

CTC || advanced
member of RWTÜV group

Bundesnetzagentur

BNetzA-CAB-02/21-102

TEST REPORT

Test report no.: 1-0403/20-01-03

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10

66117 Saarbruecken / Germany

Phone: + 49 681 5 98 - 0

Fax: + 49 681 5 98 - 9075

Internet: <http://www.ctcadvanced.com>

e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Intellian Technologies, Inc.

18-7, Jinwisan-dan-ro, Jinwi-myeon (Chungho-ri),
Pyeongtaek-si, Gyeonggi-do 17709 Korea

Phone: --

Contact: Jun-Hui, Lee

e-mail: junhui.lee@intelliantech.com

Phone: +82-2-511-2244

Fax: +82-2-515-4923

Manufacturer

Intellian Technologies, Inc.

18-7, Jinwisan-dan-ro, Jinwi-myeon (Chungho-ri),
Pyeongtaek-si, Gyeonggi-do 17709 Korea

Test standard/s

CFR 47 Part 25

Satellite Communications

RSS-170

Mobile Earth Stations (MSSs) and Ancillary Terrestrial Component (ATC)
Equipment Operating in the Mobile-Satellite Service (MSS) Bands

For further applied test standards please refer to section of this test report.

Test Item

Kind of test item: **Marine Fleet Broadband**

Product name 1: **FB250**

Product name 2: **Fleet One**

Model name: **F4-A250-S, F4-A250-R, F4-A100-S, F4-A100-R**

FCC ID: **XXZ-INTFB250**

IC: **26236-INTFB250**

Frequency band: **1626.5 – 1660.5 MHz**

Antenna: **rotary reflector antenna**

Power supply: **24.0 V DC (max. 120 W) from power supply**

Temperature range: **-25°C to +55°C**

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Meheza Walla
Lab Manager
Radio Communications & EMC

Test performed:

Thomas Vogler
Lab Manager
Radio Communications & EMC

1 Table of contents

1	Table of contents	2
2	General information	3
2.1	Notes and disclaimer	3
2.2	Application details	3
2.3	Test laboratories sub-contracted	3
3	Test standard/s, references and accreditations	4
4	Test environment	5
5	Test item	5
5.1	General description	5
5.2	Operating conditions	6
5.3	Additional information	7
6	Description of the test setup	8
6.1	Shielded fully anechoic chamber	9
6.2	Conducted measurements	11
7	Sequence of testing	12
7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	13
7.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	14
8	Measurement results	15
8.1	Summary	15
8.2	RF power output / Power limits	16
8.3	Occupied bandwidth	18
8.4	Emission limitations (RF spectrum mask)	19
8.5	Emissions limitations (conducted emissions)	20
8.6	Emissions limits (radiated emissions)	21
8.7	Emissions limitations (conducted emissions)	22
8.8	Transmitter frequency tolerance	23
9	Glossary	25
10	Document history	26
11	Accreditation Certificate – D-PL-12076-01-04	26
12	Accreditation Certificate – D-PL-12076-01-05	27

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2020-10-09
Date of receipt of test item:	2020-10-09
Start of test:	2020-10-09
End of test:	2020-10-15
Person(s) present during the test:	---

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description
47 CFR Part 25		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 25 - Satellite Communications
RSS-170	2015-07	Mobile Earth Stations (MESs) and Ancillary Terrestrial Component (ATC) Equipment Operating in the Mobile-Satellite Service (MSS) Bands

Reference	Version	Description
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices
ANSI C63.4-2017	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.26-2015	-/-	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf	 DAkkS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf	 DAkkS Deutsche Akkreditierungsstelle D-PL-12076-01-05

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests +55 °C during high temperature tests -25 °C during low temperature tests
Relative humidity content	:		45 %
Barometric pressure	:		not relevant for this kind of testing
Power supply	:	V_{nom} V_{max} V_{min}	24.0 V DC (max. 120 W) from power supply 10.8 V DC 30.0 V DC

5 Test item

5.1 General description

Kind of test item	:	Marine Fleet Broadband
Product name 1	:	FB250
Product name 2	:	Fleet One
Model name	:	F4-A250-S
Series model name	:	F4-A250-R, F4-A100-S, F4-A100-R
HMN:	:	-/-
PMN1:	:	FB250
PMN2:	:	Fleet One
HVIN1:	:	F4-A250-S
HVIN2:	:	F4-A250-R
HVIN3:	:	F4-A100-S
HVIN4:	:	F4-A100-R
FVIN:	:	-/-
S/N serial number	:	n.a.
HW hardware status	:	prototype
SW software status	:	prototype
Frequency band	:	1626.5 – 1660.5 MHz
Type of modulation	:	QPSK, 16QAM
nominal EIRP:	:	15.1 dBW or 45.1 dBW
nominal antenna gain:	:	11.3 dBi
TX output power cond.:	:	32.0 dBm at 2 ports (measured value at Powermeter), sum 35 dBm 39.9 dBm at 2 ports (measured peak value at S.A), sum 42.9 dBm
TX output power rad. (EIRP):	:	16.3 dBW or 46.3 dBm (calculated value with 2 combined ports and antenna gain)
Channel spacing	:	200 kHz
Maximum bandwidth	:	168 kHz
Antenna	:	rotary reflector antenna
Power supply	:	24.0 V DC (max. 120 W) from power supply
Temperature range	:	-25 °C to +55 °C

5.2 Operating conditions

Operating condition 1: $f_l = f_{low} = 1626.79$ MHz, $f_m = f_{mid} = 1643.5$ MHz, $f_h = f_{high} = 1660.33$ MHz

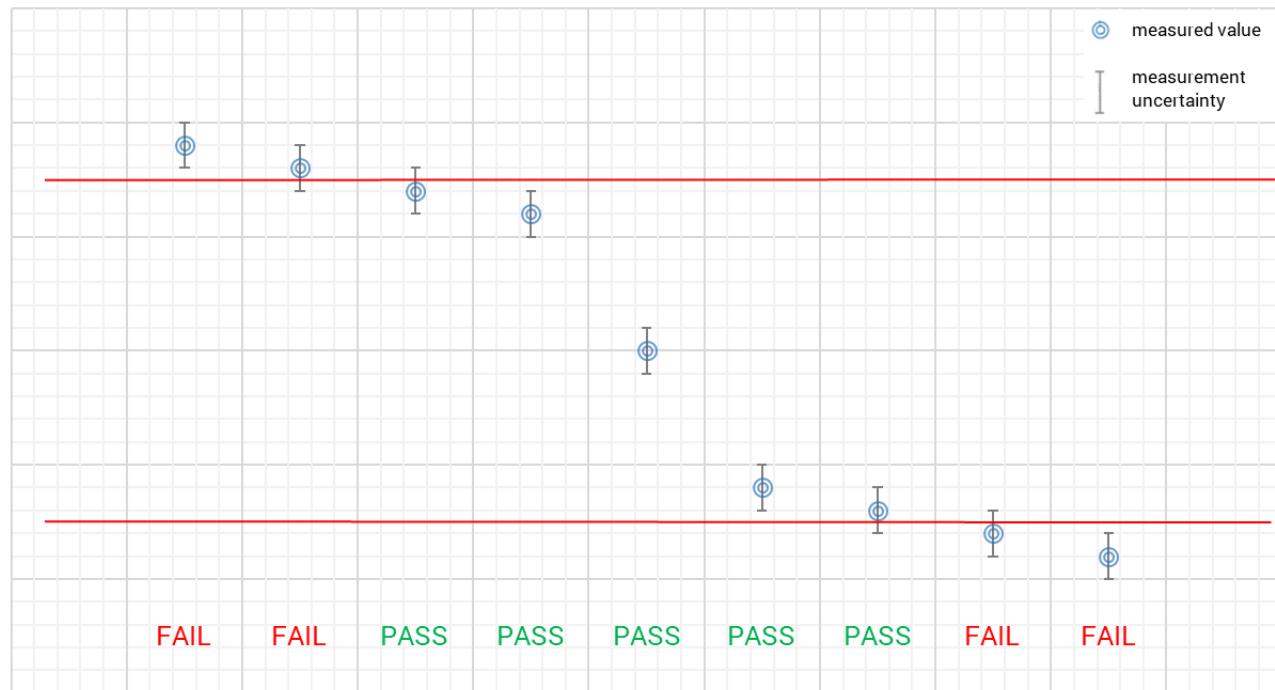
Operating condition 2: TX off, carrier off state

Low and high frequency were placed on frequencies slightly inside the band to cover all bandwidths.

#	Bearer Identifier	Systems designator
1	R5T1X-1B	50K0D1W
2	R5T2X-1B	100KD1W
3	R5T4.5X-1B	200KD1W
4	R20T1X-1B	50K0D1W
5	R20T2X-1B	100KD1W
6	R20T4.5X-2B	200KD1W
7	R5T2Q-1B	100KG1W
8	R5T4.5Q-1B	200KG1W
9	R20T0.5Q-1B	25K0G1W
10	R20T1Q-1B	50K0G1W
11	R20T2Q-1B	100KG1W
12	R20T4.5Q-1B	200KG1W

5.3 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.


EUT external photos are included in test report:	1-0403/20-01-01_AnnexA
EUT internal photos are included in test report:	1-0403/20-01-01_AnnexB
Test setup photos are included in test report:	1-0403/20-01-01_AnnexC
Plots are included in test report:	1-0403/20-01-01_AnnexD

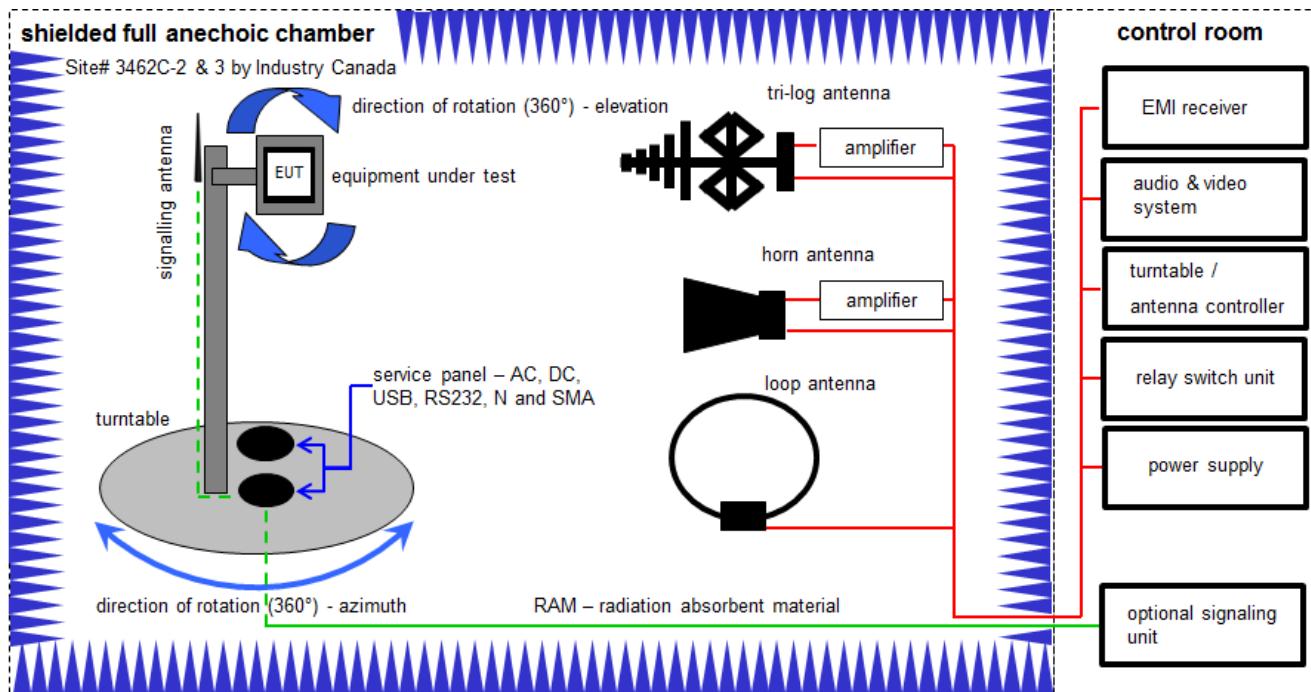
6 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 7, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

measured value, measurement uncertainty, verdict

7 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

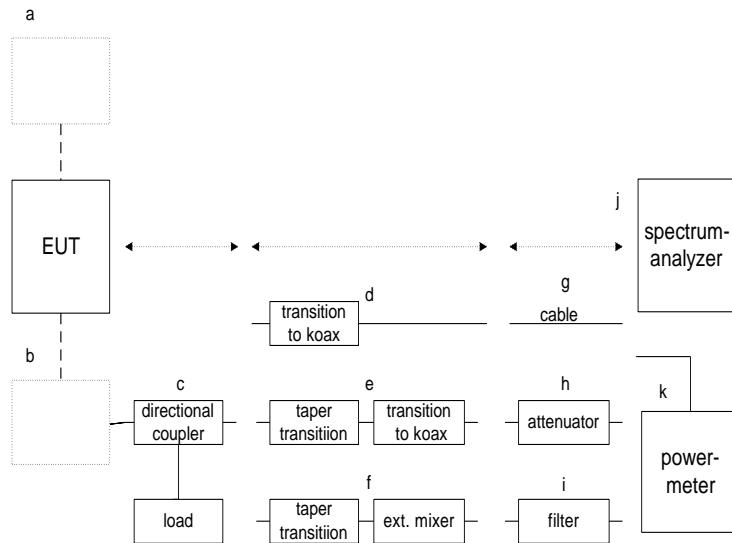
k	calibration / calibrated		EK	limited calibration
ne	not required (k, ev, izw, zw not required)		zw	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification		izw	internal cyclical maintenance
Ve	long-term stability recognized		g	blocked for accredited testing
vlkl!	Attention: extended calibration interval			
NK!	Attention: not calibrated	*)		next calibration ordered / currently in progress

7.1 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)


Example calculation:

$$OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 \mu W)$$

Equipment table:

No.	Lab / Item	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	12.12.2017	11.12.2020
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	13.06.2019	12.06.2021
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	27.02.2019	26.02.2021
5	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	n. a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
7	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	vlKI!	11.04.2019	10.04.2021
8	n. a.	Band Reject filter	WRCG1850/1910-1835/1925-40/8SS	Wainwright	7	300003350	ev	-/-	-/-
9	n. a.	Band Reject filter	WRCG2400/2483-2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
10	n. a.	Highpass Filter	WHKX2.9/18G-12SS	Wainwright	1	300003492	ev	-/-	-/-
11	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.03.2021
12	n. a.	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
13	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
14	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	19.02.2019	18.02.2021
15	n. a.	MXG Microwave Analog Signal Generator	N5183A	Agilent Technologies	MY47420220	300003813	vlKI!	12.12.2019	11.12.2022
16	n. a.	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
17	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
18	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
19	n. a.	NEXIO EMV-Software	BAT EMC V3.19.1.9	EMCO		300004682	ne	-/-	-/-
20	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
21	n. a.	Highpass Filter (Chebyshev)	WHKX10-4432.5-4925-18000-40SS	Wainwright	1	300005028	ev	-/-	-/-
22	n. a.	Lowpass Filter (Chebyshev)	WLK12-5975-6333.5-18000-40SS	Wainwright	1	400001213	ev	-/-	-/-
23	n. a.	RF-Amplifier	AMF-6F06001800-30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

7.2 Conducted measurements

Setup 7.2...

Equipment table:

No.	Lab / Item	Equipment	Type	Manufact.	Serial No.	INV. No	Kind of Calibration	Last Calibration	Next Calibration
1	C220	HF-Cable	SUCOFLEX 101	Huber&Suhner	3054/1		ev	-/-	-/-
2	U311	High Power Attenuator 10 dB	WA-91-10-34	Weinschel	A244	300004265	ev	-/-	-/-
3	U312	High Power Attenuator 20 dB	WA-91-20-43	Weinschel	A514	300004824	ev	-/-	-/-
4	n. a.	Power Meter	438A	HP	2804U01015	300000357	vIKI!	12.12.2019	11.12.2021
5	n. a.	Power Sensor, 10 MHz to 26.5 GHz, -30 to +20 dBm	8485A	HP	2238A00798	300000511	vIKI!	18.12.2018	17.12.2020
6	R001	Spectrum Analyzer 20 Hz - 50 GHz	FSU50	R&S	200012	300003443	k	19.02.2019	18.02.2021
8	U321	High Pass Filter	SHC2600/12750-1.5-KK	Trilithic	9833011	400001484	ev	-/-	-/-
9	U322	Band Reject / Notch Filter	WRCGV14-1616-1626-1661-1671-70SS	Wainwright	1	300005614	ev	-/-	-/-
10		Temperature and Climatic Test Chamber	VUK04/500	Voetsch	32678	300000297	ev	19.06.2020	18.06.2021

Note:

Plots show the following attenuator combinations:

U316 = U311 + U312

U317 = U311 + U322

U319 = U312 + U321

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.*
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Note: According to ANSI C63.4 a test site with no reference ground plane shall take precedence to show the compliance with the standard. In contrast to a semi-anechoic chamber with conductive ground, the EUT distance to the ground in a fully anechoic chamber is irrelevant because it is a reflection-reduced environment at any distance to the ground structure, so in this case a height of 1.5 m was used.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premereasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position $\pm 45^\circ$ and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premereasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9 Measurement results

9.1 Summary

<input checked="" type="checkbox"/>	No deviations from the technical specifications were ascertained
<input type="checkbox"/>	There were deviations from the technical specifications ascertained
<input type="checkbox"/>	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	Verdict	Date	Remark
RF-Testing	CFR 47 Part 25 / RSS-170	see table	2020-11-12	-/-

Test Specification Clause	Test Case	C	NC	NA	NP	Remark
§2.1046 / §25.204/ RSS-170, 5.3.2	RF power output / Power limits	X				complies
§2.1049	Occupied bandwidth	X				complies
§2.1051/ §25.202/ RSS-170, 5.4.3.1	Spurious emissions at antenna terminals / Emission limitations (conducted emissions)	X				complies
§2.1053/ §25.202/ RSS-170, 5.4.3.1	Field strength of spurious radiation / Emission limitations (radiated emissions)	X				complies
§2.1055 / §25.202/ RSS-170, 5.2 RSS-Gen Issue 4 §6.11	Transmitter frequency stability / Frequency tolerances	X				complies
§25.216/ RSS-170, 5.4.3.2 & 5.4.4	Limits on emissions from mobile earth stations for protection of aeronautical radionavigation-satellite service / Carrier-Off State Emissions	X				complies

Note:

C	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
----------	-----------	-----------	---------------	-----------	----------------	-----------	---------------

9.2 RF power output / Power limits

Description / Limit:

§25.204 Power limits

(b) In bands shared coequally with terrestrial radiocommunication services, the equivalent isotropically radiated power transmitted in any direction towards the horizon by an earth station operating in frequency bands between 1 and 15 GHz shall not exceed the following limits except as provided for in paragraph (c) of this section:

+40 dBW in any 4 kHz band for $\theta \leq 0^\circ$

+40 + 3 * θ dBW in any 4 kHz band for $0^\circ < \theta \leq 5^\circ$

θ = elevation angle above horizon

(c) For angles of elevation of the horizon greater than 5° there shall be no restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the horizon.

Test setup(s): 7.2hgk / 7.2hgj

Output Power Conducted with Power Meter

Bearer Type	Antenna Port	Transmitter conducted output power [dBm]			Transmitter radiated output power / EIRP (including 11.3 dBiC antenna gain)		
		f_{low}	f_{mid}	f_{high}	f_{low}	f_{mid}	f_{high}
all	1	31.7	32.0	31.7	--	--	--
all	2	31.7	32.0	31.7	--	--	--
all	sum	34.7	35.0	34.7	46 dBm 16 dBW	46.3 dBm 16.3 dBW	46 dBm 16 dBW

Peak Output Power Conducted with Spectrum Analyzer in any 4 kHz band (1 port)

Bearer Type	Transmitter conducted output power [dBm]		
	f_{low}	f_{mid}	f_{high}
R5T1X-1B R20T1X-1B	36.7	36.6	36.8
R5T2X-1B R20T2X-1B	33.6	33.9	33.7
R5T45X-1B R20T4.5X-2B	30.1	29.6	30.2
R5T2Q-1B R20T2Q-1B	33.7	33.9	33.5
R5T4.5Q-1B R20T4.5Q-1B	30.0	30.2	30.2
R20T05Q-1B	39.7	39.9	39.6
R20T1Q-1B	36.6	36.5	36.8

Summary:

Maximum peak conducted output power in any 4 kHz band (1 port):

39.9 dBm

Maximum peak conducted output power in any 4 kHz band (two ports):

42.9 dBm

Maximum radiated output power (EIRP):

42.9 dBm + 11.3 dBIC = 54.2 dBm EIRP = **24.2 dBW** EIRP < 40 dBW.

Plots:

See document 1-0403/20-01-01_AnnexD, section 2, plot 22 – 28, 35 – 41, 48 – 54 (peak marker)

9.3 Occupied bandwidth

Description:

§2.1 Occupied Bandwidth

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $b/2$ of the total mean power of a given emission. NOTE: Unless otherwise specified in an ITU-R Recommendation for the appropriate class of emission, the value of $b/2$ should be taken as 0.5%. (RR).

Test setup(s): 7.2hgj

Measurement results:

Modulation Scheme	Occupied Bandwidth (99%) [kHz]		
	f_{low}	f_{mid}	f_{high}
R5T1X-1B R20T1X-1B	38.7	38.6	38.9
R5T2X-1B R20T2X-1B	75.0	75.3	74.9
R5T4.5X-1B R20T4.5X-2B	167	168	168
R5T2Q-1B R20T2Q-1B	75.3	75.2	75.8
R5T4.5Q-1B R20T4.5Q-1B	168	168	167
R20T05Q-1B	19.0	19.0	18.9
R20T1Q-1B	38.7	38.4	38.8

Plots:

See document 1-0403/20-01-01_AnnexD, section 2, plot 1 - 21

9.4 Emission limitations (RF spectrum mask)

Description / Limit:

§25.202 Frequencies, frequency tolerance and emission limitations

(f) Emission limitations. Except for SDARS terrestrial repeaters, the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section.

(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth:

An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

(4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

Test setup(s): 7.2hgj

Measurement results:

Mode	see following plots
Tx-mode, f_{low}	22 – 29
Tx-mode, f_{mid}	35 – 42
Tx-mode, f_{high}	48 - 55

9.5 Emissions limitations (conducted emissions)

Description / Limit:

§25.202 Frequencies, frequency tolerance and emission limitations

(f) Emission limitations. Except for SDARS terrestrial repeaters, the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section.

(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth:

An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

(4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

Test setup(s): 7.2hgj

Measurement results:

Conducted Spurious Emissions [dBm]								
f _{low}			f _{mid}			f _{high}		
F [MHz]	Detector	Level [dBm]	F [GHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]
no critical peaks found			no critical peaks found			no critical peaks found		
Measurement uncertainty			± 1.5 dB					

n.f. = nothing found

Note:

Measurements were performed with max hold function of all bearer types.

Plots:

See document 1-0403/20-01-01_AnnexD, section 2, plot 30 – 34, 43 – 47, 56 - 60

9.6 Emissions limits (radiated emissions)

Description / Limit:

§25.202 Frequencies, frequency tolerance and emission limitations

(f) Emission limitations. Except for SDARS terrestrial repeaters, the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section.

(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth:

An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

(4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

Test setup(s): 7.1

Measurement results:

Radiated Spurious Emissions [dBm]								
f _{low}			f _{mid}			f _{high}		
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]
no critical peaks found			no critical peaks found			no critical peaks found		
Measurement uncertainty			± 3 dB					

n.f. = nothing found

v / h = vertical / horizontal

Note:

Measurements were performed with max hold function of all bearer types.

The plots show the intended signals for BGAN at 1.6 GHz and WLAN at 2.4 GHz.

Plots:

See document 1-0403/20-01-01_AnnexD, section 3

9.7 Emissions limitations (conducted emissions)

Description / Limit:

§ 25.216 Limits on emissions from mobile earth stations for protection of aeronautical radionavigation-satellite service.

(h) Mobile earth stations manufactured more than six months after Federal Register publication of the rule changes adopted in FCC 03-283 with assigned uplink frequencies in the 1626.5-1660.5 MHz band shall suppress the power density of emissions in the 1605-1610 MHz band-segment to an extent determined by linear interpolation from -70 dBW/MHz at 1605 MHz to -46 dBW/MHz at 1610 MHz, averaged over any 2 millisecond active transmission interval. The e.i.r.p of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed a level determined by linear interpolation from -80 dBW at 1605 MHz to -56 dBW at 1610 MHz, averaged over any 2 millisecond active transmission interval.

(i) The e.i.r.p density of carrier-off state emissions from mobile earth stations manufactured more than six months after Federal Register publication of the rule changes adopted in FCC 03-283 with assigned uplink frequencies between 1 and 3 GHz shall not exceed -80 dBW/MHz in the 1559-1610 MHz band averaged over any two millisecond interval.

Test setup(s): 7.2hgj

Measurement results:

Conducted Spurious Emissions [dBm]								
f_{low}			f_{mid}			f_{high}		
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]
no critical peaks found			no critical peaks found			no critical peaks found		
Measurement uncertainty			± 1.5 dB					

n.f. = nothing found

Plots:

See document 1-0403/20-01-01_AnnexD, section 2, plot 61 - 64

9.8 Transmitter frequency tolerance

Description / Limit:

§25.202 Frequencies, frequency tolerance and emission limitations

(d) Frequency tolerance, Earth stations.

The carrier frequency of each earth station transmitter authorized in these services shall be maintained within 0.001 percent of the reference frequency.

(4)(i) The following frequencies are available for use by the 1.6 GHz Mobile-Satellite Service:

1610-1626.5 MHz: User-to-Satellite Link

1613.8-1626.5 MHz: Satellite-to-User Link (secondary)

(iii)(A) The following frequencies are available for use by the 1.6 GHz Mobile-Satellite Service:

1626.5-1660.5 MHz: Earth-to-space

RSS-Gen Issue 4 §6.11

In circumstances when the transmitter frequency stability is not stated in the applicable RSS or reference measurement method, the following applies:

Frequency stability is a measure of frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at an appropriate reference temperature and the rated supply voltage. Unless specified otherwise in an RSS applicable to the device, the reference temperature for radio transmitters is +20°C (+68°F).

Test setup: 7.2hgj

Measurement results:

Temperature [°C]	Voltage [V DC]	Reference Frequency [MHz]	Measured Frequency [MHz]	Deviation [Hz]	Deviation [ppm]
-30	V_{nom}	fl: 1626. 500 000	1.626499837	-0.16	-0.10
-20	V_{nom}		1.626499442	-0.56	-0.34
-10	V_{nom}		1.626499052	-0.95	-0.58
0	V_{nom}		1.626499093	-0.91	-0.56
+10	V_{nom}		1.626499327	-0.67	-0.41
+20	V_{nom}		1.626499539	-0.46	-0.28
+20	V_{min}		1.626499536	-0.46	-0.29
+20	V_{max}		1.626499540	-0.46	-0.28
+30	V_{nom}		1.626499602	-0.40	-0.24
+40	V_{nom}		1.626499629	-0.37	-0.23
+50	V_{nom}		1.626499658	-0.34	-0.21
+55	V_{nom}		1.626499681	-0.32	-0.20

Temperature [°C]	Voltage [V DC]	Reference Frequency [MHz]	Measured Frequency [MHz]	Deviation [Hz]	Deviation [ppm]
-30	V_{nom}	fm: 1643. 500 000	1.643499917	-0.08	-0.05
-20	V_{nom}		1.643499461	-0.54	-0.33
-10	V_{nom}		1.643499034	-0.97	-0.59
0	V_{nom}		1.643499083	-0.92	-0.56
+10	V_{nom}		1.643499321	-0.68	-0.41
+20	V_{nom}		1.643499532	-0.47	-0.28
+20	V_{min}		1.643499530	-0.47	-0.29
+20	V_{max}		1.643499531	-0.47	-0.29
+30	V_{nom}		1.643499596	-0.40	-0.25
+40	V_{nom}		1.643499621	-0.38	-0.23
+50	V_{nom}		1.643499639	-0.36	-0.22
+55	V_{nom}		1.626499692	-0.31	-0.19

Temperature [°C]	Voltage [V DC]	Reference Frequency [MHz]	Measured Frequency [MHz]	Deviation [Hz]	Deviation [ppm]
-30	V_{nom}	fh: 1660. 500 000	1.660499768	-0.23	-0.14
-20	V_{nom}		1.660499468	-0.53	-0.32
-10	V_{nom}		1.660499017	-0.98	-0.59
0	V_{nom}		1.660499076	-0.92	-0.56
+10	V_{nom}		1.660499318	-0.68	-0.41
+20	V_{nom}		1.660499527	-0.47	-0.28
+20	V_{min}		1.660499524	-0.48	-0.29
+20	V_{max}		1.660499529	-0.47	-0.28
+30	V_{nom}		1.660499593	-0.41	-0.25
+40	V_{nom}		1.660499630	-0.37	-0.22
+50	V_{nom}		1.660499651	-0.35	-0.21
+55	V_{nom}		1.626499676	-0.32	-0.20

Note:

Above values show the frequency deviation when operating in special test mode without receiving the forward link of satellite. Under normal operation the DUT's transmit frequency is locked to the forward link of satellite. For testing purpose DUT's modulation is deactivated, CW carrier is activated.

Spectrum analyzer is connected to external GPS based 10 MHz reference signal. Spectrum analyzer's internal frequency counter function is used.

10 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz

11 Document history

Version	Applied changes	Date of release
-/-	Initial release – DRAFT	2020-10-20
-/-	Initial release – DRAFT2	2020-10-29
-/-	Initial release – DRAFT3	2020-11-04
	Final realease	2020-11-12

12 Accreditation Certificate – D-PL-12076-01-04

first page	last page
<p>Deutsche Akkreditierungsstelle GmbH</p> <p>Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition</p> <p>Accreditation</p> <p>The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory</p> <p>CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken</p> <p>is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields:</p> <p>Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards</p> <p>The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages.</p> <p>Registration number of the certificate: D-PL-12076-01-04</p> <p>Frankfurt am Main, 09.06.2020</p> <p>by order of Dipl.-Ing. (FH) Alf Egner Head of Division</p> <p><i>(Signature of Alf Egner)</i></p> <p><small>The certificate together with its annex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the database of accredited bodies of Deutsche Akkreditierungsstelle GmbH. https://www.dakks.de/en/content/accredited-bodies-dakks See notes section.</small></p>	<p>Deutsche Akkreditierungsstelle GmbH</p> <p>Office Berlin Spittelmarkt 10 10117 Berlin</p> <p>Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main</p> <p>Office Braunschweig Bundesallee 100 38116 Braunschweig</p> <p>The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf.</p> <p>No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.</p> <p>The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30). DAkkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.</p> <p>The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.iaf.nu</p>

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

<https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf>

13 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<p>Deutsche Akkreditierungsstelle GmbH</p> <p>Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition</p> <p>Accreditation </p> <p>The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken</p> <p>is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)</p> <p>The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages.</p> <p>Registration number of the certificate: D-PL-12076-01-05</p> <p>Frankfurt am Main, 09.06.2020 by order Digi-Ing. (FH) Half Eigner Head of Division </p> <p><small>The certificate together with its annex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the database of accredited bodies of Deutsche Akkreditierungsstelle GmbH. https://www.dakks.de/en/content/accredited-bodies-dakks See notes enclosed.</small></p>	<p>Deutsche Akkreditierungsstelle GmbH</p> <p>Office Berlin Spittelmarkt 10 10117 Berlin</p> <p>Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main</p> <p>Office Braunschweig Bundesallee 100 38116 Braunschweig</p> <p>The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf.</p> <p>No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.</p> <p>The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I p. 2625) and the Regulation (EU) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 80). DAkkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.</p> <p>The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.iaf.nu</p>

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

<https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf>

END OF TEST REPORT