

Industrial Internet Innovation Center (Shanghai) Co.,Ltd.

RF TEST REPORT

PRODUCT	5G CPE
BRAND	ATEL
MODEL	PW550+, PW550, PW550 Plus, PW550 Pro, JW515, PW550-NA
APPLICANT	Asiatelco Technologies Co.
FCC ID	XYO-PW550NA
ISSUE DATE	September 30, 2024
STANDARD(S)	FCC Part 2, FCC Part 22H, FCC Part 24E, FCC Part27

Prepared by: *Fan Yuhang*

范宇航

Reviewed by: *Yang Fan*

杨帆

Approved by: *Zhang Min*

张敏

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

CONTENTS

1. SUMMARY OF TEST REPORT	3
1.1 TEST STANDARD (S)	3
1.2 REFERENCE DOCUMENTS.....	3
1.3 SUMMARY OF TEST RESULTS.....	3
1.4 DATA PROVIDED BY APPLICANT.....	5
2 GENERAL INFORMATION OF THE LABORATORY	6
2.1 TESTING LABORATORY	6
2.2 LABORATORY ENVIRONMENTAL REQUIREMENTS	6
2.3 PROJECT INFORMATION	6
3 GENERAL INFORMATION OF THE CUSTOMER.....	7
3.1 APPLICANT	7
3.2 MANUFACTURER	7
4 GENERAL INFORMATION OF THE PRODUCT.....	8
4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	8
4.2 DESCRIPTION FOR AUXILIARY EQUIPMENT (AE)	8
4.3 ADDITIONAL INFORMATION	8
5 TEST CONFIGURATION INFORMATION	10
5.1 LABORATORY ENVIRONMENTAL CONDITIONS.....	10
5.2 TEST EQUIPMENTS UTILIZED.....	10
5.3 MEASUREMENT UNCERTAINTY	11
6 TEST RESULTS	13
6.1 OUTPUT POWER.....	13
6.2 EMISSION LIMIT.....	15
ANNEX A: REVISED HISTORY	20
ANNEX B: ACCREDITATION CERTIFICATE.....	21

1. Summary of Test Report

1.1 Test Standard (s)

No.	Test Standard	Title	Version
1	FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS	--
2	FCC Part 22H	CELLULAR RADIOTELEPHONE SERVICE	--
3	FCC Part 24E	BROADBAND PCS	--
4	FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES	--

Note: The standard of FCC Part 2 has not been accredited by A2LA.

1.2 Reference Documents

No.	Test Standard	Title	Version
1	ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards	2016
2	ANSI C63.26	American National Standard of Procedures for Compliance Testing of Licensed Transmitters Used in Licensed Radio	2015
3	KDB 971168 D01 Power Meas License Digital Systems	Measurement Guidance for Certification of Licensed Digital Transmitters	v03r01

Note: The standard of KDB 971168 D01 Power Meas License Digital Systems has not been accredited by A2LA.

1.3 Summary of Test Results

WCDMA II

Items	Test Name	Clause in FCC rules	Verdict
1	Output Power/EIRP	2.1046/24.232(c)	Pass
2	Emission Limit	2.1053/24.238(a)	Pass
3	Frequency Stability	2.1055/24.235	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
4	Occupied Bandwidth	2.1049	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
5	Emission Bandwidth	2.1049	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
6	Band Edge Compliance	2.1051/24.238(a)	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
7	Conducted Spurious Emission	2.1051/24.238(a)	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
8	Peak to Average Power	24.232 (d)	Refer to report

Report No: 24T04I300138-019

	Ratio		(Report No: SAR/2021/4000901, SUZR/2021/7002001)
--	-------	--	--

WCDMA IV

Items	Test Name	Clause in FCC rules	Verdict
1	Output Power/EIRP	2.1046/27.50(d)(4)	Pass
2	Emission Limit	2.1053/27.53(h)	Pass
3	Frequency Stability	2.1055/27.54	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
4	Occupied Bandwidth	2.1049	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
5	Emission Bandwidth	2.1049	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
6	Band Edge Compliance	2.1051/27.53(h)	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
7	Conducted Spurious Emission	2.1051/27.53(h)	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
8	Peak to Average Power Ratio	27.50(d)(5)	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)

WCDMA V

Items	Test Name	Clause in FCC rules	Verdict
1	Output Power/ERP	2.1046/22.913(a)	Pass
2	Emission Limit	2.1053/22.917(a)	Pass
3	Frequency Stability	2.1055/22.355	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
4	Occupied Bandwidth	2.1049	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
5	Emission Bandwidth	2.1049	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
6	Band Edge Compliance	2.1051/22.917(a)	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
7	Conducted Spurious Emission	2.1051/22.917(a)	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)
8	Peak to Average Power Ratio	N/A	Refer to report (Report No: SAR/2021/4000901, SUZR/2021/7002001)

Note:

The PW550+, PW550, PW550 Plus, PW550 Pro, JW515, PW550-NA manufactured by Asiateleco Technologies

Co. is a new product for testing.

The RF module inside the product have been certified, FCC ID: ZMOFG360NA. certified on 2022-12-12, Only RF output power, Radiated Spurious Emission is tested for 5G CPE model PW550+, PW550, PW550 Plus, PW550 Pro, JW515, PW550-NA in this report. Other test items refer to the FG360-NA Module report (Report No.: SAR/2021/4000901 and SUZR/2021/7002001, FCC ID: ZMOFG360NA).

Industrial Internet Innovation Center (Shanghai) Co., Ltd. only performed test cases which identified with Pass/Fail/Inc result in section 1.3.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. has verified that the compliance of the tested device specified in section 4 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 1 of this test report.

1.4 Data Provided by Applicant

No.	Item(s)	Data
1	WCDMA Band 2 Antenna gain	1.70 dBi
2	WCDMA Band 4 Antenna gain	1.82 dBi
3	WCDMA Band 5 Antenna gain	1.56 dBi

Note: The data of antenna gain is provided by Antenna specification may affect the validity of the test results in this report, and the impact and consequences of this shall be undertaken by the customer.

2 General Information of The Laboratory

2.1 Testing Laboratory

Lab Name	Industrial Internet Innovation Center (Shanghai) Co.,Ltd.
Address	Building 4, No. 766, Jingang Road, Pudong, Shanghai, China
Telephone	021-68866880
FCC Registration No.	708870
FCC Designation No.	CN1364

2.2 Laboratory Environmental Requirements

Temperature	15°C~35°C
Relative Humidity	25%RH~75%RH
Atmospheric Pressure	86kPa~106kPa

2.3 Project Information

Project Manager	Xu Yuting
Test Date	August 27,2024 to September 18, 2024

3 General Information of The Customer

3.1 Applicant

Company	Asiatelco Technologies Co.
Address	#68 HuaTuo Road, Building-8, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201204, China
Telephone	N/A

3.2 Manufacturer

Company	Asiatelco Technologies Co.
Address	#68 HuaTuo Road, Building-8, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201204, China
Telephone	N/A

4 General Information of The Product

4.1 Product Description for Equipment under Test (EUT)

Product	5G CPE
Model	PW550+, PW550, PW550 Plus, PW550 Pro, JW515, PW550-NA
Date of Receipt	S01aa/S03aa:August 26,2024
EUT ID*	S01aa/S03aa
SN/IMEI	S01aa: 862424050281897 S03aa:N/A
Supported Radio Technology and Bands	WCDMA Band II/IV/V LTE Band 2/4/5/7/12/13/14/17/25/26/30/41/48/66/71 LTE Band CA_41C NR n2/n5/n7/n12/n14/n25/n30/n41/n66/n71/n77/n78 WLAN 802.11b/g/n/ax WLAN 802.11a/ac/ax BT 5.0 BLE
Hardware Version	PW55-P1
Software Version	CPE5_PW550_N0_00_v1.0.2
FCC ID	XYO-PW550NA
NOTE1: EUT ID is the internal identification code of the laboratory.	
NOTE2: Samples in the test report are provided by the customer. The test results are only applicable to the samples received by the laboratory.	

4.2 Description for Auxiliary Equipment (AE)

AE ID*	Description	Model	SN/Remark
AE1	RF cable	N/A	N/A

NOTE1: AE ID is the internal identification code of the laboratory.

4.3 Additional Information

Type of modulation	QPSK/16QAM
Band Frequency Range:	
Band	Frequency Range(MHz)
Band II	1850 -1910
Band IV	1710 -1755
Band V	824 – 849

Band List:

Band	Low Channel	Low Freq. (MHz)	Mid Channel	Mid Freq. (MHz)	High Channel	High Freq. (MHz)
Band II	9262	1852.4	9400	1880	9538	1907.6
Band IV	1312	1712.4	1413	1732.6	1513	1752.6
Band V	4132	826.4	4183	836.6	4233	846.6

5 Test Configuration Information

5.1 Laboratory Environmental Conditions

5.1.1 Permanent Facilities

Relative Humidity	Min. = 45%, Max. = 55 %		
Atmospheric Pressure	101kPa		
Temperature	Normal	Minimum	Maximum
	25°C	-20°C	60°C
Working Voltage of EUT	Normal	Minimum	Maximum
	24V	22.8V	25.2V

5.2 Test Equipments Utilized

Conduction test system

No.	Name	Model	S/N	SW Version	HW Version	Manufacturer	Cal. Date	Cal. Interval
1	Software	Eagle V3.3	N/A	V3.3	N/A	3IN	N/A	N/A
2	Frequency spectrum analyzer	FSQ	10109 1	V4.75	V11.00	R&S	2024-07-25	1 Year
3	Frequency spectrum analyzer	FSW	10194 3	1.12	00	R&S	2023-08-31	1 Year
4	Frequency spectrum analyzer	FSV4	10154 4	N/A	1.60	R&S	2023-10-16	1 Year
5	Wideband Radio Communication Tester	CMW 500	14887 4	V3.5.136	N/A	R&S	2024-07-26	1 Year
6	Temperature Chamber	B-TF-107C	20180 4107	N/A	N/A	BoYi	2024-06-07	1 Year
7	Programmable power supply	Keithley 2303	40390 70	N/A	N/A	Keithley	2024-06-07	1 Year
8	RF Test Automation Box	RF 2021B	2001	V3.3	N/A	RANATEC	N/A	N/A

Radiated emission test system

No.	Name	Model	S/N	SW Version	HW Version	Manufacturer	Cal. Date	Cal. Interval
1	Universal Radio Communication Tester	CMU200	1231 26	V5.2.1	B12	R&S	2023-10-16	1 Year
2	Universal Radio Communication Tester	CMW500	1041 78	V3.7.20	1206.06 00.00	R&S	2023-10-16	1 Year

3	EMI Test Receiver	ESU40	1003 07	V5.1-24-3	01	R&S	2023-12-19	1 Year
4	TRILOG Broadband Antenna	VULB9163	0134 5	N/A	N/A	Schwarz beck	2024-03-23	1 Year
5	Double- ridged Waveguide Antenna	ETS-3117	0013 5890	N/A	N/A	ETS	2024-03-16	1 Year
6	EMI Test Software	EMC32 V10.35.02	N/A	N/A	N/A	R&S	N/A	N/A
7	Preamplifier	SCU08F1	8320 024	N/A	N/A	R&S	2023-10-16	1 Year
8	Preamplifier	SCU18	1015 5	N/A	N/A	R&S	2023-10-16	1 Year
9	Antenna	SWB-VUBA 9117	9117-266	N/A	N/A	Schwarz beck	2024-08-31	1 Year
10	Antenna	BBHA9120 D	0211 2	N/A	N/A	Schwarz beck	2024-07-27	1 Year
11	Signal Generator	SMF100A	1023 14	3.20.390 .24	05.10	R&S	2023-10-16	1 Year
12	Antenna Tower	TPMDC-LF	N/A	N/A	N/A	Top Precision	N/A	N/A
13	Antenna Tower	TPMDC-HF	N/A	N/A	N/A	Top Precision	N/A	N/A

Anechoic chamber

Fully anechoic chamber by ETS.

5.3 Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in 3IN documents. The detailed measurement uncertainty is defined in 3IN documents.

Measurement Uncertainty of Radiation test

Frequency Range	Uncertainty(dB)
30MHz ≤ f ≤ 1GHz	±5.10
1GHz ≤ f ≤ 18GHz	±5.66
18GHz ≤ f ≤ 40GHz	±5.22

Measurement Uncertainty of Conduction test

No	Item	Extended uncertainty (k=2)	
1	Frequency Tolerance	23Hz	
2	RF Output Power	0.7dB	
3	conducted spurious	9kHz～3.6GHz	1.5dB
		3.6GHz～8.4GHz	2.8dB
		8.4GHz～12.75GHz	3.4dB
4	EVM	2.1%	
5	Occupied Bandwidth	Bandwidth 1.4MHz	0.03MHz
		Bandwidth 3MHz	0.03MHz
		Bandwidth 5MHz	0.03MHz

Report No: 24T04I300138-019

		Bandwidth 10MHz	0.05MHz
		Bandwidth 15MHz	0.06MHz
		Bandwidth 20MHz	0.08MHz
6	Emission intermodulation	Adjacent channel	1.4dB
		Alternate channel	1.4dB
7	Range of frequency		0.08MHz

6 Test Results

6.1 Output Power

6.1.1 Measurement Limit

22.913(a) Mobile stations are limited to 7watts.

24.232(c) Mobile and portable stations are limited to 2 watts.

27.50d(4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

6.1.2 Method of Measurements

Method of measurements please refer to KDB971168 D01 v03 clause 5.

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSQ(peak).

These measurements were done at WCDMA Band II; 1732.6 MHz, 1712.4MHz and 1752.6MHz for WCDMA Band IV; 826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V. (bottom, middle and top of operational frequency range).

During the process of testing, the EUT was controlled Rhode & Schwarz Digital Radio.

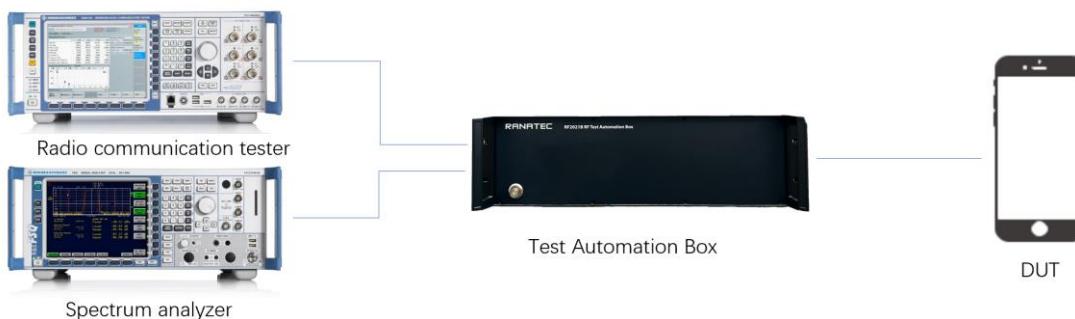
Communication tester to ensure max power transmission and proper modulation.

This result contains peak output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

EIRP= Conducted power+Gain, ERP = EIRP -2.15dBi.

6.1.3 Test procedures

The transmitter output port was connected to base station.


Set the EUT at maximum power through base station.

Select lowest, middle, and highest channels for each band and different modulation.

Measure maximum average power for other modulation signal.

The transmitter output power was connected to calibrated attenuator, the other end of which was connected to signal analyzer. Transmitter output power was read off the power in dBm. The power outputs at the transmitter antenna port was determined by adding the value of attenuator to the signal analyzer reading.

6.1.4 Test Setup

6.1.5 Output Power Measurement results

Mode	Test Mode	Tune up	Channel/Frequency(MHz)		
			9262/1852.4	9400/1880	9538/1907.6
WCDMA II	RMC	23.50	23.41	23.36	23.14
Mode	Test Mode	Tune up	Channel/Frequency(MHz)		
			1312/1712.4	1413/1732.6	1513/1752.6
WCDMA IV	RMC	23.50	23.49	23.38	23.39
Mode	Test Mode	Tune up	Channel/Frequency(MHz)		
			4132/826.4	4183/836.6	4233/846.6
WCDMA V	RMC	24.50	23.61	23.59	23.66

6.1.6 EIRP/ERP Results

WCDMA Band 2

Frequency (MHz)	EIRP (dBm)
1852.6	25.11
1880.0	25.06
1907.4	24.84

WCDMA Band 4

Frequency(MHz)	EIRP(dBm)
1712.4	25.31
1732.6	25.20
1752.6	25.21

WCDMA Band 5

Frequency(MHz)	EIRP (dBm)	ERP (dBm)
826.4	25.17	23.02
836.6	25.15	23.00
846.6	25.22	23.07

6.2 Emission Limit

6.2.1 Measurement Limit

22.917(a)

The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

24.238(a)

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

27.53(h)

AWS emission limits —

(1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}(P)$ dB.

(2) Additional protection levels. Notwithstanding the foregoing paragraph (h)(1) of this section:

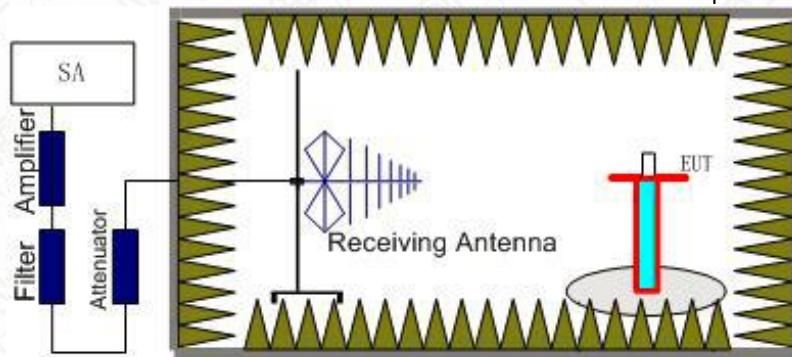
(i) Operations in the 2180–2200 MHz band are subject to the out-of-band emission requirements set forth in § 27.1134 for the protection of federal government operations operating in the 2200–2290 MHz band.

(ii) For operations in the 2000–2020 MHz band, the power of any emissions below 2000 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P)$ dB.

(iii) For operations in the 1915–1920 MHz band, the power of any emission between 1930–1995 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P)$ dB.

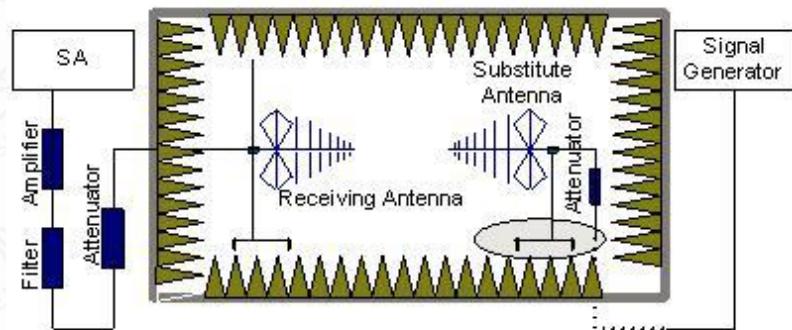
(iv) For operations in the 1995–2000 MHz band, the power of any emission between 2005–2020 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P)$ dB.

6.2.2 Method of Measurement


The measurements procedures in TIA-603E-2016 are used.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in FCC Part.

The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Bands.


The procedure of radiated spurious emissions is as follows

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).

3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (Ppl) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (Ga) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (Ppl) is the summation of the cable loss .

The measurement results are obtained as described below:

Power(EIRP)=PMea- Ppl+ Ga

5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

6. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15\text{dBi}$

6.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the WCDMA Bands . It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Bands into any of the other blocks. The equipment must still, however,

meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

Frequency	Channel	Frequency Range	Result
WCDMA Band II	Low	30MHz~20GHz	Pass
	Middle	30MHz~20GHz	Pass
	High	30MHz~20GHz	Pass
WCDMA Band IV	Low	30MHz~20GHz	Pass
	Middle	30MHz~20GHz	Pass
	High	30MHz~20GHz	Pass
WCDMA Band V	Low	30MHz~20GHz	Pass
	Middle	30MHz~20GHz	Pass
	High	30MHz~20GHz	Pass

RSE-W2-L

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit(dBm)	Polarization
3774.0	-60.87	6.6	7.9	-59.57	-13	H
5183.6	-60.98	8.0	9.4	-59.58	-13	H
6464.4	-59.49	8.9	10.6	-57.79	-13	V
9136.0	-58.03	10.5	12.6	-55.93	-13	V
12234.4	-53.51	12.6	12.3	-53.81	-13	H
16807.2	-47.97	15.8	12.3	-51.47	-13	H

RSE-W2-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit(dBm)	Polarization
3712.8	-61.4	6.6	7.9	-60.1	-13	V
5107.2	-60.26	7.9	9.6	-58.56	-13	H
7057.2	-59.34	9.4	11.1	-57.64	-13	H
9207.2	-57.95	10.5	12.6	-55.85	-13	H
12248.1	-54.67	12.6	12.3	-54.97	-13	H
16302.2	-49.03	14.7	12.3	-51.43	-13	H

RSE-W2-H

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit(dBm)	Polarization

3669.6	-60.37	6.6	7.9	-59.07	-13	H
5093.2	-60.13	7.9	9.6	-58.43	-13	V
7436.4	-60.76	9.7	11.6	-58.86	-13	H
10182.8	-57.59	11.3	12.5	-56.39	-13	V
12751.0	-53.43	12.5	12.3	-53.63	-13	H
16733.7	-49.03	15.1	12.3	-51.83	-13	H

RSE-W4-L

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit(dBm)	Polarization
5443.2	-60.18	8.1	9.8	-58.48	-13	H
7318.4	-60.01	9.6	11.4	-58.21	-13	V
8999.2	-58.96	10.4	12.6	-56.76	-13	H
12204.7	-55.02	12.6	12.3	-55.32	-13	V
14526.6	-54.49	14.2	12.3	-56.39	-13	V
16303.2	-49.18	14.7	12.3	-51.58	-13	H

RSE-W4-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit(dBm)	Polarization
5832.0	-60.38	8.4	10.2	-58.58	-13	H
8427.6	-60.11	10.2	12.6	-57.71	-13	H
11163.8	-55.77	12.1	12.3	-55.57	-13	V
12739.5	-55.28	12.7	12.3	-55.68	-13	H
14500.4	-55.01	14.2	12.3	-56.91	-13	V
16761.0	-48.42	15.8	12.3	-51.92	-13	H

RSE-W4-H

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit(dBm)	Polarization
4899.2	-60.84	7.7	9.6	-58.94	-13	H
7458.4	-59.61	9.7	11.6	-57.71	-13	H
10044.8	-57.68	11.2	12.5	-56.38	-13	H
12629.2	-55.11	12.8	12.3	-55.61	-13	H

15454.8	-52.71	14.5	12.3	-54.91	-13	H
17652.4	-49.5	15.8	12.3	-53	-13	V

RSE-W5-L

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit(dBm)	Polarization
1890.4	-60.49	4.6	4.5	-60.59	-13	H
2893.5	-53.88	5.8	6.7	-52.98	-13	H
3957.6	-61.73	6.8	8.6	-59.93	-13	V
5092.0	-60.66	7.9	9.6	-58.96	-13	V
6520.0	-60.3	9.0	10.6	-58.7	-13	H
9298.6	-59.01	10.7	12.7	-57.01	-13	V

RSE-W5-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit(dBm)	Polarization
2215.8	-57.89	5.0	5.1	-57.79	-13	V
2723.1	-54.46	5.6	6.1	-53.96	-13	V
3650.0	-61.44	6.6	7.9	-60.14	-13	H
5103.6	-59.22	7.9	9.6	-57.52	-13	H
7530.4	-58.76	9.7	11.6	-56.86	-13	V
9522.4	-58.78	10.7	12.7	-56.78	-13	H

RSE-W5-H

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit(dBm)	Polarization
1888.6	-60.26	4.6	4.5	-60.36	-13	V
2895.4	-53.92	5.8	6.7	-53.02	-13	V
3655.6	-60.84	6.6	7.9	-59.54	-13	H
5100.4	-60.18	7.9	9.6	-58.48	-13	V
6575.2	-59.6	9.1	10.6	-58.1	-13	V
9286.0	-59.37	10.7	12.7	-57.37	-13	V

Annex A: Revised History

Version	Revised Content
V0	Initial

Annex B: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

INDUSTRIAL INTERNET INNOVATION CENTER (SHANGHAI) CO., LTD.

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 20th day of September 2023.

Mr. Trace McInturff, Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3682.01
Valid to February 28, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT