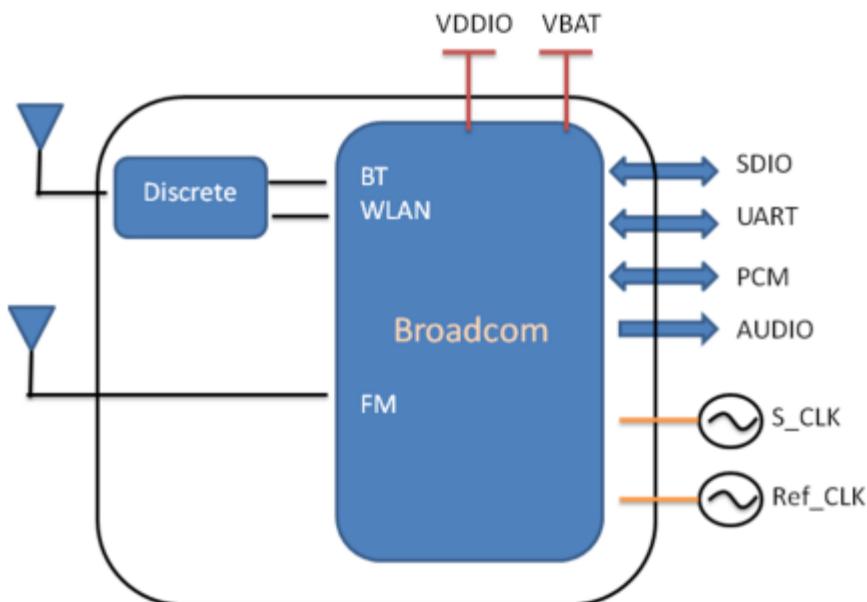


POSLAB

ECON-Z83

USER MANUAL



1. Introduction

ECON-Z83 would like to announce a low-cost and low-power consumption module which has all of the WiFi, Bluetooth and FM functionalities. The highly integrated module makes the possibilities of web browsing, VoIP, Bluetooth headsets, FM radio functional applications and other applications. With seamless roaming capabilities and advanced security, also could interact with different vendors' 802.11b/g/n Access Points in the wireless LAN. The wireless module complies with IEEE 802.11 b/g/n standard and it can achieve up to a speed of 72.2Mbps with single stream in 802.11n draft, 54Mbps as specified in IEEE 802.11g, or 11Mbps for IEEE 802.11b to connect to the wireless LAN. The integrated module provides SDIO interface for WiFi, UART / I2S / PCM interface for Bluetooth and UART / I2S / PCM interface for FM. This compact module is a total solution for a combination of WiFi + BT + FM technologies. The module is specifically developed for Smart phones and Portable devices.

2. Features

- 802.11b/g/n single-band radio
- Bluetooth V4.0(HS) with integrated Class 1.5 PA
- Concurrent Bluetooth, FM (RX) RDS/RBDS, and WLAN operation Simultaneous BT/WLAN receive with single antenna
- WLAN host interface options: - SDIO v2.0 — up to 50 MHz clock rate
- BT host digital interface: - UART (up to 4 Mbps) FM multiple audio routing options: I2S, PCM, eSCO, A2DP
- IEEE Co-existence technologies are integrated die solution
- ECI — enhanced coexistence support, ability to coordinate BT SCO transmissions around WLAN receives A simplified block diagram of the module is depicted in the figure below.

3. Deliverables

3.1 Deliverables

The following products and software will be part of the product.

- Module with packaging
- Evaluation Kits
- Software utility for integration, performance test.
- Product Datasheet.
- Agency certified pre-tested report with the adapter board.

3.2 Regulatory certifications

The product delivery is a pre-tested module, without the module level certification. For module approval, the platform's antennas are required for the certification.

4. General Specification

4.1 General Specification

Model Name	ECON-Z83
Product Description	Support WiFi/Bluetooth/FM functionalities
Dimension	L x W x H: 12 x 12 x 1.5 (typical) mm
WiFi Interface	SDIOV2.0
BT Interface	UART / PCM
FM Interface	UART / PCM / Audio
Operating temperature	-30°C to 85°C
Storage temperature	-40°C to 85°C
Humidity	Operating Humidity 10% to 95% Non-Condensing

4.2 Voltages

4.2.1 Absolute Maximum Ratings

Symbol	Description	Min.	Max.	Unit
VBAT	Input supply Voltage	-0.5	5.5	V
WL_VIO_SD	Digital/Bluetooth/SDIO/ I/O Voltage	-0.5	3.6	V

4.2.2 Recommended Operating Rating

The module requires two power supplies: VBAT and VDDIO.

	Min.	Typ.	Max.	Unit
Operating Temperature	-30	25	85	deg.C
VBAT	3.0	3.7	4.8	V
VDDIO	1.7	3.3	3.6	V

5. WiFi RF Specification

5.1 2.4GHz RF Specification

Conditions : VBAT=3.7V ; VDDIO=3.3V ; Temp:25°C

Feature	Description	
WLAN Standard	IEEE 802.11b/g/n, WiFi compliant	
Frequency Range	2.400 GHz ~ 2.4835 GHz (2.4 GHz ISM Band)	
Number of Channels	2.4GHz : Ch1 ~ Ch11	
Modulation	802.11b : DQPSK, DBPSK, CCK 802.11 g/n : OFDM /64-QAM,16-QAM, QPSK, BPSK	
Output Power (Burst Average Power)	802.11b /11Mbps : 7.5 dBm ± 1 dB @ EVM ≤ -9dB	
	802.11g /54Mbps : 7.5 dBm ± 1 dB @ EVM ≤ -25dB	
	802.11n /65Mbps : 7.5 dBm ± 1 dB @ EVM ≤ -28dB	
Receive Sensitivity (11n,20MHz) @10% PER	- MCS=0	PER @ -85 dBm, typical
	- MCS=1	PER @ -84 dBm, typical
	- MCS=2	PER @ -82 dBm, typical
	- MCS=3	PER @ -80 dBm, typical
	- MCS=4	PER @ -77 dBm, typical
	- MCS=5	PER @ -73 dBm, typical
	- MCS=6	PER @ -71 dBm, typical
	- MCS=7	PER @ -68 dBm, typical
Receive Sensitivity (11g) @10% PER	- 6Mbps	PER @ -86 dBm, typical
	- 9Mbps	PER @ -85 dBm, typical
	- 12Mbps	PER @ -85 dBm, typical
	- 18Mbps	PER @ -83 dBm, typical
	- 24Mbps	PER @ -81 dBm, typical
	- 36Mbps	PER @ -78 dBm, typical
	- 48Mbps	PER @ -73 dBm, typical
	- 54Mbps	PER @ -71 dBm, typical
Receive Sensitivity (11b) @8% PER	- 1Mbps	PER @ -90 dBm, typical
	- 2Mbps	PER @ -88 dBm, typical
	- 5.5Mbps	PER @ -87 dBm, typical
	- 11Mbps	PER @ -84 dBm, typical
Data Rate	802.11b : 1, 2, 5.5, 11Mbps	
	802.11g : 6, 9, 12, 18, 24, 36, 48, 54Mbps	

Data Rate (20MHz ,Long GI,800ns)	802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps
Data Rate (20MHz ,short GI,400ns)	802.11n : 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65,72.2Mbps
Maximum Input Level	802.11b : -10 dBm
	802.11g/n : -20 dBm
Antenna Reference	Small antennas with 3.691 dBi peak gain

6. Bluetooth Specification

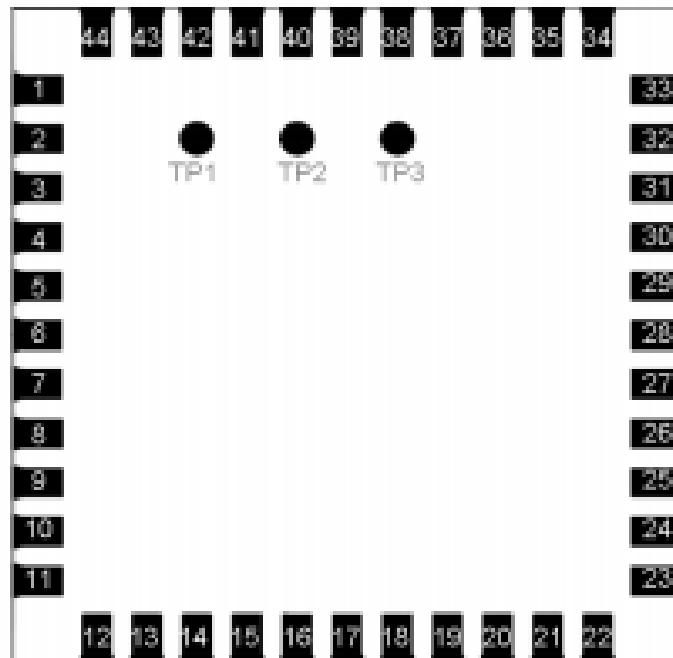
6.1 Bluetooth Specification

Conditions : VBAT=3.7V ; VDDIO=3.3V ; Temp:25°C

Feature	Description		
General Specification			
Bluetooth Standard	Bluetooth of 1, 2 and 3 Mbps.		
Host Interface	UART		
Antenna Reference	Small antennas with 3.691 dBi peak gain		
Frequency Band	2402MHz ~ 2480MHz		
Number of Channels	79 channels		
Modulation	FHSS, GFSK, DPSK, DQPSK		
RF Specification			
	Min.	Typical.	Max.
Output Power (Flame Average Power)		BDR : 7.5 ± 1 dB EDR : 3.5 ± 1 dB	
Sensitivity @ BER=0.1% for GFSK (1Mbps)		-86 dBm	
Sensitivity @ BER=0.01% for π/4-DQPSK (2Mbps)		-86 dBm	
Sensitivity @ BER=0.01% for 8DPSK (3Mbps)		-80 dBm	
Maximum Input Level	GFSK (1Mbps):-20dBm		
	π/4-DQPSK (2Mbps) :-20dBm		
	8DPSK (3Mbps) :-20dBm		

7. FM Specification

7.1 FM Specification (TBD)


Conditions : VBAT=3.7V ; VDDIO=3.3V ; Temp:25°C

Feature	Description				
General Specification					
Characteristics	Condition	MIN	TYP	MAX	UNIT
Transmitter (FM Tx load = 120nH, Q>30)	Output Power Level				dBuV
	Audio harmonic distortion (fmod=1KHz, $\Delta f=75\text{KHz}$, Pilot $\Delta f=6.75\text{KHz}$)				%
	Audio SNR ($\Delta f=22.5\text{KHz}$, I2S audio in SNR \geq 57dB)	MONO			dB
Receiver (FM Tx Antenna = 120nH, Q>30)	RDS Sensitivity				dBm
	Audio harmonic distortion (Vin=1mV, $\Delta f=75\text{KHz}$)	fmod=1KHz			%
		fmod=3KHz			
	Maximum SNR (fmod=1KHz, $\Delta f=22.5$ KHz, BW=300Hz to 15KHz)	MONO			dB
		Stereo			
	RF input power level				dBuV

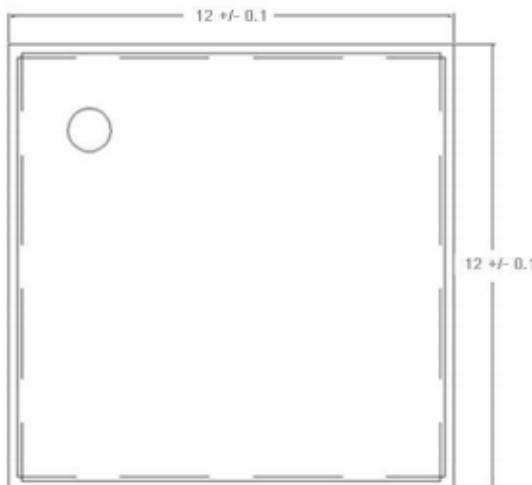
8. Pin Assignments

8.1 Pin Outline

< TOP VIEW >

8.2 Pin Definition

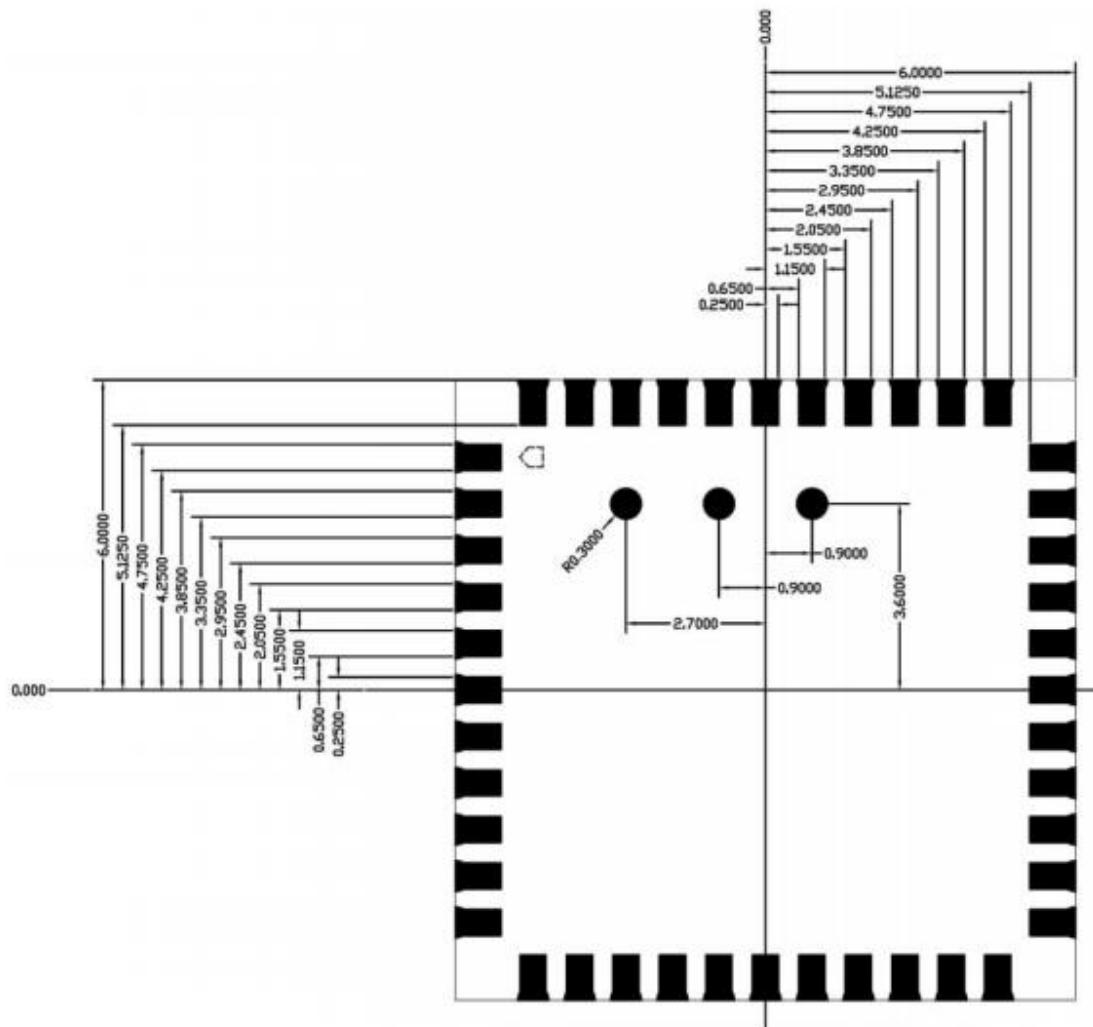
NO	Name	Type	Description
1	GND	—	Ground connections
2	WL_BT_ANT	I/O	RF I/O port
3	GND	—	Ground connections
4	FM_RX	I	FM radio RF input antenna port
5	NC	—	Floating (Don't connect to ground)
6	BT_WAKE	I	HOST wake-up Bluetooth device
7	BT_HOST_WAKE	O	Bluetooth device to wake-up HOST
8	NC	—	Floating (Don't connect to ground)
9	VBAT	P	Main power voltage source input
10	XTAL_IN	I	Crystal input
11	XTAL_OUT	O	Crystal output
12	WL_REG_ON	I	Internal regulators power enable/disable
13	WL_HOST_WAKE	O	WLAN to wake-up HOST

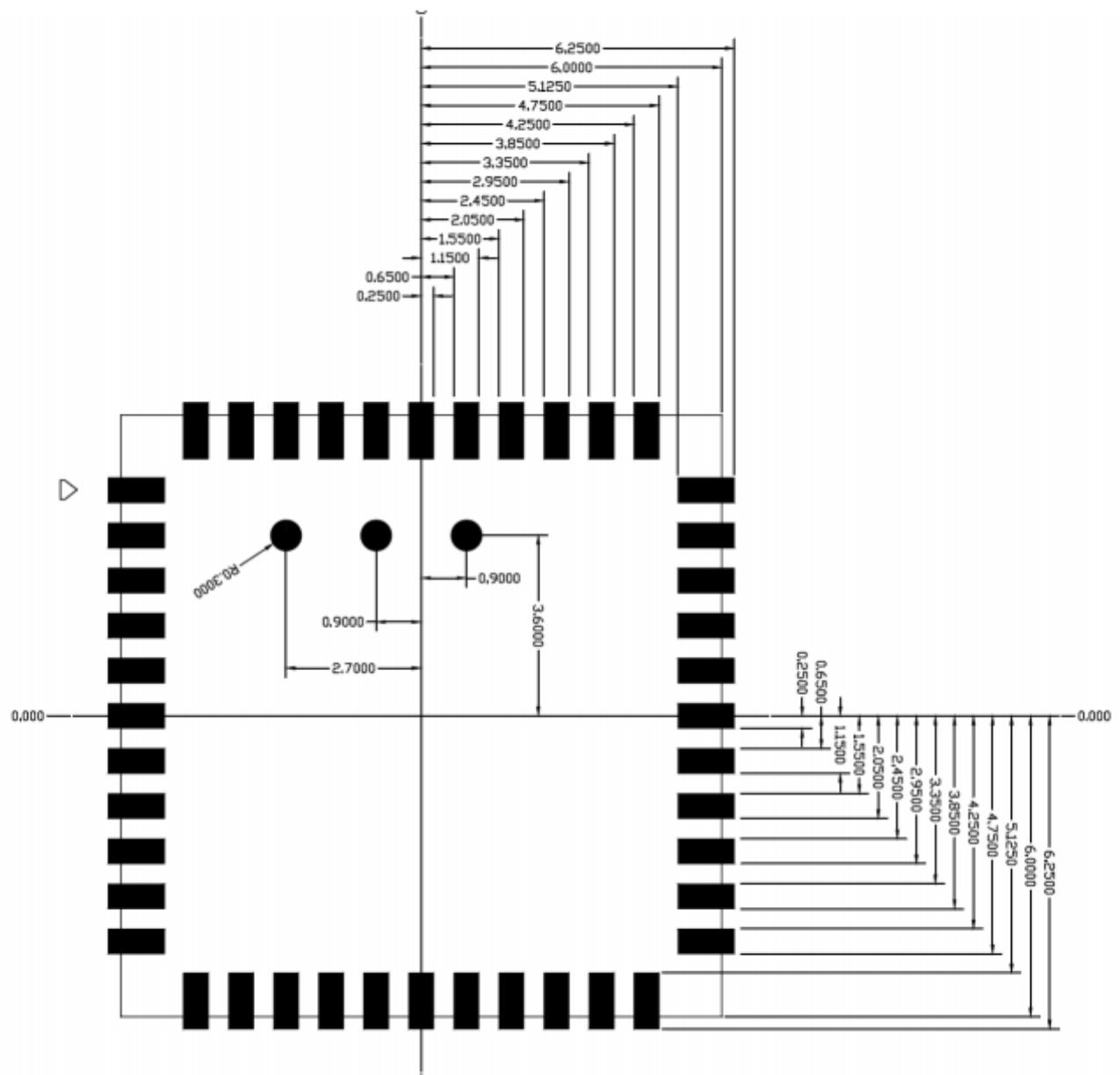

14	SDIO_DATA_2	I/O	SDIO data line 2
15	SDIO_DATA_3	I/O	SDIO data line 3
16	SDIO_DATA_CMD	I/O	SDIO command line
17	SDIO_DATA_CLK	I/O	SDIO clock line
18	SDIO_DATA_0	I/O	SDIO data line 0
19	SDIO_DATA_1	I/O	SDIO data line 1
20	GND	—	Ground connections
21	VIN_LDO_OUT	P	Internal Buck voltage generation pin
22	VDDIO	P	I/O Voltage supply input
23	VIN_LDO	P	Internal Buck voltage generation pin
24	LPO	I	External Low Power Clock input (32.768KHz)
25	PCM_OUT	O	PCM Data output
26	PCM_CLK	I/O	PCM clock
27	PCM_IN	I	PCM data input
28	PCM_SYNC	I/O	PCM sync signal
29	NC	—	Floating (Don't connected to ground)
30	NC	—	Floating (Don't connected to ground)
31	GND	—	Ground connections
32	NC	—	Floating (Don't connected to ground)
33	GND	—	Ground connections
34	BT_RST_N	I	Low asserting reset for Bluetooth core
35	NC	—	Floating (Don't connected to ground)
36	GND	—	Ground connections
37	GPIO4	I/O	WiFi Co-existence pin with LTE
38	GPIO3	I/O	WiFi Co-existence pin with LTE
39	GPIO2	I/O	WiFi Co-existence pin with LTE
40	GPIO1	I/O	WiFi Co-existence pin with LTE
41	UART_RTS_N	O	Bluetooth/FM UART interface
42	UART_TXD	O	Bluetooth/FM UART interface
43	UART_RXD	I	Bluetooth/FM UART interface
44	UART_CTS_N	I	Bluetooth/FM UART interface
45	TP1	O	FM Analog AUDIO left output
46	TP2	O	FM Analog AUDIO right output
47	TP3 (NC)	—	Floating (Don't connected to ground)

9. Dimensions

9.1 Physical Dimensions

(Unit: mm)


< TOP VIEW >



< Side View >

< TOP VIEW >

10. External clock reference

External LPO signal characteristics

Parameter	Specification	Units
Nominal input frequency	32.768	kHz
Frequency accuracy	± 30	ppm
Duty cycle	30 - 70	%
Input signal amplitude	400 to 1800	mV, p-p
Signal type	Square-wave	-
Input impedance	$>100k$ <5	Ω pF
Clock jitter (integrated over 300Hz – 15KHz)	<1	Hz
Output high voltage	0.7V _{IO} - V _{IO}	V

External Ref_CLK signal characteristics

No.	Item	Symb.	Electrical Specification				Remark
			Min.	Type	Max.	Units	
1	Nominal Frequency	F0	26.00000				MHz
2	Mode of Vibration		Fundamental				
3	Frequency Tolerance	$\Delta F/F_0$	-10	-	10	ppm	at 25°C $\pm 3^\circ\text{C}$
4	Operating Temperature Range	T _{OPR}	-30	-	85	°C	
5	Frequency Stability	T _C	-10	-	10	ppm	
6	Storage Temperature	T _{STG}	-55	-	125	°C	
7	Load capacitance	C _L	-	16		pF	
8	Equivalent Series Resistance	ESR	-	-	50	Ω	
9	Drive Level	D _L	-	100	200	μW	
10	Insulation Resistance	I _R	500	-	-	M Ω	At 100V _{DC}
11	Shunt Capacitance	C ₀	-	-	3	pF	
12	Aging Per Year	F _a	-2	-	2	ppm	First Year

10.1 SDIO Pin Description

The module supports SDIO version 2.0 for 4-bit modes (100 Mbps), and high speed 4-bit (50 MHz clocks – 200 Mbps). It has the ability to stop the SDIO clock and map the interrupt signal into a GPIO pin. This ‘out-of-band’ interrupt signal notifies the host when the WLAN device wants to turn on the SDIO interface. The ability to force the control of the gated clocks from within the WLAN chip is also provided.

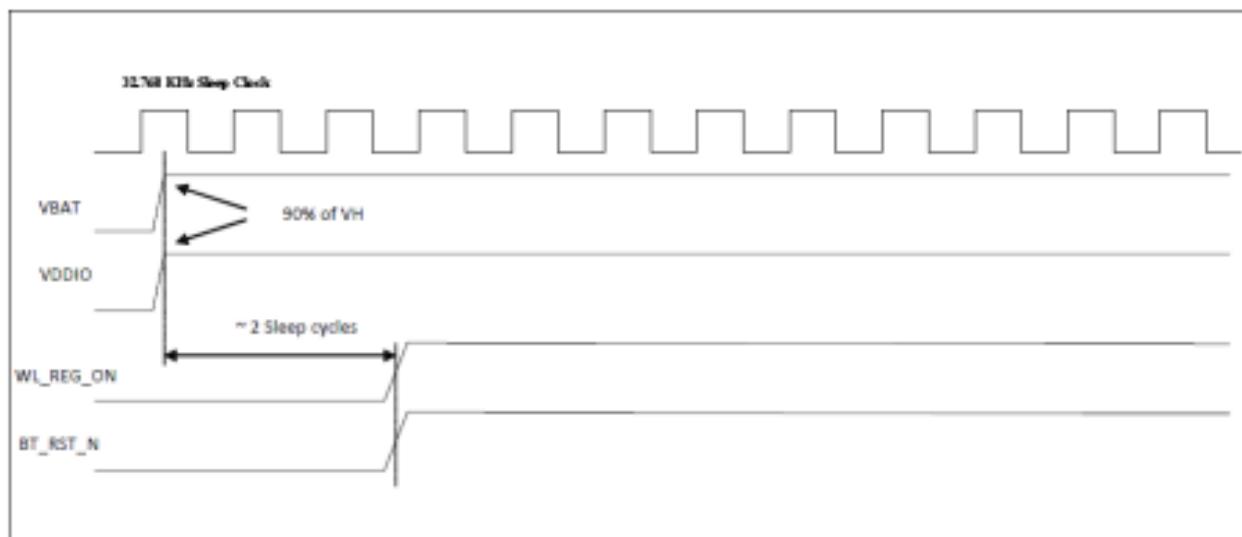
- Function 0 Standard SDIO function (Max BlockSize / ByteCount = 32B)
- Function 1 Backplane Function to access the internal System On Chip (SOC) address space (Max BlockSize / ByteCount = 64B)
- Function 2 WLAN Function for efficient WLAN packet transfer through DMA (Max BlockSize/ByteCount=512B)

SDIO Pin Description

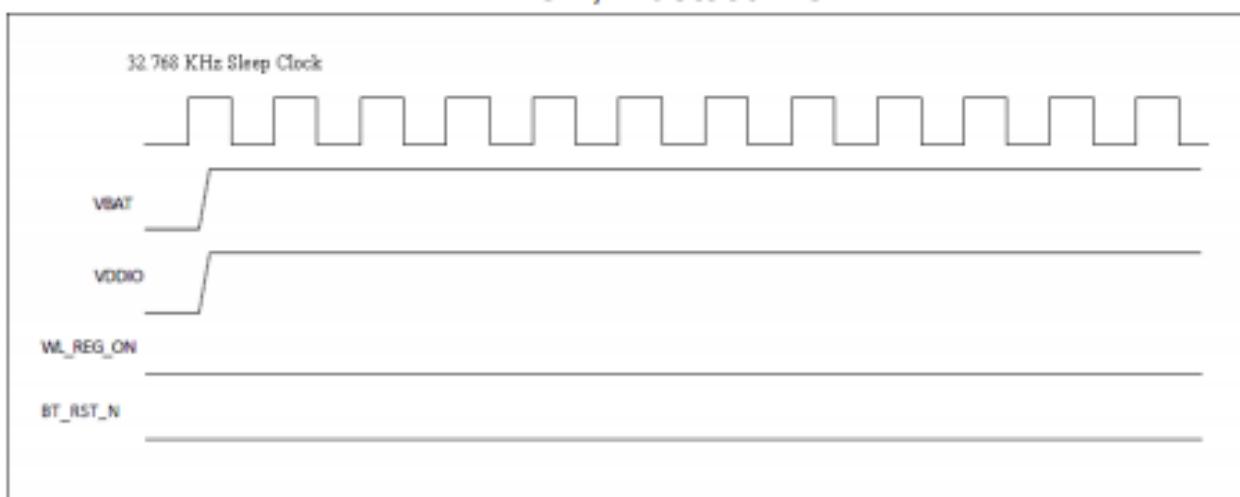
SD 4-Bit Mode	
DATA0	Data Line 0
DATA1	Data Line 1 or Interrupt
DATA2	Data Line 2 or Read Wait
DATA3	Data Line 3
CLK	Clock
CMD	Command Line

11. Host Interface Timing Diagram

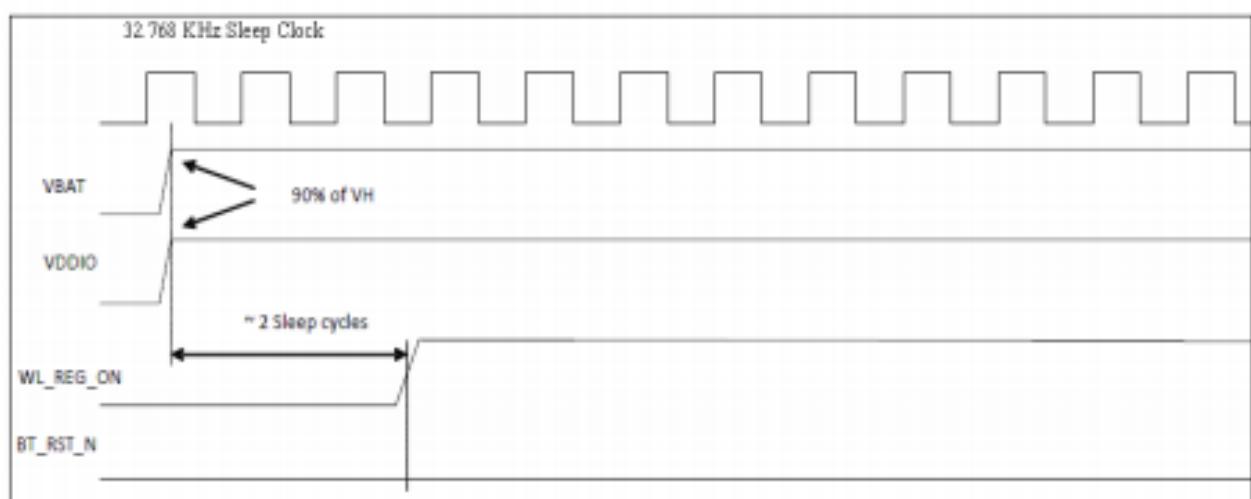
11.1 Power-up Sequence Timing Diagram


The module has signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for various operating states. The timing value indicated are minimum required values: longer delays are also acceptable.

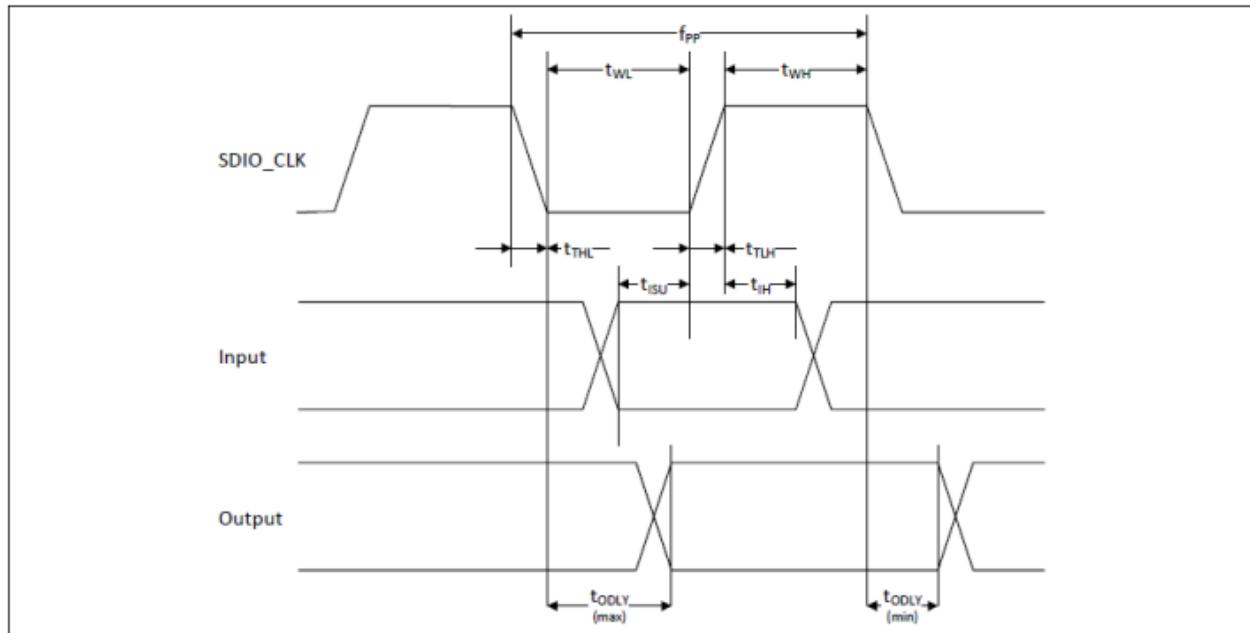
- ※ WL_REG_ON: Used by the PMU to power up the WLAN section.


When this pin is high, the regulators are enabled and the WLAN section is out of reset.
When this pin is low the WLAN section is in reset.

- ※ BT_RST_N: Low asserting reset for Bluetooth and FM only.


This pin has no effect on WLAN and does not control any PMU functions.
This pin must be driven high or low (not left floating).

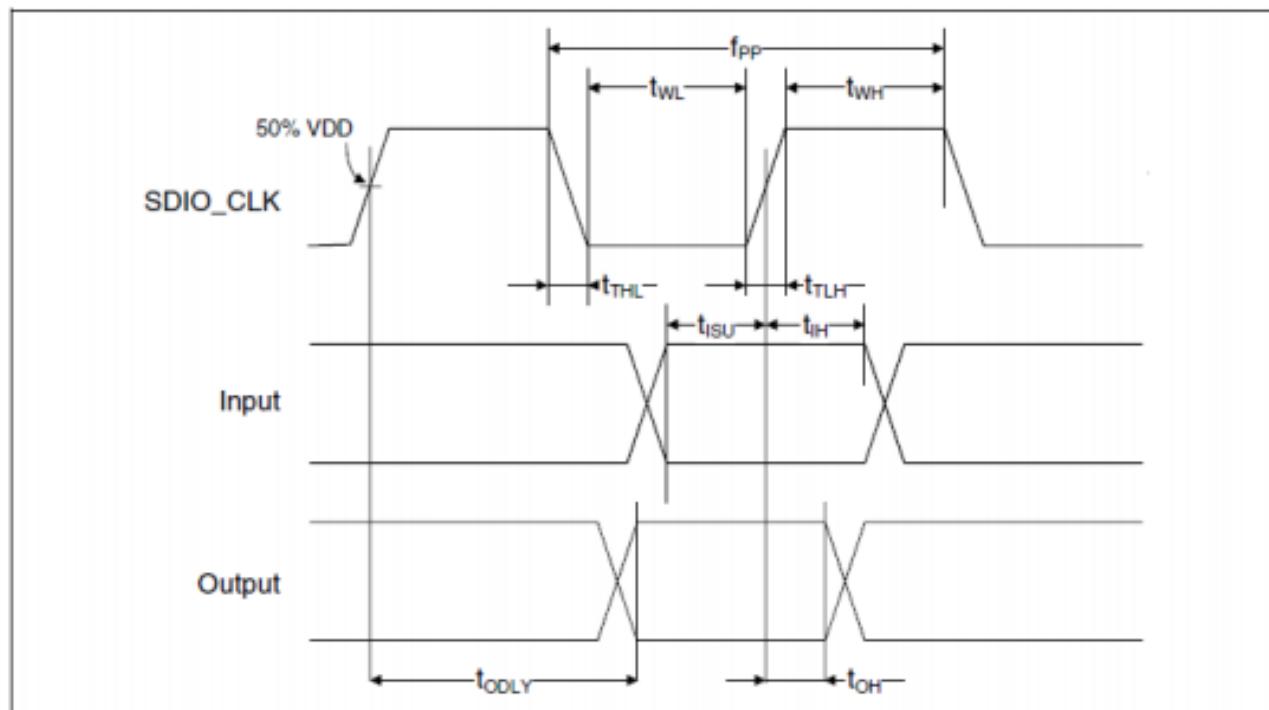
WLAN=ON, Bluetooth=ON



WLAN=OFF, Bluetooth=OFF

WLAN=ON, Bluetooth=OFF

11.2 SDIO Default Mode Timing Diagram



Parameter	Symbol	Minimum	Typical	Maximum	Unit
SDIO CLK (All values are referred to minimum VIH and maximum VIL^b)					
Frequency-Data Transfer mode	f_{PP}	0	-	25	MHz
Frequency-Identification mode	f_{OD}	0	-	400	kHz
Clock low time	t_{WL}	10	-	-	ns
Clock high time	t_{WH}	10	-	-	ns
Clock rise time	t_{TLH}	-	-	10	ns
Clock fall time	t_{TDL}	-	-	10	ns
Inputs: CMD, DAT (referenced to CLK)					
Input setup time	t_{ISU}	5	-	-	ns
Input hold time	t_{IH}	5	-	-	ns
Outputs: CMD, DAT (referenced to CLK)					
Output delay time - Data Transfer mode	t_{ODLY}	0	-	14	ns
Output delay time - Identification mode	t_{ODLY}	0	-	50	ns

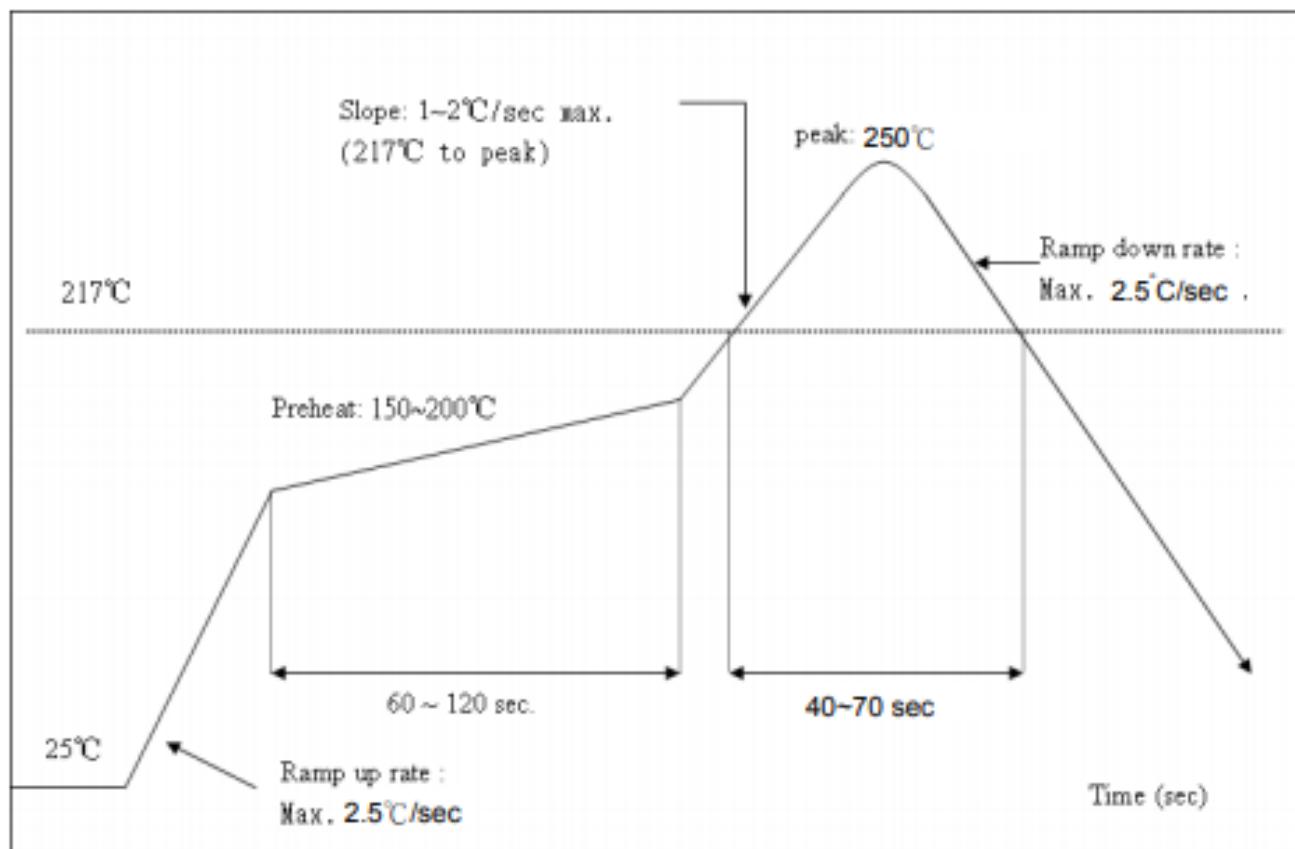
a. Timing is based on CL \leq 40pF load on CMD and Data.

b. $\min(V_{ih}) = 0.7 \times V_{DDIO}$ and $\max(V_{il}) = 0.2 \times V_{DDIO}$.

11.3 SDIO High Speed Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit
SDIO CLK (All values are referred to minimum VIH and maximum Vil^b)					
Frequency-Data Transfer mode	f_{PP}	0	-	50	MHz
Frequency-Identification mode	f_{OD}	0	-	400	kHz
Clock low time	t_{WL}	7	-	-	ns
Clock high time	t_{WH}	7	-	-	ns
Clock rise time	t_{TLH}	-	-	3	ns
Clock low time	t_{THL}	-	-	3	ns
Inputs: CMD, DAT (referenced to CLK)					
Input setup time	t_{ISU}	6	-	-	ns
Input hold time	t_{IH}	2	-	-	ns
Outputs: CMD, DAT (referenced to CLK)					
Output delay time – Data Transfer mode	t_{ODLY}	-	-	14	ns
Output hold time	t_{OH}	2.5	-	-	ns
Total system capacitance (each line)	CL	-	-	40	pF

a. Timing is based on $CL \leq 40\text{pF}$ load on CMD and Data.


b. $\text{min(Vih)} = 0.7 \times \text{VDDIO}$ and $\text{max(Vil)} = 0.2 \times \text{VDDIO}$.

12. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature : <250°C

Number of Times : ≤2 times

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

IMPORTANT NOTE:

Radiation Exposure Statement:

The product comply with the US portable RF exposure limit set forth for an uncontrolled environment and are safe for intended operation as described in this manual. The further RF exposure reduction can be achieved if the product can be kept as far as possible from the user body or set the device to lower output power if such function is available.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Country Code selection feature to be disabled for products marketed to the US/CANADA

Integration instructions for host product manufacturers

Applicable FCC rules to module

FCC Part 15.247

Summarize the specific operational use conditions

This device is intended only for OEM integrators under the following conditions:

- 1) The transmitter module may not be co-located with any other transmitter or antenna
- 2) For all products market in US, OEM has to limit the operation channels in CH1 to CH11 for 2.4G band by supplied firmware programming tool. OEM shall not supply any tool or info to the end-user regarding to Regulatory Domain change.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

IMPORTANT NOTE: In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization. The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

Limited module procedures

Not applicable

Trace antenna designs

Not applicable

RF exposure considerations

Co-located issue shall be met as mentioned in "Summarize the specific operational use conditions".

Product manufacturer shall provide below text in end-product manual

"Radiation Exposure Statement:

The product comply with the US portable RF exposure limit set forth for an uncontrolled environment and are safe for intended operation as described in this manual. The further RF exposure reduction can be achieved if the product can be kept as far as possible from the user body or set the device to lower output power if such function is available.."

Antennas

Brand name	Model name	Antenna type	Antenna gain	Antenna connector
POSLAB	ECON-Z83	wire	2	IPEX

Label and Compliance Information

Product manufacturers need to provide a physical or e-label stating

"Contains FCC ID: Y2A-ECON-Z83" with finished product

Information on Test Modes and Additional Testing Requirements

Test tool: Ampak RFTtestTool shall be used to set the module to transmit continuously.

Additional Testing, Part 15 Subpart B Disclaimer

The module is only FCC authorized for the specific rule parts listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. The final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed