

Test Report

Page: 1 of 55

23, Headington Drive, Cambridge. CB1 9HE Tel: 01954 251974 (test site) or: 01223 241140 (accounts) Fax: 01954 251907 web: www.dbtechnology.co.uk email: mail@dbtechnology.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: TWENTY PENCE TEST SITE

> Twenty Pence Road, Cottenham, Cambridge U.K. **CB24 8PS**

> > on

Sepura PLC

SRG3900UW

dated

19th March 2012

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	19/03/12		Initial release		

Based on report template: v090319

/ ₱\	Issue No:	1	F	CC IDS: XX	65RG3900UW			
dB	Test No:	T4203		Test	Report	F	Page:	2 of 55
Equip	oment Under	Test (EUT):		SRG3900UW			
Test	Commission	ed by:			Sepura PLC Radio House St Andrews Road Cambridge Cambridgeshire CB4 1GR			
Repr	esentative:				Bob Allen			
Test	Started:				18th January 2012			
Test	Completed:				17th February 2012			
Test	Engineer:				Dave Smith			
Date	of Report:				19th March 2012			
Writ	ten by:	Da	ve Smith		Checked by:	Derek	Barlow	
Signa	ature:	~ /			Signature:			

dB Technology can only report on the specific unit(s) tested at its site. The responsibility for extrapolating this data to a product line lies solely with the manufacturer.

Date:

19th March 2012

5th March 2012

Date:

Report No:

R3053

	ards Applied
Part 90 of CFR47	Private Land Mobile Radio Services
CFR 47 Class B	Code of Federal Regulations: Pt 15 Subpart B- Radio Frequency Devices - Unintentional Radiators

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
(dB)	Test No:	T4203	Test Report	Page:	3 of 55

Emissions Test Results Summary

Part 90					PASS
Test	Port	Method	Limit	PASS/FAIL	Notes
Output		90.205	90.205(h)	No	#1
Power				Limit	
Radiated					
Output	antenna	90.205	90.205(h)	No	#1
Power		2.1046		Limit	
Conducted					
Types of	antenna	90.207	Specified by		#2
Emissions		2.1047	manufacturer		
Bandwidth	antenna	90.209	90.209(b)(5)	PASS	#3
Banawiatii	arroma	2.1049	33.233(3)(3)	77.00	""
Emissions		90.210	90.221(d)	PASS	#4
Masks		2.1051			
Radiated					
Emissions	antenna	90.210	90.221(d)	PASS	#4
Masks		2.1051			
Conducted					
Frequency	antenna	90.213	90.213	N/T	#2
Stability		2.1055			
Frequency	antenna	90.214	90.214	N/T	#2
Transient					
Behaviour					
Adjacent		90.221	90.221(b)	PASS	
Channel					
Power					

specs_fccv120228

CFR 47		PASS

Test	Port	Method	Limit	PASS/FAIL	Notes
Conducted Emissions	ac power	ANSI C63.4:2003	FCC_B	PASS	
Radiated Emissions		ANSI C63.4:2003	FCC_B	PASS	

specs fccv120228

- #1 There is no specific limit on output power.
- #2 This report covers tests on a product that has already been granted certification and has subsequently been modified. It was considered unnecessary to consider these sections.
- #3 The additional note 6 of FCC Waiver 11-63 was applied which allows a bandwidth of up to 22kHz providing the additional Adjacent Channel Power requirements are met.
- The additional note 5 of FCC Waiver 11-63 was applied which only stipulates limits 75kHz from the carrier providing the additional Adjacent Channel Power requirements are met.

This Report shows that the EUT met all of the requirements for the tests performed - as shown above.

<u> </u>	Report No: Issue No:	R3053 1
dB	Test No:	T4203

Test Report Page:

^{ge:} 4 of 55

Contents

1 EUT Details	
1.1 General	. 6
1.2 Modifications to EUT and Peripherals	. 7
1.3 EUT Operating Modes	
Figure 1 DMU (Desk Mount Unit): EUT and Peripherals	
Photograph 1 DMU: Radiated Emissions - Back	
Photograph 2 DMU: Radiated Emissions - Front	
Photograph 3 DMU: Conducted Emissions - Front	
Photograph 4 DMU: Conducted Emissions - Back	
Photograph 5 Connected to R&S Analyser	
2 Test Equipment	
3 Test Methods	
3.1 Antenna Conducted Carrier Power	
3.2 Antenna Conducted Transmitter Unwanted Emissions	13
3.3 Antenna Conducted Occupied Bandwidth	13
3.4 Antenna Conducted Adjacent Channel Power	
3.5 Radiated Transmitter Emissions (Substitution Method)	
3.6 Receiver Radiated Emissions	14
3.7 Conducted Emissions - ac power	14
4 Test Results	
4.1 Conducted Antenna Output Power	15
4.2 Conducted Antenna Occupied Bandwidth	16
4.3 Conducted Antenna Adjacent Channel Power	17
4.4 Conducted Emission Antenna Spurious Emissions	18
4.5 Radiated Emissions Results With DMU - Transmit Carrier ERP	19
4.6 Radiated Emissions Results With DMU - Transmit Spurious Below 1GHz	20
4.7 Radiated Emissions Results with DMU - Transmit Spurious Above 1GHz	21
4.8 Radiated Emissions Results with DMU - Receive Mode below 1GHz	22
4.9 Radiated Emissions Results with DMU - Receive Mode above 1GHz	23
4.10 Conducted Emissions (Power) - Results	24
PLOT 1 Output Power - 450MHz	25
PLOT 2 Output Power - 460MHz	26
PLOT 3 Output Power - 470MHz	27
PLOT 4 Occupied bandwidth - 450MHz	28
PLOT 5 Occupied bandwidth - 460MHz	29
PLOT 6 Occupied bandwidth - 470MHz	30
PLOT 7 Adjacent Channel Power - 450MHz	31
PLOT 8 Adjacent Channel Power - 460MHz	32
PLOT 9 Adjacent Channel Power - 470MHz	33
PLOT 10 Spurious Emissions - Conducted Antenna - Tx @450MHz - 9kHz to 1GHz	34
PLOT 11 Spurious Emissions - Conducted Antenna - Tx @450MHz - 1GHz to 5GHz	35
PLOT 12 Spurious Emissions - Conducted Antenna - Tx @460MHz - 9kHz to 1GHz	36
PLOT 13 Spurious Emissions - Conducted Antenna - Tx @460MHz - 1GHz to 5GHz	37
PLOT 14 Spurious Emissions - Conducted Antenna - Tx @470MHz - 9kHz to 1GHz	38
PLOT 15 Spurious Emissions - Conducted Antenna - Tx @470MHz - 1GHz to 5GHz	
PLOT 16 Radiated Emissions - Tx Mode - 30MHz to 200MHz	40
PLOT 17 Radiated Emissions - Tx Mode - 200MHz to 500MHz	41
PLOT 18 Radiated Emissions - Tx Mode - 200MHz to 500MHz - Using Notch Filter	
PLOT 19 Radiated Emissions - Tx Mode - 500MHz to 1GHz	
PLOT 20 Radiated Emissions - Tx Mode - 800MHz to 1GHz	
PLOT 21 Radiated Emissions - Tx Mode - 1GHz to 2GHz	
PLOT 22 Radiated Emissions - Tx Mode - 2GHz to 5GHz	
PLOT 23 Radiated Emissions - Rx Mode - 25MHz to 275MHz	
PLOT 24 Radiated Emissions - Rx Mode - 250MHz to 1 GHz	
PLOT 25 Radiated Emissions - Rx Mode - 1GHz to 2GHz	

dB)	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
	Test No:	T4203	Test Report	Page:	5 of 55

PLOT 26	Radiated Emissions - Rx Mode - 2GHz to 5GHz	50
PLOT 27	Radiated Emissions - Rx Mode - 5GHz to 10GHz	51
PLOT 28	Conducted Emissions - Tx mode - Live	52
PLOT 29	Conducted Emissions - Tx mode - Neutral	53
PLOT 30	Conducted Emissions - Rx Mode - Live	54
PLOT 31	Conducted Emissions - Rx mode - Neutral	55

/ <u>†</u> \	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
(dB)	Test No:	T4203	Test Report	Page:	6 of 55

1 EUT Details

1.1 General

The EUT was a TETRA Voice + Data Mobile Station.

The transmitter can operate over the frequency range 450MHz to 470MHz.

Measurements were made at the top, middle and bottom of the appropriate frequency range:

Bottom: 450 MHz Middle: 460 MHz Top: 470 MHz

The nominal output power is 40dBm (10W).

The product is normally powered from a lead acid vehicle battery with nominal voltage of 13.2V

It can also be used as a Desk Mount Unit with various peripherals in which case it is powered from ac mains via an external power adapter.

The product is intended to meet the FCC part 90 requirements using the "Tetra Waiver" as described in FCC 11-63.

The product has already been certified under FCC part 90 using a particular filter co-efficient. For the original certification the "Tetra Waiver" was not applied.

This report describes a subset of tests performed with a slightly modified filter co-efficient. With this modification the "Tetra Waiver" rules were applied.

This report additionally includes spurious emissions measurements of the Desk Mount Unit configuration.

Radiated field strength tests were performed at the dB Technology Test Site Registered with the FCC: Registration number: 90528.

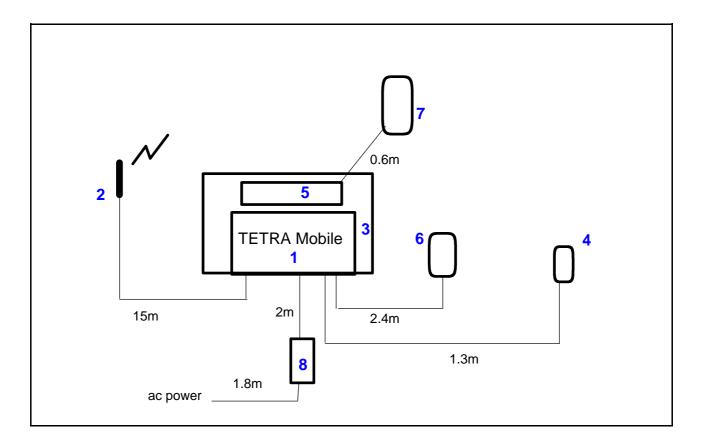
Unless otherwise stated, tests were performed with nominal power supply voltage.

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
(dB)	Test No:	T4203	Test Report	Page:	7 of 55

1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
0	The unit tested was a Production Build unit. No modifications were made during the course of testing.	


1.3 EUT Operating Modes

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	Transmitting on selected channel.
2	Receiving on selected channel.

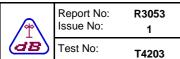
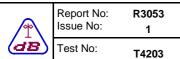

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	8 of 55

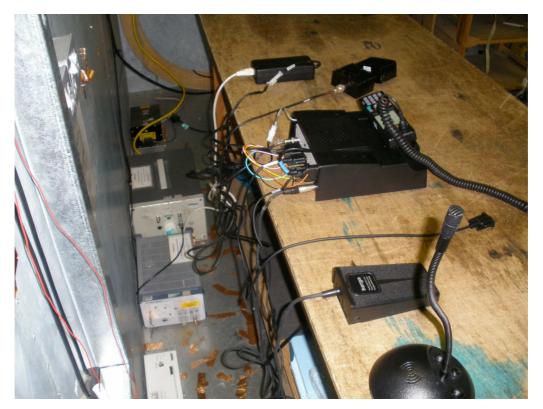
Figure 1 DMU (Desk Mount Unit): EUT and Peripherals

Item	Manufacturer	Model	Description	Serial No:	Notes
1 2 3 4 5 6 7 8	Sepura Sepura Sepura Sepura Sepura Sepura PowerSolve	SRG3900UW 300 00976 300 00073 300 00074 300 00076 300 00061 PSE65-12/SEY	TETRA Mobile Station Antenna DMU Gooseneck Mic IP 54 Colour Console Foot Switch Handset AC-DC supply	2PN000946G719VA C2224642	

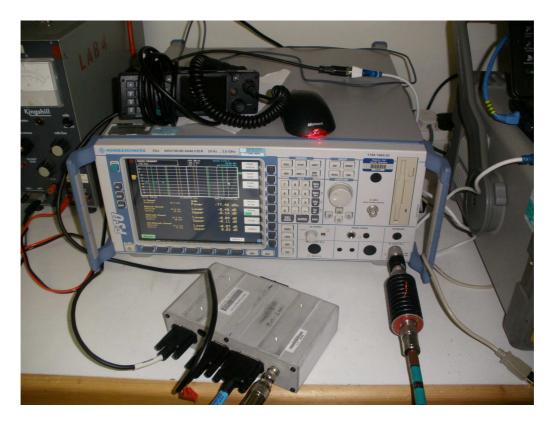
The same sample of Tetra Hand Mobile Station was used for the conducted antenna tests.


Test Report Page: 9 of 55

Photograph 1 DMU: Radiated Emissions - Back


Photograph 2 DMU: Radiated Emissions - Front

Test Report Page: 10 of 55


Photograph 3 DMU: Conducted Emissions - Front

Photograph 4 DMU: Conducted Emissions - Back

/	Report No: Issue No:	R3053 1
dB	Test No:	T4203

Test Report Page: 11 of 55

Photograph 5 Connected to R&S Analyser

/ ₱\	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	12 of 55

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

Ref No:	Details	Serial Number	Cal Date	Cal Interva
			2410	
A19	EMCO 3115 DR Guide (1-18GHz)	2431	23/01/2012	1 yea
A23	EMCO 3115 DR Guide (1-18GHz)	9507-4525	31/01/2012	1 yea
A24	Chase X-wing Bilog CBL6144 26MHz-3GHz	27590	18/11/2011	1 yea
A30	Schwarzbeck MiniBicon (30MHz to 1GHz)	9115-180	21/01/2010	3 yea
A5	Chase Bilog CBL6111A	1760	31/01/2012	1 yea
L1	EMCO 3825/2 LISN	1358	16/02/2012	1 yea
PM6	Marconi 6960B RF Power Meter	236923/003	20/12/2011	1 yea
PRE7	LUCIX 0.1GHz to 20GHz	24485	08/01/2012	1 yea
PS10	Marconi 6910 RF Power Sensor (-30dBm / +20dBm) 10MHz to 20GHz	5009	20/12/2011	1 yea
R1	CHASE LHR 7000	1056	31/01/2012	1 yea
R4	R&S ESVS10	843744/002	16/12/2011	1 ye
R8	Agilent E7405A Spectrum Analyser	MY44212494	19/09/2011	1 ye
R9	Agilent E7405A Spectrum Analyser	MY45110758	21/11/2011	1 ye
RFF02	Low Pass RF Filter OMHz to 190MHz	02	08/02/2012	1 ye
RFF05	Tunable Band Reject 250MHz to 500MHz	05	08/02/2012	1 ye
RFF09	Band Pass Filter 500MHz to 2GHz	F653-9	08/02/2012	1 ye
RFF15	Band Pass Filter 1GHz to 2GHz	15	08/02/2012	1 ye
RFF20	High Pass Filter 1GHz (2GHz) HA-10N	020	08/02/2012	1 ye
RFF22	High Pass Filter - 1.35GHz (10GHz) MicroTronics HPM13017	033	08/02/2012	1 ye
SG13	HP 8648C 150kHz-3.2GHz Signal Generator	3426A01238		
SEP1	R&S FSU Spectrum Analyser	200088	02/04/2009	3 yea

The R&S Spectrum Analyser is owned by Sepura.

The calibration of the signal generator was not critical because its output frequency, level and modulation were measured with calibrated equipment during each test.

/ ♥\	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
(dB)	Test No:	T4203	Test Report	Page:	13 of 55

3 Test Methods

3.1 Antenna Conducted Carrier Power

The antenna output is connected to a spectrum analyser via a suitable PAD. The bandwidth on the spectrum analyser is set to greater than the EUT occupied bandwidth. A peak measurement is recorded. Additional measurements are made with antenna output connected to a power meter providing average measurements

3.2 Antenna Conducted Transmitter Unwanted Emissions

Measurements are made with the antenna output connected to a spectrum analyser via a suitable PAD. Sweeps are made over the specified frequency ranges . The limit is set relative to the measured carrier power. A peak detector is used.

3.3 Antenna Conducted Occupied Bandwidth

Measurements are made with the antenna output connected to a spectrum analyser via a suitable PAD. Sweeps are made with a 300Hz Resolution Bandwidth and a 1kHz Video Bandwidth. A peak detector is used. Markers are used to determine the 99% power bandwidth.

3.4 Antenna Conducted Adjacent Channel Power

Measurements are made with the antenna output connected to an R&S FSU Spectrum Analyser via a suitable PAD. The Analyser is set to make adjacent channel power measurements using the pre-configured settings for Tetra with 25kHz channel spacing.

3.5 Radiated Transmitter Emissions (Substitution Method)

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables were manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured using a substitution method. Maximised emission readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

The EUT is then replaced with a calibrated reference antenna fed from a signal generator. The level fed into the reference antenna is measured with a power meter. Measurements are made to determine the power output of the signal generator required to give the same emission levels as were observed from the EUT.

The radiated power from the EUT is calculated as:

Signal Level + Gain of + Radiated Level - Radiated Level fed into Reference Antenna + Gain of + Radiated Level - Radiated Lev

For example, assuming following measurements:

Signal Level fed into Reference Antenna = -14.3dBm
Gain of Reference Antenna = 7.1 dBi
Radiated Level from EUT (i.e. Level at Measuring Receiver) = 37 dBuV
Radiated Level from Reference Antenna (i.e. Level at Measuring Receiver) = 61.5 dBuV

Then the Radiated Power from the EUT = -14.3 + 7.1 + 37 - 61.5 dBm (isotropic) = -31.7 dBm (isotropic)

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
(dB)	Test No:	T4203	Test Report	Page:	14 of 55

3.6 Receiver Radiated Emissions

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables are manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using a CISPR16 quasi-peak receiver. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

Tabulated results show levels based on the following calculation:

Field Strength (dBuV) = receiver reading (dBuV) + CF (dB/m)

CF is the correction factor for the antenna and cable.

For example:

at 114MHz receiver reading was 17.9 dBuV, combined correction factor = 13.1 (dB/m).

Total field strength = 17.9 + 13.1 = 31.0 dBuV/m.

3.7 Conducted Emissions - ac power

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUTs and peripheral equipment are normally placed on a 0.8m high non-conducting bench, positioned 0.4m from one of the metallic walls of a screened room. Floor standing EUTs are normally placed 0.1m above the metallic floor of the screened room. Mains leads are bundled so as not to exceed 1m.

The EUT is powered using a 50ohm/50uH Line Impedance Stabilisation Network (LISN). Peripherals are powered using a second a 50ohm/50uH LISN. These LISNs are bonded to the screened room floor.

With the correct supply voltage applied to the EUT scans are performed on both the live and neutral line outputs of the LISN using quasi-peak detection over the specified frequency range. The results of these scans are shown in the plots section at the end of the report.

Significant emissions identified by the scans are measured and the results tabulated. The table of results is shown in the conducted emissions results section.

Final Level = Receiver Reading + Combined Cable & Attenuator Correction Factor (dBuV) (dBuV) (dB)

Example:

@ 191kHz Final Level = 45.8 + 10.0 = 55.8 dBuV

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

<u> </u>	Report No: Issue No:	R3053 1	
dB	Test No:	T4203	

Test Report Page: 15 of 55

4.1 Conducted Antenna Output Power

Factor Set 1: Factor Set 2: Factor Set 3:

Test Equipment: R9 PS10 PM6

Conducted Emissions (Signal)

Oondacte	a Emissions (Orginal)			
Compan	^{ny:} Sepura PLC		Product: SRG3900UW	
Date:	28/02/2012		Test Eng: Dave Smith	
Ports:	antenna			
Test:	90.205	using limits of	90.205(h)	
Ports:				
Test:		using limits of		

Notes		1	Comments and Observations
			sing a peak detector are shown in plots 1 to 3.
	Measurements	were also ma	de using a power meter with an average detector.
	Measurements	were made w	vith continuous modulation.
	Taking into acc measurements		of the cable and attenuators the following
	Channel	Peak dBm	Average dBm
	450 MHz	41.5	38.93
	460 MHz	42.1	39.22
	470 MHz	42.1	39.27
,			

<u> </u>	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	16 of 55

4.2 **Conducted Antenna Occupied Bandwidth**

Factor Set 1: Factor Set 2: Factor Set 3: Test Equipment: R9

Conducted I	Emissions (Signal)		
Company:	Sepura PLC		Product: SRG3900UW
Date:	28/02/2012		Test Eng: Dave Smith
Ports:	antenna		
Test:	90.209	using limits of	90.209(b)(5)
Ports:			
Test:		using limits of	
Notes		Commen	ts and Observations

Using the "Bandwidth Power" function of the spectrum analyser, the following measurements were recorded:

Measurements were made with continuous modulation applied.

Spectrum analyser results are shown in plots 4 to 6.

Low Channel (450 MHz)

20.94 kHz

Mid Channel (460 MHz)

20.98 kHz

High Channel (470 MHz)

20.69 kHz

Limit:

Using note 6 in the "Tetra Waiver" (FCC11-63) the limit is 22kHz (providing Adjacent Channel Power requirements are met).

PASS

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	17 of 55

4.3 Conducted Antenna Adjacent Channel Power

Factor Set 1:
Factor Set 2: -- -Factor Set 3: -- -Test Equipment: SEP1

Company	Emissions (Signal) Sepura PLC			Product:	SRG390	OUW	
Date:	28/02/2012			Test Fna:	Dave Smit		
Ports:	20/02/2012			root Eng.	Dave Silli	LII	
Test:	90.221	using lin	nits of	90.221	(b)		
Ports:							
Test:		using lin					
Notes			Commo	ents and OI	oservations		
	Using the R& adjacent cha	•					ts 7 to 9.
	Readings in o	dBc		Channel			
		-75kHz	-50kHz	-25kHz	+ 25kHz	+ 50kHz	+ 75kHz
	450MHz	-80.04	-77.24	-65.04	-64.38	-77.26	-80.80
	460MHz	-80.87	-77.00	-64.91	-63.94	-76.97	-80.99
	470MHz	-80.44	-76.59	-64.57	-63.21	-76.46	-80.33
	Limit (dBc)	-70	-70	-60	-60	-70	-70
	Limit shown greater than						output power 90.221(b)
	PASS						

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	18 of 55

Conducted Emission Antenna Spurious Emissions 4.4

Factor Set 1: Factor Set 2: Factor Set 3: Test Equipment: R9

npany: ç	Sepura PLC		Product	SRC	3900UW	
	8/02/2012		Test En	g: Dave		
	ntenna			g. Dave	Omitin	
Test:	90.210	using limits of	90.22	21(d)		
Ports:						
Test:		using limits of				
Notes		Cor	mments and (Observa	tions	
	Results of scans	s shown in plots	10 to 15.			
	The most signif	icant emissions o	observed wer	e:		
	450MHz:	Carrier	41.50	dBm		
			Attenuation	on	Minimum Attenuation	
			dB		dB	
	900.0075MHz	-22.50	64.00		54.50	PASS
	1.350875GHz	-24.69	66.19		54.50	PASS
	460MHz:	Carrier	42.10	dBm		
			Attenuation	on	Minimum	
					Attenuation	
	920.0025MHz	-23.84	dB 65.94		dB 55.10	PASS
	1.37995GHz	-23.84 -24.87	66.97		55.10	PASS
		21.07	00.07		33.13	. 7.00
	470MHz:	Carrier	42.10	dBm		
			Attenuation	on	Minimum Attenuation	
			dB		dB	
	940.0MHz	-23.38	65.48		55.10	PASS
	1.410025GHz	-23.90	66.00		55.10	PASS
	Minimum atten	uation limit base	d on: 43 + 1	0 * log	(P)	
				_		
	All spurious em	issions attenuate	ed by more th	an this	level.	
	PASS					

P	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
(dB)	Test No:	T4203	Test Report	Page:	1

19 of 55

4.5 Radiated Emissions Results With DMU - Transmit Carrier ERP

Factor Set 1: A30_dBi_10A - - -

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R9 A24 A30 SG13 PS10 PM6

Substitution Emissions

 Company:
 Sepura PLC
 Product:
 SRG3900UW

 Date:
 06/02/2012
 Test Eng:
 Dave Smith

 Ports:
 Test:
 90.205
 using limits of
 90.205(h)

 Ports:
 90.205
 using limits of
 90.205(h)

Test: using limits of

rest	:			u	sing limi	ts 01	-							
Op Mode	Mod State		Freq. MHz	Cable Sig Gen Level Cable	Loss Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT dBm	Sig Gen Level Sub'n Ant dBm	Rec'vr Level Sub'n Ant dBm	Sub'n Ant Gain dBi	ERP dBm	Limit dBm	Margin dB	Note
1 1 1	1 1 1	1 1 1	450.000 460.000 470.000	0.0	0.0 0.0 0.0	v v	121.1 121.0 121.2	-11.7 -11.8 -11.8	66.9 66.8 66.1	-0.3 -0.3 -0.3	42.2 42.1 43.0			
	Resul	ts		Minimur PASS/F		<u> </u>								

The results above are radiated measurements using the substitution method.

There are no specific limits in the standard for this test.

Notes

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW	
dB	Test No:	T4203	Test Report	Page:

4.6 Radiated Emissions Results With DMU - Transmit Spurious Below 1GHz

20 of 55

Factor Set 1: A30_dBi_10A - - -

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R9 A24 A30 SG13 PS10 PM6 RFF02 RFF05 RFF09 RFF20

Substitution Emissions

 Company:
 Sepura PLC
 Product:
 SRG3900UW

 Date:
 06/02/2012
 Test Eng:
 Dave Smith

 Ports:
 Test:
 90.210
 using limits of
 90.221(d)

 Ports:
 90.210
 90.221(d)
 90.221(d)

Test: using limits of

7001	•			u	sing iiini	เธบเ								
Op Mode	Mod State		Freq. MHz	Cable Sig Gen Level Cable	Loss Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT dBm	Sig Gen Level Sub'n Ant dBm	Rec'vr Level Sub'n Ant dBm	Sub'n Ant Gain dBi	ERP dBm	ERP dBc	Limit	Margin dB
1 1 1 1 1	0 0 0 0 0	1 1 1 1 1	900.000 900.000 920.000 920.000 940.000	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	V H V H	40.3 40.2 40.5 41.4 35.7 32.4	-14.0 -14.0 -14.2 -14.2 -14.2	51.5 54.2 51.1 54.3 51.2 54.2	-6.8 -6.8 -6.7 -6.7 -6.6 -6.6	-32.0 -34.8 -31.6 -33.9 -36.3 -42.6	-74.2 -77.0 -73.7 -76.0 -79.3 -85.6	-55.2 -55.2 -55.1 -55.1 -56.0 -56.0	19.0 21.8 18.6 20.9 23.3 29.6
	Resul	ts		Minimur PASS/F/	_	n			18.6 PASS	dB				

Notes

Results of pre-scans shown in plots 16 to 20.

dBc values based on carrier radiated measurements: (limit = attenuation of 43 + 10 log (P)

Low channel: 42.2dBm Mid channel: 42.1dBm High channel: 43.0dBm

Both carrier and spurious measurements made with peak detector.

A	Report No: Issue No:	R3053 1
dB	Test No:	T4203

Test Report Page: 21 of 55

4.7 Radiated Emissions Results with DMU - Transmit Spurious Above 1GHz

Factor Set 1: A19_dbi_11A - - -

Factor Set 2: ----Factor Set 3: ----

Test Equipment: R9 A23 A19 SG13 PS10 PM6 RFF15 RFF22

Substitution Emissions

Company: Sepura PLC Product: SRG3900UW

Date: 06/02/2012 Test Eng: Dave Smith

Ports:

Test: 90.210 using limits of 90.221(d)

Ports: Test:

using limits of

Op Mode	Mod State	CF Set	Freq. MHz	Cable Sig Gen Level Cable dBm	e Loss Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT dBuV	Sig Gen Level Sub'n Ant dBm	Rec'vr Level Sub'n Ant dBuV	Sub'n Ant Gain dBi	ERP dBm	ERP dBc	Limit	Margin dB
1	0	1	1350.000	0.0	0.0	v	61.4	-16.2	100.3	7.7	-47.4	-89.6	-55.2	34.4
1	0	1	1350.000	0.0	0.0	н	62.9	-16.2	96.4	7.7	-42.0	-84.2	-55.2	29.0
1	0	1	1800.000	0.0	0.0	V	58.4	-17.6	94.1	9.0	-44.3	-86.5	-55.2	31.3
1	0	1	1800.000	0.0	0.0	н	60.1	-17.6	93.4	9.0	-41.9	-84.1	-55.2	28.9
1	0	1	1380.000	0.0	0.0	V	59.8	-16.4	100.0	7.8	-48.7	-90.8	-55.1	35.7
1	0	1	1380.000	0.0	0.0	Н	62.4	-16.4	96.8	7.8	-42.9	-85.0	-55.1	29.9
1	0	1	1840.000	0.0	0.0	V	58.7	-17.9	94.1	9.0	-44.3	-86.4	-55.1	31.3
1	0	1	1840.000	0.0	0.0	Н	58.0	-17.9	92.2	9.0	-43.1	-85.2	-55.1	30.1
1	0	1	1410.000	0.0	0.0	V	62.6	-16.4	100.3	8.0	-46.2	-89.2	-56.0	33.2
1	0	1	1410.000	0.0	0.0	Н	66.1	-16.4	95.8	8.0	-38.2	-81.2	-56.0	25.2
1	0	1	1880.000	0.0	0.0	V	59.5	-18.0	92.0	9.1	-41.4	-84.4	-56.0	28.4
1	0	1	1880.000	0.0	0.0	Н	57.9	-18.0	90.7	9.1	-41.7	-84.7	-56.0	28.7
	Results Minimum Marg PASS/FAIL				_	n			25.2 PASS	dB				

Notes

Results of pre-scans shown in plots 21 and 22.

dBc values based on carrier radiated measurements: (limit = attenuation of 43 + 10 log (P)

Low channel: 42.2dBm Mid channel: 42.1dBm High channel: 43.0dBm

Both carrier and spurious measurements made with peak detector.

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	22 of 55

4.8 Radiated Emissions Results with DMU - Receive Mode below 1GHz

A5_FS_10C CBL015_11A --Factor Set 1:

Factor Set 2: Factor Set 3: Test Equipment: R4 A5

		nissions		_				Prod	unt:					
		Sepu							3	RG3900				
Date Ports		15/02	2/201	2				Test	Eng:	Dave Smith				
Test		ANSI	C63	.4:20	03 using	limits	s of	FCC	В					
Port														
Test	:				using	limits	S 0f							
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level	Factor	Corr'n Factor	Total Level	Limit FCC_B	Margin FCC_B	Notes	
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB		
		Oper	ating	 at 460	 MHz									
23	2	0	3	1	31.880	V	5.3	17.8		23.1	40.0	16.9		
23	2	0	3	1	31.880	Н	5.2	17.8		23.0	40.0	17.0		
23 23	2 2	0	3	1 1	38.750 38.750	V H	6.2 6.0	14.3		20.5 20.3	40.0 40.0	19.5 19.7		
23	2	0	3	1	116.200	V	7.9	13.2		20.3	43.5	22.4		
23	2	0	3	1	116.200	Н	8.2	13.2		21.4	43.5	22.1		
23	2	0	3	1	118.100	V	9.1	13.3		22.4	43.5	21.1		
23	2	0	3	1	118.100	H	7.8	13.3		21.1	43.5	22.4		
23 23	2 2	0	3	1 1	120.000 120.000	V H	8.9 6.2	13.3		22.2 19.5	43.5 43.5	21.3 24.0		
23	2	0	3	1	185.600	v	8.9	10.8		19.7	43.5	23.8		
23	2	0	3	1	185.600	Н	9.2	10.8		20.0	43.5	23.5		
	Resul	ts					Minimu	m Marc	ıin		16.9	dB		
							PASS/F	-	,		PASS			
No	tes					Com	ments aı	nd Obse	ervation	าร				
			Resu	lte of	scans shov	ın in i	olote 22	and 24						
			iiosu	ito Ui	300113 31101	v11	JIULS 23	ana 24	•					
			Meas	surem	ents made	with	120kHz	quasi p	eak de	tector.				
			The 1	abula	ted results	abov	e were r	nade iu	st with	the EUT	operating or	n the 460MF	-lz	
		l			prescans s			-						

	Report No: Issue No:	R3053 1	
dB	Test No:	T4203	

Test Report Page: 23 of 55

4.9 Radiated Emissions Results with DMU - Receive Mode above 1GHz

Factor Set 1: A23_3m_10A PRE7_CBL052_CBL093_11A - -

Factor Set 2: -- -Factor Set 3: -- -Test Equipment: R9 A23 PRE7

Radiated Emissions

 Company:
 Sepura PLC
 Product:
 SRG3900UW

 Date:
 07/02/2012
 Test Eng:
 Dave Smith

 Ports:
 Test:
 ANSI C63.4:2003 using limits of PCC B

 Ports:
 FCC B

Test: using limits of

Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
25	2	0	1.5	1	1557.863	V	54.1	-14.4		39.8	60.0	20.3	#1
25	2	0	1.5	1	1557.863	V H	53.1	-14.4		39.6	60.0	20.3	#1
25	2	0	1.5	1 1	1587.8838	V	55.3	-14.4		36.7 40.9	60.0	19.1	#2
25	2	0	1.5		1587.838	V H	52.8	-14.4		38.4	60.0	21.6	#2 #2
	2	0	1.5	1		V	52.8 56.2						#3
25 25	_	•		1	1617.838			-14.3		41.9	60.0	18.1	#3
	2	0	1.5	1	1617.838	H	54.9	-14.3		40.7	60.0	19.4	#3
26	2	0	1.5	1	3235.675	V	55.8	-9.1		46.6	60.0	13.4	l .
26	2	0	1.5	1	3235.675	H	52.4	-9.1		43.2	60.0	16.8	#3
26	2	0	1.5	1	3635.013	V	58.9	-8.4		50.5	60.0	9.5	#1
26	2	0	1.5	1	3635.013	H	56.1	-8.4		47.7	60.0	12.3	#1
26	2	0	1.5	1	3704.954	V	59.4	-7.9		51.4	60.0	8.6	#2
26	2	0	1.5	1	3704.954	H	55.7	-7.9		47.7	60.0	12.3	#2
26	2	0	1.5	1	3774.954	V	59.9	-7.4		52.4	60.0	7.6	#3
26	2	0	1.5	1	3774.954	Н	57.8	-7.4		50.3	60.0	9.7	#3
26	2	0	1.5	1	4154.300	V	55.3	-7.5		47.8	60.0	12.2	#1
26	2	0	1.5	1	4154.300	Н	55.4	-7.5		47.9	60.0	12.1	#1
26	2	0	1.5	1	4234.233	V	51.2	-7.5		43.7	60.0	16.4	#2
26	2	0	1.5	1	4234.233	Н	52.9	-7.5		45.4	60.0	14.6	#2
26	2	0	1.5	1	4314.233	V	53.5	-7.4		46.1	60.0	13.9	#3
26	2	0	1.5	1	4314.233	Н	51.2	-7.4		43.8	60.0	16.2	#3
	Resul	te		-			Minimu	m Marc	in		7.6	dB	

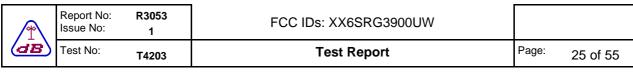
Results Minimum Margin 7.6 dB PASS/FAIL PASS

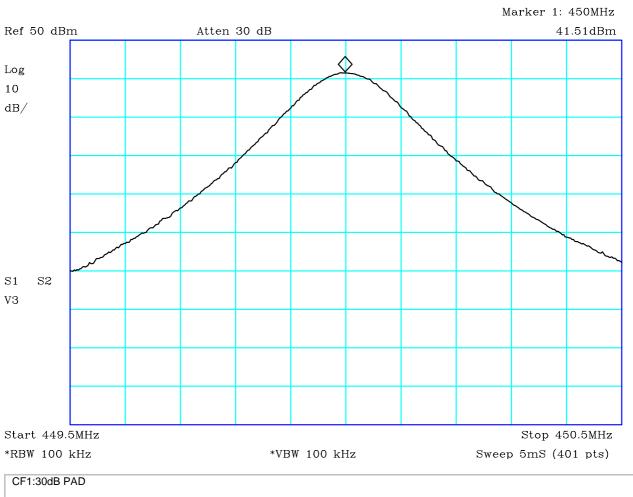
Notes Comments and Observations

Results of scans shown in plots 25 to 27.

#1: 450MHz, #2: 460MHz; #3: 470MHz

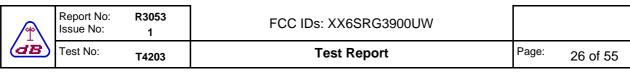
Measurements made with 1MHz RBW peak detector. Because emissions were below the average limit it was not necessary to repeat with an average detector. Measurements were made at a distance of 1.5m which is in the far field for measurements above 1GHz. The specified 3m limit was therefore extrapolated using 20dB per decade as per the procedure of CFR47 15.31.f.(1).

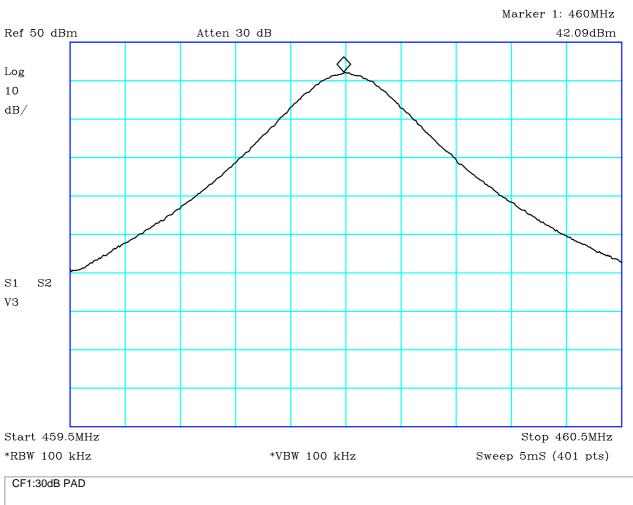

T	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
(dB)	Test No:	T4203	Test Report	Page:	24 of 55


4.10 Conducted Emissions (Power) - Results

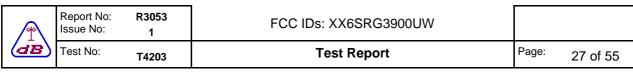
L1_11A AB002_CBL005_CBL039_11A --Factor Set 1:

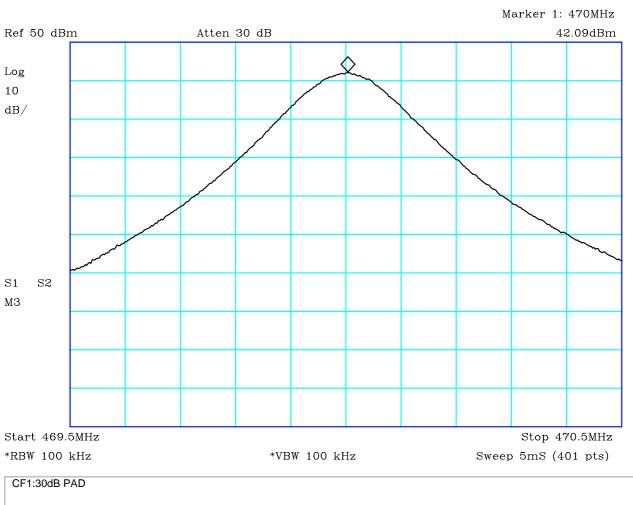
Factor Set 2: Factor Set 3: Test Equipment: R1 L1


			ns (Powe									
Com	pany:	Sepu	ıra PLC)				Product: SRG3900UW				
Date	e <i>:</i>	17/02	2/12					Test Eng: Dave Smith				
Ports Test		ac pov	ver C63.4::	2003	using l	imite	of	FCC B				
Ports		ANSI	C03.4	2003	using i	111111111111111111111111111111111111111	UI	FCC	Ь			
Test	:				using l	imits	of					
Plot	Op Mode	Mod State	Line (L/N)	Fact Set	Freq. MHz	Det qp/ av	Rec. Level dBuV	Corr'n Factor dB	Total Level dBuV	Limit FCC(B) dBuV	Margin FCC(B) dB	Notes
28	1	0	L	1	0.189	qp	42.6	10.0	52.6	64.1	11.5	Tx
28 28	1 1	0 0	L L	1 1	0.189 0.255	av qp	34.3 34.8	10.0	44.3 44.8	54.1 61.6	9.8 16.8	Tx Tx
28	1	0	L	1	0.255	av	26.0	10.0	36.0	51.6	15.6	Tx
29	1	0	N	1	0.195	qp	44.1	10.0	54.1	63.8	9.7	Tx
29	1	0	N	1 1	0.195	av	34.9	10.0	44.9	53.8	8.9	Tx
29 29	1 1	0 0	N N	1 1	0.255 0.255	qp av	34.9 26.9	10.0	44.9 36.9	61.6 51.6	16.7 14.7	Tx Tx
20	•				0.200		20.0	10.0	00.0	01.0	1,	17
30	2	0	L	1	0.189	qp	34.4	10.0	44.4	64.1	19.7	Rx
30	2	0	L	1	0.189	av	23.9	10.0	33.9	54.1	20.2	Rx
31 31	2 2	0 0	N N	1 1	0.188 0.188	qp av	34.4 23.8	10.0	44.4 33.8	64.1 54.1	19.7 20.3	Rx
	_			·	0.100		20.0				2010	Rx
	Resul	ts					Minimu PASS/F		jin	8.9 PASS	dB	
No	tes						Comme	nts and	Observ	vations		
	Results of s				ns showi	n in pl	ots 28 t	o 31.				

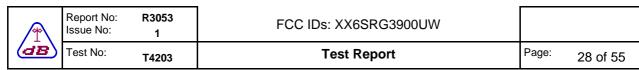


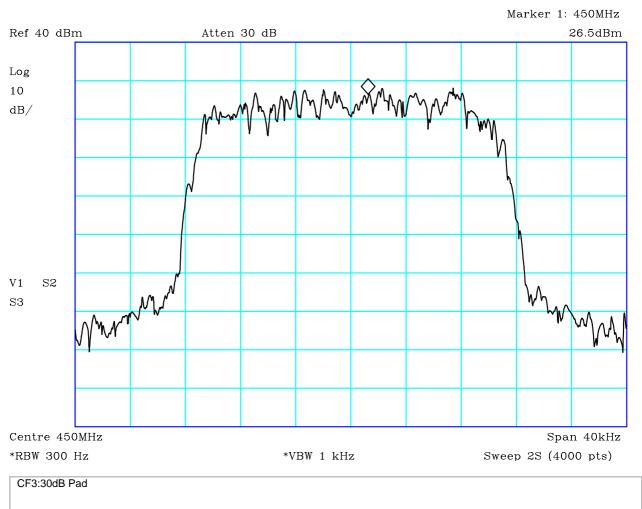
PLOT 1 Output Power - 450MHz


Company:	Sepura		Product:	SRG3900UW		
Date:	19/01/2012		Test Eng:	Dave Smith		
Method:	RSS-GEN		Method:			
Limit1:			Limit2:			
Limit3:			Limit4:			
Tx power. 45	0MHz. Peak de	tector.				
Facility:	Environ	Height		Mode:	Tx	
Facility: Distance	Environ	Height Polarisation		Mode: Modification State:	Tx 0	

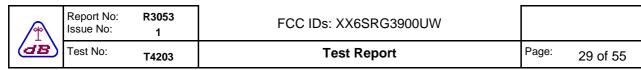


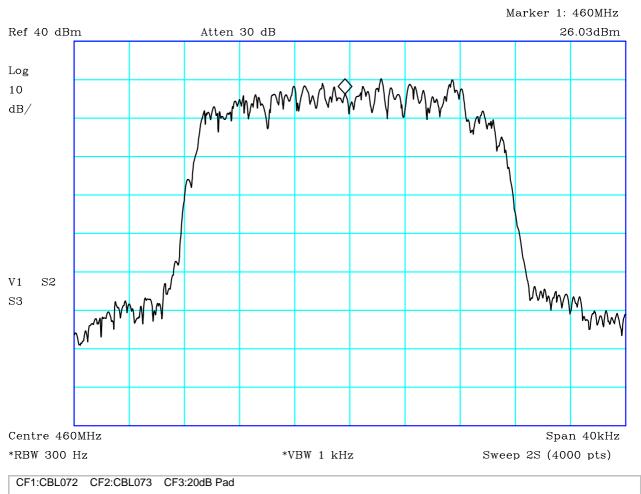
PLOT 2 Output Power - 460MHz


Company:	Sepura		Product:	SRG3900UW		
Date:	19/01/2012	2	Test Eng:	Dave Smith		
Method:	RSS-GEN		Method:			
Limit1:			Limit2:			
Limit3:			Limit4:			
Tx power. 46	0MHz. Peak de	etector.				
				Mode:	Tx	
Facility:	Environ	Height		Wodo.	170	
Facility: Distance	Environ	Height Polarisation		Modification State:	0	

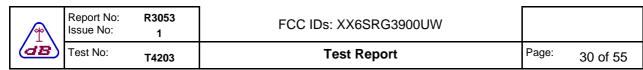


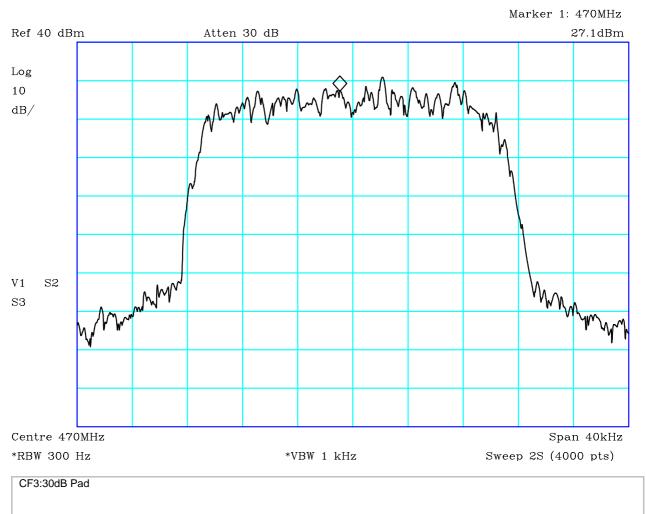
PLOT 3 Output Power - 470MHz


Company:	Sepura		Product:	SRG3900UW		
Date:	19/01/2012	2	Test Eng:	Dave Smith		
Method:	RSS-GEN		Method:			
Limit1:			Limit2:			
Limit3:			Limit4:			
Tx power. 47	0MHz. Peak d	etector.				
Facility:	Environ	Height		Mode:	Tx	
Facility: Distance	Environ	Height Polarisation		Mode: Modification State:	Tx 0	



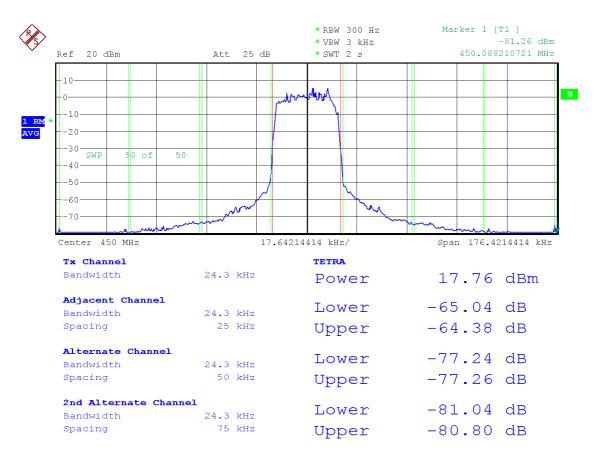
PLOT 4 Occupied bandwidth - 450MHz


Company:	Sepura		Product:	SRG3900UW		
Date:	19/01/2012	2	Test Eng:	Dave Smith		
Method:	RSS-GEN		Method:			
Limit1:			Limit2:			
Limit3:			Limit4:			
Tx 450MHz		_	_	_		
99% Occupied	d Bandwidth = 2	20.94kHz				
Facility:	Environ	Height		Mode:	Tx	
Distance		Polarisation		Modification State:	0	
Angle		File:	H2220593			



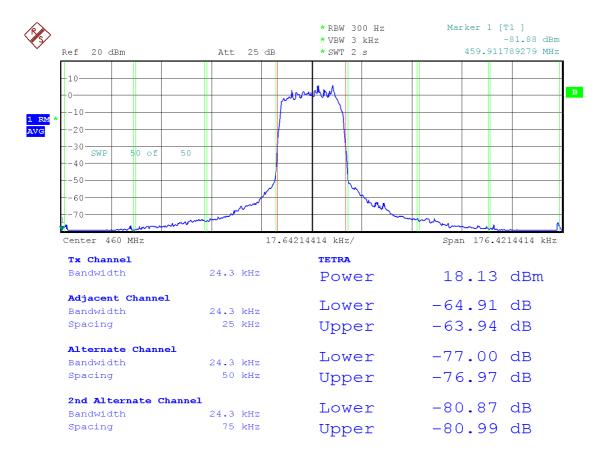
PLOT 5 Occupied bandwidth - 460MHz

Company:	Sepura		Product:	SRG3900UW	
Date:	19/01/2012		Test Eng:	Dave Smith	
Method:	RSS-GEN		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
Tx 460MHz					
99% Occupied E	Bandwidth = 20.9	975kHz			
Facility:	Environ	Height		Mode:	Tx
Distance		Polarisation		Modification State:	0
Angle		File:	H2220596		



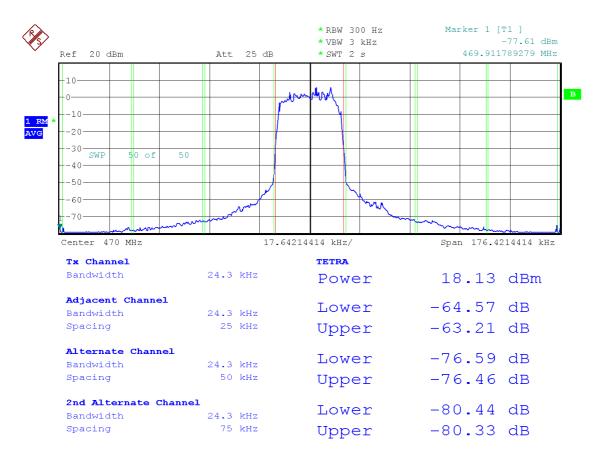
PLOT 6 Occupied bandwidth - 470MHz

Company:	Sepura		Product:	SRG3900UW	
Date:	19/01/2012		Test Eng:	Dave Smith	
Method:	RSS-GEN		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
Tx 470MHz					
99% Occupied E	Bandwidth = 20.6	69kHz			
Facility:	Environ	Height		Mode:	Tx
Distance		Polarisation		Modification State:	0
Angle		File:	H2220650		

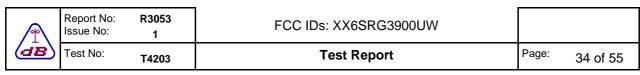

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	31 of 55

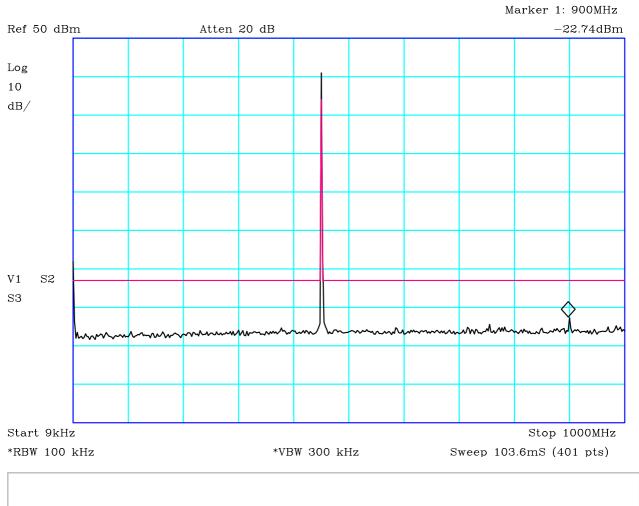
Date: 18.JAN.2012 10:11:54

PLOT 7 Adjacent Channel Power - 450MHz


	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	32 of 55

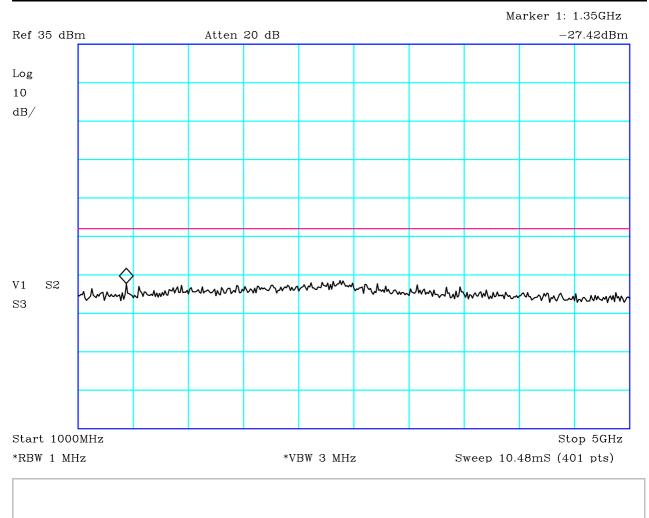
Date: 18.JAN.2012 10:07:19


PLOT 8 Adjacent Channel Power - 460MHz

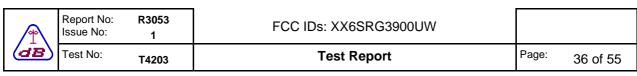

	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	33 of 55

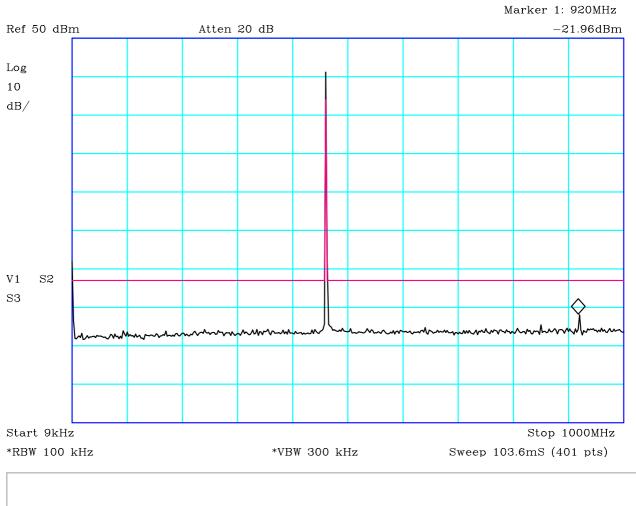
Date: 18.JAN.2012 10:09:42

PLOT 9 Adjacent Channel Power - 470MHz



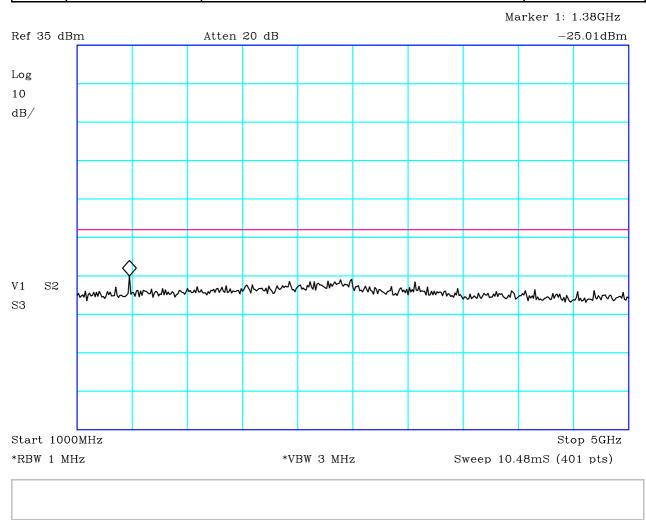
PLOT 10 Spurious Emissions - Conducted Antenna - Tx @450MHz - 9kHz to 1GHz


Company:	Sepura		Product:	SRG3900UW				
Date:	19/01/2012		Test Eng:	Dave Smith				
Method:	FCC Part 90		Method:					
Limit1:(VIO)	43+10 log P		Limit2:					
Limit3:			Limit4:					
Tx 450MHz								
900.0075 MHz -	900.0075 MHz -22.5 dBm							
Limit line set equ	ivalent to attenu	uation of 43 + 10 log	g(P) = -13dBm					
Facility:	Environ			Mode:	Tx			
		File: H	l20194F0	Modification State:	0			

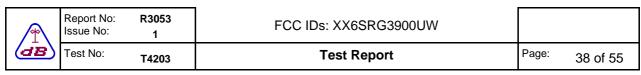

A	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
dB	Test No:	T4203	Test Report	Page:	35 of 55

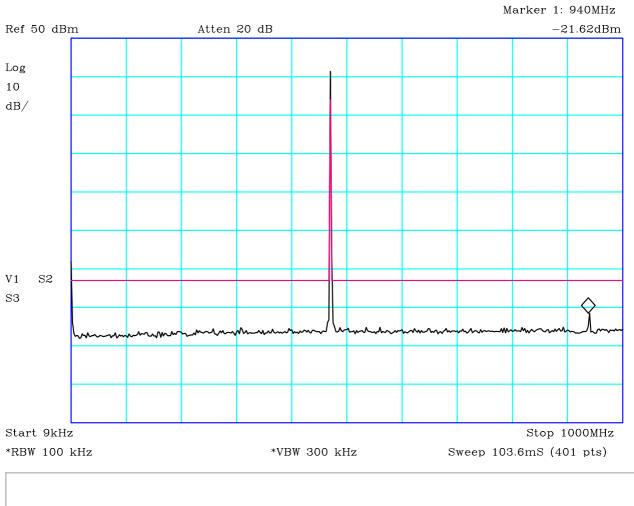
PLOT 11 Spurious Emissions - Conducted Antenna - Tx @450MHz - 1GHz to 5GHz

Company:	Sepura		Product:	SRG3900UW			
Date:	19/01/2012		Test Eng:	Dave Smith			
Method:	FCC Part 90		Method:				
Limit1:(VIO)	43+10 log P		Limit2:				
Limit3:			Limit4:				
Tx 450MHz							
1.3500875 GHz -24.69 dBm							
Limit line set equ	ivalent to attenu	ation of 43 + 10 log((P) = -13dBm.				
Facility:	Environ		N	Mode:	Tx		
				Modification State:	0		
		File: H2	019500				



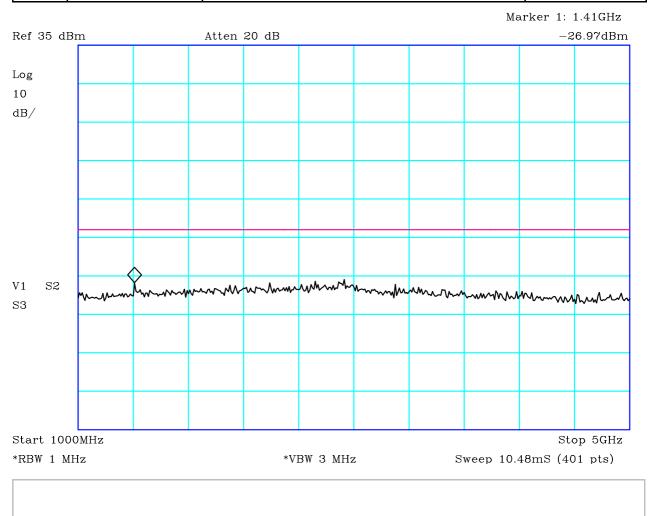
PLOT 12 Spurious Emissions - Conducted Antenna - Tx @460MHz - 9kHz to 1GHz


Company:	Sepura		Product:	SRG3900UW			
Date:	19/01/2012		Test Eng:	Dave Smith			
Method:	FCC Part 90		Method:				
Limit1:(VIO)	43+10 log P		Limit2:				
Limit3:			Limit4:				
Tx 460MHz							
920.0025 MHz -23.84 dBm							
Limit line set equ	ivalent to attenu	uation of 43 + 10 log	(P) = -13dBm.				
Facility:	Environ			Mode:	Tx		
		=1		Modification State:	0		
		File: H2	20194F3				

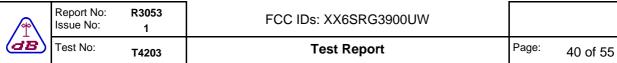

<u> </u>	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
(dB)	Test No:	T4203	Test Report	Page:	37 of 55

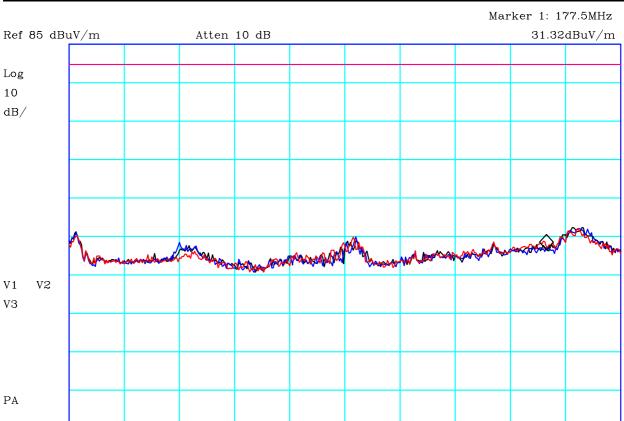
PLOT 13 Spurious Emissions - Conducted Antenna - Tx @460MHz - 1GHz to 5GHz

Company:	Sepura		Product:	SRG3900UW				
Date:	19/01/2012		Test Eng:	Dave Smith				
Method:	FCC Part 90		Method:					
Limit1:(VIO)	43+10 log P		Limit2:					
Limit3:			Limit4:					
Tx 460MHz								
1.37995 GHz -2	1.37995 GHz -24.87 dBm							
Limit line set equ	ivalent to attenu	uation of 43 + 10 log	g(P) = -13dBm					
Facility:	Environ			Mode:	Tx			
		File: H	2019504	Modification State:	0			
		1110. 11	201000-					



PLOT 14 Spurious Emissions - Conducted Antenna - Tx @470MHz - 9kHz to 1GHz


Company:	Sepura		Product:	SRG3900UW	
Date:	19/01/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	43+10 log P		Limit2:		
Limit3:			Limit4:		
Tx 470MHz					
940.0 MHz -23	.38 dBm				
Limit line set equ	ivalent to attenua	ation of 43 + 10 log	(P) = -13dBm.		
·		J	` ,		
Facility:	Environ			Mode:	Тх
				Modification State:	0
		File: H2	0194F8		


<u> </u>	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW		
(dB)	Test No:	T4203	Test Report	Page:	39 of 55

PLOT 15 Spurious Emissions - Conducted Antenna - Tx @470MHz - 1GHz to 5GHz

Company:	Sepura		Product:	SRG3900UW	
Date:	19/01/2012		Test Eng:	Dave Smith	
Method:	FCC Part 90		Method:		
Limit1:(VIO)	43+10 log P		Limit2:		
Limit3:			Limit4:		
Tx 470MHz					
1.410025 GHz	-23.9 dBm				
Limit line set equ	ivalent to attenu	uation of 43 + 10 log	g(P) = -13dBm		
Facility:	Environ			Mode:	Тх
				Modification State:	0
		File: H	20194FD		

VBW 300 kHz

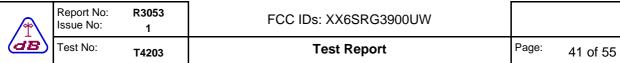
Stop 200MHz

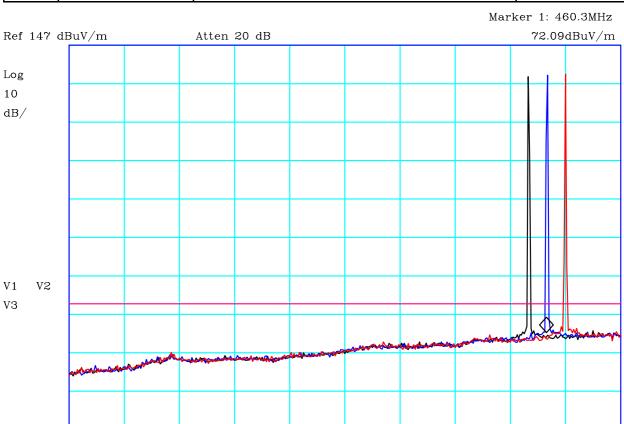
Sweep 27.18mS (401 pts)

PLOT 16 Radiated Emissions - Tx Mode - 30MHz to 200MHz

Company:	Sepura	Product:	SRG3900UW
Date:	06/02/2012	Test Eng:	Dave Smith
Method:	FCC part 90	Method:	
Limit1:(VIO)	Att 43+10log(p)	Limit2:	
Limit3:		Limit4:	

With DMU


Start 30MHz


RBW 120 kHz

Transmit Mode. Maximum of both horizontal and vertical.

Black: 450MHz. Blue :460MHz Red: 470MHz

Facility:	Anech_2	Height	1.5m	Mode:	Tx
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2106594		

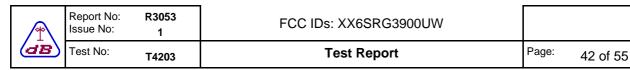
PLOT 17 Radiated Emissions - Tx Mode - 200MHz to 500MHz

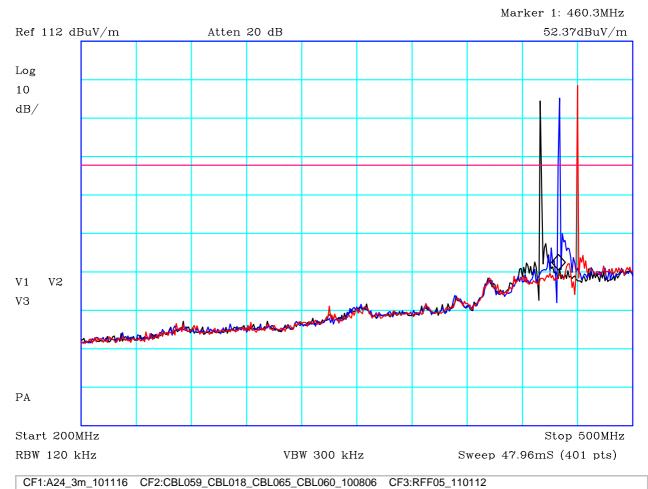
Company:	Sepura		Product:	SRG3900UW	
Date:	06/02/2012	2	Test Eng:	Dave Smith	
Method:	FCC part 9	90	Method:		
Limit1:(VIO)	Att 43+10k	og(p)	Limit2:		
Limit3:			Limit4:		
Facility:	Anech_2	Height	1.5m	Mode:	Tx
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2106543		

VBW 300 kHz

 $Stop\ 500MHz$

Sweep 47.96mS (401 pts)


With DMU

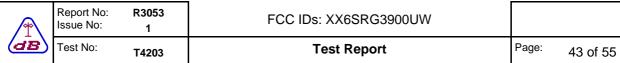

Start 200MHz

RBW 120 kHz

Transmit Mode. Maximum of both horizontal and vertical.

Black: 450MHz. Blue :460MHz Red: 470MHz

PLOT 18 Radiated Emissions - Tx Mode - 200MHz to 500MHz - Using Notch Filter


Company:	Sepura	Product:	SRG3900UW	
Date:	06/02/2012	Test Eng:	Dave Smith	
Method:	FCC part 90	Method:		
Limit1:(VIO)	Att 43+10log(p)	Limit2:		
Limit3:		Limit4:		

With DMU

Transmit Mode. Maximum of both horizontal and vertical.

Black: 450MHz. Blue :460MHz Red: 470MHz

Facility:	Anech_2	Height	1.5m	Mode:	Tx
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H210657F		

Marker 1: 847.5MHz

Ref 110 dBuV/m Atten 20 dB 67.44dBuV/m

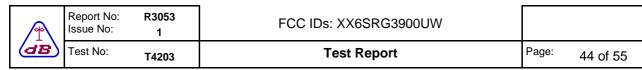
Log
10 dB/

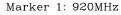
V1 V2
V3

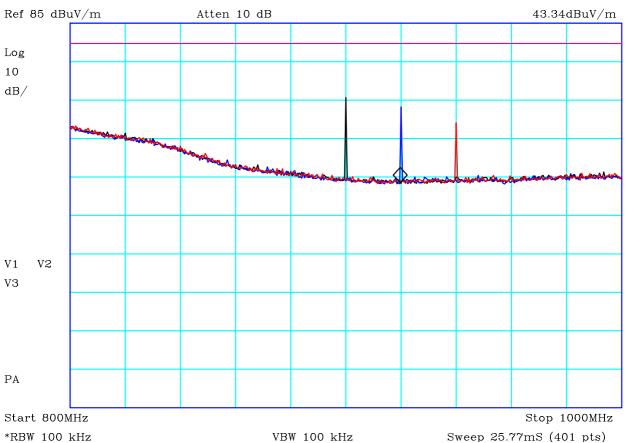
 Start 500MHz
 Stop 1000MHz

 *RBW 100 kHz
 VBW 100 kHz
 Sweep 64.42mS (401 pts)

PLOT 19 Radiated Emissions - Tx Mode - 500MHz to 1GHz


SRG3900UW Company: Product: Sepura Date: 06/02/2012 Test Eng: Dave Smith Method: FCC part 90 Method: Limit1:(VIO) Att 43+10log(p) Limit2: Limit3: Limit4:

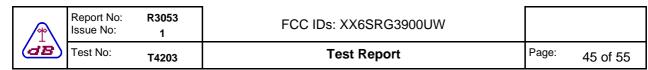

With DMU

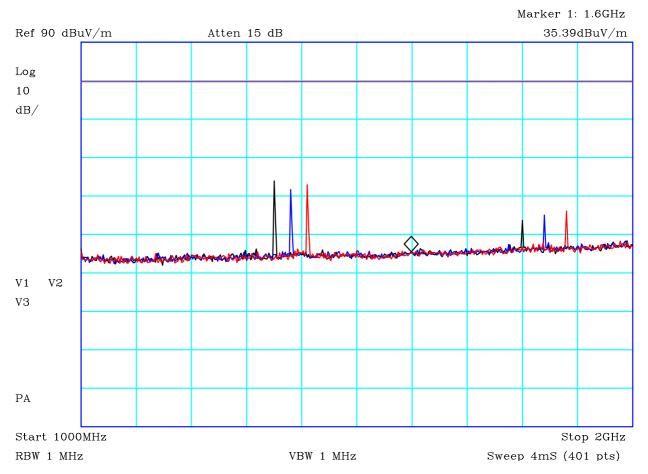

Transmit Mode. Maximum of both horizontal and vertical.

Black: 450MHz. Blue :460MHz Red: 470MHz

Facility:	Anech_2	Height	1.5m	Mode:	Tx
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H21065EB		

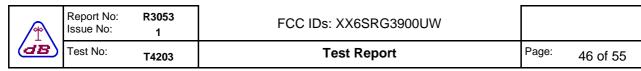
PLOT 20 Radiated Emissions - Tx Mode - 800MHz to 1GHz

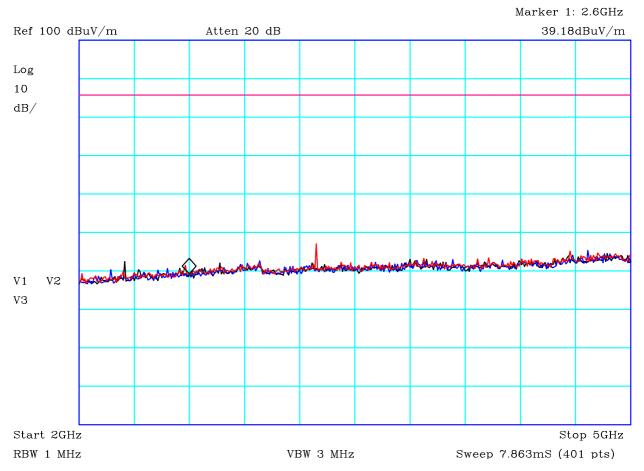

Company:	Sepura	Product:	SRG3900UW
Date:	06/02/2012	Test Eng:	Dave Smith
Method:	FCC part 90	Method:	
Limit1:(VIO)	Att 43+10log(p)	Limit2:	
Limit3:		Limit4:	


With DMU

Transmit Mode. Maximum of both horizontal and vertical.

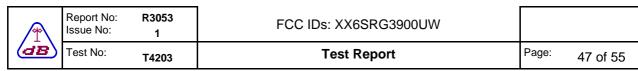
Black: 450MHz. Blue :460MHz Red: 470MHz

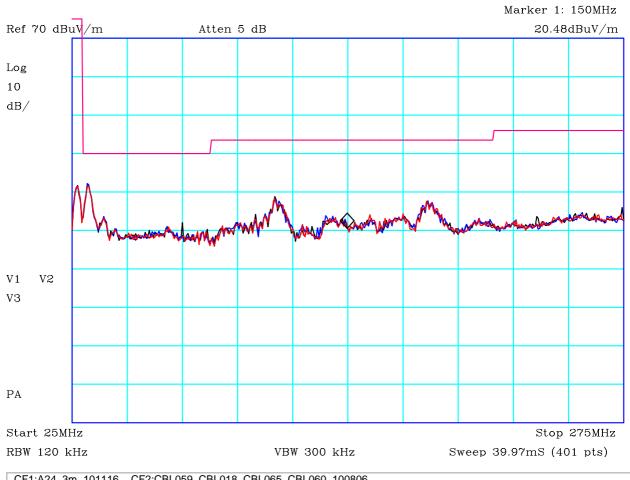

Facility:	Anech_2	Height	1.5m	Mode:	Tx
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H21066C4		



PLOT 21 Radiated Emissions - Tx Mode - 1GHz to 2GHz

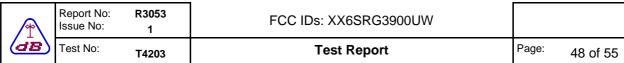
Company:	Sepura		Product:	SRG3900UW	
Date:	07/02/2012		Test Eng:	Dave Smith	
Method:	FCC part 90		Method:		
Limit1:(VIO)	Att 43+10log(p	o)	Limit2:		
Limit3:			Limit4:		
Black: 450MHz. Blue :460MHz Red: 470MHz		th horizontal and v			
Facility:	Anech_2	Height	1m	Mode:	Тх
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H210773B		

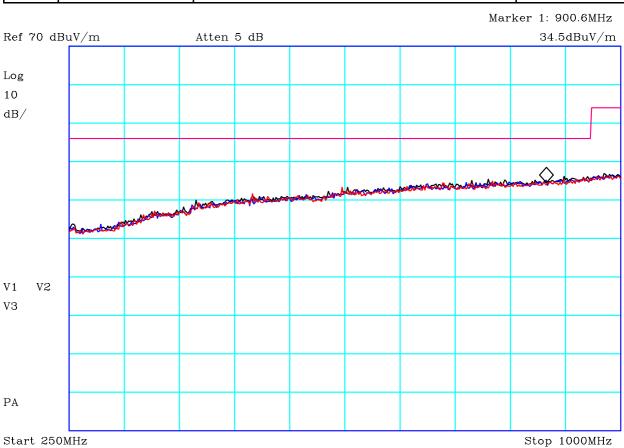

PLOT 22 Radiated Emissions - Tx Mode - 2GHz to 5GHz


E							
Company:	Sepura	Product:	SRG3900UW				
Date:	07/02/2012	Test Eng:	Dave Smith				
Method:	FCC part 90	Method:					
Limit1:(VIO)	Att 43+10log(p)	Limit2:					
Limit3:		Limit4:					
With DMU							
Transmit Made	Transmit Made, Maximum of both harizantal and vertical						

Transmit Mode. Maximum of both horizontal and vertical.

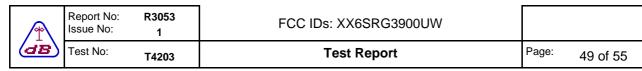
Black: 450MHz. Blue :460MHz Red: 470MHz

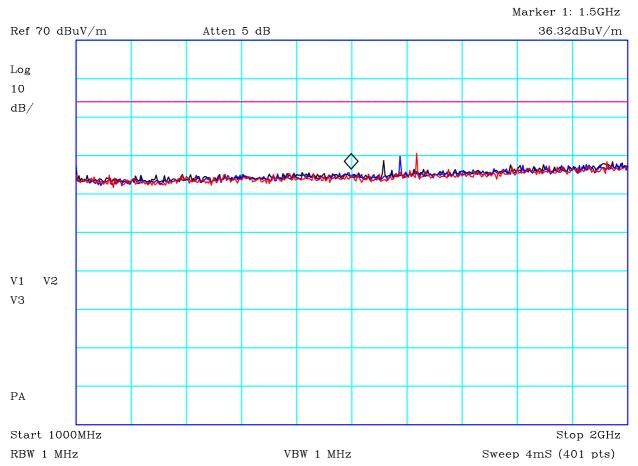

Facility:	Anech_2	Height	1m	Mode:	Tx
Distance	1.5m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2107781		



PLOT 23 Radiated Emissions - Rx Mode - 25MHz to 275MHz

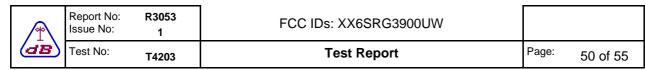
Company:	Sepura		Product:	SRG3900UW	
Date:	06/02/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4	ļ	Method:		
Limit1:(VIO)	FCC(B)@3n	n	Limit2:		
Limit3:			Limit4:		
With DMU Receive Mode. Black: 450MHz. Blue :460MHz Red: 470MHz		oth horizontal an	d vertical.		
Facility:	Anech_2	Height	1.5m	Mode:	Rx
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H21065C3		

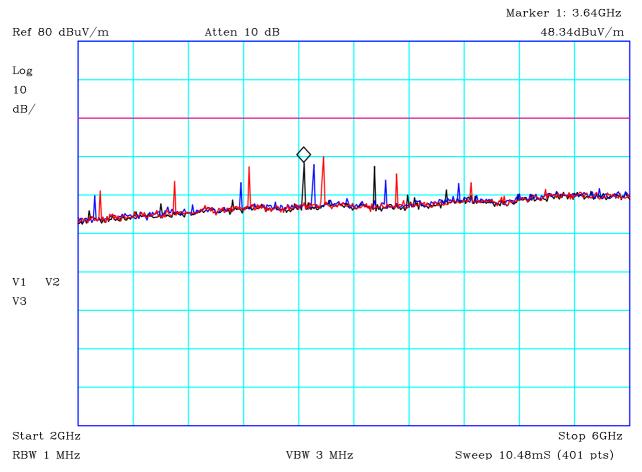

VBW 300 kHz


Sweep 119.9mS (401 pts)

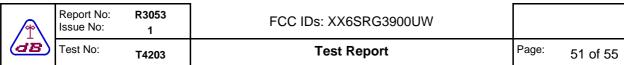
RBW 120 kHz

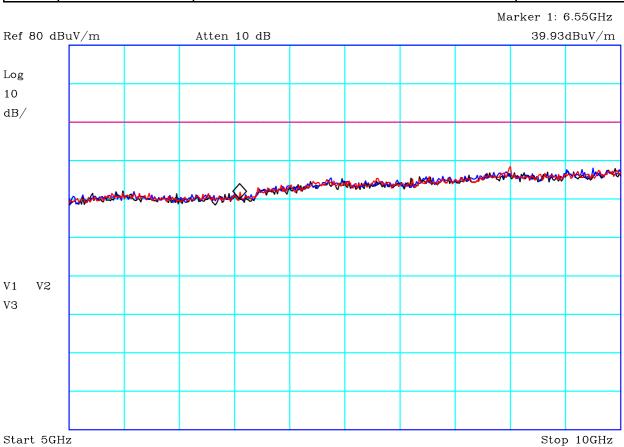
PLOT 24 Radiated Emissions - Rx Mode - 250MHz to 1 GHz


Company:	Sepura		Product:	SRG3900UW	
Date:	06/02/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Facility:	Anech_2	Height	1.5m	Mode:	Rx
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2106569		
With DMU Receive Mode Black: 450MHz Blue :460MHz Red: 470MHz	. Maximum of bot	h horizontal an	nd vertical.		



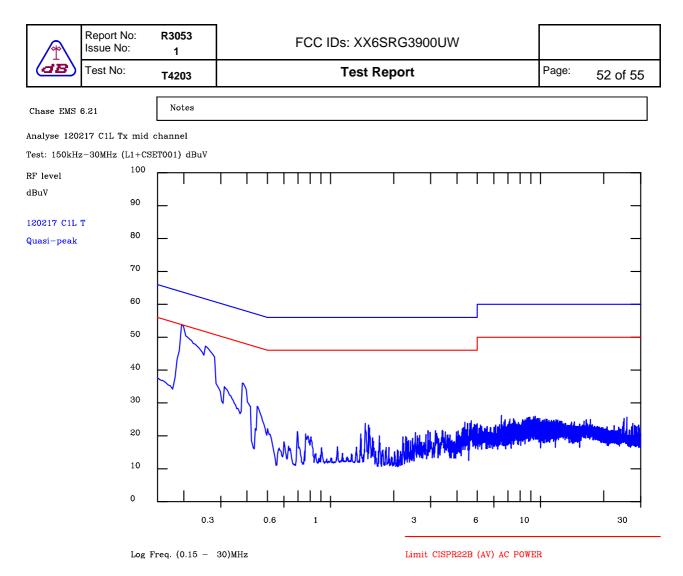
PLOT 25 Radiated Emissions - Rx Mode - 1GHz to 2GHz


Company:	Sepura		Product:	SRG3900UW	
Date:	07/02/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: 450MHz Blue :460MHz Red: 470MHz		th horizontal and	d vertical.		
Facility:	Anech_2	Height	1m	Mode:	Rx
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2107722		



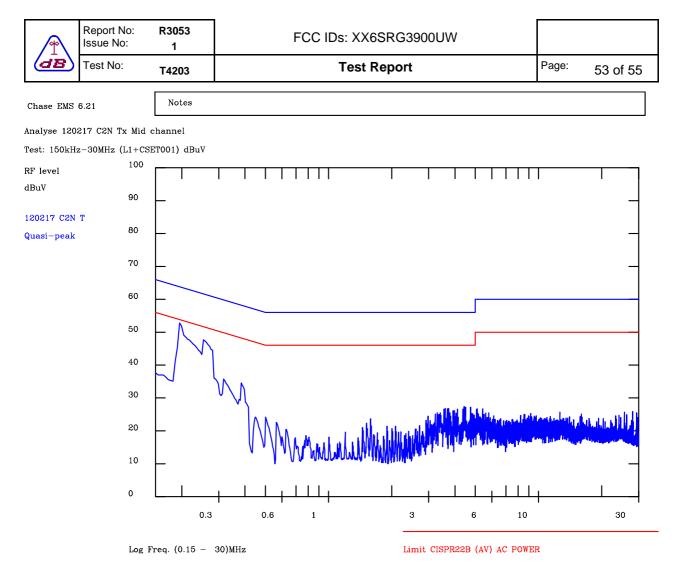
PLOT 26 Radiated Emissions - Rx Mode - 2GHz to 5GHz

Company:	Sepura		Product:	SRG3900UW	
Date:	07/02/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@1.5	5m	Limit2:		
Limit3:			Limit4:		
With DMU Receive Mode. Black: 450MHz. Blue:460MHz Red: 470MHz		oth horizontal an	d vertical.		
Facility:	Anech_2	Height	1m	Mode:	Rx
Distance	1.5m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H210779E		


VBW 3 MHz

Sweep 13.11mS (401 pts)

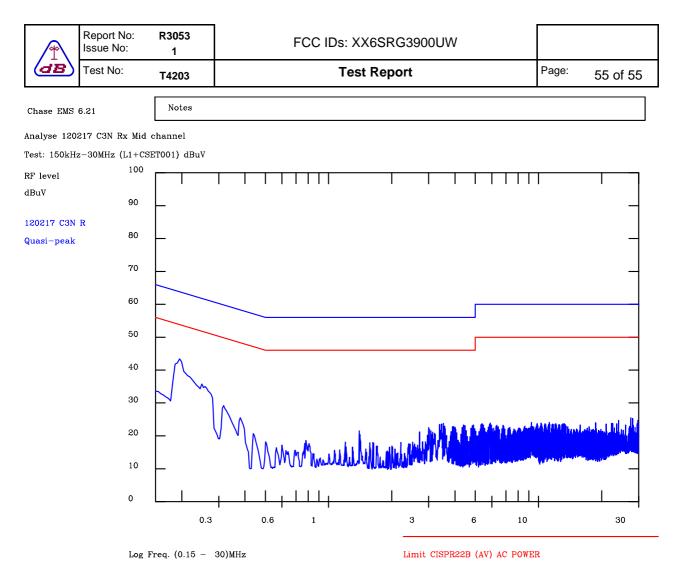
RBW 1 MHz


PLOT 27 Radiated Emissions - Rx Mode - 5GHz to 10GHz

Company:	Sepura		Product:	SRG3900UW	
Date:	07/02/2012		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@1.5	m	Limit2:		
Limit3:			Limit4:		
Black: 450MHz Blue :460MHz Red: 470MHz			d vertical.		
Facility:	Anech_2	Height	1m	Mode:	Rx
Distance	1.5m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H21077B3		

PLOT 28 Conducted Emissions - Tx mode - Live

Company:	Sepura		Product:	SRG3900UW		
Date:	17 Feb 12		Test Enginee	er: Dave Smith		
Test:	FCC pt 15		Limit:	FCC (B) QP	+ AV	
Notes:						
With DMU.						
Transmit on mi	d channel.					
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	Tx	
Detector:	QuasiPeak			Mod. State:	0	
LISN:	EMCO	Filename:	C221749B.plt			


PLOT 29 Conducted Emissions - Tx mode - Neutral

Company:	Sepura		Product:	SRG3900UW		
Date:	17 Feb 12		Test Engine	er: Dave Smith		
Test:	FCC pt 15		Limit:	FCC (B) QP	+ AV	
Notes: With DMU.						
Transmit on m	id channel.					
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode:	Tx	
Detector:	QuasiPeak			Mod. State:	0	
LISN:	EMCO	Filename:	C22174A8.plt			

→	Report No: Issue No:	R3053 1	FCC IDs: XX6SRG3900UW	l	
dB	Test No:	T4203	Test Report	Page:	54 of 55
Chase EMS	6.21	Notes			
Analyse 1202	217 CL Rx Mid C	hannel			
Test: 150kHz	z-30MHz (L1+CS	ET001) dBuV			
RF level	100				
dBuV	90				
120217 CL R	x				
Quasi-peak	80	-			_
	70	_			4
	60				
	50				
	40	<u>-</u> N			4
	30	1/W			_
	20	_		Attitudada	
	10	_	White the state of	, he talk promote	- union
	0		+ + + + + + + + + + + + + + + + + + + +	 	
		0.3	0.6 1 3 6 10		30
	Log I	Freq. (0.15 -	30)MHz Limit CISPR22B (AV) AC POWER		

PLOT 30 Conducted Emissions - Rx Mode - Live

Company:	Sepura		Product:	SRG3900UW			
Date:	17 Feb 12		Test Enginee	er: Dave Smith			
Test:	FCC pt 15		Limit:	FCC (B) QP	FCC(B) QP + AV		
Notes:							
With DMU.							
Receive on mid	channel.						
Line:	Live	Attenuator:	10dB PAD	Operating Mode:	Rx		
Detector:	QuasiPeak			Mod. State:	0		
LISN:	EMCO	Filename:	C22174CD.plt				

PLOT 31 Conducted Emissions - Rx mode - Neutral

Company:	Sepura		Product:	SRG3900UW			
Date:	17 Feb 12		Test Enginee	er: Dave Smith			
Test:	FCC pt 15		Limit:	FCC (B) QP	(B) $QP + AV$		
Notes:							
With DMU.							
Receive on mid	channel.						
Line:	Neutral	Attenuator:	10dB PAD	Operating Mode:	Rx		
Detector:	QuasiPeak			Mod. State:	0		
LISN:	EMCO	Filename:	C22174BE.plt				