

FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/		f/1500	30
1500-100,000	/		1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4πR² = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_i \frac{S_i}{S_{Limit,i}} \leq 1$$

Calculated Data (worst case):

Mode	Frequency Range (MHz)	Maximum Antenna Gain		Tune-up Conducted Power		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)	MPE ratio
		(dBi)	(numerical)	(dBm)	(mW)				
SRD	904-925	4.00	2.51	14.00	25.12	20	0.0125	0.60	0.0209
	2403.985-2472.985	4.00	2.51	20.00	100.00	20	0.0499	1.00	0.0499

Note:

(1) The Tune-up output power was declared by the Manufacturer.
 (2) 2.4G SRD and 900MHz SRD can transmit simultaneously, the worst condition as below:

$$\sum_i \frac{S_i}{S_{Limit,i}} = 0.0209 + 0.0499 = 0.07 < 1.0$$

Conclusion: The EUT meets exemption requirement- RF exposure evaluation greater than 20cm distance specified in § 2.1091. If the device built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by § 2.1093.