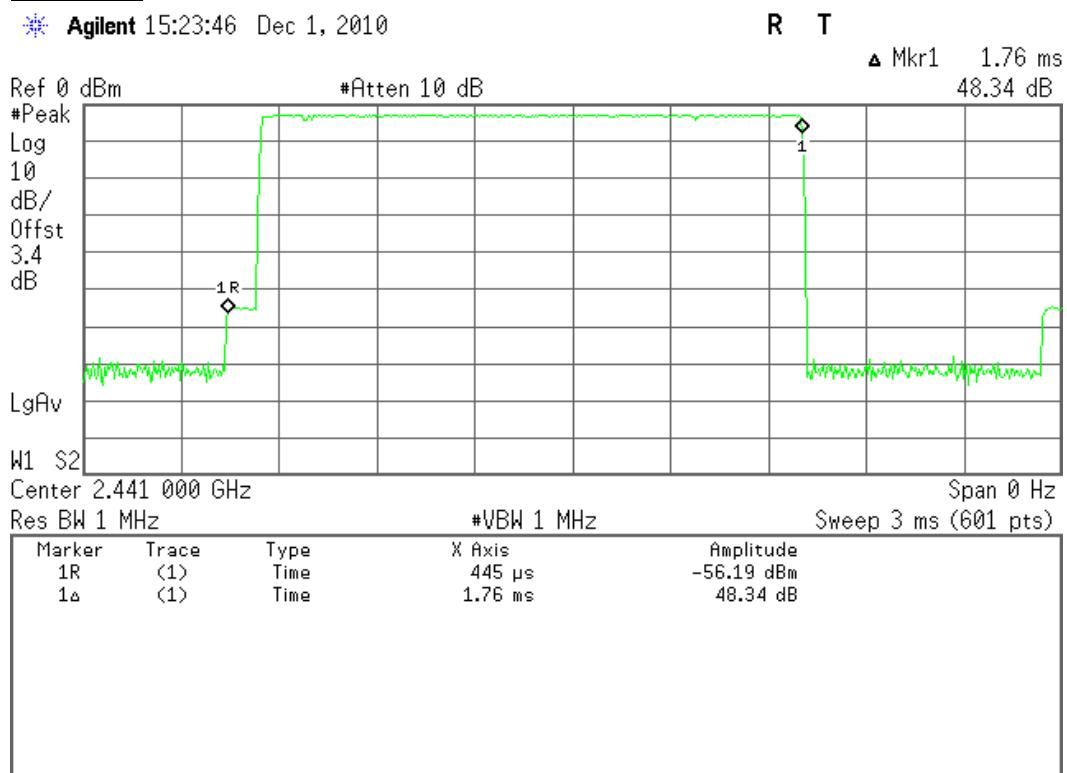


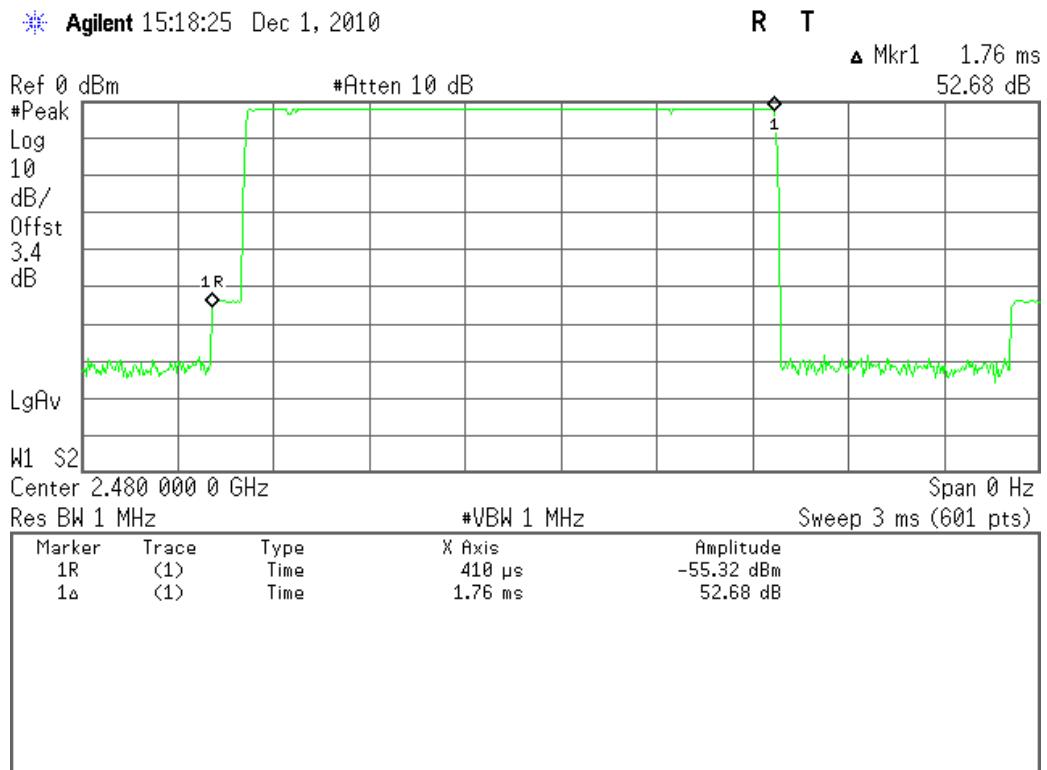
(CH Mid)



(CH High)

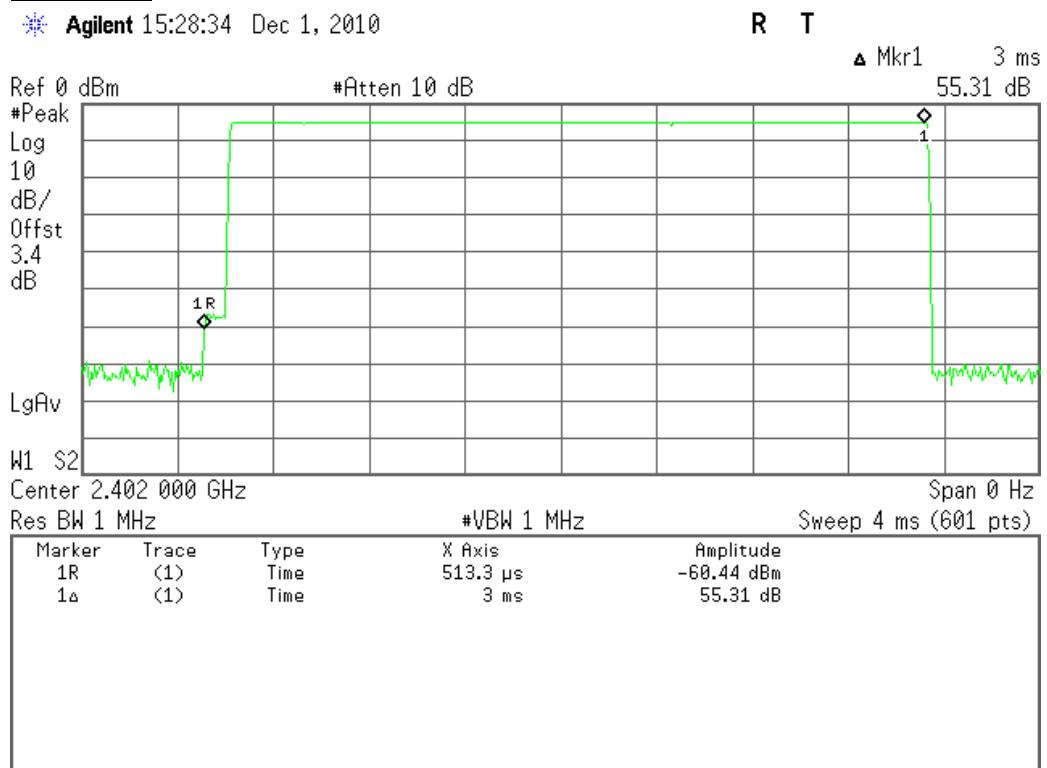
DH 3

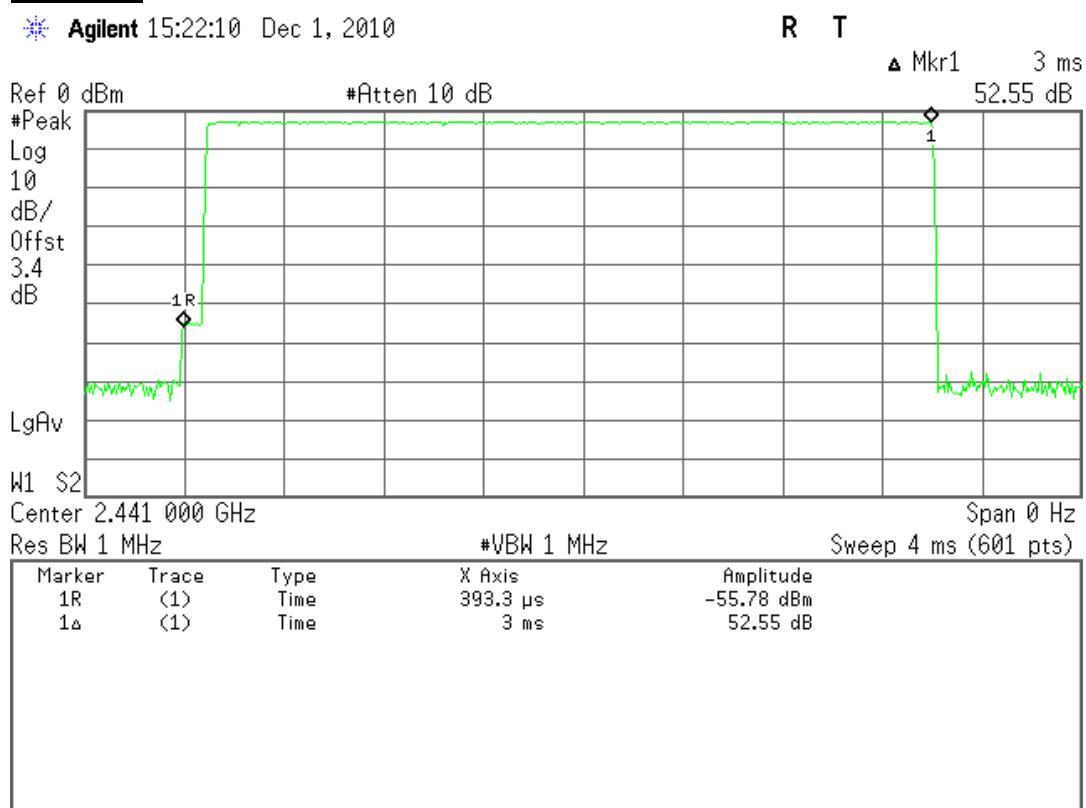

(CH Low)


(CH Mid)

Agilent 15:23:46 Dec 1, 2010

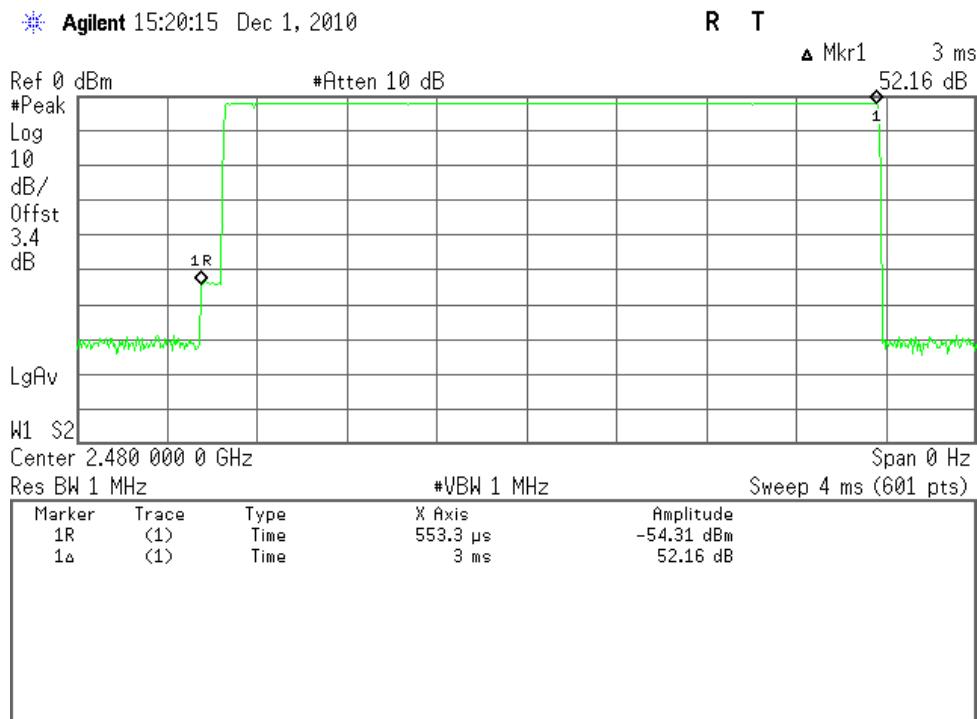
(CH High)


Agilent 15:18:25 Dec 1, 2010



DH 5

(CH Low)


(CH Mid)

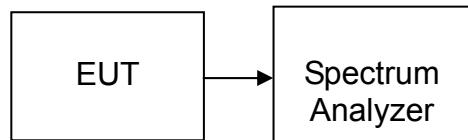
(CH High)

Agilent 15:20:15 Dec 1, 2010

6.8. SPURIOUS EMISSIONS

6.8.1. Conducted Measurement

LIMIT


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2010	03/21/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

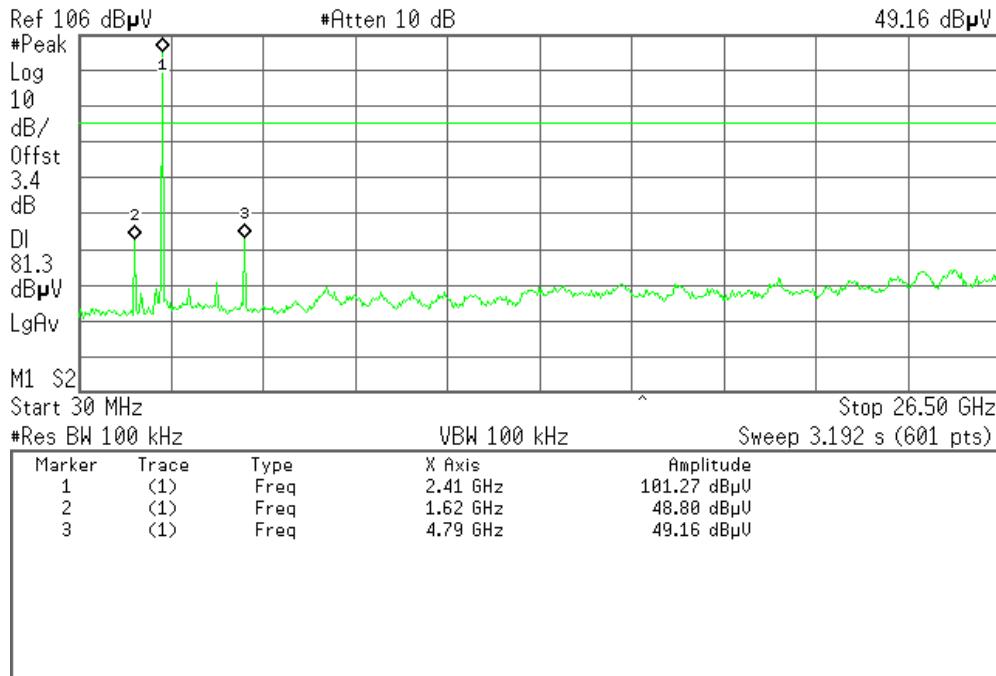
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 100 KHz.

Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

No non-compliance noted

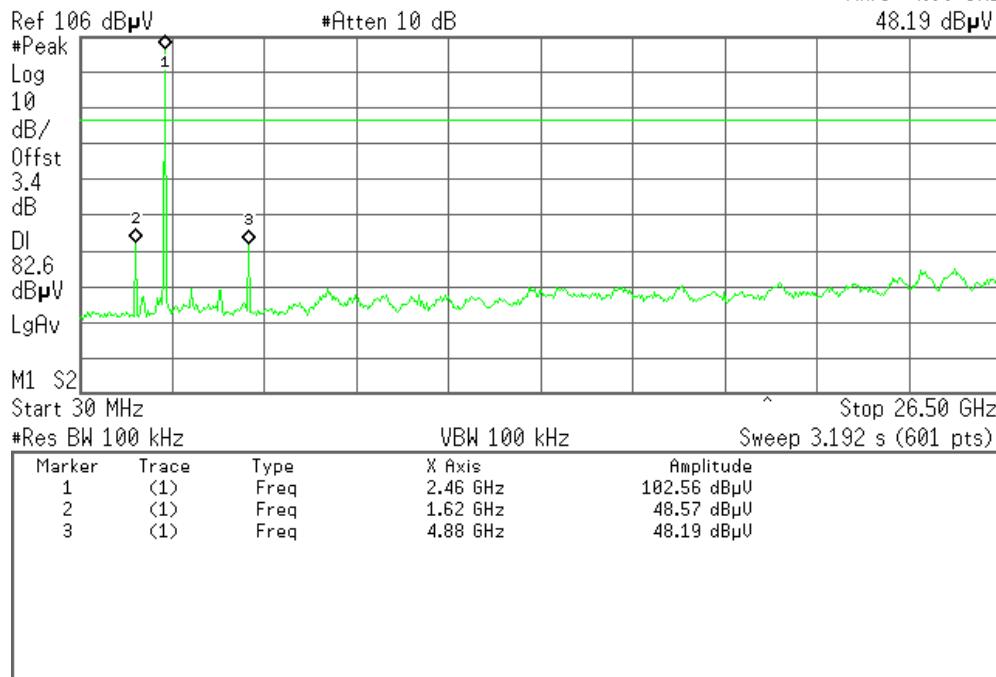

CH Low

30MHz – 26.5GHz

Agilent 15:46:57 Dec 1, 2010

R T

Mkr3 4.79 GHz
49.16 dB μ V

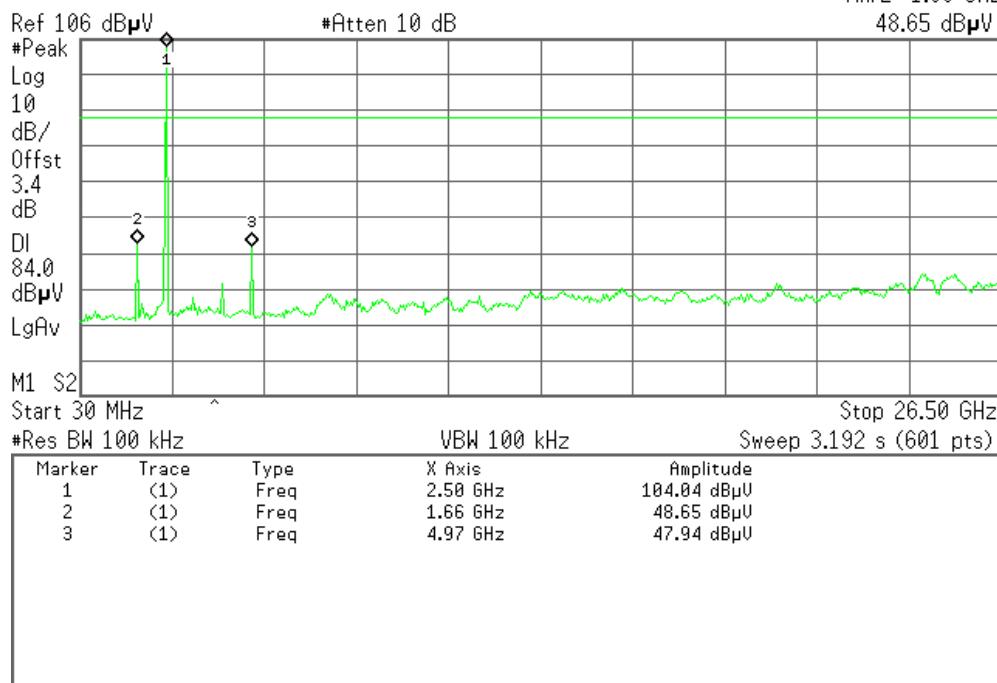

CH Mid

30MHz – 26.5GHz

Agilent 15:48:22 Dec 1, 2010

R T

Mkr3 4.88 GHz
48.19 dB μ V


CH High

30MHz – 26.5GHz

Agilent 15:49:27 Dec 1, 2010

R T

Mkr2 1.66 GHz
48.65 dB μ V

6.8.2. Radiated Emissions

LIMIT

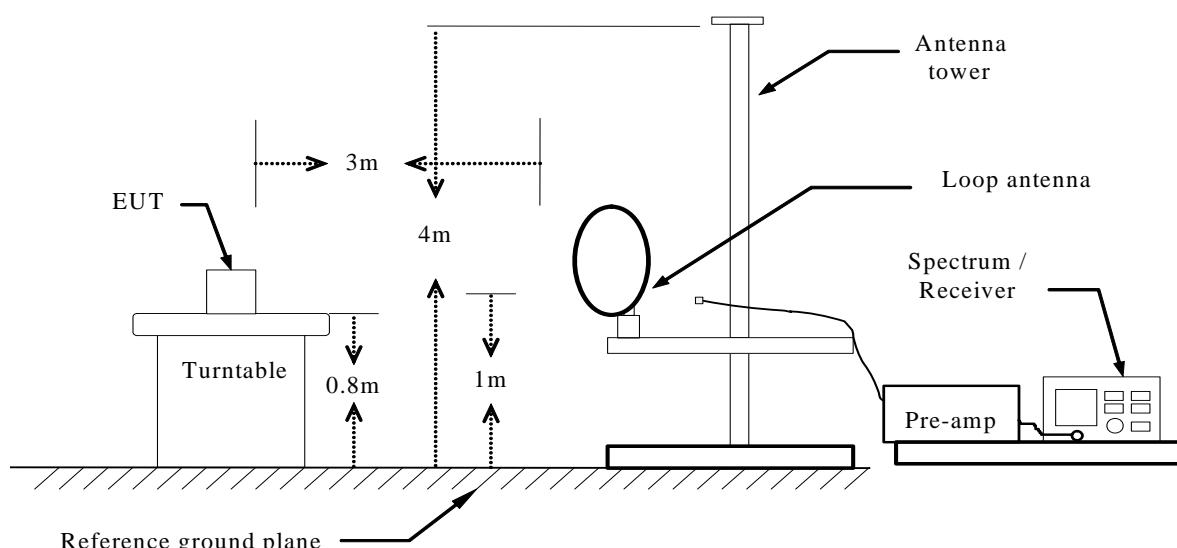
1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

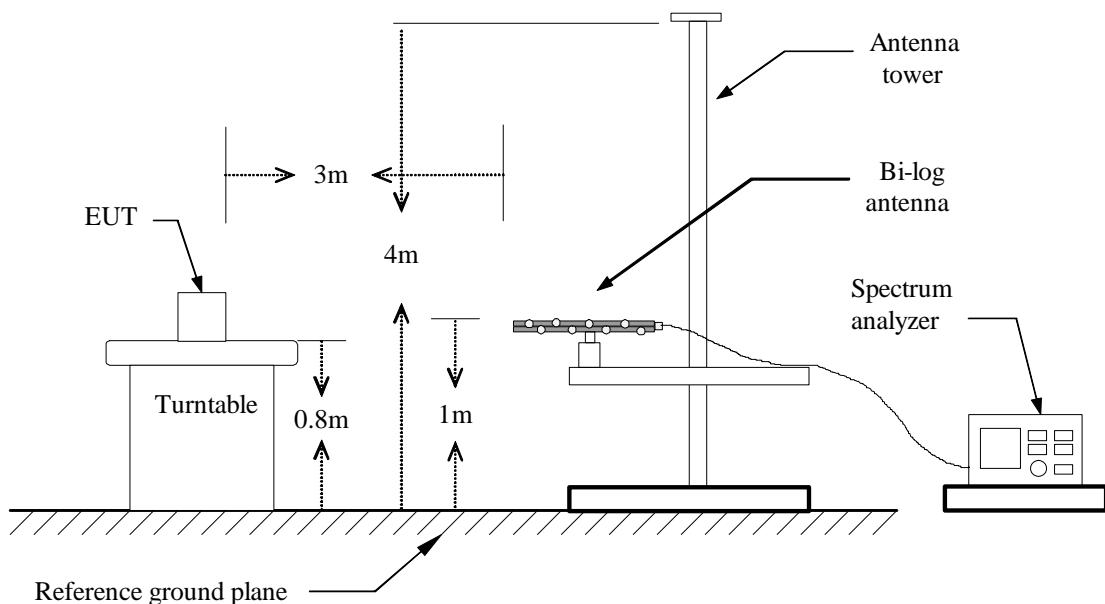
2. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (μ V/m at 3-meter)	Field Strength (dB μ V/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

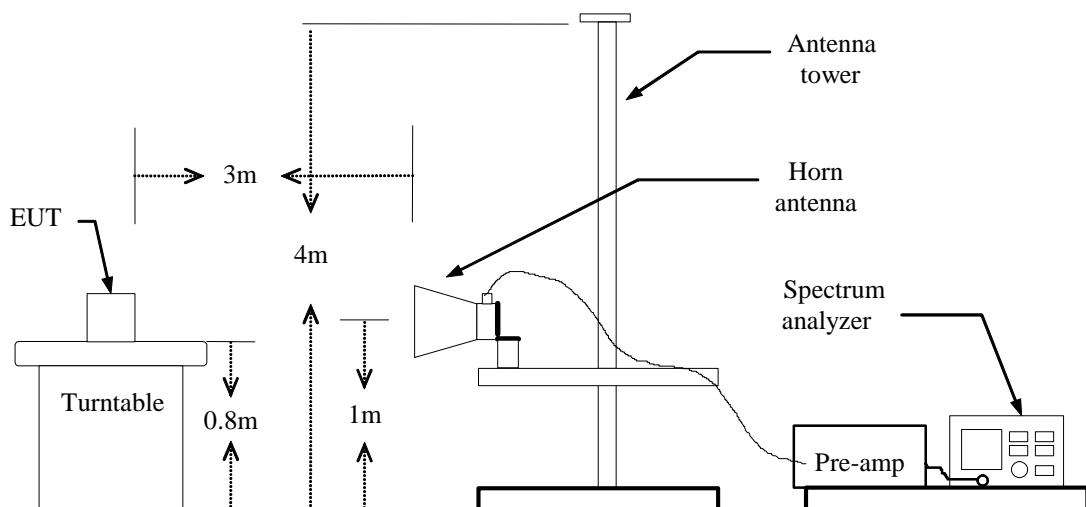


MEASUREMENT EQUIPMENT USED

Radiated Emission Test Site 966 (2)					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/21/2010	03/21/2011
Amplifier	MITEQ	AM-1604-3000	1411843	03/21/2010	03/21/2011
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R
Controller	CT	N/A	N/A	N.C.R	N.C.R
High Noise Amplifier	Agilent	8449B	3008A01838	06/18/2010	06/18/2011
Site NSA	C&C	N/A	N/A	N.C.R	N.C.R
Bilog Antenna	SCHAFFNER	CBL6143	5082	06/18/2010	06/18/2011
Horn Antenna	SCHWARZBECK	BBHA9120D	D286	03/19/2010	03/19/2011
Signal Generator	Anritsu	MG3694A	#050125	03/21/2010	03/21/2011
Horn Antenna	TRC	HA0301	N/A	03/19/2010	03/19/2011
Loop Antenna	A.R.A	PLA-1030/B	1029	03/19/2010	03/19/2011
Power Sensor	Anritsu	MA2491A	030619	06/18/2010	06/18/2011
Power Meter	Anritsu	ML2487A	6K00001491	06/18/2010	06/18/2011
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/30/2010	03/30/2011


Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration



Below 1 GHz

Above 1 GHz

TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

Below 1 GHz

Operation Mode: Normal**Test Date:** December 02, 2010**Temperature:** 22°C**Tested by:** Tom Gan**Humidity:** 65% RH**Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/Q.P)	Reading (dBuV/m)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Safe Margin (dB)
33.233	V	Peak	45.78	-13.06	32.72	40.00	-7.28
143.166	V	Peak	46.88	-20.73	26.15	43.50	-17.35
175.500	V	Peak	47.56	-22.29	25.27	43.50	-18.23
191.666	V	Peak	49.76	-21.87	27.89	43.50	-15.61
207.833	V	Peak	43.00	-21.32	21.68	43.50	-21.82
272.500	V	Peak	45.77	-19.48	26.29	46.00	-19.71
144.783	H	Peak	57.24	-20.86	36.38	43.50	-7.12
175.500	H	Peak	62.13	-22.29	39.84	43.50	-3.66
191.666	H	Peak	59.08	-21.87	37.21	43.50	-6.29
272.500	H	Peak	51.92	-19.48	32.44	46.00	-13.56
288.666	H	Peak	50.76	-19.45	31.31	46.00	-14.69
400.216	H	Peak	46.34	-15.40	30.94	46.00	-15.06

****Remark:** No emission found between lowest internal used/generated frequency to 30MHz.**Notes:**

1. Measuring frequencies from 9kHz to the 1GHz.
2. Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
3. Data of measurement within this frequency range shown “ --- ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

5. Freq(MHz).	= Emission frequency in MHz
Reading (dBuV/m)	= Receiver reading
Corr. Factor (dB)	= Antenna factor + Cable loss – Amplifier gain
Actual FS (dBuV/m)	= Reading (dBuV) + Corr. Factor (dB/m)
Limit (dBuV/m)	= Limit stated in standard
Safe Margin(dB)	= Measured (dBuV/m) – Limits (dBuV/m)
Ant. H/V	= Current carrying line of reading
Detector	= Mark Peak Reading or Quasi-peak Reading

Above 1 GHz**Operation Mode:** TX(CH Low)**Test Date:** December 02, 2010**Temperature:** 22°C**Tested by:** Tom Gan**Humidity:** 65% RH**Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading (dBuV/m)	AV Reading (dBuV/m)	Ant. / CF (dB)	Actual FS		Peak Limit (dBuV/m)	AV Limit (dBuV/m)	Margin (dB)	Remark
					Peak (dBuV/m)	AV (dBuV/m)				
1606.666	V	63.84	62.61	-10.30	53.54	52.31	74.00	54.00	-1.69	AVG.
4803.333	V	61.91	42.34	-0.64	61.27	41.70	74.00	54.00	-12.30	AVG.
6565.000	V	45.53	---	4.10	49.63	---	74.00	54.00	-4.37	Peak
7801.666	V	44.68	---	6.06	50.74	---	74.00	54.00	-3.26	Peak
N/A										
4803.333	H	54.39	39.94	-0.64	53.75	39.30	74.00	54.00	-14.70	AVG.
6495.000	H	44.85	---	3.92	48.77	---	74.00	54.00	-5.23	Peak
6973.333	H	44.90	---	4.39	49.29	---	74.00	54.00	-4.71	Peak
7918.333	H	44.61	---	6.86	51.47	---	74.00	54.00	-2.53	Peak
N/A										

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Spectrum setting:
 - a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
5. Freq.(MHz) = Emission frequency in MHz
Reading (dBuV/m) = Uncorrected Analyzer / Receiver Reading
Corr. Factor (dB) = Antenna factor + Cable loss – Amplifier gain
Actual FS (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)
Limit (dBuV/m) = Limit stated in standard
Margin (dB) = Actual FS (dBuV/m) - Limit (dBuV/m)
Pk = Peak Reading
AV. = Average Reading
Remark = Mark Peak Reading or Quasi-peak Reading

Operation Mode: TX(CH Mid)**Test Date:** December 02, 2010**Temperature:** 22°C**Tested by:** Tom Gan**Humidity:** 65% RH**Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading (dBuV/m)	AV Reading (dBuV/m)	Ant. / CF (dB)	Actual FS		Peak Limit (dBuV/m)	AV Limit (dBuV/m)	Margin (dB)	Remark
					Peak (dBuV/m)	AV (dBuV/m)				
4885.000	V	61.20	42.68	-0.38	60.82	42.30	74.00	54.00	-11.70	AVG.
5760.000	V	45.15	---	4.31	49.46	---	74.00	54.00	-4.54	Peak
6366.666	V	44.32	---	4.99	49.31	---	74.00	54.00	-4.69	Peak
7323.333	V	45.33	---	5.96	51.29	---	74.00	54.00	-2.71	Peak
N/A										
1630.000	H	59.30	---	-10.28	49.02	---	74.00	54.00	-4.98	Peak
4885.000	H	53.47	42.57	-0.38	53.09	42.19	74.00	54.00	-11.81	AVG.
5958.333	H	44.82	---	2.86	47.68	---	74.00	54.00	-6.32	Peak
6588.333	H	44.81	---	4.16	48.97	---	74.00	54.00	-5.03	Peak
N/A										

Notes:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Spectrum setting:
 - a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
5. Freq.(MHz) = Emission frequency in MHz
Reading (dBuV/m) = Uncorrected Analyzer / Receiver Reading
Corr. Factor (dB) = Antenna factor + Cable loss – Amplifier gain
Actual FS (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)
Limit (dBuV/m) = Limit stated in standard
Margin (dB) = Actual FS (dBuV/m) - Limit (dBuV/m)
Pk = Peak Reading
AV. = Average Reading
Remark = Mark Peak Reading or Quasi-peak Reading

Operation Mode: TX(CH High)**Test Date:** December 02, 2010**Temperature:** 22 °C**Tested by:** Tom Gan**Humidity:** 65% RH**Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading (dBuV/m)	AV Reading (dBuV/m)	Ant. / CL CF (dB)	Actual Fs		Peak Limit (dBuV/m)	AV Limit (dBuV/m)	Margin (dB)	Remark
					Peak (dBuV/m)	AV (dBuV/m)				
1653.333	V	59.51	---	-10.26	49.25	---	74.00	54.00	-4.75	Peak
4955.000	V	64.55	41.46	-0.15	64.40	41.31	74.00	54.00	-12.69	AVG.
6320.000	V	44.63	---	3.74	48.37	---	74.00	54.00	-5.63	Peak
6973.333	V	45.50	---	4.39	49.89	---	74.00	54.00	-4.11	Peak
N/A										
4955.000	H	55.21	39.48	-0.15	55.06	39.33	74.00	54.00	-14.67	AVG.
6576.666	H	45.12	---	4.13	49.25	---	74.00	54.00	-4.75	Peak
6950.000	H	45.50	---	4.38	49.88	---	74.00	54.00	-4.12	Peak
7206.666	H	44.85	---	4.99	49.84	---	74.00	54.00	-4.16	Peak
N/A										

Notes:

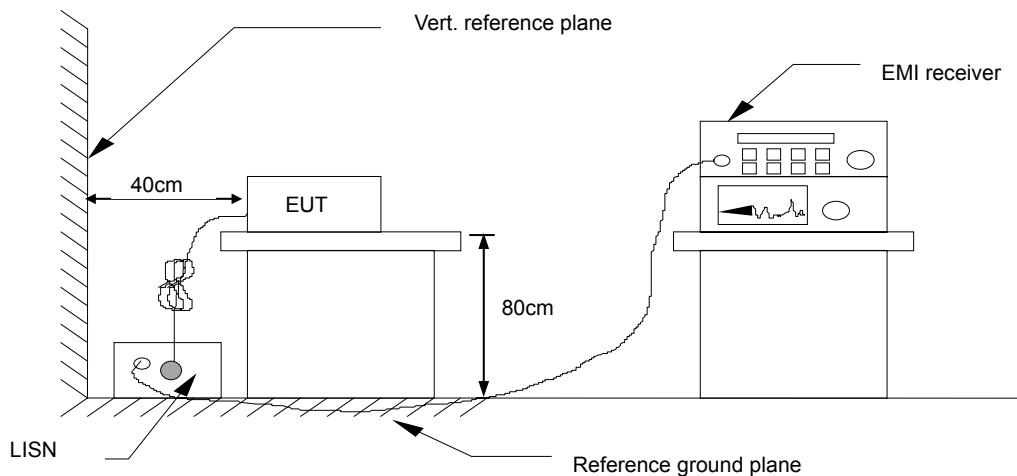
1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
4. Spectrum setting:
 - a. Peak Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GHz - 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
5. Freq.(MHz) = Emission frequency in MHz
Reading (dBuV/m) = Uncorrected Analyzer / Receiver Reading
Corr. Factor (dB) = Antenna factor + Cable loss – Amplifier gain
Actual FS (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)
Limit (dBuV/m) = Limit stated in standard
Margin (dB) = Actual FS (dBuV/m) - Limit (dBuV/m)
Pk = Peak Reading
AV. = Average Reading
Remark = Mark Peak Reading or Quasi-peak Reading

6.9. POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50


Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Conducted Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
ESCI EMI TEST RECEIVE.ESCI	ROHDE&SCHWARZ	ESCI	100783	03/21/2010	03/21/2011
Attenuator	SCHAFFNER	CFL9206	1711	07/14/2010	07/14/2011
LISN	SCHAFFNER	NNB42	2001/001	05/26/2010	05/26/2011
LISN	EMCO	3825/2	8901-1459	03/21/2010	03/21/2011
Current Probe	STODDART AIRCRAFT	91550-1	345-73	03/21/2010	03/21/2011
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/30/2010	03/30/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

1. The EUT was placed on a table, which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data

Model No.	E05	RBW,VBW	9 kHz
Environmental Conditions	22°C, 65% RH	Test Mode	Mode 1
Tested by	Tom Gan		

(The chart below shows the highest readings taken from the final data.)

Frequency Range Investigated (150 kHz to 30 MHz)										
Freq. (MHz)	Q.P. Level (dBuV)	AVG Level (dBuV)	Cor. Factor	Q.P. Result (dBuV)	AVG Result (dBuV)	Q.P. Limit (dBuV)	AVG Limit (dBuV)	Q.P. Margin (dB)	AVG Margin (dB)	Line
(L1/L2)										
0.306	37.03	5.43	11.52	48.55	16.95	60.08	50.08	-11.53	-33.13	L1
0.394	35.57	1.12	11.51	47.08	12.63	57.98	47.98	-10.90	-35.35	L1
1.114	29.75	-3.59	11.52	41.27	7.93	56.00	46.00	-14.73	-38.07	L1
5.018	12.29	-2.34	11.67	23.96	9.33	60.00	50.00	-36.04	-40.67	L1
10.662	18.08	7.21	12.03	30.11	19.24	60.00	50.00	-29.89	-30.76	L1
26.682	23.06	12.62	12.84	35.90	25.46	60.00	50.00	-24.10	-24.54	L1
0.222	33.84	3.59	11.52	45.36	15.11	62.74	52.74	-17.38	-37.63	L2
0.322	31.90	15.02	11.53	43.43	26.55	59.65	49.65	-16.22	-23.10	L2
0.370	36.30	11.95	11.53	47.83	23.48	58.50	48.50	-10.67	-25.02	L2
3.302	12.06	-4.98	11.61	23.67	6.63	56.00	46.00	-32.33	-39.37	L2
11.406	19.36	5.65	12.07	31.43	17.72	60.00	50.00	-28.57	-32.28	L2
19.114	16.46	5.78	12.32	28.78	18.10	60.00	50.00	-31.22	-31.90	L2

NOTE: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

2. Those frequencies only show peak emission level because that was below the Average limit, so no need to check average anymore.

7. ANNEX DECLARATION FOR BLUETOOTH DEVICE ACC to Part 15.247

1 Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device has no influence on the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters. Only a different hopping sequence will be used. For this reason the check of these

RF parameters in one op-mode is sufficient.

2 Frequency range of a Bluetooth device:

Hereby we declare that the maximum frequency of this device is: 2402 – 2480 MHz. This is according to the Bluetooth Core Specification (+ critical errata) for devices which will be operated in the USA. This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/04E). Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification are not supported by this device.

3 Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organised in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from its BD address which is unique for each Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4 Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode: 40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

5 Equally average use of frequencies in data mode and behaviour for short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection
2. Internal master clock

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS.

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronisation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 μ s. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behaviour: The first connection between the two devices is established, a hopping sequence was generated. For transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6 Receiver input bandwidth and behaviour for repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz. In every connection one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single or multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

7 Dwell time in data mode

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is as follows:

Dwell time = time slot length * hop rate / number of hopping channels *30s

Example for a DH1 packet (with a maximum length of one time slot) Dwell time = $625 \mu\text{s} * 1600 \text{ 1/s} / 79 * 30\text{s} = 0.3797\text{s}$ (in a 30s period)

For multislots packet the hopping is reduced according to the length of the packet.

Example for a DH5 packet (with a maximum length of five time slots) Dwell time = $5 * 625 \mu\text{s} * 1600 * 1/5 * 1/\text{s} / 79 * 30\text{s} = 0.3797\text{s}$ (in a 30s period).

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all Bluetooth devices. Therefor all Bluetooth devices comply with the FCC dwell time requirement in data mode. This was checked during the Bluetooth Qualification tests.

The Dwell time in hybrid mode is measured and stated in the test report.

8 Channel Separation in hybrid mode

The nominal channel spacing of the Bluetooth system is 1Mhz independent of the operating mode. The maximum "initial carrier frequency tolerance" which is allowed for Bluetooth is $f_{center} = 75 \text{ kHz}$. This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/07E) for three frequencies (2402, 2441, 2480 MHz). Additionally an example for the channel separation is given in the test report

9 Derivation and examples for a hopping sequence in hybrid mode

For the generation of the inquiry and page hop sequences the same procedures as described for the data mode are used (see chapter 5), but this time with different input vectors:

- For the inquiry hop sequence, a predefined fixed address is always used. This results in the same 32 frequencies used by all devices doing an inquiry but every time with a different start frequency and phase in this sequence.
- For the page hop sequence, the device address of the paged unit is used as input vector. This results in the use of a subset of 32 frequencies which is specific for that initial state of the connection establishment between the two units. A page to different devices would result in a different subset of 32 frequencies.

So it is ensured that also in hybrid mode the frequency use is equally averaged.

Example of a hopping sequence in inquiry mode: 48, 50, 09, 13, 52, 54, 41, 45, 56, 58, 11, 15, 60, 62, 43, 47, 00, 02, 64, 68, 04, 06, 17, 21, 08, 10, 66, 70, 12, 14, 19, 23

Example of a hopping sequence in paging mode:08, 57, 68, 70, 51, 02, 42, 40, 04, 61, 44, 46, 63, 14, 50, 48, 16, 65, 52, 54, 67, 18, 58, 56, 20, 53, 60, 62, 55, 06, 66, 64

10 Receiver input bandwidth and synchronisation in hybrid mode:

The receiver input bandwidth is the same as in the data mode (1 MHz). When two Bluetooth devices establish contact for the first time, one device sends an inquiry access code, the other device is scanning for this inquiry access code. If two devices have been connected previously and want to start a new transmission, a similar procedure takes place. The only difference is, instead of the inquiry access code, a special access code, derived from the BD_ADDRESS of the paged device will be sent by the master of this connection. Due to the fact that both units have been connected before (in the inquiry procedure) the paging unit has timing and frequency information about the page scan of the paged unit. For this reason the time to establish the connection is reduced considerably.

11 Spread rate / data rate of the direct sequence signal

The Spread rate / Data rate in inquiry and paging mode can be defined via the access code. The access code is the only criterion for the system to check if there is a valid transmission or not. If you regard the presence of a valid access code as one bit of information, and compare it with the length of the access code of 68 bits, the Spread rate/ Data rate will be 68/1.

12 Spurious emission in hybrid mode

The dwell time in hybrid mode is shorter than in data mode. For this reason the spurious emissions average level in data mode is worst case. The spurious emissions peak level is the same for both modes.

13 Peak power spectral density measurement

Since the transmitter is only active for some milliseconds on one channel you would get a result with many interruptions if using a sweep time of e.g. 1s as stated in the FCC rules. Therefore a fast sweep in maxhold function is used instead and the EUT is activated several times until the measurement curve has stabilized.