

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 1 of 100

dB Technology

..... (Cambridge Ltd.)

EMC
Testing

EMC
Consultancy

EMC
Training

23, Headington Drive,
Cambridge.
CB1 9HE
Tel : 01954 251974 (test site)
or : 01223 241140 (accounts)
Fax : 01954 251907
web : www.dbtechnology.co.uk
email: mail@dbtechnology.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

**Performed at:
TWENTY PENCE TEST SITE**

**Twenty Pence Road,
Cottenham,
Cambridge
U.K.
CB24 8PS**

on

Sepura PLC

SRG3500

dated

22nd June 2012

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	06/07/12		Initial release		

Based on report template:
v090319

*This report shall not be reproduced except in full, without the written approval of:
dB Technology (Cambridge) Ltd.*

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 2 of 100

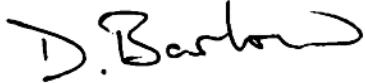
Equipment Under Test (EUT): SRG3500

Test Commissioned by:
Sepura PLC
Radio House
St Andrews Road
Cambridge
Cambridgeshire
CB4 1GR

Representative: Bob Allen

Test Started: 10th May 2012

Test Completed: 20th June 2012


Test Engineer: Dave Smith

Date of Report: 22nd June 2012

Written by: Dave Smith Checked by: Derek Barlow

Signature:

Date: 22nd June 2012 Date: 6th July 2012

Signature:

dB Technology can only report on the specific unit(s) tested at its site. The responsibility for extrapolating this data to a product line lies solely with the manufacturer.

Test Standards Applied

Part 90 *Private Land Mobile Radio Services*
of
CFR47

CFR 47 Part 15 *Code of Federal Regulations: Pt 15 Subpart B- Radio Frequency Devices - Unintentional Radiators*

	Report No: R3112	FCC ID: XX6-SRG3500XB			Page: 3 of 100
	Issue No: 1	Test No: T4354	Test Report		

Emissions Test Results Summary

Part 90

Test	Port	Method	Limit	PASS/FAIL	PASS
Output Power Radiated		90.205	90.205(h)	No Limit	#1
Output Power Conducted	antenna	90.205 2.1046	90.205(h)	No Limit	#1
Types of Emissions	antenna	90.207 2.1047	Specified by manufacturer		
Bandwidth	antenna	90.209 2.1049	90.209(b)(5)	PASS	#2
Emissions Masks Radiated		90.210 2.1051	90.221(d)	PASS	#3
Emissions Masks Conducted	antenna	90.210 2.1051	90.221(d)	PASS	#3
Frequency Stability	antenna	90.213 2.1055	90.213	PASS	
Frequency Transient Behaviour	antenna	90.214	90.214	PASS	
Adjacent Channel Power		90.221	90.221(b)	PASS	

specs_canadav111211

CFR 47 Part 15

Test	Port	Method	Limit	PASS/FAIL	PASS
Conducted Emissions	ac power	ANSI C63.4:2003	FCC_B	PASS	
Radiated Emissions		ANSI C63.4:2003	FCC_B	PASS	

specs_fccv100412

- #1 There is no specific limit on output power.
- #2 The additional note 6 of FCC Waiver 11-63 was applied which allows a bandwidth of up to 22kHz providing the additional Adjacent Channel Power requirements are met.
- #3 The additional note 5 of FCC Waiver 11-63 was applied which only stipulates limits 75kHz from the carrier providing the additional Adjacent Channel Power requirements are met.

This Report shows that the EUT met all of the requirements for the tests performed - as shown above.

	Report No: R3112	FCC ID: XX6-SRG3500XB	
	Issue No: 1		
Test No: T4354	Test Report		Page: 4 of 100

Contents

1 EUT Details	6
1.1 General	6
1.2 Modifications to EUT and Peripherals	7
1.3 EUT Operating Modes	7
<i>Figure 1 Configuration 1: EUT and Peripherals</i>	8
<i>Figure 2 Configuration 2 - DMU: EUT and Peripherals</i>	9
<i>Photograph 1 SRG3500: Connected to Agilent Analyser</i>	10
<i>Photograph 2 Configuration 1: Radiated Emissions - Front</i>	11
<i>Photograph 3 Configuration 1: Radiated Emissions - Back</i>	11
<i>Photograph 4 DMU: Radiated Emissions - Front</i>	12
<i>Photograph 5 DMU: Radiated Emissions - Back</i>	12
2 Test Equipment	13
3 Test Methods	14
3.1 Antenna Conducted Carrier Power	14
3.2 Antenna Conducted Transmitter Unwanted Emissions	14
3.3 Antenna Conducted Occupied Bandwidth	14
3.4 Antenna Conducted Adjacent Channel Power	14
3.5 Frequency Stability	14
3.6 Transient Frequency Behaviour	15
3.7 Radiated Transmitter Emissions (Substitution Method)	16
3.8 Receiver Radiated Emissions	16
3.9 Conducted Emissions - ac power	17
4 Test Results	17
4.1 Conducted Antenna Output Power	18
4.2 Conducted Antenna Occupied Bandwidth	19
4.3 Frequency Stability - DMO Mode - Absolute Frequency Measurements	20
4.4 Frequency Stability - DMO Mode - Deviations from Nominal Volt/Temp - ppm	21
4.5 Frequency Stability - TMO Mode - Frequency Error Hz	22
4.6 Frequency Stability - TMO Mode - Deviation from nominal volt/temp - ppm	23
4.7 Conducted Emission Antenna Adjacent Channel Power	24
4.8 Transmitter Transient Frequency Behaviour - Results	25
4.9 Conducted Emission Antenna Spurious Emissions	26
4.10 Radiated Emissions - Transmit Carrier ERP - Configuration 1	27
4.11 Radiated Emissions - Transmit Carrier ERP - DMU	28
4.12 Radiated Emissions - Transmit Spur - Config 1 - 806MHz to 824MHz band	29
4.13 Radiated Emissions - Transmit Spur - Config 1 - 851MHz to 869MHz band	30
4.14 Radiated Emissions - Transmit Spurious - DMU - 806MHz to 824MHz band	31
4.15 Radiated Emissions - Transmit Spurious - DMU - 851MHz to 869MHz band	32
4.16 Radiated Emissions - Receive Mode - Configuration 1 - below 1GHz	33
4.17 Radiated Emissions - Receive Mode - Configuration 1 - above 1GHz	34
4.18 Radiated Emissions - Receive Mode - DMU- below 1GHz	35
4.19 Radiated Emissions - Receive Mode - DMU - above 1GHz - Vertical	36
4.20 Radiated Emissions - Receive Mode - DMU - above 1GHz - Horizontal	37
4.21 Conducted Emissions (Power) - Results	38
<i>PLOT 1 Conducted Antenna Output Power (817MHz)</i>	39
<i>PLOT 2 Conducted Antenna Output Power (824MHz)</i>	40
<i>PLOT 3 Conducted Antenna Output Power (862MHz)</i>	41
<i>PLOT 4 Conducted Antenna Output Power (869MHz)</i>	42
<i>PLOT 5 Occupied Bandwidth (817MHz)</i>	43
<i>PLOT 6 Occupied Bandwidth (824MHz)</i>	44
<i>PLOT 7 Occupied Bandwidth (862MHz)</i>	45
<i>PLOT 8 Occupied Bandwidth (869MHz)</i>	46
<i>PLOT 9 Adjacent Channel Power (817MHz)</i>	47
<i>PLOT 10 Adjacent Channel Power (824MHz)</i>	48
<i>PLOT 11 Adjacent Channel Power (862MHz)</i>	49
<i>PLOT 12 Adjacent Channel Power (869MHz)</i>	50

	Report No: R3112	FCC ID: XX6-SRG3500XB	
	Issue No: 1		
	Test No: T4354	Test Report	Page: 5 of 100

<i>PLOT 13</i>	<i>Transient Frequency - 817MHz - On</i>	51
<i>PLOT 14</i>	<i>Transient Frequency - 824MHz - On</i>	51
<i>PLOT 15</i>	<i>Transient Frequency - 862MHz - On</i>	52
<i>PLOT 16</i>	<i>Transient Frequency - 869MHz - On</i>	52
<i>PLOT 17</i>	<i>Transient Frequency - 817MHz - Off</i>	53
<i>PLOT 18</i>	<i>Transient Frequency - 824MHz - Off</i>	53
<i>PLOT 19</i>	<i>Transient Frequency - 862MHz - Off</i>	54
<i>PLOT 20</i>	<i>Transient Frequency - 869MHz - Off</i>	54
<i>PLOT 21</i>	<i>Antenna Conducted Spur Emissions - 817 to 824 Band - 9kHz to 500MHz</i>	55
<i>PLOT 22</i>	<i>Antenna Conducted Spur Emissions - 862 to 869 Band - 9kHz to 500MHz</i>	56
<i>PLOT 23</i>	<i>Antenna Conducted Spur Emissions - 817 to 824 Band - 500MHz to 1GHz</i>	57
<i>PLOT 24</i>	<i>Antenna Conducted Spur Emissions - 862 to 869 Band - 500MHz to 1GHz</i>	58
<i>PLOT 25</i>	<i>Antenna Conducted Spur Emissions - 817 to 824 Band - 1GHz to 2GHz</i>	59
<i>PLOT 26</i>	<i>Antenna Conducted Spur Emissions - 862 to 869 Band - 1GHz to 2GHz</i>	60
<i>PLOT 27</i>	<i>Antenna Conducted Spur Emissions - 817 to 824 Band - 2GHz to 10GHz</i>	61
<i>PLOT 28</i>	<i>Antenna Conducted Spur Emissions - 862 to 869 Band - 2GHz to 10GHz</i>	62
<i>PLOT 29</i>	<i>Radiated Emissions - Config 1 - 817 - 824 band Tx - 25MHz to 500MHz</i>	63
<i>PLOT 30</i>	<i>Radiated Emissions - Config 1 - 862 - 869 band Tx - 25MHz to 500MHz</i>	64
<i>PLOT 31</i>	<i>Radiated Emissions - Config 1 - 817 - 824 band Tx - 250MHz to 1GHz</i>	65
<i>PLOT 32</i>	<i>Radiated Emissions - Config 1 - 862 - 869 band Tx - 250MHz to 1GHz</i>	66
<i>PLOT 33</i>	<i>Radiated Emissions - Config 1 - 817 - 824 band Tx - 500MHz to 1GHz - with notch filter</i>	67
<i>PLOT 34</i>	<i>Radiated Emissions - Config 1 - 862 - 869 band Tx - 500MHz to 1GHz - with notch filter</i>	68
<i>PLOT 35</i>	<i>Radiated Emissions - Config 1 - 817 - 824 band Tx - 1GHz to 2GHz</i>	69
<i>PLOT 36</i>	<i>Radiated Emissions - Config 1 - 862 - 869 band Tx - 1GHz to 2GHz</i>	70
<i>PLOT 37</i>	<i>Radiated Emissions - Config 1 - 817 - 824 band Tx - 2GHz to 6GHz</i>	71
<i>PLOT 38</i>	<i>Radiated Emissions - Config 1 - 862 - 869 band Tx - 2GHz to 6GHz</i>	72
<i>PLOT 39</i>	<i>Radiated Emissions - Config 1 - 817 - 824 band Tx - 5GHz to 10GHz</i>	73
<i>PLOT 40</i>	<i>Radiated Emissions - Config 1 - 862 - 869 band Tx - 5GHz to 10GHz</i>	74
<i>PLOT 41</i>	<i>Radiated Emissions - DMU - 817 - 824 band Tx - 25MHz to 500MHz</i>	75
<i>PLOT 42</i>	<i>Radiated Emissions - DMU - 862 - 869 band Tx - 25MHz to 500MHz</i>	76
<i>PLOT 43</i>	<i>Radiated Emissions - DMU - 817 - 824 band Tx - 250MHz to 1GHz</i>	77
<i>PLOT 44</i>	<i>Radiated Emissions - DMU - 862 - 869 band Tx - 250MHz to 1GHz</i>	78
<i>PLOT 45</i>	<i>Radiated Emissions - DMU - 817 - 824 band Tx - 500MHz to 1GHz - with notch filter</i>	79
<i>PLOT 46</i>	<i>Radiated Emissions - DMU - 862 - 869 band Tx - 500MHz to 1GHz - with notch filter</i>	80
<i>PLOT 47</i>	<i>Radiated Emissions - DMU - 817 - 824 band Tx - 1GHz to 2GHz</i>	81
<i>PLOT 48</i>	<i>Radiated Emissions - DMU - 862 - 869 band Tx - 1GHz to 2GHz</i>	82
<i>PLOT 49</i>	<i>Radiated Emissions - DMU - 817 - 824 band Tx - 2GHz to 6GHz</i>	83
<i>PLOT 50</i>	<i>Radiated Emissions - DMU - 862 - 869 band Tx - 2GHz to 6GHz</i>	84
<i>PLOT 51</i>	<i>Radiated Emissions - DMU - 817 - 824 band Tx - 5GHz to 10GHz</i>	85
<i>PLOT 52</i>	<i>Radiated Emissions - DMU - 862 - 869 band Tx - 5GHz to 10GHz</i>	86
<i>PLOT 53</i>	<i>Radiated Emissions - Config 1 - Rx - 25MHz to 275MHz</i>	87
<i>PLOT 54</i>	<i>Radiated Emissions - Config 1 - Rx - 250MHz to 1GHz</i>	88
<i>PLOT 55</i>	<i>Radiated Emissions - Config 1 - Rx - 1GHz to 2GHz</i>	89
<i>PLOT 56</i>	<i>Radiated Emissions - Config 1 - Rx - 2GHz to 10GHz</i>	90
<i>PLOT 57</i>	<i>Radiated Emissions - DMU - Rx - 25MHz to 275MHz</i>	91
<i>PLOT 58</i>	<i>Radiated Emissions - DMU - Rx - 250MHz to 1GHz</i>	92
<i>PLOT 59</i>	<i>Radiated Emissions - DMU - Rx - 1GHz to 2GHz</i>	93
<i>PLOT 60</i>	<i>Radiated Emissions - DMU - Rx - 2GHz to 10GHz</i>	94
<i>PLOT 61</i>	<i>Conducted Emissions - Transmit Mode (817MHz) - Neutral Line</i>	95
<i>PLOT 62</i>	<i>Conducted Emissions - Transmit Mode (817MHz) - Live Line</i>	96
<i>PLOT 63</i>	<i>Conducted Emissions - Transmit Mode (862MHz) - Live Line</i>	97
<i>PLOT 64</i>	<i>Conducted Emissions - Transmit Mode (862MHz) - Neutral Line</i>	98
<i>PLOT 65</i>	<i>Conducted Emissions - Receive Mode Neutral Line</i>	99
<i>PLOT 66</i>	<i>Conducted Emissions - Receive Mode - Live Line</i>	100

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 6 of 100

1 EUT Details

1.1 General

The EUT was a TETRA Voice + Data Mobile Station.

The transmitter can operate over the following frequency bands:

817MHz to 824MHz in Trunked Mode Operation (TMO mode)
862MHz to 869MHz in Direct Mode Operation (DMO mode)

The receiver can operate over the following frequency bands:

817MHz to 824MHz

862MHz to 869MHz

Measurements were made at the top and bottom of the appropriate frequency range:

Bottom: 817 MHz
Top: 824 MHz

Bottom: 862 MHz
Top: 869 MHz

The nominal output power is 40dBm (10W).

The unit is normally powered from a lead acid vehicle battery with nominal voltage of 13.2V.

The product is intended to comply with the FCC part 90 requirements using the "Tetra Waiver" as described in FCC 11-63.

Radiated field strength tests were performed at the dB Technology Test Site Registered with the FCC: Registration number: 90528.

Unless otherwise stated, tests were performed with nominal power supply voltage.

The device can be used with a variety of peripherals and therefore radiated tests were performed in two separate configurations. Details of the configurations are given in the tables below.

	Description	P/N	Gain
Configuration 1	Tetra		
Configuration 2/DMU	Tetra for DMU		

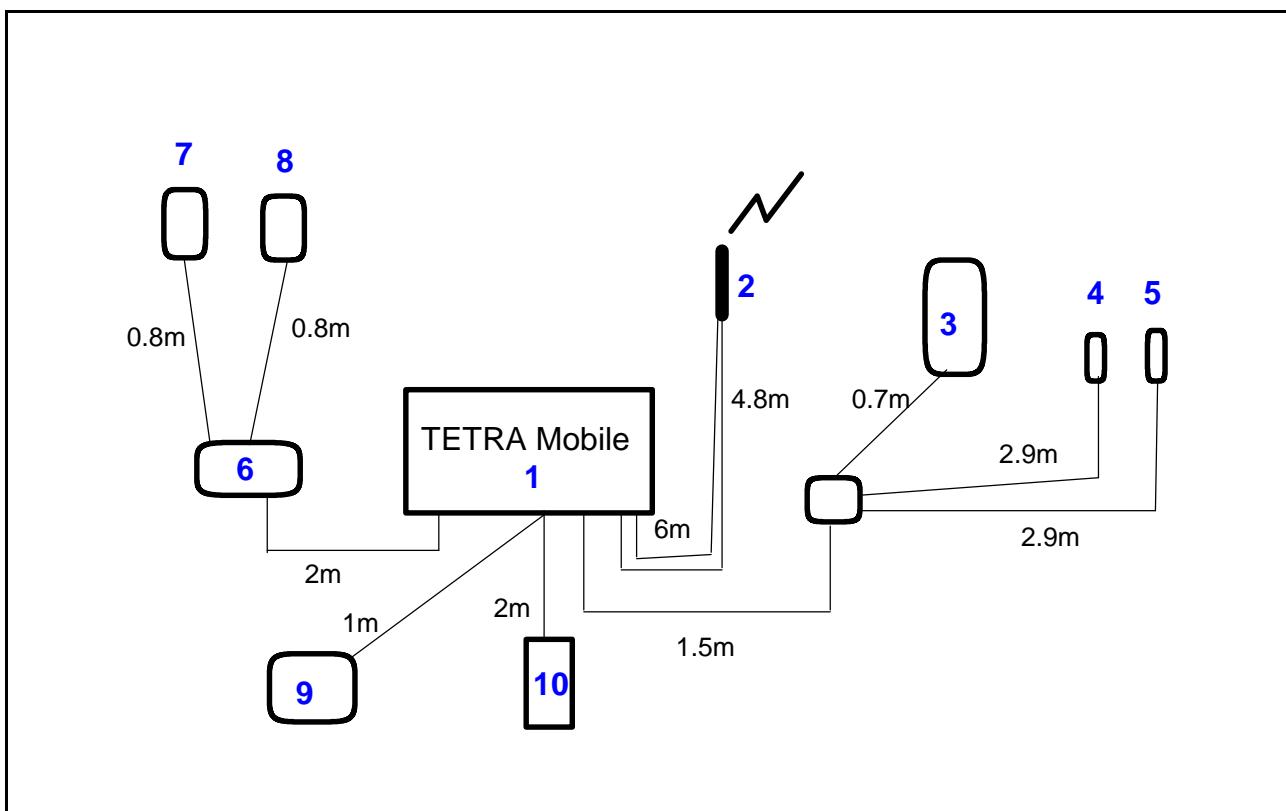
	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 7 of 100

1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
0	Original sample as supplied.	

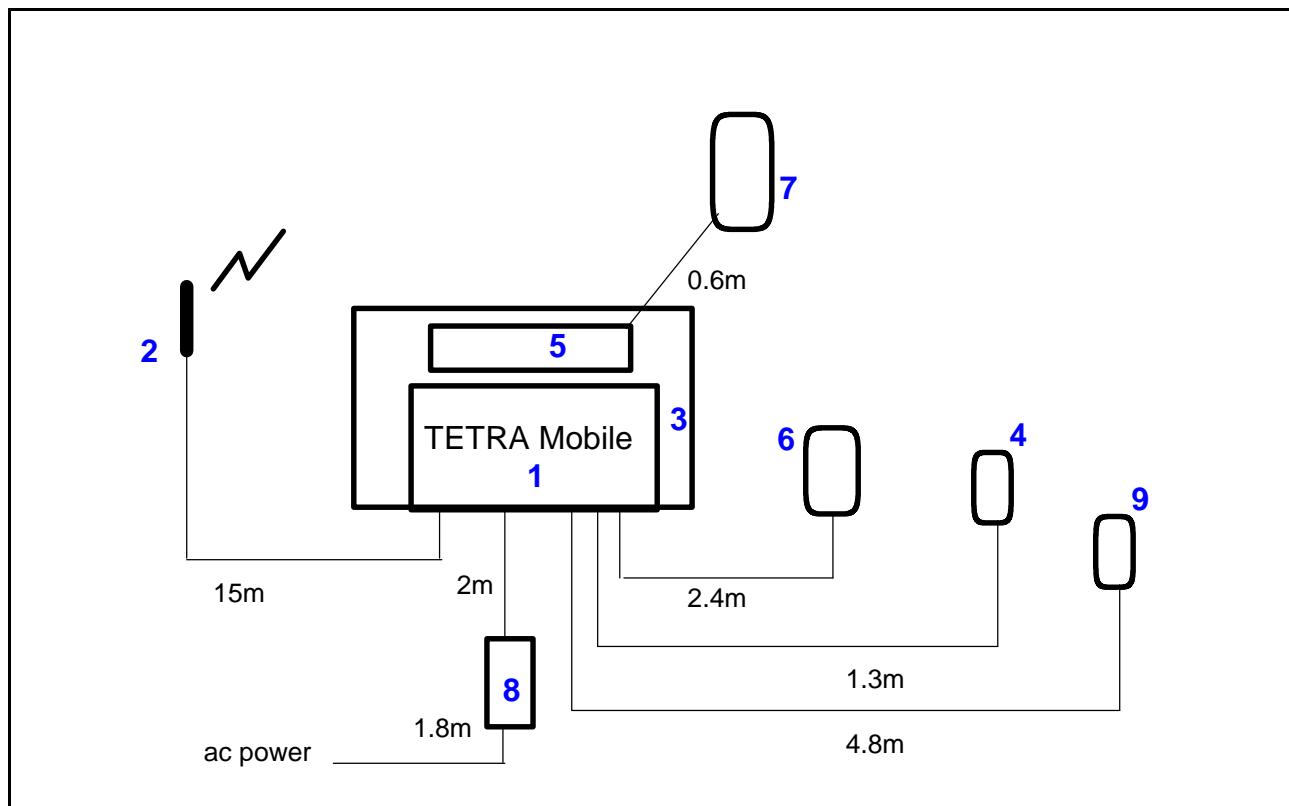
1.3 EUT Operating Modes

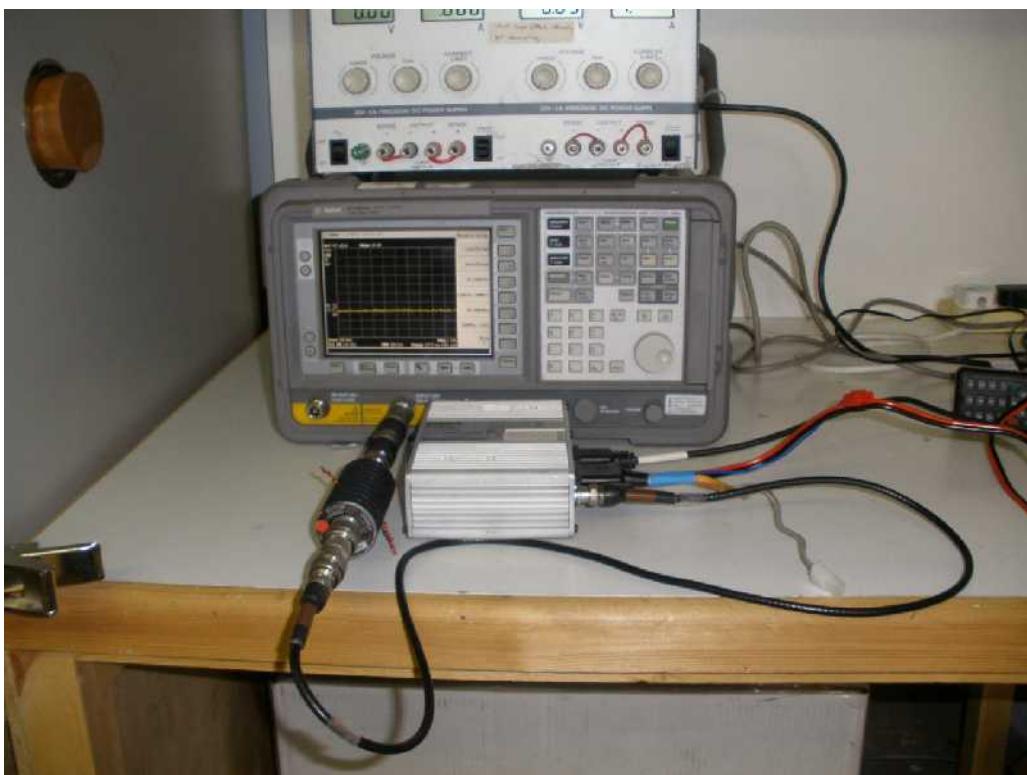

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	Transmitting on selected channel.
2	Receiving on selected channel.

List of Equipment for Configuration 1:

Item	Manufacturer	Model	Description	Serial No:	Notes
1	Sepura	SRG3500	TETRA Mobile Station		
2	Sepura	300-00390	Antenna TETRA		
3	Sepura	300 00668	Handset Based Console		
4	Sepura	300 00295	Hands Free Kit Switch		
5	Sepura	300 00294	Hands Free Kit Mic		
6	Sepura	300 00217	Apps Interface Unit		
7	Sepura	300 00061	Handset		
8	Sepura	300 00062	Fist Mic		
9	Sepura	300 00719	Speaker		
10	Kingshill	18V10CA	Bench Power Supply	566	

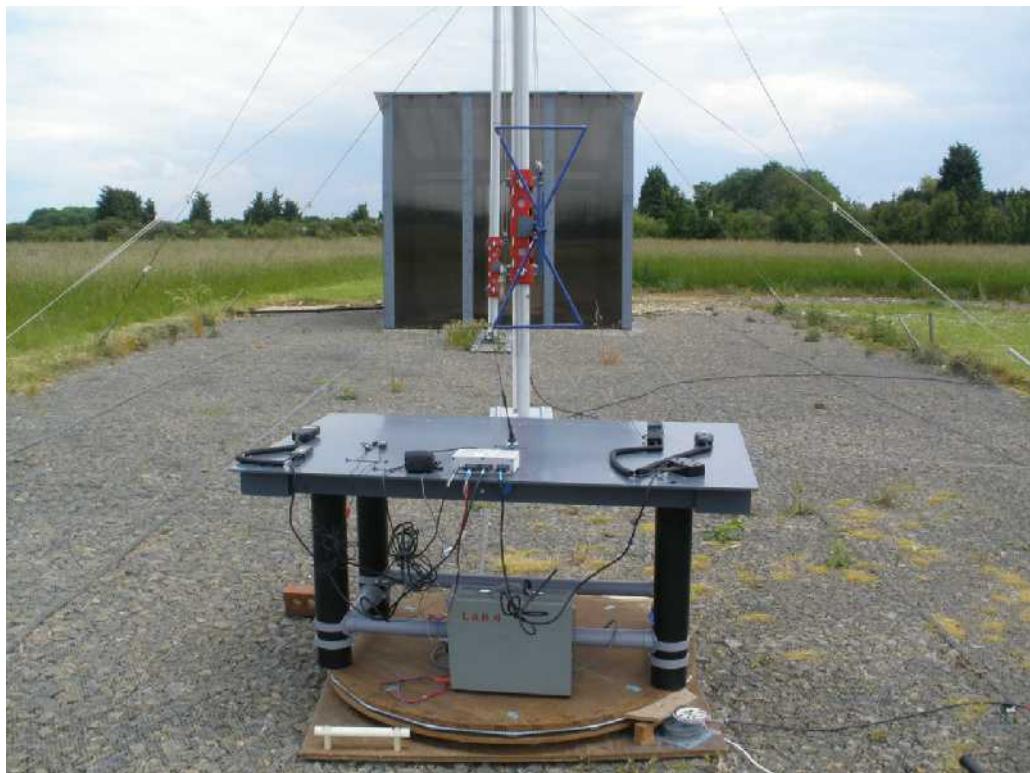

Figure 1 Configuration 1: EUT and Peripherals


List of Equipment for Configuration 2 - Desk Mount Unit (DMU) :

Item	Manufacturer	Model	Description	Serial No:	Notes
1	Sepura	SRG3500	TETRA Mobile Station		
2	Sepura	300-00993	Antenna		
3	Sepura	300 00073	Desk Mount Unit		
4	Sepura	300 00074	Gooseneck Mic		
5	Sepura	300 00771	IP 54 Colour Console		
6	Sepura	300 00076	Foot Switch		
7	Sepura	300 00061	Handset		
8	PowerSolve	PSE65-12/SEY	AC-DC supply	C2224642	
9	Sepura	300 00588	Virtual Console cable		

Figure 2 Configuration 2 - DMU: EUT and Peripherals

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 10 of 100



Photograph 1 SRG3500: Connected to Agilent Analyser

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 11 of 100

Photograph 2 Configuration 1: Radiated Emissions - Front

Photograph 3 Configuration 1: Radiated Emissions - Back

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 12 of 100

Photograph 4 DMU: Radiated Emissions - Front

Photograph 5 DMU: Radiated Emissions - Back

	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1			
Test No: T4354	Test Report			Page: 13 of 100

2 Test Equipment

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

Ref No:	Details	Serial Number	Cal Date	Cal Interval
A19	EMCO 3115 DR Guide (1-18GHz)	2431	23/01/2012	1 year
A23	EMCO 3115 DR Guide (1-18GHz)	9507-4525	31/01/2012	1 year
A24	Chase X-wing Bilog CBL6144 26MHz-3GHz	27590	18/11/2011	1 year
A30	Schwarzbeck MiniBicon (30MHz to 1GHz)	9115-180	21/01/2010	3 years
A5	Chase Bilog CBL6111A	1760	31/01/2012	1 year
L1	EMCO 3825/2 LISN	1358	16/02/2012	1 year
PM6	Marconi 6960B RF Power Meter	236923/003	20/12/2011	1 year
PRE3	dB Tech 100M-20G 36dB pre-amp	03	08/01/2012	1 year
PS10	Marconi 6910 RF Power Sensor (-30dBm / + 20dBm) 10MHz to 20GHz	5009	20/12/2011	1 year
R1	CHASE LHR 7000	1056	31/01/2012	1 year
R4	R&S ESVS10	843744/002	16/12/2011	1 year
R8	Agilent E7405A Spectrum Analyser	MY44212494	19/09/2011	1 year
R9	Agilent E7405A Spectrum Analyser	MY45110758	21/11/2011	1 year
RFF15	Band Pass Filter 1GHz to 2GHz	15	08/02/2012	1 year
RFF16	500MHz to 1GHz Notch Filter	FF204-3	08/02/2012	1 year
RFF17	Low Pass RF Filter 550MHz	17	08/02/2012	1 year
RFF22	High Pass Filter - 1.35GHz (10GHz) MicroTronics HPM13017	033	20/12/2011	1 year
SG16	Marconi 6203 Microwave Test Set (10MHz - 26.5GHz)	236252/025	08/02/2012	1 year
SG9	HP 8648C 9kHz-3.2GHz Signal Generator	3847A05254	08/02/2012	1 year
SEP1	R&S FSU Spectrum Analyser	200088	02/04/2009	3 years
TTS	IFR 2968 Tetra radio Test Set	296501/107	11/11/2011	1 year

The Tetra Test Set is owned by Sepura.

The calibration of the signal generator was not critical because its output frequency, level and modulation were measured with calibrated equipment during each test.

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 14 of 100

3 Test Methods

3.1 Antenna Conducted Carrier Power

The antenna output is connected to a spectrum analyser via a suitable PAD. The bandwidth on the spectrum analyser is set to greater than the EUT occupied bandwidth. A peak measurement is recorded. Additional measurements are made with antenna output connected to a power meter providing average measurements.

3.2 Antenna Conducted Transmitter Unwanted Emissions

Measurements are made with the antenna output connected to a spectrum analyser via a suitable PAD. Sweeps are made over the specified frequency ranges . The limit is set relative to the measured carrier power. A peak detector is used.

3.3 Antenna Conducted Occupied Bandwidth

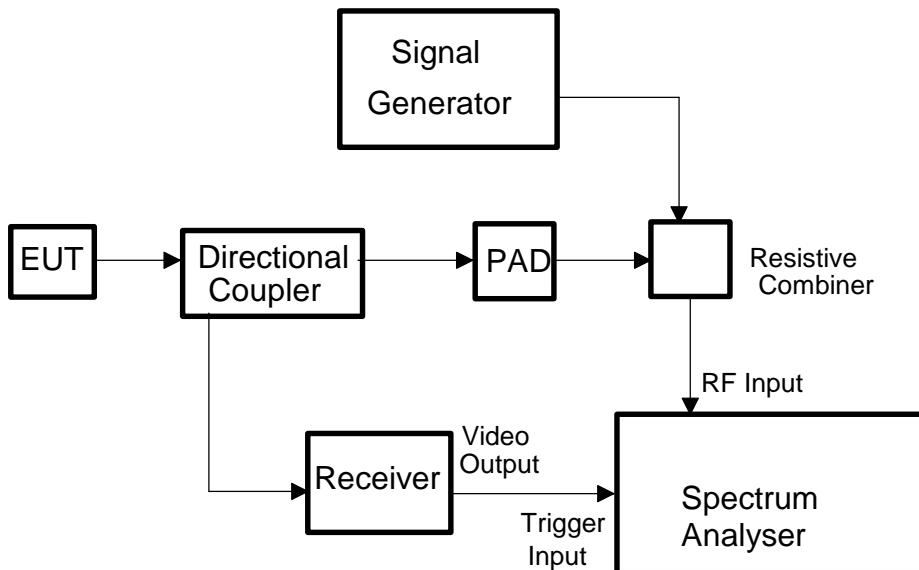
Measurements are made with the antenna output connected to a spectrum analyser via a suitable PAD. Sweeps are made with a 300Hz Resolution Bandwidth and a 1kHz Video Bandwidth. A peak detector is used. Markers are used to determine the 99% power bandwidth.

3.4 Antenna Conducted Adjacent Channel Power

Measurements are made with the antenna output connected to an R&S FSU Spectrum Analyser via a suitable PAD. The Analyser is set to make adjacent channel power measurements using the pre-configured settings for Tetra with 25kHz channel spacing.

3.5 Frequency Stability

The EUT is placed in an environmental chamber. The temperature inside the chamber is set to the required level and allowed to stabilise.


For DMO mode the antenna output is connected to a spectrum analyser via a suitable PAD. The EUT is set to transmit with constant carrier (at a frequency 2.25kHz above channel centre frequency). The frequency is measured using the frequency counter function of the spectrum analyser.

For TMO mode the antenna output is connected to a Tetra Test Set. The EUT is set to transmit using normal burst operation. the frequency error, as indicated by the Tetra Test Set, is recorded.

Measurements are made at the specified temperature and over the required voltage supply range of the EUT.

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 15 of 100

3.6 Transient Frequency Behaviour

The test equipment was set up as shown above.

The spectrum analyser was set to 0Hz span with its inbuilt FM demodulation function activated.

Initially only the EUT was set to transmit an unmodulated signal and the centre frequency of the analyser adjusted to give 0Hz FM deviation.

The EUT transmitter was then switched off and the signal generator set to provide a carrier only output. The frequency of the signal generator was adjusted to again give 0Hz FM deviation on the spectrum analyser.

The signal generator FM modulation was then switched on and adjusted to give 25kHz FM deviation on the spectrum analyser.

The spectrum analyser was then set to trigger only on video output from the receiver. The directional coupler was used to feed an attenuated portion of the EUT transmitter into the receiver. The receiver was tuned to the transmit frequency and so produced a change on its video output when the transmitter was switched on and off. This signal was used to trigger the spectrum analyser.

FM deviation data was recorded from the spectrum analyser for both carrier switch on and switch off and at all three test frequencies.

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 16 of 100

3.7 Radiated Transmitter Emissions (Substitution Method)

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables were manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured using a substitution method. Maximised emission readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

The EUT is then replaced with a calibrated reference antenna fed from a signal generator. The level fed into the reference antenna is measured with a power meter. Measurements are made to determine the power output of the signal generator required to give the same emission levels as were observed from the EUT.

The radiated power from the EUT is calculated as:

Signal Level fed into Reference Antenna + Gain of Reference Antenna + Radiated Level From EUT - Radiated Level From Reference Antenna

For example, assuming following measurements:

Signal Level fed into Reference Antenna	= -14.3dBm
Gain of Reference Antenna	= 7.1 dBi
Radiated Level from EUT (i.e. Level at Measuring Receiver)	= 37 dBuV
Radiated Level from Reference Antenna (i.e. Level at Measuring Receiver)	= 61.5 dBuV

Then the Radiated Power from the EUT = $-14.3 + 7.1 + 37 - 61.5$ dBm (isotropic)
 $= -31.7$ dBm (isotropic)

3.8 Receiver Radiated Emissions

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The EUT cables were manipulated in an attempt to produce maximum emissions. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using a CISPR16 quasi-peak receiver. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

Tabulated results show levels based on the following calculation:

Field Strength (dBuV) = receiver reading (dBuV) + CF (dB/m)

CF is the correction factor for the antenna and cable.

For example:

at 114MHz receiver reading was 17.9 dBuV, combined correction factor = 13.1 (dB/m).

$$\text{Total field strength} = 17.9 + 13.1 = 31.0 \text{ dBuV/m.}$$

	Report No: R3112	FCC ID: XX6-SRG3500XB	
	Issue No: 1		
Test No: T4354		Test Report	Page: 17 of 100

3.9 Conducted Emissions - ac power

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Bench top EUTs and peripheral equipment are normally placed on a 0.8m high non-conducting bench, positioned 0.4m from one of the metallic walls of a screened room. Floor standing EUTs are normally placed 0.1m above the metallic floor of the screened room. Mains leads are bundled so as not to exceed 1m.

The EUT is powered using a 50ohm/50uH Line Impedance Stabilisation Network (LISN). Peripherals are powered using a second a 50ohm/50uH LISN. These LISNs are bonded to the screened room floor.

With the correct supply voltage applied to the EUT scans are performed on both the live and neutral line outputs of the LISN using quasi-peak detection over the specified frequency range. The results of these scans are shown in the plots section at the end of the report.

Significant emissions identified by the scans are measured and the results tabulated. The table of results is shown in the conducted emissions results section.

$$\text{Final Level} = \text{Receiver Reading} + \text{Combined Cable \& Attenuator Correction Factor (dB)}$$

Example:

$$@ 191\text{kHz} \quad \text{Final Level} = 45.8 + 10.0 = 55.8 \text{ dBuV}$$

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 18 of 100

4.1 Conducted Antenna Output Power

Factor Set 1:
Factor Set 2:
Factor Set 3:
Test Equipment: R9 PS10 PM6

Conducted Emissions (Signal)

Company:	Sepura PLC		Product:	SRG3500															
Date:	06/06/2012		Test Eng:	Dave Smith															
Ports:	antenna																		
Test:	90.209	using limits of	90.209(b)(5)																
Ports:																			
Test:	using limits of																		
Notes	Comments and Observations																		
	<p>Spectrum analyser results using a peak detector are shown in plots 1 to 4.</p> <p>Measurements were also made using a power meter with an average detector.</p> <p>Measurements were made with continuous modulation.</p> <p>Taking into account the loss of the cable and attenuators the following measurements were made:</p> <table> <thead> <tr> <th>Channel</th> <th>Peak dBm</th> <th>Average dBm</th> </tr> </thead> <tbody> <tr> <td>817 MHz</td> <td>40.9</td> <td>38.02</td> </tr> <tr> <td>824 MHz</td> <td>41.0</td> <td>38.08</td> </tr> <tr> <td>862 MHz</td> <td>40.6</td> <td>37.82</td> </tr> <tr> <td>869 MHz</td> <td>41.0</td> <td>38.13</td> </tr> </tbody> </table>				Channel	Peak dBm	Average dBm	817 MHz	40.9	38.02	824 MHz	41.0	38.08	862 MHz	40.6	37.82	869 MHz	41.0	38.13
Channel	Peak dBm	Average dBm																	
817 MHz	40.9	38.02																	
824 MHz	41.0	38.08																	
862 MHz	40.6	37.82																	
869 MHz	41.0	38.13																	

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 19 of 100

4.2 Conducted Antenna Occupied Bandwidth

Factor Set 1:
Factor Set 2: - - -
Factor Set 3: - - -
Test Equipment: R9

Conducted Emissions (Signal)

Company: Sepura PLC	Product: SRG3500								
Date: 07/06/2012	Test Eng: Dave Smith								
Ports: antenna									
Test: 90.210	using limits of 90.221(d)								
Ports:									
Test:	using limits of								
Notes	Comments and Observations								
	<p>Measurements were made with continuous modulation applied. Spectrum analyser results are shown in plots 5 to 8.</p> <p>Using the "Bandwidth Power" function of the spectrum analyser, the following measurements were recorded:</p> <table> <tr> <td>817MHz</td> <td>21.03 kHz</td> </tr> <tr> <td>824MHz</td> <td>21.05 kHz</td> </tr> <tr> <td>862MHz</td> <td>20.89 kHz</td> </tr> <tr> <td>869MHz</td> <td>20.73 kHz</td> </tr> </table> <p>Limit:</p> <p>Using note 6 in the "Tetra Waiver" (FCC11-63) the limit is 22kHz (providing Adjacent Channel Power requirements are met).</p> <p>PASS</p>	817MHz	21.03 kHz	824MHz	21.05 kHz	862MHz	20.89 kHz	869MHz	20.73 kHz
817MHz	21.03 kHz								
824MHz	21.05 kHz								
862MHz	20.89 kHz								
869MHz	20.73 kHz								

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 20 of 100

4.3 Frequency Stability - DMO Mode - Absolute Frequency Measurements

Factor Set 1:
Factor Set 2: - - -
Factor Set 3: - - -
Test Equipment: R9

Frequency Stability

Company: Sepura PLC	Product: SRG3500																																																																																																								
Date: 12/06/2012	Test Eng: Dave Smith																																																																																																								
Ports: antenna																																																																																																									
Test: 90.205	using limits of 90.205(h)																																																																																																								
Ports:																																																																																																									
Test:	using limits of																																																																																																								
Notes	Comments and Observations																																																																																																								
	<p>DMO Frequency (as recorded from Spectrum Analyser Frequency Counter)</p> <table border="1"> <thead> <tr> <th></th> <th></th> <th>862MHz Channel</th> <th>869MHz Channel</th> </tr> </thead> <tbody> <tr> <td rowspan="3">-30.0 °C</td> <td>10.8V</td> <td>862.002442</td> <td>869.002687</td> </tr> <tr> <td>13.2V</td> <td>862.002553</td> <td>869.002670</td> </tr> <tr> <td>15.6V</td> <td>862.002586</td> <td>869.002651</td> </tr> <tr> <td rowspan="3">-20.0 °C</td> <td>10.8V</td> <td>862.002589</td> <td>869.002562</td> </tr> <tr> <td>13.2V</td> <td>862.002647</td> <td>869.002527</td> </tr> <tr> <td>15.6V</td> <td>862.002658</td> <td>869.002467</td> </tr> <tr> <td rowspan="3">-10.0 °C</td> <td>10.8V</td> <td>862.002342</td> <td>869.002477</td> </tr> <tr> <td>13.2V</td> <td>862.002354</td> <td>869.002388</td> </tr> <tr> <td>15.6V</td> <td>862.002359</td> <td>869.002348</td> </tr> <tr> <td rowspan="3">0.0 °C</td> <td>10.8V</td> <td>862.002345</td> <td>869.002372</td> </tr> <tr> <td>13.2V</td> <td>862.002342</td> <td>869.002318</td> </tr> <tr> <td>15.6V</td> <td>862.002336</td> <td>869.002320</td> </tr> <tr> <td rowspan="3">10.0 °C</td> <td>10.8V</td> <td>862.002254</td> <td>869.002297</td> </tr> <tr> <td>13.2V</td> <td>862.002257</td> <td>869.002309</td> </tr> <tr> <td>15.6V</td> <td>862.002259</td> <td>869.002314</td> </tr> <tr> <td rowspan="3">20.0 °C</td> <td>10.8V</td> <td>862.002268</td> <td>869.002240</td> </tr> <tr> <td>13.2V</td> <td>862.002248</td> <td>869.002261</td> </tr> <tr> <td>15.6V</td> <td>862.002245</td> <td>869.002275</td> </tr> <tr> <td rowspan="3">30.0 °C</td> <td>10.8V</td> <td>862.002288</td> <td>869.002346</td> </tr> <tr> <td>13.2V</td> <td>862.002273</td> <td>869.002325</td> </tr> <tr> <td>15.6V</td> <td>862.002265</td> <td>869.002311</td> </tr> <tr> <td rowspan="3">40.0 °C</td> <td>10.8V</td> <td>862.002387</td> <td>869.002259</td> </tr> <tr> <td>13.2V</td> <td>862.002366</td> <td>869.002288</td> </tr> <tr> <td>15.6V</td> <td>862.002345</td> <td>869.002312</td> </tr> <tr> <td rowspan="3">50.0 °C</td> <td>10.8V</td> <td>862.002517</td> <td>869.002456</td> </tr> <tr> <td>13.2V</td> <td>862.002516</td> <td>869.002470</td> </tr> <tr> <td>15.6V</td> <td>862.002500</td> <td>869.002492</td> </tr> <tr> <td rowspan="3">55.0 °C</td> <td>10.8V</td> <td>862.002500</td> <td>869.002489</td> </tr> <tr> <td>13.2V</td> <td>862.002519</td> <td>869.002473</td> </tr> <tr> <td>15.6V</td> <td>862.002536</td> <td>869.002460</td> </tr> </tbody> </table> <p>See next page for deviation from nominal voltage/temperature.</p>			862MHz Channel	869MHz Channel	-30.0 °C	10.8V	862.002442	869.002687	13.2V	862.002553	869.002670	15.6V	862.002586	869.002651	-20.0 °C	10.8V	862.002589	869.002562	13.2V	862.002647	869.002527	15.6V	862.002658	869.002467	-10.0 °C	10.8V	862.002342	869.002477	13.2V	862.002354	869.002388	15.6V	862.002359	869.002348	0.0 °C	10.8V	862.002345	869.002372	13.2V	862.002342	869.002318	15.6V	862.002336	869.002320	10.0 °C	10.8V	862.002254	869.002297	13.2V	862.002257	869.002309	15.6V	862.002259	869.002314	20.0 °C	10.8V	862.002268	869.002240	13.2V	862.002248	869.002261	15.6V	862.002245	869.002275	30.0 °C	10.8V	862.002288	869.002346	13.2V	862.002273	869.002325	15.6V	862.002265	869.002311	40.0 °C	10.8V	862.002387	869.002259	13.2V	862.002366	869.002288	15.6V	862.002345	869.002312	50.0 °C	10.8V	862.002517	869.002456	13.2V	862.002516	869.002470	15.6V	862.002500	869.002492	55.0 °C	10.8V	862.002500	869.002489	13.2V	862.002519	869.002473	15.6V	862.002536	869.002460
		862MHz Channel	869MHz Channel																																																																																																						
-30.0 °C	10.8V	862.002442	869.002687																																																																																																						
	13.2V	862.002553	869.002670																																																																																																						
	15.6V	862.002586	869.002651																																																																																																						
-20.0 °C	10.8V	862.002589	869.002562																																																																																																						
	13.2V	862.002647	869.002527																																																																																																						
	15.6V	862.002658	869.002467																																																																																																						
-10.0 °C	10.8V	862.002342	869.002477																																																																																																						
	13.2V	862.002354	869.002388																																																																																																						
	15.6V	862.002359	869.002348																																																																																																						
0.0 °C	10.8V	862.002345	869.002372																																																																																																						
	13.2V	862.002342	869.002318																																																																																																						
	15.6V	862.002336	869.002320																																																																																																						
10.0 °C	10.8V	862.002254	869.002297																																																																																																						
	13.2V	862.002257	869.002309																																																																																																						
	15.6V	862.002259	869.002314																																																																																																						
20.0 °C	10.8V	862.002268	869.002240																																																																																																						
	13.2V	862.002248	869.002261																																																																																																						
	15.6V	862.002245	869.002275																																																																																																						
30.0 °C	10.8V	862.002288	869.002346																																																																																																						
	13.2V	862.002273	869.002325																																																																																																						
	15.6V	862.002265	869.002311																																																																																																						
40.0 °C	10.8V	862.002387	869.002259																																																																																																						
	13.2V	862.002366	869.002288																																																																																																						
	15.6V	862.002345	869.002312																																																																																																						
50.0 °C	10.8V	862.002517	869.002456																																																																																																						
	13.2V	862.002516	869.002470																																																																																																						
	15.6V	862.002500	869.002492																																																																																																						
55.0 °C	10.8V	862.002500	869.002489																																																																																																						
	13.2V	862.002519	869.002473																																																																																																						
	15.6V	862.002536	869.002460																																																																																																						

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 21 of 100

4.4 Frequency Stability - DMO Mode - Deviations from Nominal Volt/Temp - ppm

Factor Set 1:
Factor Set 2: - - -
Factor Set 3: - - -
Test Equipment: R9

FrequencyStability

Company: Sepura PLC	Product: SRG3500																																																																																																								
Date: 12/06/2012	Test Eng: Dave Smith																																																																																																								
Ports: antenna																																																																																																									
Test: 90.205	using limits of 90.205(h)																																																																																																								
Ports:																																																																																																									
Test:	using limits of																																																																																																								
Notes	Comments and Observations																																																																																																								
	<p>DMO Frequency deviation from nominal voltage/temperature - ppm</p> <table border="1"> <thead> <tr> <th></th> <th></th> <th>862MHz Channel</th> <th>869MHz Channel</th> </tr> </thead> <tbody> <tr> <td rowspan="3">-30.0 °C</td> <td>10.8V</td> <td>0.225</td> <td>0.490</td> </tr> <tr> <td>13.2V</td> <td>0.354</td> <td>0.471</td> </tr> <tr> <td>15.6V</td> <td>0.392</td> <td>0.449</td> </tr> <tr> <td rowspan="3">-20.0 °C</td> <td>10.8V</td> <td>0.396</td> <td>0.346</td> </tr> <tr> <td>13.2V</td> <td>0.463</td> <td>0.306</td> </tr> <tr> <td>15.6V</td> <td>0.476</td> <td>0.237</td> </tr> <tr> <td rowspan="3">-10.0 °C</td> <td>10.8V</td> <td>0.109</td> <td>0.249</td> </tr> <tr> <td>13.2V</td> <td>0.123</td> <td>0.146</td> </tr> <tr> <td>15.6V</td> <td>0.129</td> <td>0.100</td> </tr> <tr> <td rowspan="3">0.0 °C</td> <td>10.8V</td> <td>0.113</td> <td>0.128</td> </tr> <tr> <td>13.2V</td> <td>0.109</td> <td>0.066</td> </tr> <tr> <td>15.6V</td> <td>0.102</td> <td>0.068</td> </tr> <tr> <td rowspan="3">10.0 °C</td> <td>10.8V</td> <td>0.007</td> <td>0.041</td> </tr> <tr> <td>13.2V</td> <td>0.010</td> <td>0.055</td> </tr> <tr> <td>15.6V</td> <td>0.013</td> <td>0.061</td> </tr> <tr> <td rowspan="3">20.0 °C</td> <td>10.8V</td> <td>0.023</td> <td>-0.024</td> </tr> <tr> <td>13.2V</td> <td>0.000</td> <td>0.000</td> </tr> <tr> <td>15.6V</td> <td>-0.003</td> <td>0.016</td> </tr> <tr> <td rowspan="3">30.0 °C</td> <td>10.8V</td> <td>0.046</td> <td>0.098</td> </tr> <tr> <td>13.2V</td> <td>0.029</td> <td>0.074</td> </tr> <tr> <td>15.6V</td> <td>0.020</td> <td>0.058</td> </tr> <tr> <td rowspan="3">40.0 °C</td> <td>10.8V</td> <td>0.161</td> <td>-0.002</td> </tr> <tr> <td>13.2V</td> <td>0.137</td> <td>0.031</td> </tr> <tr> <td>15.6V</td> <td>0.113</td> <td>0.059</td> </tr> <tr> <td rowspan="3">50.0 °C</td> <td>10.8V</td> <td>0.312</td> <td>0.224</td> </tr> <tr> <td>13.2V</td> <td>0.311</td> <td>0.241</td> </tr> <tr> <td>15.6V</td> <td>0.292</td> <td>0.266</td> </tr> <tr> <td rowspan="3">55.0 °C</td> <td>10.8V</td> <td>0.292</td> <td>0.262</td> </tr> <tr> <td>13.2V</td> <td>0.314</td> <td>0.244</td> </tr> <tr> <td>15.6V</td> <td>0.334</td> <td>0.229</td> </tr> </tbody> </table> <p>The part 90 Limit for the 854MHz to 869MHz band is 2.5ppm</p>			862MHz Channel	869MHz Channel	-30.0 °C	10.8V	0.225	0.490	13.2V	0.354	0.471	15.6V	0.392	0.449	-20.0 °C	10.8V	0.396	0.346	13.2V	0.463	0.306	15.6V	0.476	0.237	-10.0 °C	10.8V	0.109	0.249	13.2V	0.123	0.146	15.6V	0.129	0.100	0.0 °C	10.8V	0.113	0.128	13.2V	0.109	0.066	15.6V	0.102	0.068	10.0 °C	10.8V	0.007	0.041	13.2V	0.010	0.055	15.6V	0.013	0.061	20.0 °C	10.8V	0.023	-0.024	13.2V	0.000	0.000	15.6V	-0.003	0.016	30.0 °C	10.8V	0.046	0.098	13.2V	0.029	0.074	15.6V	0.020	0.058	40.0 °C	10.8V	0.161	-0.002	13.2V	0.137	0.031	15.6V	0.113	0.059	50.0 °C	10.8V	0.312	0.224	13.2V	0.311	0.241	15.6V	0.292	0.266	55.0 °C	10.8V	0.292	0.262	13.2V	0.314	0.244	15.6V	0.334	0.229
		862MHz Channel	869MHz Channel																																																																																																						
-30.0 °C	10.8V	0.225	0.490																																																																																																						
	13.2V	0.354	0.471																																																																																																						
	15.6V	0.392	0.449																																																																																																						
-20.0 °C	10.8V	0.396	0.346																																																																																																						
	13.2V	0.463	0.306																																																																																																						
	15.6V	0.476	0.237																																																																																																						
-10.0 °C	10.8V	0.109	0.249																																																																																																						
	13.2V	0.123	0.146																																																																																																						
	15.6V	0.129	0.100																																																																																																						
0.0 °C	10.8V	0.113	0.128																																																																																																						
	13.2V	0.109	0.066																																																																																																						
	15.6V	0.102	0.068																																																																																																						
10.0 °C	10.8V	0.007	0.041																																																																																																						
	13.2V	0.010	0.055																																																																																																						
	15.6V	0.013	0.061																																																																																																						
20.0 °C	10.8V	0.023	-0.024																																																																																																						
	13.2V	0.000	0.000																																																																																																						
	15.6V	-0.003	0.016																																																																																																						
30.0 °C	10.8V	0.046	0.098																																																																																																						
	13.2V	0.029	0.074																																																																																																						
	15.6V	0.020	0.058																																																																																																						
40.0 °C	10.8V	0.161	-0.002																																																																																																						
	13.2V	0.137	0.031																																																																																																						
	15.6V	0.113	0.059																																																																																																						
50.0 °C	10.8V	0.312	0.224																																																																																																						
	13.2V	0.311	0.241																																																																																																						
	15.6V	0.292	0.266																																																																																																						
55.0 °C	10.8V	0.292	0.262																																																																																																						
	13.2V	0.314	0.244																																																																																																						
	15.6V	0.334	0.229																																																																																																						
	PASS																																																																																																								

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 22 of 100

4.5 Frequency Stability - TMO Mode - Frequency Error Hz

Factor Set 1:

Factor Set 2:

Factor Set 3:

Test Equipment: TTS

FrequencyStability

Company: Sepura PLC	Product: SRG3500																																																																																																								
Date: 12/06/2012	Test Eng: Dave Smith																																																																																																								
Ports: antenna																																																																																																									
Test: 90.205	using limits of 90.205(h)																																																																																																								
Ports:																																																																																																									
Test:	using limits of																																																																																																								
Notes	Comments and Observations																																																																																																								
	<p>TMO Frequency Error (as recorded from Tetra Test Set) (Hz)</p> <table border="1"> <thead> <tr> <th></th> <th></th> <th>817MHz Channel</th> <th>824MHz Channel</th> </tr> </thead> <tbody> <tr> <td rowspan="3">-30.0 °C</td> <td>10.8V</td> <td>-7.4</td> <td>0.5</td> </tr> <tr> <td>13.2V</td> <td>-8.4</td> <td>0.9</td> </tr> <tr> <td>15.6V</td> <td>-10.4</td> <td>0.7</td> </tr> <tr> <td rowspan="3">-20.0 °C</td> <td>10.8V</td> <td>-1.2</td> <td>1.2</td> </tr> <tr> <td>13.2V</td> <td>-2.2</td> <td>1.4</td> </tr> <tr> <td>15.6V</td> <td>-4.7</td> <td>0.0</td> </tr> <tr> <td rowspan="3">-10.0 °C</td> <td>10.8V</td> <td>-8.6</td> <td>-1.6</td> </tr> <tr> <td>13.2V</td> <td>-10.0</td> <td>1.1</td> </tr> <tr> <td>15.6V</td> <td>-11.3</td> <td>0.3</td> </tr> <tr> <td rowspan="3">0.0 °C</td> <td>10.8V</td> <td>-7.8</td> <td>-0.5</td> </tr> <tr> <td>13.2V</td> <td>-9.3</td> <td>-0.8</td> </tr> <tr> <td>15.6V</td> <td>-11.0</td> <td>-0.6</td> </tr> <tr> <td rowspan="3">10.0 °C</td> <td>10.8V</td> <td>4.5</td> <td>7.8</td> </tr> <tr> <td>13.2V</td> <td>4.3</td> <td>7.0</td> </tr> <tr> <td>15.6V</td> <td>4.0</td> <td>6.8</td> </tr> <tr> <td rowspan="3">20.0 °C</td> <td>10.8V</td> <td>2.8</td> <td>7.3</td> </tr> <tr> <td>13.2V</td> <td>3.8</td> <td>6.5</td> </tr> <tr> <td>15.6V</td> <td>5.1</td> <td>5.9</td> </tr> <tr> <td rowspan="3">30.0 °C</td> <td>10.8V</td> <td>8.0</td> <td>18.4</td> </tr> <tr> <td>13.2V</td> <td>9.1</td> <td>16.1</td> </tr> <tr> <td>15.6V</td> <td>8.3</td> <td>14.6</td> </tr> <tr> <td rowspan="3">40.0 °C</td> <td>10.8V</td> <td>17.0</td> <td>13.2</td> </tr> <tr> <td>13.2V</td> <td>17.7</td> <td>12.7</td> </tr> <tr> <td>15.6V</td> <td>15.2</td> <td>14.3</td> </tr> <tr> <td rowspan="3">50.0 °C</td> <td>10.8V</td> <td>12.6</td> <td>12.7</td> </tr> <tr> <td>13.2V</td> <td>14.4</td> <td>13.1</td> </tr> <tr> <td>15.6V</td> <td>13.3</td> <td>12.7</td> </tr> <tr> <td rowspan="3">55.0 °C</td> <td>10.8V</td> <td>8.0</td> <td>12.4</td> </tr> <tr> <td>13.2V</td> <td>8.3</td> <td>12.5</td> </tr> <tr> <td>15.6V</td> <td>10.4</td> <td>12.2</td> </tr> </tbody> </table>			817MHz Channel	824MHz Channel	-30.0 °C	10.8V	-7.4	0.5	13.2V	-8.4	0.9	15.6V	-10.4	0.7	-20.0 °C	10.8V	-1.2	1.2	13.2V	-2.2	1.4	15.6V	-4.7	0.0	-10.0 °C	10.8V	-8.6	-1.6	13.2V	-10.0	1.1	15.6V	-11.3	0.3	0.0 °C	10.8V	-7.8	-0.5	13.2V	-9.3	-0.8	15.6V	-11.0	-0.6	10.0 °C	10.8V	4.5	7.8	13.2V	4.3	7.0	15.6V	4.0	6.8	20.0 °C	10.8V	2.8	7.3	13.2V	3.8	6.5	15.6V	5.1	5.9	30.0 °C	10.8V	8.0	18.4	13.2V	9.1	16.1	15.6V	8.3	14.6	40.0 °C	10.8V	17.0	13.2	13.2V	17.7	12.7	15.6V	15.2	14.3	50.0 °C	10.8V	12.6	12.7	13.2V	14.4	13.1	15.6V	13.3	12.7	55.0 °C	10.8V	8.0	12.4	13.2V	8.3	12.5	15.6V	10.4	12.2
		817MHz Channel	824MHz Channel																																																																																																						
-30.0 °C	10.8V	-7.4	0.5																																																																																																						
	13.2V	-8.4	0.9																																																																																																						
	15.6V	-10.4	0.7																																																																																																						
-20.0 °C	10.8V	-1.2	1.2																																																																																																						
	13.2V	-2.2	1.4																																																																																																						
	15.6V	-4.7	0.0																																																																																																						
-10.0 °C	10.8V	-8.6	-1.6																																																																																																						
	13.2V	-10.0	1.1																																																																																																						
	15.6V	-11.3	0.3																																																																																																						
0.0 °C	10.8V	-7.8	-0.5																																																																																																						
	13.2V	-9.3	-0.8																																																																																																						
	15.6V	-11.0	-0.6																																																																																																						
10.0 °C	10.8V	4.5	7.8																																																																																																						
	13.2V	4.3	7.0																																																																																																						
	15.6V	4.0	6.8																																																																																																						
20.0 °C	10.8V	2.8	7.3																																																																																																						
	13.2V	3.8	6.5																																																																																																						
	15.6V	5.1	5.9																																																																																																						
30.0 °C	10.8V	8.0	18.4																																																																																																						
	13.2V	9.1	16.1																																																																																																						
	15.6V	8.3	14.6																																																																																																						
40.0 °C	10.8V	17.0	13.2																																																																																																						
	13.2V	17.7	12.7																																																																																																						
	15.6V	15.2	14.3																																																																																																						
50.0 °C	10.8V	12.6	12.7																																																																																																						
	13.2V	14.4	13.1																																																																																																						
	15.6V	13.3	12.7																																																																																																						
55.0 °C	10.8V	8.0	12.4																																																																																																						
	13.2V	8.3	12.5																																																																																																						
	15.6V	10.4	12.2																																																																																																						

See next page for deviation in ppm.

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 23 of 100

4.6 Frequency Stability - TMO Mode - Deviation from nominal volt/temp - ppm

Factor Set 1:

Factor Set 2:

Factor Set 3:

Test Equipment: TTS

FrequencyStability

Company: Sepura PLC	Product: SRG3500																																																																																																								
Date: 12/06/2012	Test Eng: Dave Smith																																																																																																								
Ports: antenna																																																																																																									
Test: 90.205	using limits of 90.205(h)																																																																																																								
Ports:																																																																																																									
Test:	using limits of																																																																																																								
Notes	Comments and Observations																																																																																																								
	<p>TMO Frequency deviation - ppm</p> <table border="1"> <thead> <tr> <th></th> <th></th> <th>817MHz Channel</th> <th>824MHz Channel</th> </tr> </thead> <tbody> <tr> <td rowspan="3">-30.0 °C</td> <td>10.8V</td> <td>-0.014</td> <td>-0.007</td> </tr> <tr> <td>13.2V</td> <td>-0.015</td> <td>-0.007</td> </tr> <tr> <td>15.6V</td> <td>-0.017</td> <td>-0.007</td> </tr> <tr> <td rowspan="3">-20.0 °C</td> <td>10.8V</td> <td>-0.006</td> <td>-0.006</td> </tr> <tr> <td>13.2V</td> <td>-0.007</td> <td>-0.006</td> </tr> <tr> <td>15.6V</td> <td>-0.010</td> <td>-0.008</td> </tr> <tr> <td rowspan="3">-10.0 °C</td> <td>10.8V</td> <td>-0.015</td> <td>-0.010</td> </tr> <tr> <td>13.2V</td> <td>-0.017</td> <td>-0.007</td> </tr> <tr> <td>15.6V</td> <td>-0.018</td> <td>-0.008</td> </tr> <tr> <td rowspan="3">0.0 °C</td> <td>10.8V</td> <td>-0.014</td> <td>-0.008</td> </tr> <tr> <td>13.2V</td> <td>-0.016</td> <td>-0.009</td> </tr> <tr> <td>15.6V</td> <td>-0.018</td> <td>-0.009</td> </tr> <tr> <td rowspan="3">10.0 °C</td> <td>10.8V</td> <td>0.001</td> <td>0.002</td> </tr> <tr> <td>13.2V</td> <td>0.001</td> <td>0.001</td> </tr> <tr> <td>15.6V</td> <td>0.000</td> <td>0.000</td> </tr> <tr> <td rowspan="3">20.0 °C</td> <td>10.8V</td> <td>-0.001</td> <td>0.001</td> </tr> <tr> <td>13.2V</td> <td>0.000</td> <td>0.000</td> </tr> <tr> <td>15.6V</td> <td>0.002</td> <td>-0.001</td> </tr> <tr> <td rowspan="3">30.0 °C</td> <td>10.8V</td> <td>0.005</td> <td>0.014</td> </tr> <tr> <td>13.2V</td> <td>0.006</td> <td>0.012</td> </tr> <tr> <td>15.6V</td> <td>0.006</td> <td>0.010</td> </tr> <tr> <td rowspan="3">40.0 °C</td> <td>10.8V</td> <td>0.016</td> <td>0.008</td> </tr> <tr> <td>13.2V</td> <td>0.017</td> <td>0.008</td> </tr> <tr> <td>15.6V</td> <td>0.014</td> <td>0.009</td> </tr> <tr> <td rowspan="3">50.0 °C</td> <td>10.8V</td> <td>0.011</td> <td>0.008</td> </tr> <tr> <td>13.2V</td> <td>0.013</td> <td>0.008</td> </tr> <tr> <td>15.6V</td> <td>0.012</td> <td>0.008</td> </tr> <tr> <td rowspan="3">55.0 °C</td> <td>10.8V</td> <td>0.005</td> <td>0.007</td> </tr> <tr> <td>13.2V</td> <td>0.006</td> <td>0.007</td> </tr> <tr> <td>15.6V</td> <td>0.008</td> <td>0.007</td> </tr> </tbody> </table> <p>The part 90 Limit for the 809MHz to 824MHz band is 2.5ppm</p>			817MHz Channel	824MHz Channel	-30.0 °C	10.8V	-0.014	-0.007	13.2V	-0.015	-0.007	15.6V	-0.017	-0.007	-20.0 °C	10.8V	-0.006	-0.006	13.2V	-0.007	-0.006	15.6V	-0.010	-0.008	-10.0 °C	10.8V	-0.015	-0.010	13.2V	-0.017	-0.007	15.6V	-0.018	-0.008	0.0 °C	10.8V	-0.014	-0.008	13.2V	-0.016	-0.009	15.6V	-0.018	-0.009	10.0 °C	10.8V	0.001	0.002	13.2V	0.001	0.001	15.6V	0.000	0.000	20.0 °C	10.8V	-0.001	0.001	13.2V	0.000	0.000	15.6V	0.002	-0.001	30.0 °C	10.8V	0.005	0.014	13.2V	0.006	0.012	15.6V	0.006	0.010	40.0 °C	10.8V	0.016	0.008	13.2V	0.017	0.008	15.6V	0.014	0.009	50.0 °C	10.8V	0.011	0.008	13.2V	0.013	0.008	15.6V	0.012	0.008	55.0 °C	10.8V	0.005	0.007	13.2V	0.006	0.007	15.6V	0.008	0.007
		817MHz Channel	824MHz Channel																																																																																																						
-30.0 °C	10.8V	-0.014	-0.007																																																																																																						
	13.2V	-0.015	-0.007																																																																																																						
	15.6V	-0.017	-0.007																																																																																																						
-20.0 °C	10.8V	-0.006	-0.006																																																																																																						
	13.2V	-0.007	-0.006																																																																																																						
	15.6V	-0.010	-0.008																																																																																																						
-10.0 °C	10.8V	-0.015	-0.010																																																																																																						
	13.2V	-0.017	-0.007																																																																																																						
	15.6V	-0.018	-0.008																																																																																																						
0.0 °C	10.8V	-0.014	-0.008																																																																																																						
	13.2V	-0.016	-0.009																																																																																																						
	15.6V	-0.018	-0.009																																																																																																						
10.0 °C	10.8V	0.001	0.002																																																																																																						
	13.2V	0.001	0.001																																																																																																						
	15.6V	0.000	0.000																																																																																																						
20.0 °C	10.8V	-0.001	0.001																																																																																																						
	13.2V	0.000	0.000																																																																																																						
	15.6V	0.002	-0.001																																																																																																						
30.0 °C	10.8V	0.005	0.014																																																																																																						
	13.2V	0.006	0.012																																																																																																						
	15.6V	0.006	0.010																																																																																																						
40.0 °C	10.8V	0.016	0.008																																																																																																						
	13.2V	0.017	0.008																																																																																																						
	15.6V	0.014	0.009																																																																																																						
50.0 °C	10.8V	0.011	0.008																																																																																																						
	13.2V	0.013	0.008																																																																																																						
	15.6V	0.012	0.008																																																																																																						
55.0 °C	10.8V	0.005	0.007																																																																																																						
	13.2V	0.006	0.007																																																																																																						
	15.6V	0.008	0.007																																																																																																						
	PASS																																																																																																								

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 24 of 100

4.7 Conducted Emission Antenna Adjacent Channel Power

Factor Set 1:
Factor Set 2: - - -
Factor Set 3: - - -
Test Equipment: SEP1

Conducted Emissions (Signal)

Company:	Sepura PLC		Product:	SRG3500																																																									
Date:	07/06/2012		Test Eng:	Dave Smith																																																									
Ports:	antenna																																																												
Test:	90.213 using limits of		90.213																																																										
Ports:																																																													
Test:																																																													
Notes	Comments and Observations																																																												
	<p>Using the R&S FSU Spectrum analyser with the appropriate Tetra adjacent channel power settings. Captured results are shown in plots 9 to 12.</p> <table> <thead> <tr> <th></th> <th colspan="6">Readings in dBc</th> </tr> <tr> <th></th> <th colspan="6">Channel</th> </tr> <tr> <th></th> <th>-75kHz</th> <th>-50kHz</th> <th>-25kHz</th> <th>+ 25kHz</th> <th>+ 50kHz</th> <th>+ 75kHz</th> </tr> </thead> <tbody> <tr> <td>817MHz</td> <td>-79.26</td> <td>-76.60</td> <td>-65.30</td> <td>-65.48</td> <td>-76.42</td> <td>-79.26</td> </tr> <tr> <td>824MHz</td> <td>-79.60</td> <td>-76.28</td> <td>-63.98</td> <td>-65.90</td> <td>-75.97</td> <td>-79.61</td> </tr> <tr> <td>862MHz</td> <td>-79.38</td> <td>-75.52</td> <td>-63.63</td> <td>-64.23</td> <td>-75.46</td> <td>-79.36</td> </tr> <tr> <td>869MHz</td> <td>-78.51</td> <td>-75.59</td> <td>-62.57</td> <td>-63.56</td> <td>-75.61</td> <td>-78.31</td> </tr> <tr> <td>Limit (dBc)</td> <td>-65</td> <td>-65</td> <td>-55</td> <td>-55</td> <td>-65</td> <td>-65</td> </tr> </tbody> </table> <p>Limit shown is the maximum allowed level (dBc) for a product with output power less than 15 W and operating at a frequency above 700MHz (Part 90.221(c))</p> <p>PASS</p>						Readings in dBc							Channel							-75kHz	-50kHz	-25kHz	+ 25kHz	+ 50kHz	+ 75kHz	817MHz	-79.26	-76.60	-65.30	-65.48	-76.42	-79.26	824MHz	-79.60	-76.28	-63.98	-65.90	-75.97	-79.61	862MHz	-79.38	-75.52	-63.63	-64.23	-75.46	-79.36	869MHz	-78.51	-75.59	-62.57	-63.56	-75.61	-78.31	Limit (dBc)	-65	-65	-55	-55	-65	-65
	Readings in dBc																																																												
	Channel																																																												
	-75kHz	-50kHz	-25kHz	+ 25kHz	+ 50kHz	+ 75kHz																																																							
817MHz	-79.26	-76.60	-65.30	-65.48	-76.42	-79.26																																																							
824MHz	-79.60	-76.28	-63.98	-65.90	-75.97	-79.61																																																							
862MHz	-79.38	-75.52	-63.63	-64.23	-75.46	-79.36																																																							
869MHz	-78.51	-75.59	-62.57	-63.56	-75.61	-78.31																																																							
Limit (dBc)	-65	-65	-55	-55	-65	-65																																																							

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 25 of 100

4.8 Transmitter Transient Frequency Behaviour - Results

Factor Set 1:
Factor Set 2:
Factor Set 3:
Test Equipment: R9 R4 SG9

Conducted Emissions (Signal)

Company:	Sepura PLC	Product:	SRG3500												
Date:	06/06/2012	Test Eng:	Dave Smith												
Ports:	antenna														
Test:	90.214	using limits of	90.214												
Ports:															
Test:	using limits of														
Notes	Comments and Observations														
	<p>The output of the antenna port of the EUT was fed through a Directional Coupler and then combined with the output of a signal generator.</p> <p>The spectrum analyser has an FM demodulation function.</p> <p>The EUT was initially set to produce a constant carrier output and the tuning of the spectrum analyser adjusted to give 0Hz FM deviation.</p> <p>The output of the EUT was turned off and a carrier only signal output from the signal generator set at approximately the same frequency as the EUT. This frequency was adjusted to again give 0Hz FM deviation on the spectrum analyser.</p> <p>The signal generator was then set to give 25kHz FM deviation (with 1kHz signal).</p> <p>The forward power output of the directional coupler was fed into a receiver tuned to the carrier frequency. The video output of this receiver was used to trigger the spectrum analyser when the EUT RF is turned on or off.</p> <p>The results of sweeps captured from the spectrum analyser are shown in plots 13 to 20.</p> <p>All of the plots show the EUT comfortably meets the Transient Frequency Behaviour limits for a 25kHz channel spacing transmitter as shown below:</p> <table> <thead> <tr> <th></th> <th>Frequency</th> <th>Duration</th> </tr> </thead> <tbody> <tr> <td>t1</td> <td>± 25 kHz</td> <td>10 msec</td> </tr> <tr> <td>t2</td> <td>± 12.5 kHz</td> <td>25 msec</td> </tr> <tr> <td>t3</td> <td>± 25 kHz</td> <td>10 msec</td> </tr> </tbody> </table>				Frequency	Duration	t1	± 25 kHz	10 msec	t2	± 12.5 kHz	25 msec	t3	± 25 kHz	10 msec
	Frequency	Duration													
t1	± 25 kHz	10 msec													
t2	± 12.5 kHz	25 msec													
t3	± 25 kHz	10 msec													

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 26 of 100

4.9 Conducted Emission Antenna Spurious Emissions

Factor Set 1:

Factor Set 2: - - -

Factor Set 3: - - -

Test Equipment: R9 RFF17 RFF15 RFF22

Conducted Emissions (Signal)

Company:	Sepura PLC	Product:	SRG3500
Date:	07/06/2012	Test Eng:	Dave Smith
Ports:	antenna		
Test:	90.213	using limits of	90.213
Ports:			
Test:	using limits of		
Notes	Comments and Observations		
	<p>Results of scans shown in plots 21 to 28.</p> <p>The limit line shown on the plots is at -13dBm.</p> <p>All spurious emissions were below this limit.</p>		
	PASS		

	Report No: R3112	FCC ID: XX6-SRG3500XB									
	Issue No: 1							Test Report			Page: 27 of 100

4.10 Radiated Emissions - Transmit Carrier ERP - Configuration 1

Factor Set 1: A30_dBi_10A - - -
 Factor Set 2: - - - -
 Factor Set 3: - - - -
 Test Equipment: R9 A24 A30 SG16 PM6 PS10

Substitution Emissions

Company: Sepura PLC Date: 01/06/2012				Product: SRG3500 Test Eng: Dave Smith										
Ports:														
Test: 90.205 using limits of				90.205(h)										
Ports:														
Op Mode	Mod State	CF Set	Freq. MHz	Cable Loss										
				Sig Gen Level Cable	Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT	Sig Gen Level Sub'n	Rec'vr Level Sub'n	Sub'n Ant Gain				
				dBm	dBm		dBuV	dBm	dBuV	dBi				
1	0	1	817.000	0.0	0.0	V	113.1	-16.5	48.9	-6.1	41.6			
1	0	1	817.000	0.0	0.0	H	109.9	-16.5	48.7	-6.1	38.6			
1	0	1	824.000	0.0	0.0	V	113.5	-16.5	48.6	-6.1	42.3			
1	0	1	824.000	0.0	0.0	H	109.8	-16.5	48.8	-6.1	38.4			
1	0	1	862.000	0.0	0.0	V	113.5	-16.6	47.5	-6.1	43.3			
1	0	1	862.000	0.0	0.0	H	106.4	-16.6	48.0	-6.1	35.6			
1	0	1	869.000	0.0	0.0	V	112.9	-16.6	47.4	-6.2	42.6			
1	0	1	869.000	0.0	0.0	H	106.9	-16.6	48.2	-6.2	35.8			
Results				Minimum Margin PASS/FAIL				N/A dB						
Notes														
Configuration 1 The results above are radiated measurements using the substitution method. There are no specific limits in the standard for this test.														

	Report No: R3112	FCC ID: XX6-SRG3500XB									
	Issue No: 1							Test Report			Page: 28 of 100

4.11 Radiated Emissions - Transmit Carrier ERP - DMU

Factor Set 1: A30_dBi_10A - - -
 Factor Set 2: - - - -
 Factor Set 3: - - - -
 Test Equipment: R9 A24 A30 SG16 PM6 PS10

Substitution Emissions

Company: Sepura PLC				Product: SRG3500										
Date: 01/06/2012				Test Eng: Dave Smith										
Ports:														
Test: 90.205 using limits of				90.205(h)										
Ports:														
Test: using limits of														
Op Mode	Mod State	CF Set	Freq. MHz	Cable Loss										
				Sig Gen Level	Rec'vr Level	Ant Pol	Rec'vr Level	Sig Gen Level	Rec'vr Level	Sub'n Ant Gain				
				Cable	Cable	EUT	Sub'n Ant	Sub'n Ant	dBuV	dBi				
				dBm	dBm		dBm	dBm		dBm				
1	0	1	817.000	0.0	0.0	V	116.2	-16.5	48.9	-6.1	44.7			
1	0	1	817.000	0.0	0.0	H	105.6	-16.5	48.7	-6.1	34.3			
1	0	1	824.000	0.0	0.0	V	115.4	-16.5	48.6	-6.1	44.2			
1	0	1	824.000	0.0	0.0	H	104.5	-16.5	48.8	-6.1	33.1			
1	0	1	862.000	0.0	0.0	V	115.3	-16.6	47.5	-6.1	45.1			
1	0	1	862.000	0.0	0.0	H	103.1	-16.6	48.0	-6.1	32.3			
1	0	1	869.000	0.0	0.0	V	114.5	-16.6	47.4	-6.2	44.2			
1	0	1	869.000	0.0	0.0	H	103.5	-16.6	48.2	-6.2	32.4			
Results				Minimum Margin PASS/FAIL				N/A	dB					
Notes														
DMU The results above are radiated measurements using the substitution method. There are no specific limits in the standard for this test.														

	Report No: R3112	FCC ID: XX6-SRG3500XB									
	Issue No: 1							Test Report			Page: 29 of 100

4.12 Radiated Emissions - Transmit Spur - Config 1 - 806MHz to 824MHz band

Factor Set 1: A19_db1_11A - - -

Factor Set 2: A30_dBi_10A - - -

Factor Set 3: - - - -

Test Equipment: R9 A24 A23 A19 SG16 PM6 PS10 PRE3 RFF15 RFF16 RFF17 RFF22

Substitution Emissions

Company:	Sepura PLC						Product:	SRG3500						
Date:	28/05/2012						Test Eng:	Dave Smith						
Ports:														
Test:	90.210			using limits of			90.221(d)							
Ports:														
Test:				using limits of										
Op Mode	Mod State	CF Set	Freq. MHz	Cable Loss		Ant	Rec'vr	Sig Gen	Rec'vr	Sub'n	ERP	Limit	Margin	Note
				Sig Gen Level	Rec'vr Level	Pol	Level	Sig Gen Level	Rec'vr Level	Sub'n	Ant Gain			
				Cable	Cable		EUT	Sub'n Ant	Sub'n Ant	Ant Gain				
				dBm	dBm		dBuV	dBm	dBuV	dBi	dBm	dBm	dB	
1	0	2	272.333	0.0	0.0	V	34.2	-13.6	62.0	-4.9	-46.2	-15.4	30.8	#1
1	0	2	272.333	0.0	0.0	H	35.7	-13.6	63.8	-4.9	-46.5	-15.4	31.1	#1
1	0	1	5446.750	0.0	0.0	V	65.3	-17.7	86.0	11.0	-27.4	-15.4	12.0	#1
1	0	1	5446.750	0.0	0.0	H	55.4	-17.7	88.5	11.0	-39.9	-15.4	24.5	#1
1	0	1	7353.065	0.0	0.0	V	52.9	-18.5	87.2	11.1	-41.7	-15.4	26.3	#1
1	0	1	7353.065	0.0	0.0	H	49.4	-18.5	85.8	11.1	-43.9	-15.4	28.5	#1
1	0	2	274.666	0.0	0.0	V	33.2	-13.6	62.4	-4.7	-47.5	-14.7	32.8	#2
1	0	2	274.666	0.0	0.0	H	32.3	-13.6	63.9	-4.7	-50.0	-14.7	35.3	#2
1	0	1	5493.350	0.0	0.0	V	65.4	-17.8	85.9	11.1	-27.3	-14.7	12.6	#2
1	0	1	5493.350	0.0	0.0	H	56.8	-17.8	88.7	11.1	-38.6	-14.7	23.9	#2
Results				Minimum Margin PASS/FAIL				12.0 dB PASS						

Notes

Results of prescans shown in plots 29 to 40.

Configuration 1. 3m test distance. #1: Tx @ 817MHz, #2: Tx @824MHz
Lmits set at -13dBm.

	Report No: R3112	FCC ID: XX6-SRG3500XB								Page: 30 of 100		
	Issue No: 1	Test Report										

4.13 Radiated Emissions - Transmit Spur - Config 1 - 851MHz to 869MHz band

Factor Set 1: A19_db1_11A - - -

Factor Set 2: - - -

Factor Set 3: - - -

Test Equipment: R9 A24 A23 A19 SG16 PM6 PS10 PRE3 RFF15 RFF16 RFF17 RFF22

Substitution Emissions

Company: Sepura PLC				Product: SRG3500										
Date: 28/05/2012				Test Eng: Dave Smith										
Ports:														
Test: 90.210 using limits of				90.221(d)										
Ports:														
Test: using limits of														
Op Mode	Mod State	CF Set	Freq. MHz	Cable Loss										
				Sig Gen Level Cable	Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT	Sig Gen Level Sub'n	Rec'vr Level Sub'n	Sub'n Ant Gain	ERP	Limit		
				dBm	dBm		dBmV	dBm	dBmV	dBi	dBm	dBm		
1	0	1	2586.029	0.0	0.0	V	63.2	-16.9	89.1	9.9	-32.9	-13.7	19.2	#1
1	0	1	2586.029	0.0	0.0	H	66.1	-16.9	90.1	9.9	-31.0	-13.7	17.3	#1
1	0	1	2606.988	0.0	0.0	V	59.5	-16.9	89.5	9.9	-37.0	-14.4	22.6	#2
1	0	1	2606.988	0.0	0.0	H	67.5	-16.9	90.4	9.9	-29.9	-14.4	15.5	#2
1	0	1	4634.600	0.0	0.0	V	64.1	-17.4	89.0	11.2	-31.1	-14.4	16.7	#2
1	0	1	4634.600	0.0	0.0	H	51.6	-17.4	90.8	11.2	-45.4	-14.4	31.0	#2
1	0	1	5793.369	0.0	0.0	V	55.9	-17.7	86.3	11.7	-36.5	-14.4	22.1	#2
1	0	1	5793.369	0.0	0.0	H	50.9	-17.7	88.3	11.7	-43.4	-14.4	29.0	#2
1	0	1	8110.838	0.0	0.0	V	49.3	-18.7	83.9	11.7	-41.6	-14.4	27.2	#2
1	0	1	8110.838	0.0	0.0	H	47.9	-18.7	85.4	11.7	-44.5	-14.4	30.1	#2
1	0	1	8690.013	0.0	0.0	V	53.8	-18.9	82.8	11.5	-36.3	-14.4	21.9	#2
1	0	1	8690.013	0.0	0.0	H	49.1	-18.9	84.7	11.5	-42.9	-14.4	28.5	#2
Results				Minimum Margin PASS/FAIL				15.5 dB PASS						

Notes

Results of prescans shown in plots 29 to 40.

Configuration 1. 3m test distance. #1: Tx @ 862MHz, #2: Tx @869MHz
Lmits set at -13dBm.

	Report No: R3112	FCC ID: XX6-SRG3500XB									
	Issue No: 1							Test Report			Page: 31 of 100

4.14 Radiated Emissions - Transmit Spurious - DMU - 806MHz to 824MHz band

Factor Set 1: A19_db1_11A - - -

Factor Set 2: - - -

Factor Set 3: - - -

Test Equipment: R9 A24 A23 A19 SG16 PM6 PS10 PRE3 RFF15 RFF16 RFF17 RFF22

Substitution Emissions

Company: Sepura PLC	Product: SRG3500
Date: 28/05/2012	Test Eng: Dave Smith
Ports:	
Test: 90.205	using limits of 90.205(h)
Ports:	
Test: 90.210	using limits of 90.221(d)

Op Mode	Mod State	CF Set	Freq. MHz	Cable Loss		Ant Pol	Rec'vr Level EUT	Sig Gen Level Sub'n	Rec'vr Level Sub'n	Sub'n Ant Gain	ERP	Limit	Margin	Note										
				Sig Gen Level Cable	Rec'vr Level Cable																			
1	0	1	4357.350	0.0	0.0	V	62.2	-17.5	89.2	11.0	-33.4	-15.0	18.4	#1										
1	0	1	4357.350	0.0	0.0	H	57.8	-17.5	91.7	11.0	-40.3	-15.0	25.3	#1										
1	0	1	8170.125	0.0	0.0	V	59.2	-18.8	83.1	11.7	-30.9	-15.0	15.9	#1										
1	0	1	8170.125	0.0	0.0	H	58.4	-18.8	85.0	11.7	-33.7	-15.0	18.7	#1										
1	0	1	7416.150	0.0	0.0	V	59.3	-18.6	84.2	11.0	-32.4	-15.0	17.4	#2										
1	0	1	7416.150	0.0	0.0	H	53.8	-18.6	85.5	11.0	-39.4	-15.0	24.4	#2										
1	0	1	8240.047	0.0	0.0	V	59.2	-18.8	82.9	11.7	-30.9	-15.0	15.9	#2										
1	0	1	8240.047	0.0	0.0	H	57.0	-18.8	85.8	11.7	-36.0	-15.0	21.0	#2										
Results				Minimum Margin PASS/FAIL				15.9 dB PASS																
Notes																								
Results of prescans shown in plots 41 to 52.																								
DMU. 3m test distance. #1: Tx @ 817MHz, #2: Tx @824MHz Limits set at -13dBm.																								

	Report No: R3112	FCC ID: XX6-SRG3500XB									
	Issue No: 1							Test Report			Page: 32 of 100

4.15 Radiated Emissions - Transmit Spurious - DMU - 851MHz to 869MHz band

Factor Set 1: A19_db1_11A - - -

Factor Set 2: - - -

Factor Set 3: - - -

Test Equipment: R9 A24 A23 A19 SG16 PM6 PS10 PRE3 RFF15 RFF16 RFF17 RFF22

Substitution Emissions

Company:	Sepura PLC						Product:	SRG3500						
Date:	28/05/2012						Test Eng:	Dave Smith						
Ports:														
Test:	90.210			using limits of			90.221(d)							
Ports:														
Test:				using limits of										
Op Mode	Mod State	CF Set	Freq. MHz	Cable Loss		Ant	Rec'vr	Sig Gen	Rec'vr	Sub'n	ERP	Limit	Margin	Note
				Sig Gen Level Cable	Rec'vr Level Cable	Ant Pol	Rec'vr Level EUT	Sig Gen Level Sub'n	Rec'vr Level Sub'n	Sub'n Ant Gain	ERP	Limit	Margin	Note
				dBm	dBm		dBuV	dBm	dBuV	dBi	dBm	dBm	dB	
1	0	1	5746.675	0.0	0.0	V	57.3	-17.9	89.7	11.6	-38.8	-15.0	23.8	#1
1	0	1	5746.675	0.0	0.0	H	54.6	-17.9	88.4	11.6	-40.1	-15.0	25.1	#1
1	0	1	8045.333	0.0	0.0	V	49.9	-18.7	82.8	11.7	-39.8	-15.0	24.8	#1
1	0	1	8045.333	0.0	0.0	H	49.0	-18.7	85.8	11.7	-43.8	-15.0	28.8	#1
1	0	1	5214.050	0.0	0.0	V	62.3	-17.6	89.5	10.8	-33.9	-15.0	18.9	#2
1	0	1	5214.050	0.0	0.0	H	57.0	-17.6	88.9	10.8	-38.6	-15.0	23.6	#2
1	0	1	6952.088	0.0	0.0	V	57.6	-18.4	87.5	11.6	-36.6	-15.0	21.6	#2
1	0	1	6952.088	0.0	0.0	H	52.8	-18.4	86.8	11.6	-40.7	-15.0	25.7	#2
Results			Minimum Margin PASS/FAIL			18.9 dB PASS								

Notes

Results of prescans shown in plots 41 to 52.

DMU. 3m test distance. #1: Tx @ 862MHz, #2: Tx @869MHz
Lmts set at -13dBm

	Report No: R3112	FCC ID: XX6-SRG3500XB					
	Issue No: 1	Test Report					
Test No: T4354						Page: 33 of 100	

4.16 Radiated Emissions - Receive Mode - Configuration 1 - below 1GHz

Factor Set 1: A5_FS_10C CBL015_11A --

Factor Set 2: - - -

Factor Set 3: - - -

Test Equipment: R4 A5

Radiated Emissions

Company: Sepura PLC Date: 20/06/2012 Ports: Test: ANSI C63.4:2003 using limits of FCC_B							Product: SRG3500 Test Eng: Dave Smith Ports: Test: using limits of FCC_B						
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
53	1	0	3	1	862MHz Rx channel 114.620	V	1.2	13.1		14.3	43.5	29.2	
53	1	0	3	1	114.620	H	-3.1	13.1		10.0	43.5	33.5	
54	1	0	3	1	869MHz Rx channel 931.250	V	0.3	31.0		31.3	46.0	14.7	#1
54	1	0	3	1	931.250	H	5.6	31.0		36.6	46.0	9.4	
54	1	0	3	1	938.250	V	1.6	31.5		33.1	46.0	12.9	#1
54	1	0	3	1	938.250	H	-0.1	31.5		31.4	46.0	14.6	#1
Results Minimum Margin PASS/FAIL							9.4	dB					
Notes	Comments and Observations												
#1	Results of scans shown in plots 53 and 54. Configuration 1. Measured with 10kHz average detector because of high ambient. Measurements in screened room show less than 2dB difference between 120kHz Quasi Peak reading and 10kHz Average reading for this emission All other measurements made with 120kHz bandwidth Quasi Peak detector.												

	Report No: R3112	FCC ID: XX6-SRG3500XB				
	Issue No: 1	Test Report				
Test No: T4354	Page: 34 of 100					

4.17 Radiated Emissions - Receive Mode - Configuration 1 - above 1GHz

Factor Set 1: A23_3m_10A CBL049_11A PRE3_11A RFF22_11A	1 m cable
Factor Set 2: - - -	
Factor Set 3: - - -	
Test Equipment: R9 A23 PRE3 RFF22	

Radiated Emissions

Company: Sepura PLC	Product: SRG3500												
Date: 28/05/2012	Test Eng: Dave Smith												
Ports:													
Test: ANSI C63.4:2003 using limits of FCC_B													
Ports:													
Test: using limits of													
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
862MHz Rx channel													
56	2	0	3	1	3724.998	V	51.2	-2.4		48.8	74.0	25.2	PK
56	2	0	3	1	3724.998	V	47.2	-2.4		44.8	54.0	9.2	AV
56	2	0	3	1	3724.998	H	49.0	-2.4		46.6	54.0	7.4	PK
56	2	0	3	1	5581.503	V	45.2	1.6		46.8	54.0	7.2	PK
56	2	0	3	1	5587.496	H	44.1	1.6		45.7	54.0	8.3	PK
869MHz Rx channel													
56	2	0	3	1	3753.026	V	48.3	-2.2		46.1	54.0	7.9	PK
56	2	0	3	1	3753.026	H	47.4	-2.2		45.2	54.0	8.8	PK
Results													
Minimum Margin PASS/FAIL													
Notes		Comments and Observations											
		Results of scans shown in plots 55 and 56. Configuration 1. Where peak measurements were comfortably below the average limit only the peak reading is recorded - in this case the average limit is show. Otherwise separate peak and average measurements were made and show against the corresponding limits.											

	Report No: R3112	FCC ID: XX6-SRG3500XB						
	Issue No: 1	Test Report						
Test No: T4354	Page: 35 of 100							

4.18 Radiated Emissions - Receive Mode - DMU- below 1GHz

Factor Set 1: A5_FS_10C CBL015_11A - -

Factor Set 2: - - -

Factor Set 3: - - -

Test Equipment: R4 A5

Radiated Emissions

Company: Sepura PLC Product: SRG3500 Date: 20/06/2012 Test Eng: Dave Smith													
Ports:													
Test: ANSI C63.4:2003 using limits of FCC_B													
Ports:													
Test: using limits of													
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
862MHz Rx channel													
57	1	0	3	1	78.160	V	4.3	8.1		12.4	40.0	27.6	
57	1	0	3	1	78.160	H	0.5	8.1		8.6	40.0	31.4	
58	1	0	3	1	481.102	V	11.4	21.6		33.0	46.0	13.0	
58	1	0	3	1	481.102	H	8.9	21.6		30.5	46.0	15.5	
58	1	0	3	1	509.272	V	7.6	22.4		30.0	46.0	16.0	
58	1	0	3	1	509.272	H	10.6	22.4		33.0	46.0	13.0	
58	1	0	3	1	537.350	V	3.5	23.5		27.0	46.0	19.0	
58	1	0	3	1	537.350	H	7.5	23.5		31.0	46.0	15.0	
58	1	0	3	1	547.484	V	5.9	24.5		30.4	46.0	15.6	
58	1	0	3	1	547.484	H	11.5	24.5		36.0	46.0	10.0	
58	1	0	3	1	556.878	V	2.9	24.9		27.8	46.0	18.2	
58	1	0	3	1	556.878	H	7.6	24.9		32.5	46.0	13.5	
869MHz Rx channel													
58	1	0	3	1	931.250	V	-0.8	31.0		30.2	46.0	15.8	#1
58	1	0	3	1	931.250	H	5.1	31.0		36.1	46.0	9.9	
58	1	0	3	1	938.250	V	-0.1	31.5		31.4	46.0	14.6	#1
58	1	0	3	1	938.250	H	0.5	31.5		32.0	46.0	14.0	#1
Results										9.9	dB		
Minimum Margin PASS/FAIL													
Notes		Comments and Observations											
#1	Results of scans shown in plots 57 and 58. DMU. Measured with 10kHz average detector because of high ambient. Measurements in screened room show less than 2dB difference between 120kHz Quasi Peak reading and 10kHz Average reading for this emission All other measurements made with 120kHz bandwidth Quasi Peak detector.												

	Report No: R3112	FCC ID: XX6-SRG3500XB				
	Issue No: 1	Test Report				
Test No: T4354	Page: 36 of 100					

4.19 Radiated Emissions - Receive Mode - DMU - above 1GHz - Vertical

Factor Set 1: A23_3m_10A CBL049_11A PRE3_11A RFF22_11A	1 m cable
Factor Set 2: - - -	
Factor Set 3: - - -	
Test Equipment: R9 A23 PRE3 RFF22	

Radiated Emissions

Company: Sepura PLC	Product: SRG3500												
Date: 28/05/2012	Test Eng: Dave Smith												
Ports:													
Test: ANSI C63.4:2003 using limits of FCC_B													
Ports:													
Test: using limits of													
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
862MHz Rx channel													
59	2	0	3	1	1862.525	V	50.9	-6.7		44.2	54.0	9.8	PK
60	2	0	3	1	2793.846	V	47.4	-5.2		42.2	54.0	11.8	PK
60	2	0	3	1	3724.987	V	51.9	-2.4		49.5	74.0	24.5	PK
60	2	0	3	1	3724.987	V	48.9	-2.4		46.5	54.0	7.5	AV
60	2	0	3	1	4656.255	V	45.8	-1.8		44.0	54.0	10.0	PK
869MHz Rx channel													
59	2	0	3	1	1876.500	V	49.7	-6.7		43.1	54.0	10.9	PK
60	2	0	3	1	2814.708	V	49.6	-5.1		44.4	54.0	9.6	PK
60	2	0	3	1	4691.247	V	46.0	-1.7		44.3	54.0	9.7	PK
60	2	0	3	1	5629.815	V	44.6	1.7		46.3	54.0	7.7	PK
Results										7.5	dB		
Minimum Margin PASS/FAIL													
Notes		Comments and Observations											
		Results of scans shown in plots 59 and 60. DMU. Where peak measurements were comfortably below the average limit only the peak reading is recorded - in this case the average limit is show. Otherwise separate peak and average measurements were made and show against the corresponding limits.											

	Report No: R3112	FCC ID: XX6-SRG3500XB				
	Issue No: 1	Test Report				
Test No: T4354	Page: 37 of 100					

4.20 Radiated Emissions - Receive Mode - DMU - above 1GHz - Horizontal

Factor Set 1: A23_3m_10A CBL049_11A PRE3_11A RFF22_11A	1 m cable
Factor Set 2: - - -	
Factor Set 3: - - -	
Test Equipment: R9 A23 PRE3 RFF22	

Radiated Emissions

Company: Sepura PLC							Product: SRG3500						
Date: 28/05/2012							Test Eng: Dave Smith						
Ports:													
Test: ANSI C63.4:2003 using limits of FCC_B													
Ports:													
Test: using limits of													
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
862MHz Rx channel													
59	2	0	3	1	1862.525	H	50.4	-6.7		43.7	54.0	10.3	PK
60	2	0	3	1	2793.846	H	47.0	-5.2		41.8	54.0	12.2	PK
60	2	0	3	1	3724.987	H	49.7	-2.4		47.2	54.0	6.8	PK
60	2	0	3	1	4656.255	H	43.1	-1.8		41.3	54.0	12.7	PK
869MHz Rx channel													
59	2	0	3	1	1877.500	H	44.7	-6.7		38.1	54.0	15.9	PK
60	2	0	3	1	2814.708	H	47.3	-5.1		42.2	54.0	11.8	PK
60	2	0	3	1	4691.247	H	43.7	-1.7		42.0	54.0	12.0	PK
60	2	0	3	1	5629.815	H	44.0	1.7		45.7	54.0	8.3	PK
Results													
Minimum Margin PASS/FAIL													
Notes		Comments and Observations											
		Results of scans shown in plots 59 and 60. DMU. Where peak measurements were comfortably below the average limit only the peak reading is recorded - in this case the average limit is show. Otherwise separate peak and average measurements were made and show against the corresponding limits.											

	Report No: R3112	FCC ID: XX6-SRG3500XB				
	Issue No: 1	Test Report				
Test No: T4354		Page: 38 of 100				

4.21 Conducted Emissions (Power) - Results

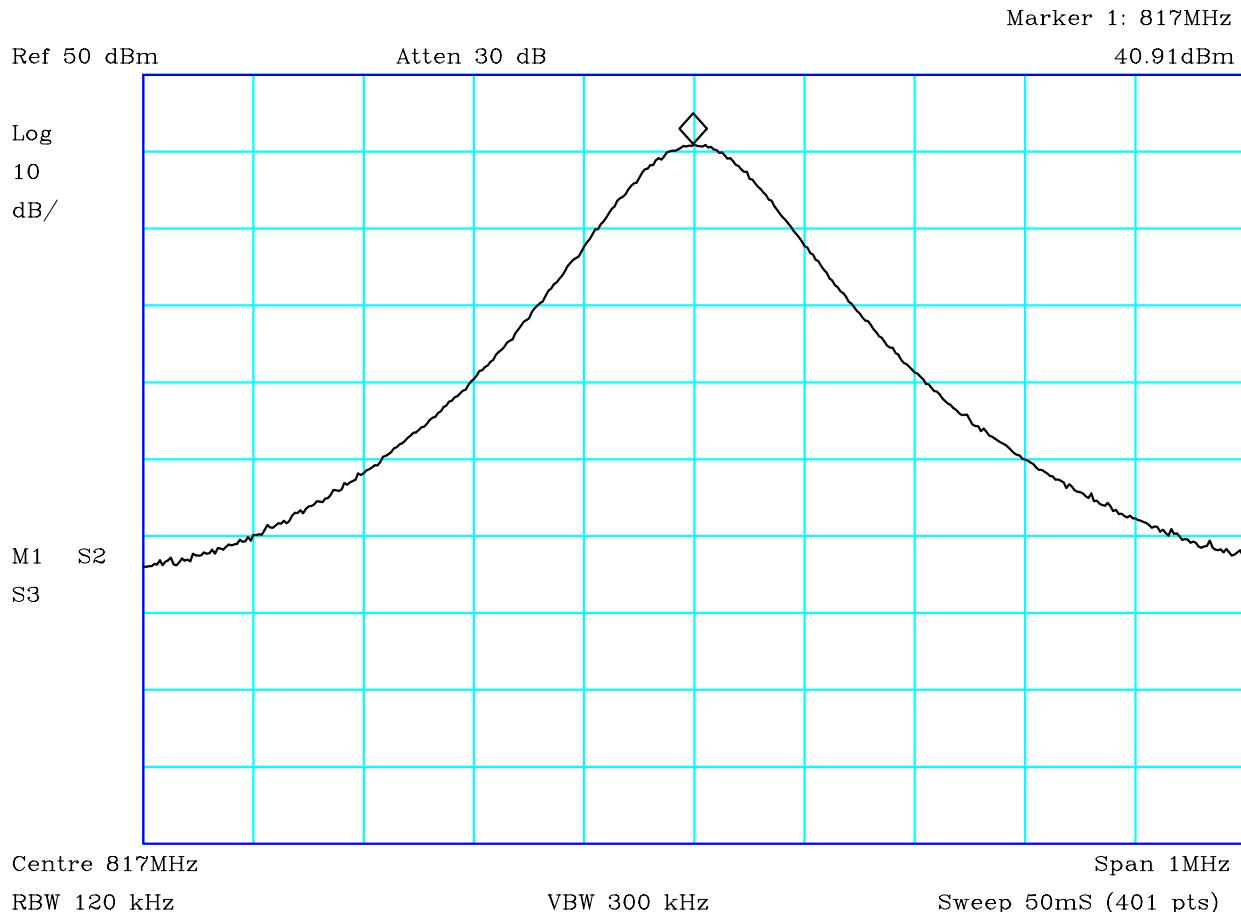
Factor Set 1: L1_11A AB002_CBL005_CBL039_11A - -

Factor Set 2: - - -

Factor Set 3: - - -

Test Equipment: R1 L1

Conducted Emissions (Power)


Company:	Sepura PLC			Product:			SRG3500							
Date:	08/06/12			Test Eng:			Dave Smith							
Ports:	ac power			Test:			ANSI C63.4:2003 using limits of							
Ports:							FCC_B							
Test:	using limits of													
Plot	Op Mode	Mod State	Line (L/N)	Fact Set	Freq. MHz	Det qp/ av	Rec. Level dBuV	Corr'n Factor dB	Total Level dBuV	Limit FCC_B dBuV	Margin FCC_B dB	Notes		
61	1	0	L	1	0.189	qp	40.3	10.0	50.3	64.1	13.8			
61	1	0	L	1	0.189	av	29.0	10.0	39.0	54.1	15.1			
61	1	0	L	1	0.252	qp	35.2	10.0	45.2	61.7	16.5			
61	1	0	L	1	0.252	av	21.0	10.0	31.0	51.7	20.7			
61	1	0	L	1	0.377	qp	23.6	10.0	33.6	58.3	24.8			
61	1	0	L	1	0.377	av	12.8	10.0	22.8	48.3	25.6			
62	1	0	N	1	0.189	qp	40.2	10.0	50.2	64.1	13.9			
62	1	0	N	1	0.189	av	29.0	10.0	39.0	54.1	15.1			
62	1	0	N	1	0.252	qp	35.0	10.0	45.0	61.7	16.7			
62	1	0	N	1	0.252	av	21.0	10.0	31.0	51.7	20.7			
62	1	0	N	1	0.377	qp	23.8	10.0	33.8	58.3	24.6			
62	1	0	N	1	0.377	av	10.8	10.0	20.8	48.3	27.6			
Results						Minimum Margin PASS/FAIL			13.8 dB					
Notes		Comments and Observations												
		Results of scans shown in plots 61 to 66. Tabulated results above were for worst case mode - Transmit @ 817MHz.												

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

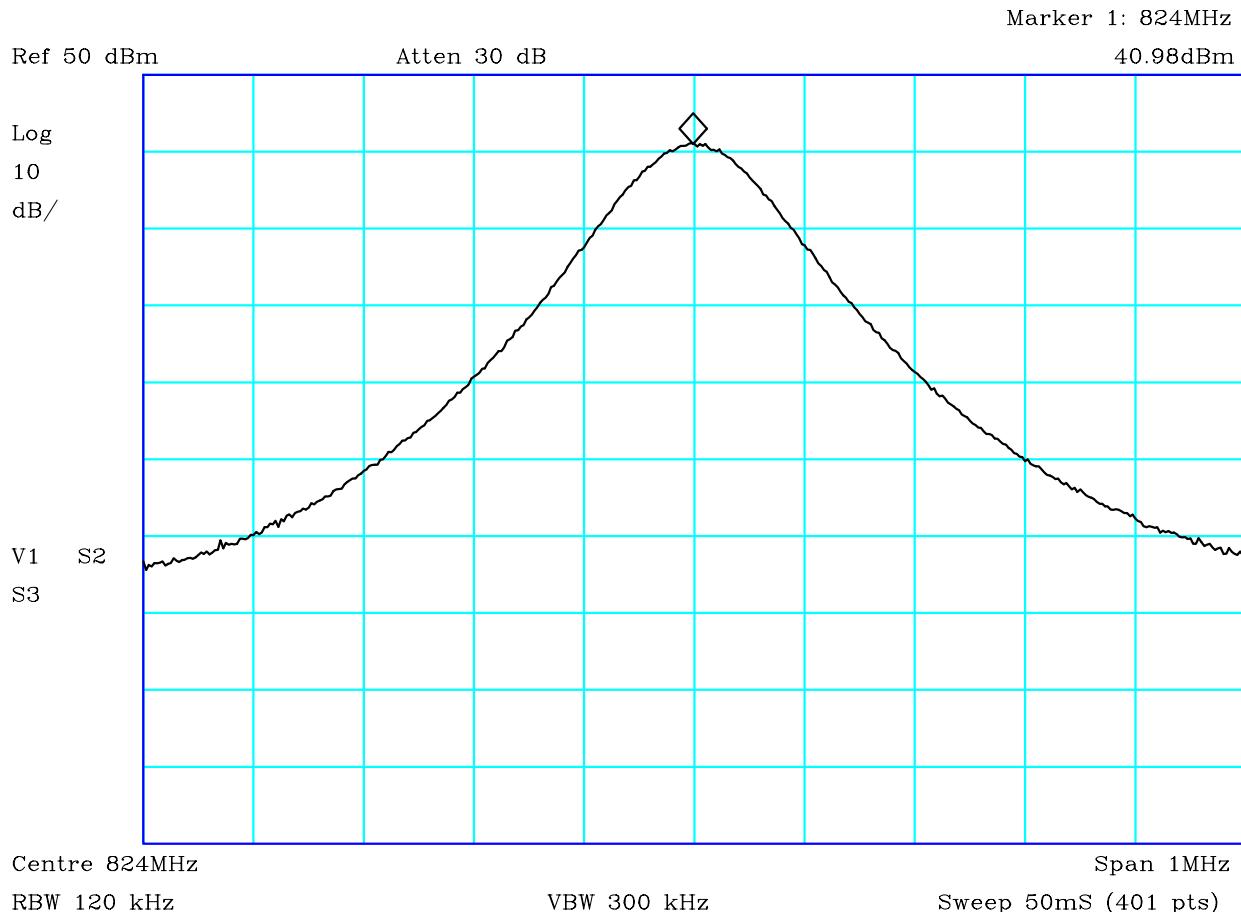
Test Report

Page: 39 of 100

PLOT 1 Conducted Antenna Output Power (817MHz)

Company: Sepura	Product: SRG3500
Date: 06/06/2012	Test Eng: Dave Smith
Method: FCC Part 90	Method:
Limit1:	Limit2:
Limit3:	Limit4:

Peak: 40.91 dBm
Average (measured with power meter): 38.02 dBm


Facility: Anech_2	Mode: 1
	Modification State: 0
File: H250675F	

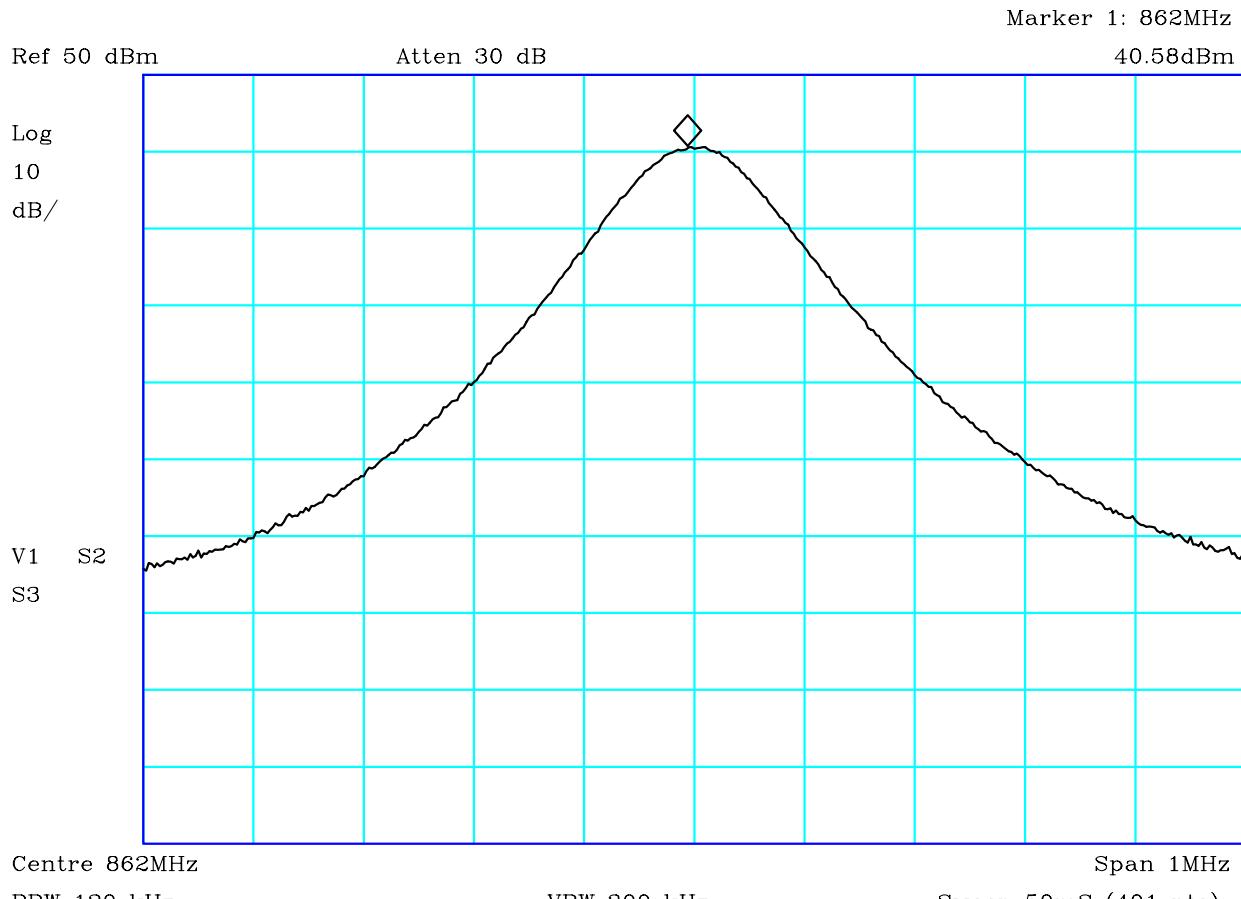
	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report

Page: 40 of 100

PLOT 2 Conducted Antenna Output Power (824MHz)


Company: Sepura	Product: SRG3500
Date: 06/06/2012	Test Eng: Dave Smith
Method: FCC Part 90	Method:
Limit1:	Limit2:
Limit3:	Limit4:
Peak: 40.98 dBm	
Average (measured with power meter): 38.08 dBm	
Facility: Anech_2	Mode: 1
	Modification State: 0
File: H2506762	

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report

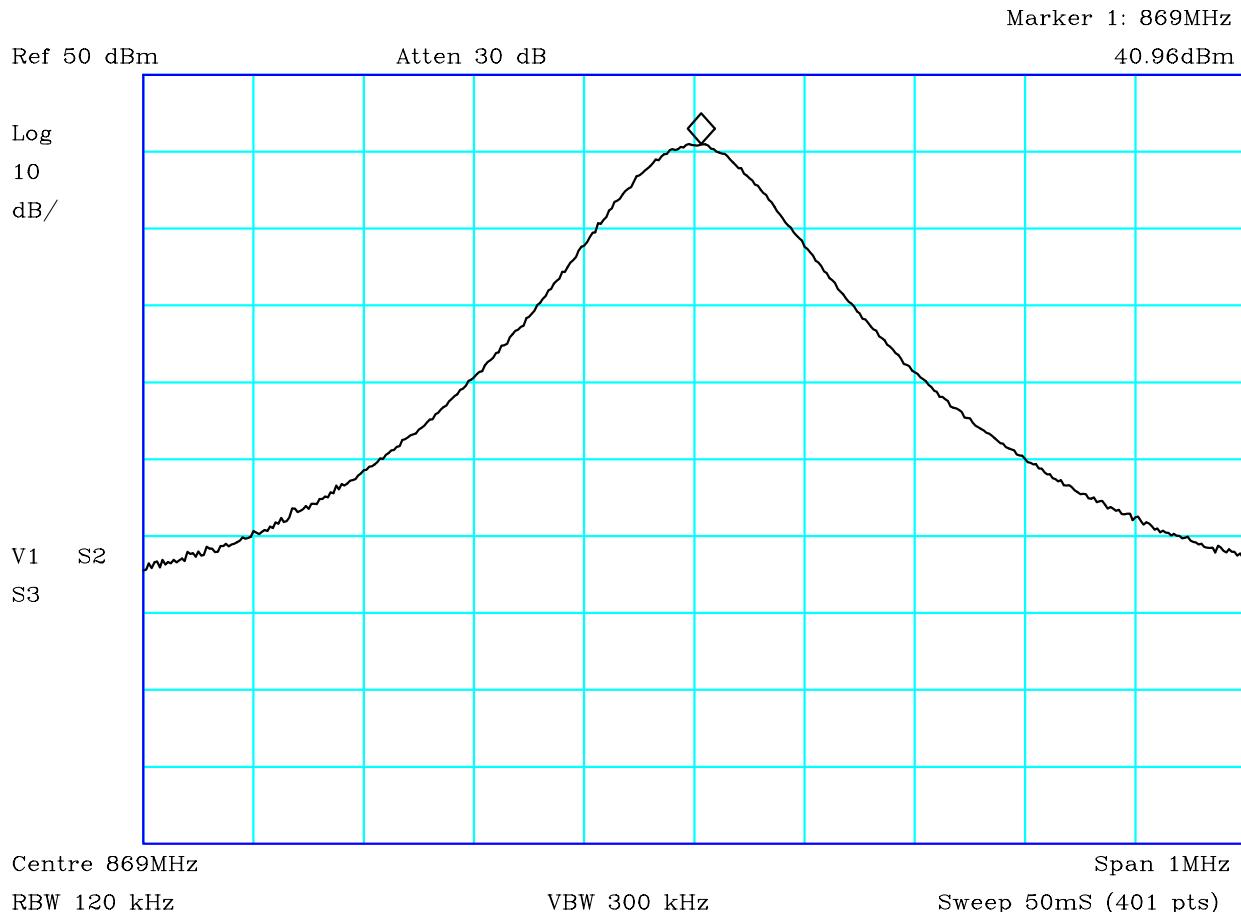
Page: 41 of 100

CF1:30dB PAD + cable

PLOT 3 Conducted Antenna Output Power (862MHz)

Company: Sepura	Product: SRG3500
Date: 06/06/2012	Test Eng: Dave Smith
Method: FCC Part 90	Method:
Limit1:	Limit2:
Limit3:	Limit4:

Peak: 40.58 dBm
Average (measured with power meter): 37.82 dBm


Facility: Anech_2	Mode: 1
	Modification State: 0
File: H2506768	

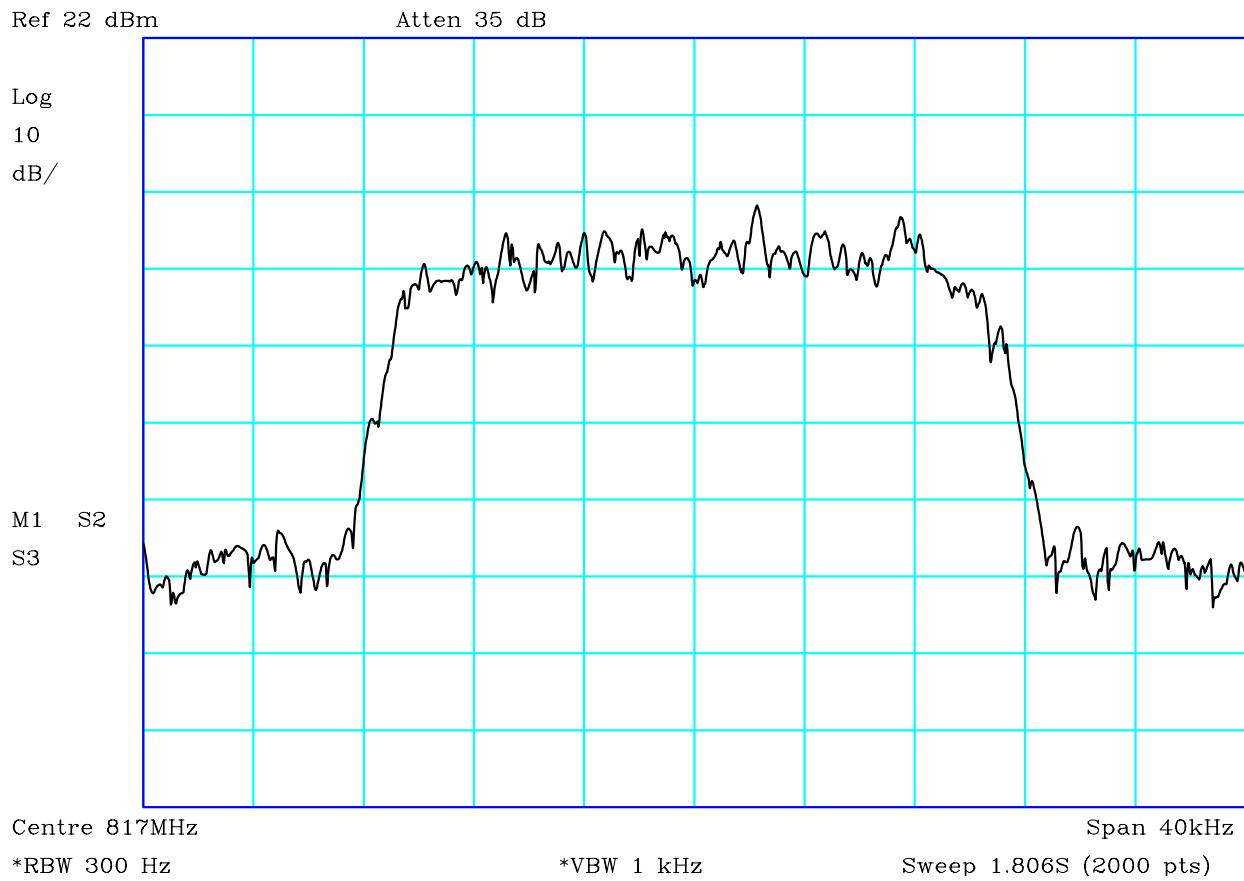
	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report

Page: 42 of 100

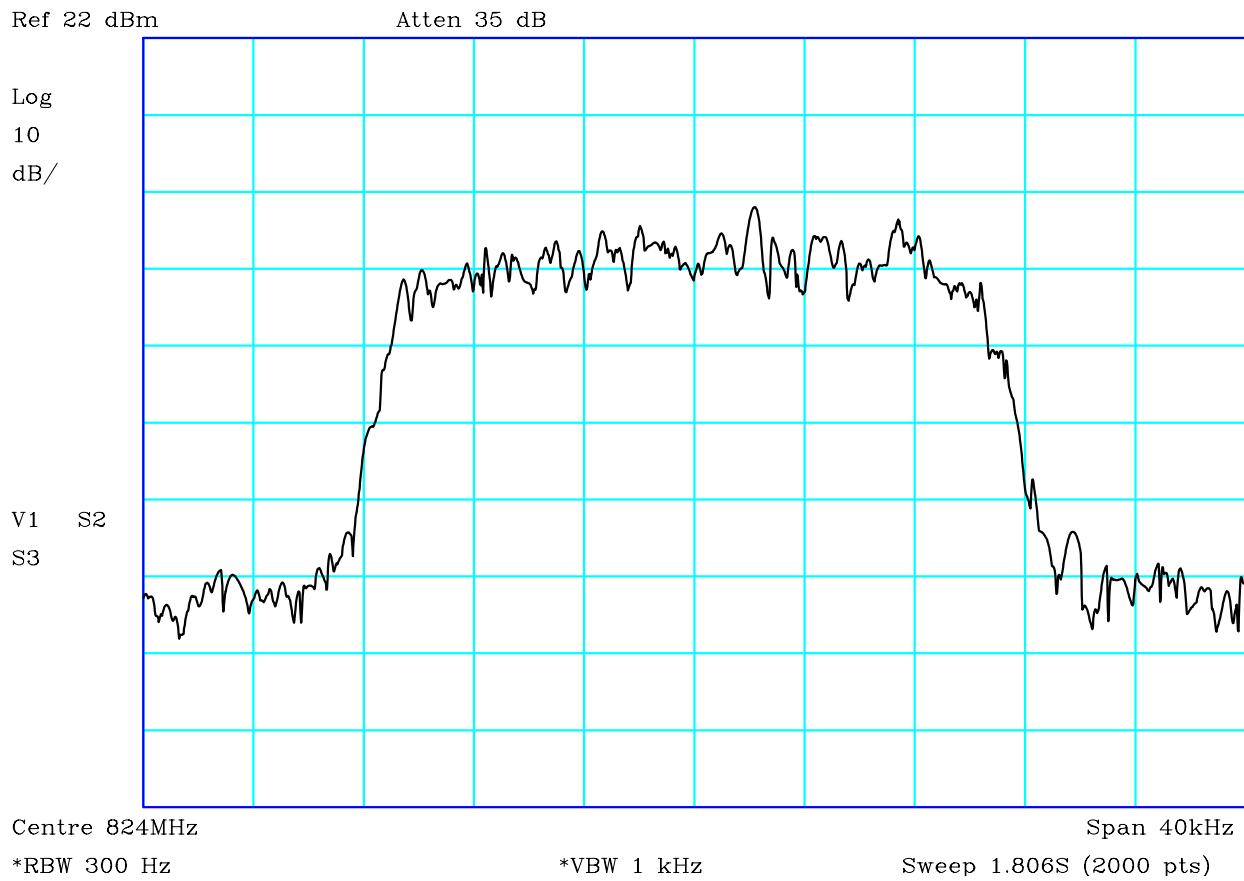
CF1:30dB PAD + cable


PLOT 4 Conducted Antenna Output Power (869MHz)

Company: Sepura	Product: SRG3500
Date: 06/06/2012	Test Eng: Dave Smith
Method: FCC Part 90	Method:
Limit1:	Limit2:
Limit3:	Limit4:

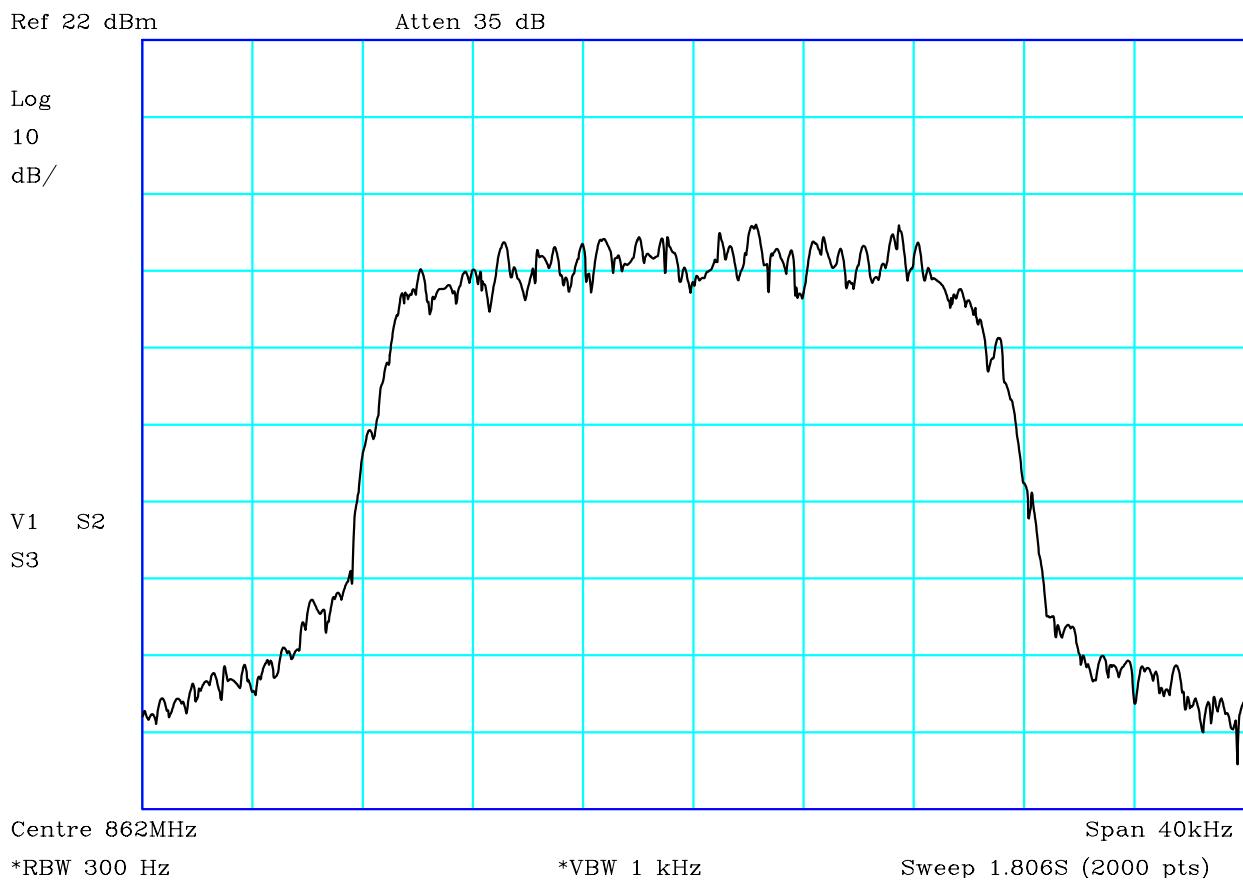
Peak: 40.96 dBm
Average (measured with power meter): 38.13 dBm

Facility: Anech_2	Mode: 1
	Modification State: 0
File: H250676B	


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 43 of 100

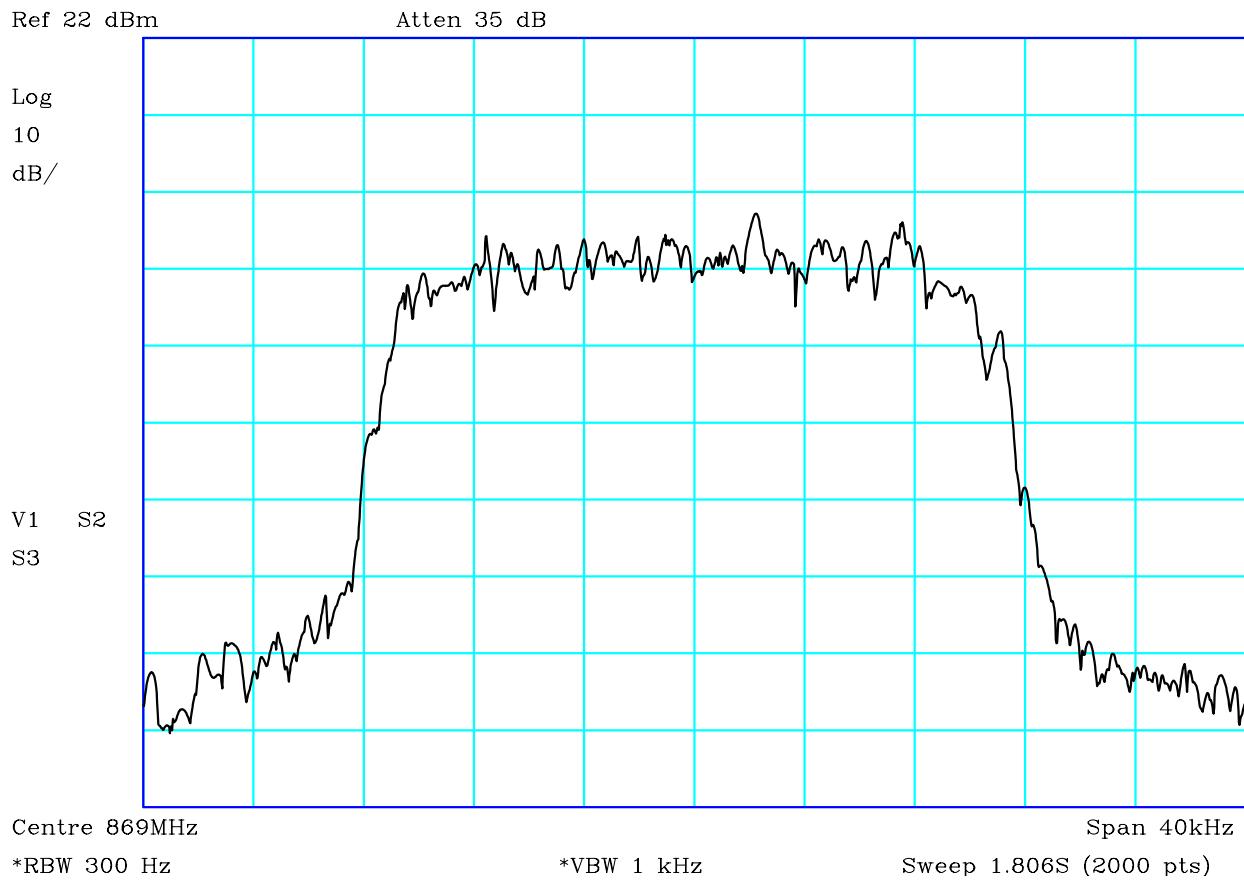
PLOT 5 Occupied Bandwidth (817MHz)

Company:	Sepura	Product:	SRG3500
Date:	07/06/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:		Limit2:	
Limit3:		Limit4:	
817MHz			
99% Occupied bandwidth measurement: 21.03kHz			
Facility:	Environ	Mode:	1
		Modification State:	0
File:		H2525574	


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 44 of 100

PLOT 6 Occupied Bandwidth (824MHz)

Company:	Sepura	Product:	SRG3500
Date:	07/06/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:		Limit2:	
Limit3:		Limit4:	


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 45 of 100

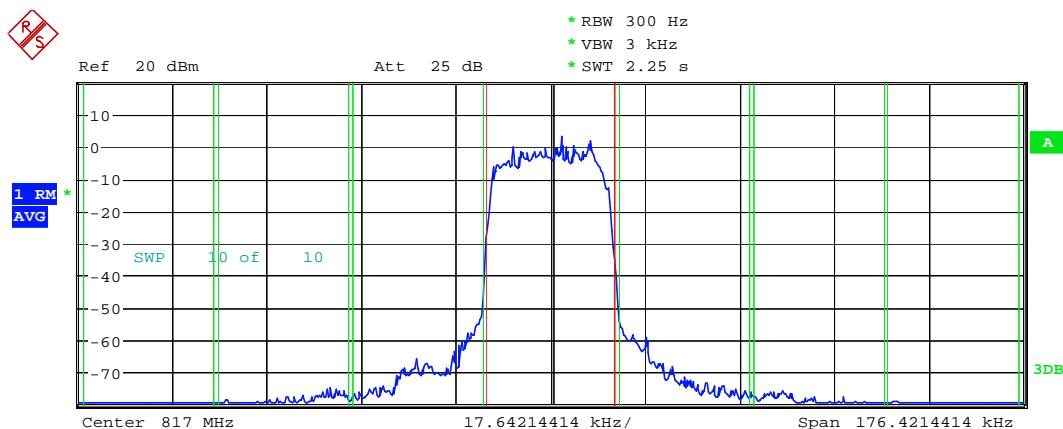
PLOT 7 Occupied Bandwidth (862MHz)

Company:	Sepura	Product:	SRG3500
Date:	07/06/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:		Limit2:	
Limit3:		Limit4:	
862MHz 99% Occupied bandwidth measurement: 20.89kHz			
Facility:	Environ	Mode:	1
		Modification State:	0
File:		H252558C	

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 46 of 100

PLOT 8 Occupied Bandwidth (869MHz)

Company:	Sepura	Product:	SRG3500
Date:	07/06/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:		Limit2:	
Limit3:		Limit4:	
869MHz 99% Occupied bandwidth measurement: 20.73kHz			
Facility:	Environ	Mode:	1
		Modification State:	0
File:	H2525595		

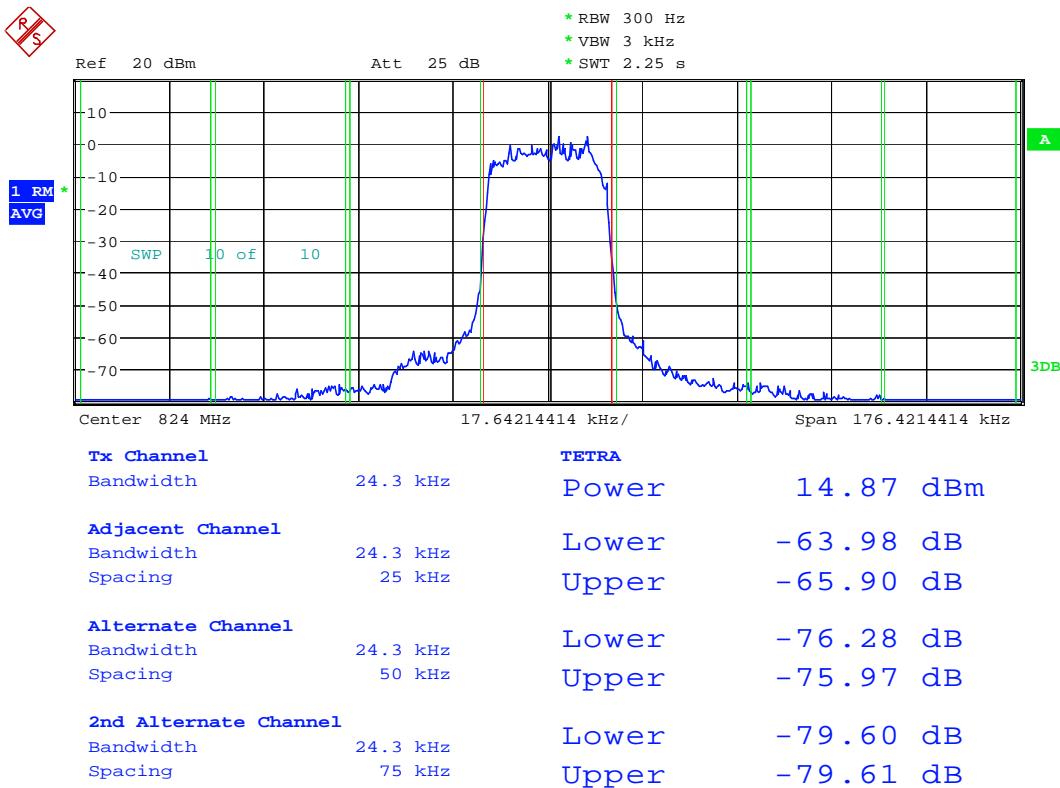

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report

Page: **47 of 100**

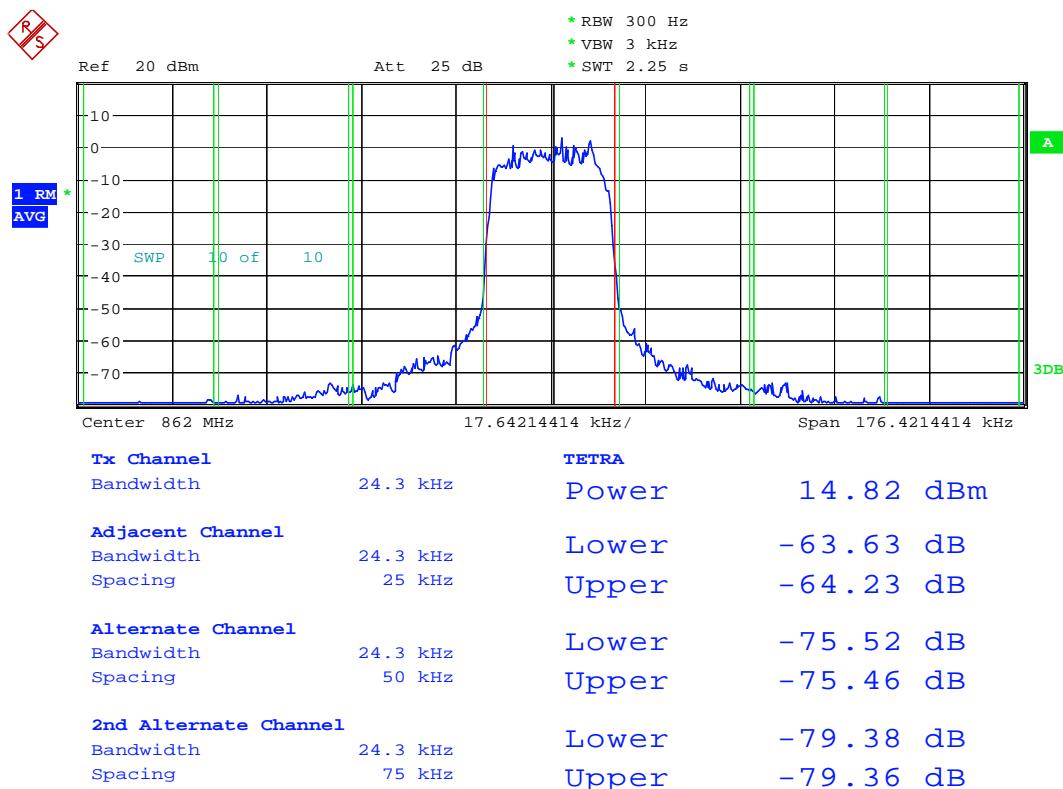
**R
S**



Tx Channel	TETRA		
Bandwidth	24.3 kHz	Power	14.89 dBm
Adjacent Channel			
Bandwidth	24.3 kHz	Lower	-65.30 dB
Spacing	25 kHz	Upper	-65.48 dB
Alternate Channel			
Bandwidth	24.3 kHz	Lower	-76.60 dB
Spacing	50 kHz	Upper	-76.42 dB
2nd Alternate Channel			
Bandwidth	24.3 kHz	Lower	-79.26 dB
Spacing	75 kHz	Upper	-79.26 dB

Date: 12.JUN.2012 13:21:24

PLOT 9 Adjacent Channel Power (817MHz)


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 48 of 100

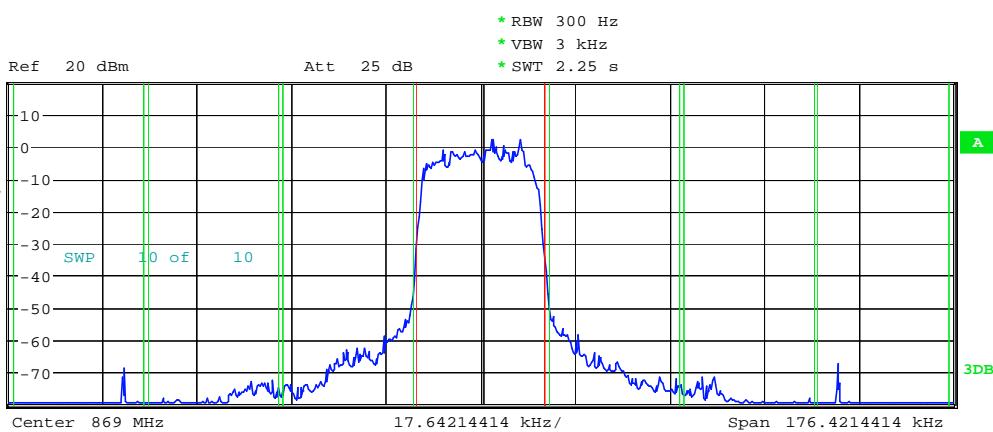
Date: 12.JUN.2012 13:22:10

PLOT 10 Adjacent Channel Power (824MHz)

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 49 of 100

Date: 12.JUN.2012 13:24:12

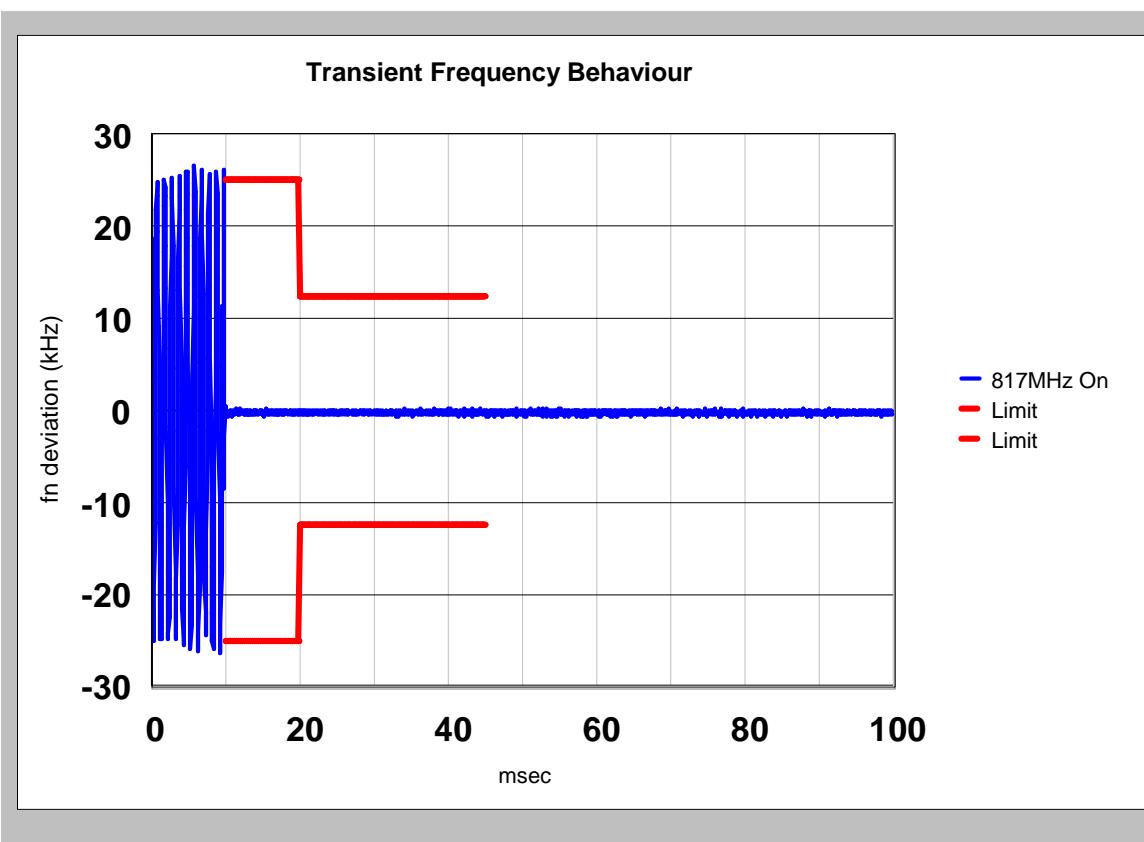
PLOT 11 Adjacent Channel Power (862MHz)

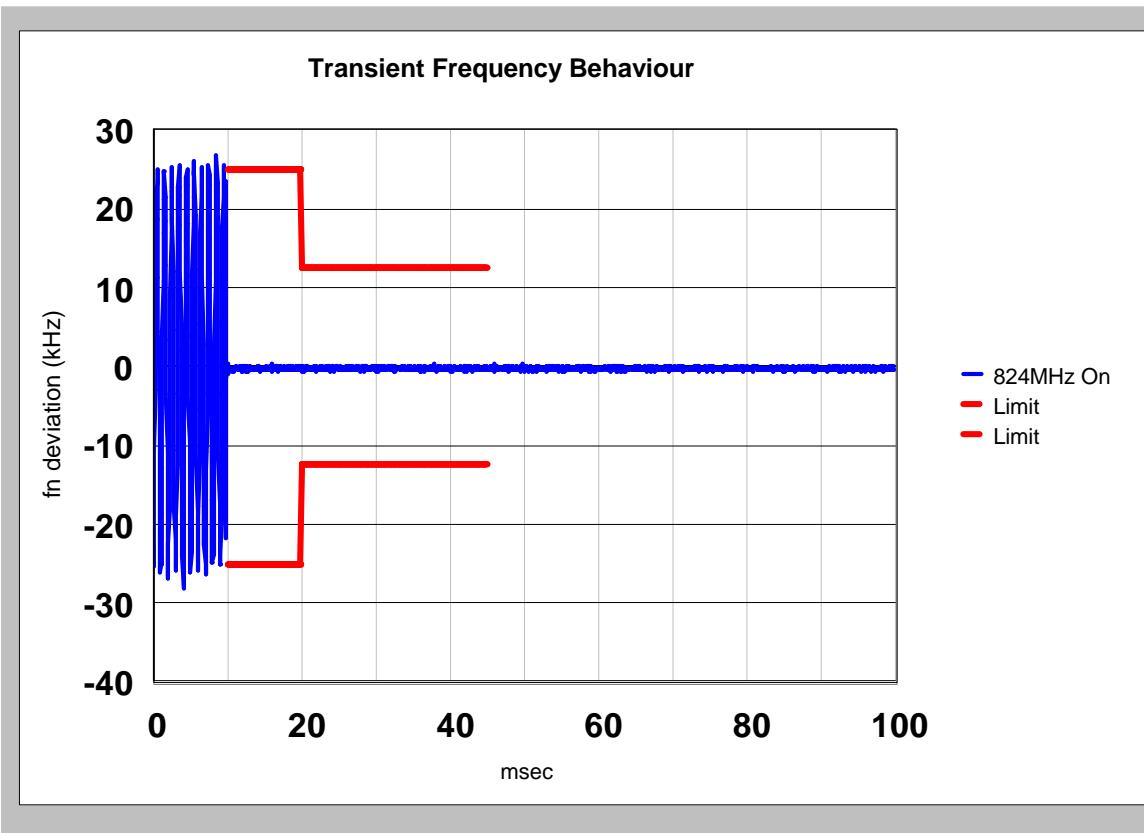

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

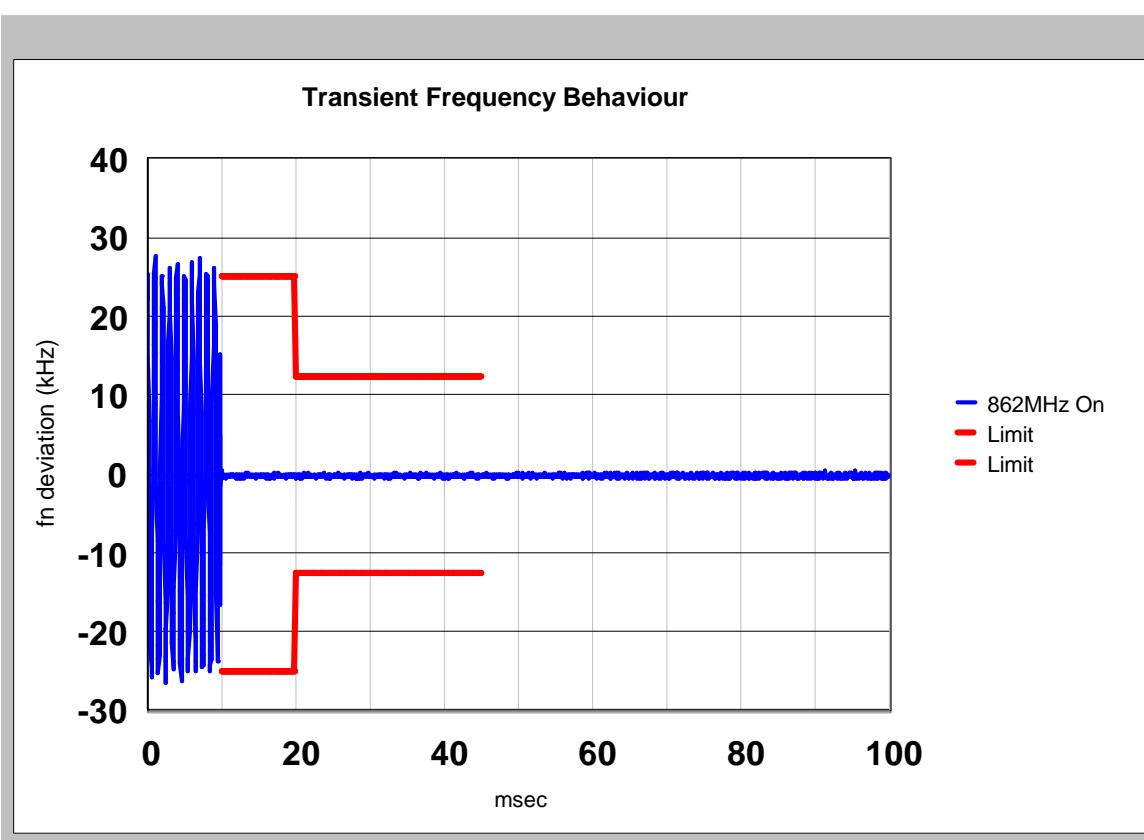
Test Report

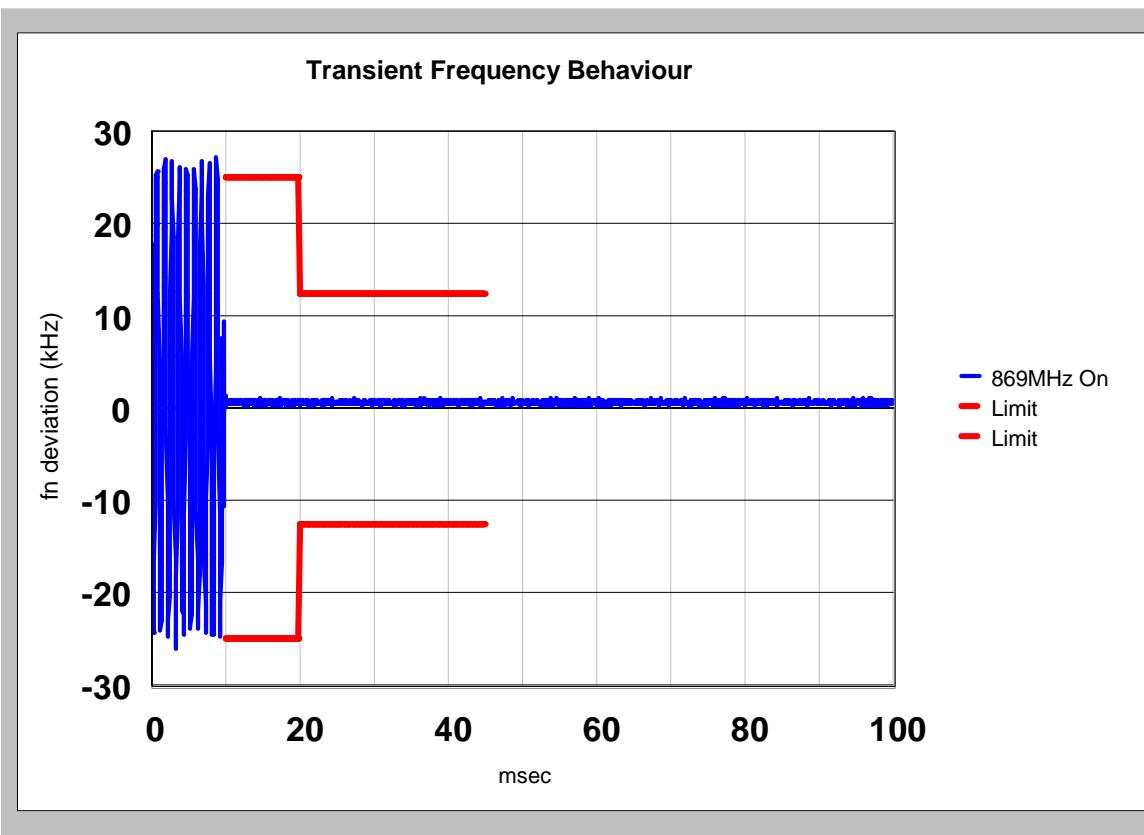
Page: **50 of 100**

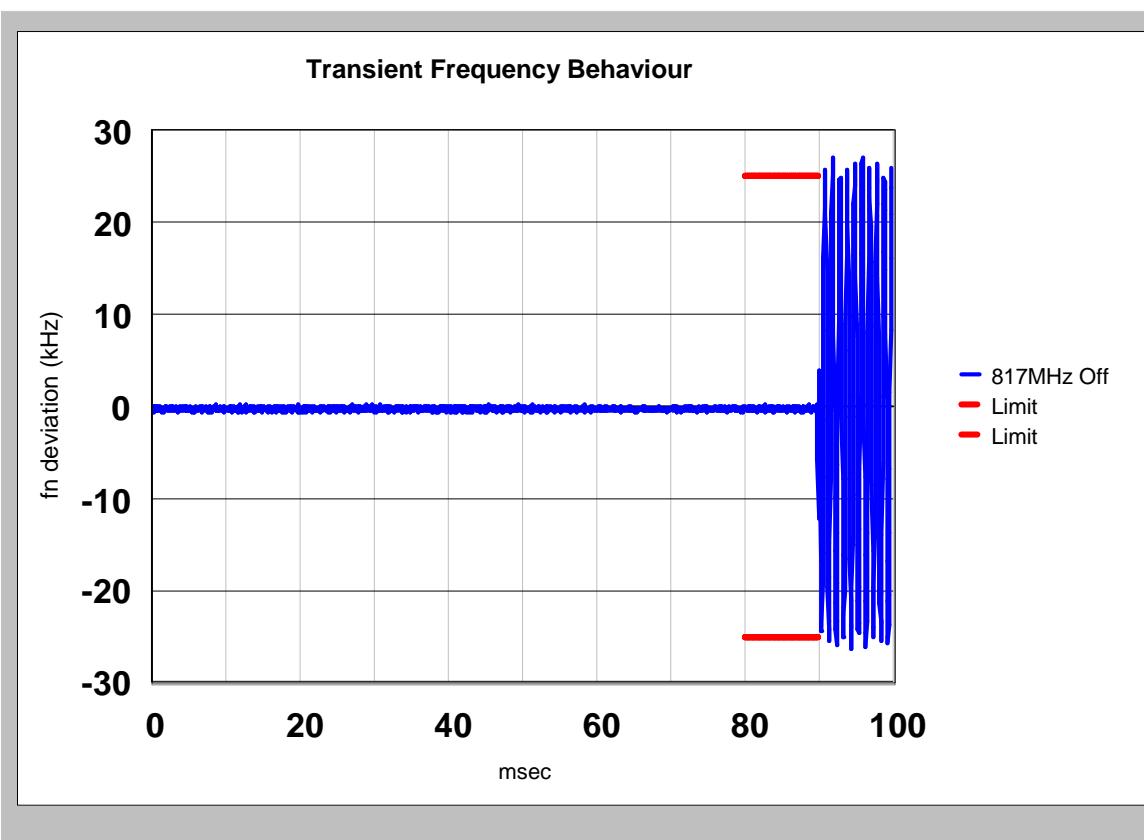

**R
S**

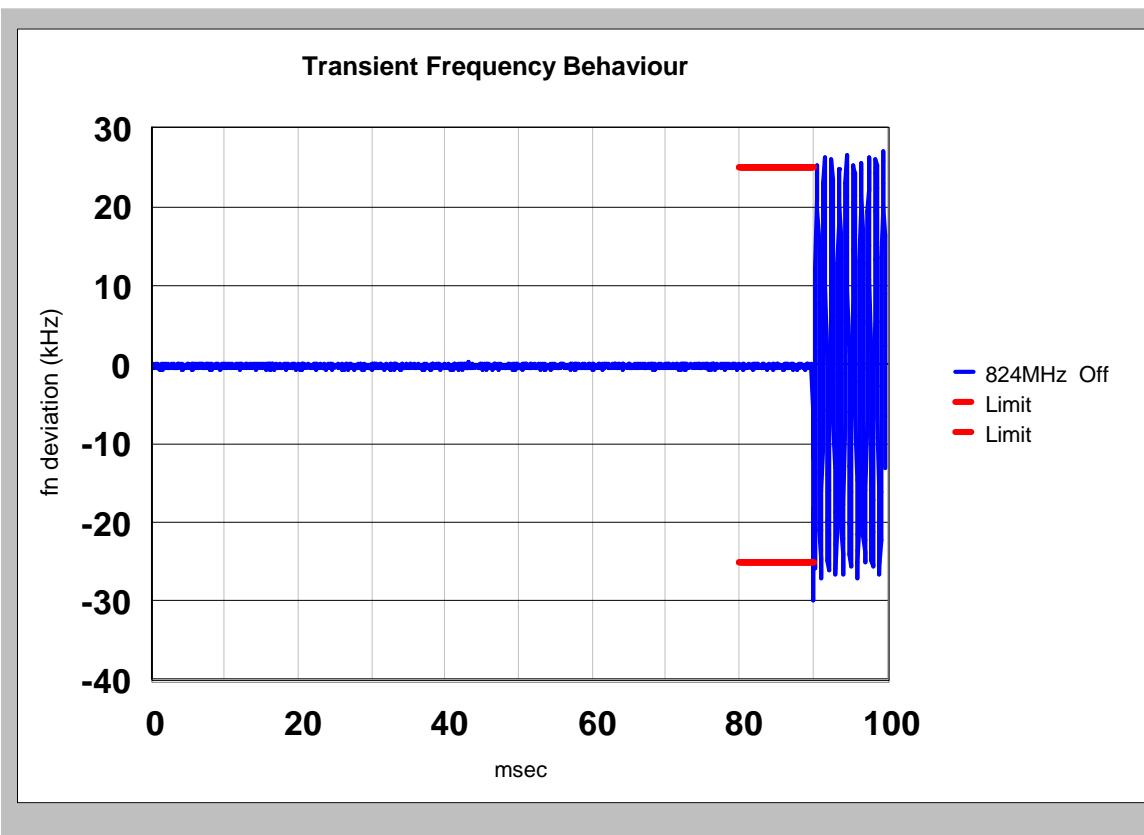

Tx Channel	TETRA		
Bandwidth	24.3 kHz	Power	15.04 dBm
Adjacent Channel			
Bandwidth	24.3 kHz	Lower	-62.57 dB
Spacing	25 kHz	Upper	-63.56 dB
Alternate Channel			
Bandwidth	24.3 kHz	Lower	-75.59 dB
Spacing	50 kHz	Upper	-75.61 dB
2nd Alternate Channel			
Bandwidth	24.3 kHz	Lower	-78.51 dB
Spacing	75 kHz	Upper	-78.31 dB

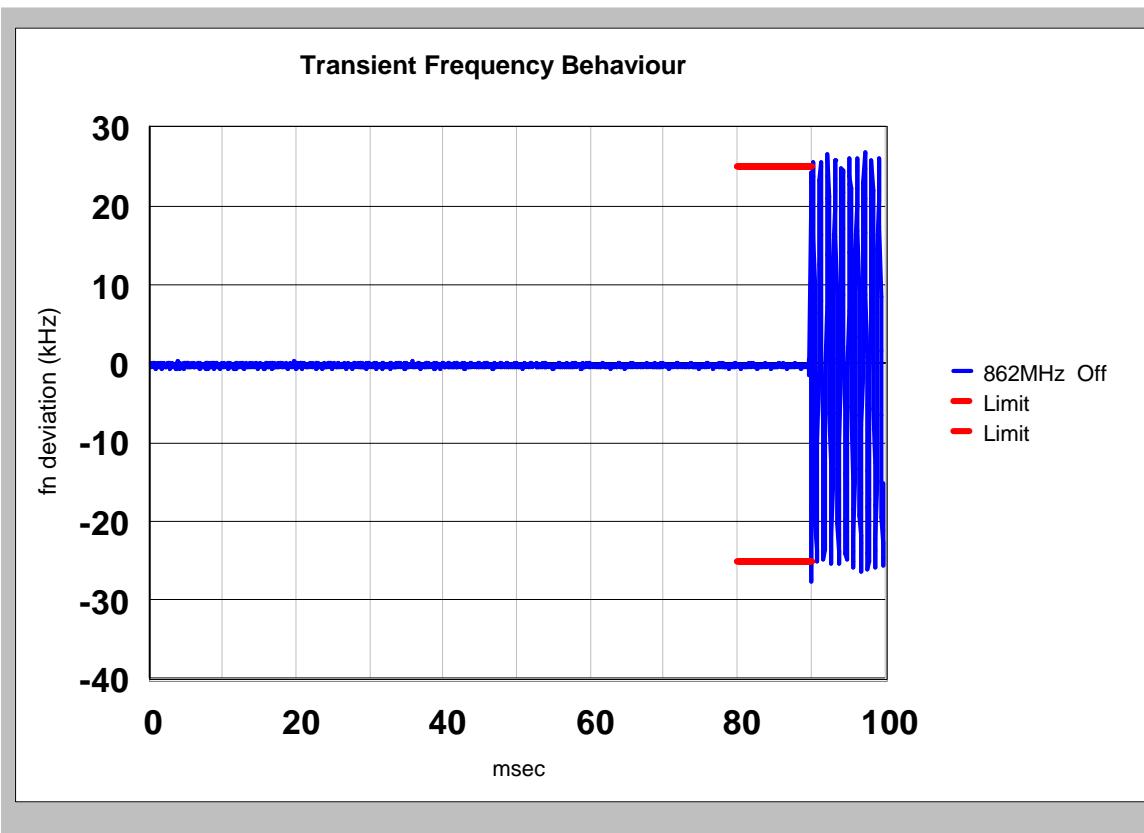
Date: 12.JUN.2012 13:24:50

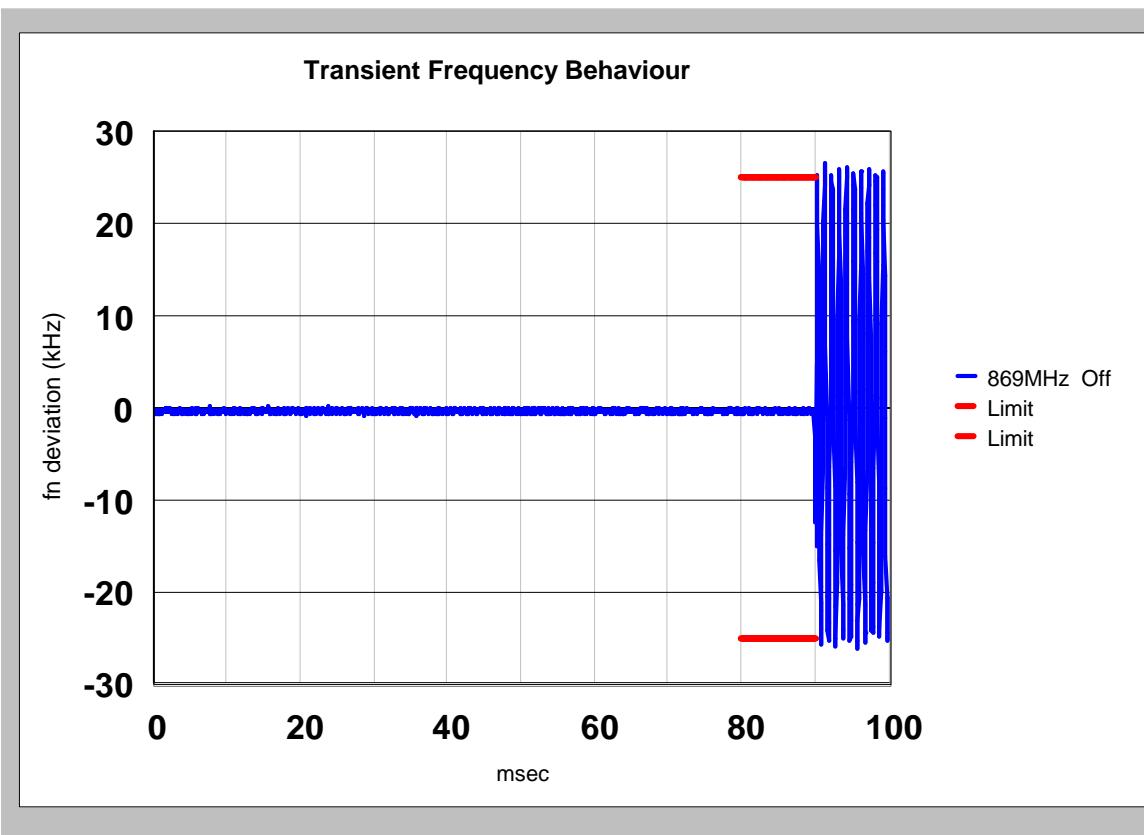

PLOT 12 Adjacent Channel Power (869MHz)


PLOT 13 Transient Frequency - 817MHz - On


PLOT 14 Transient Frequency - 824MHz - On

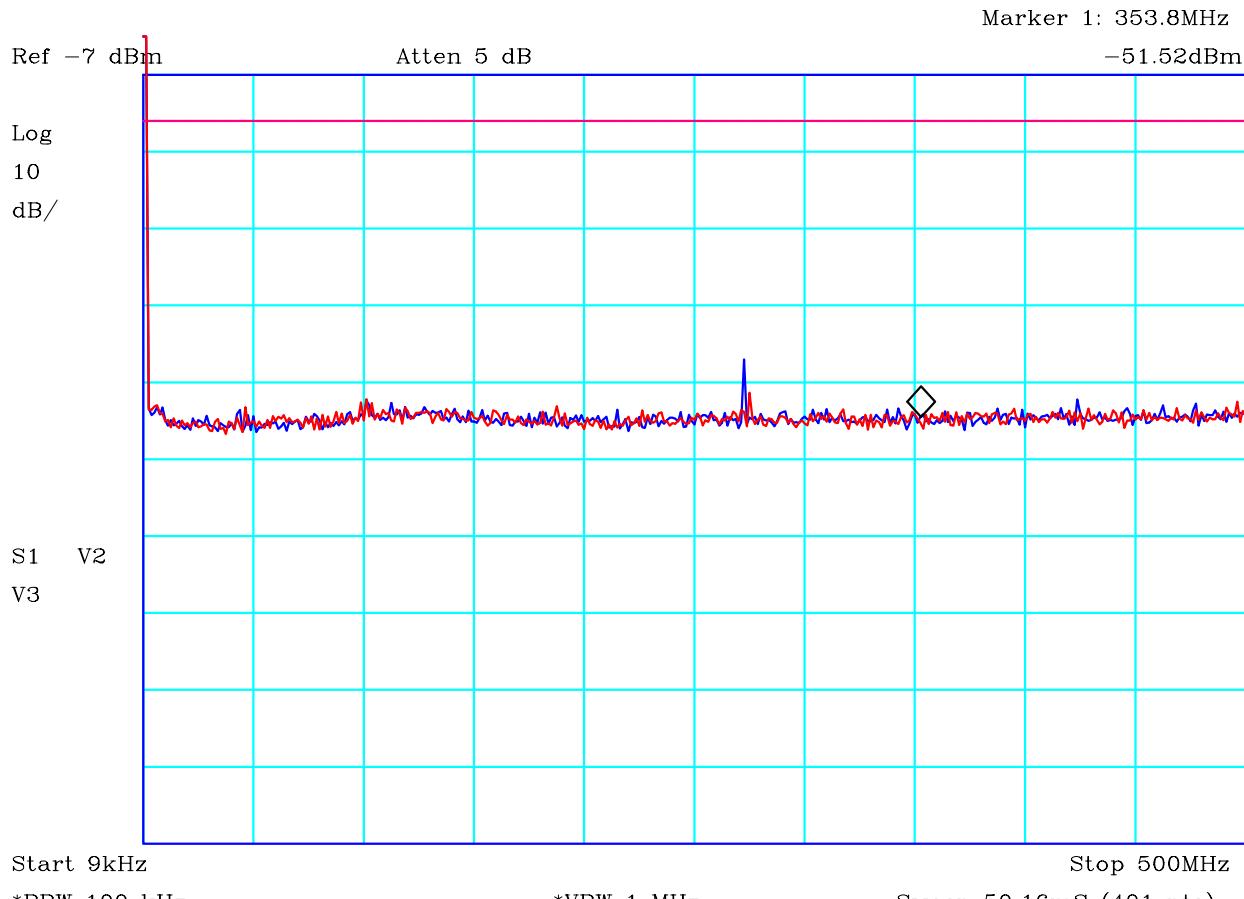

PLOT 15 Transient Frequency - 862MHz - On


PLOT 16 Transient Frequency - 869MHz - On


PLOT 17 Transient Frequency - 817MHz - Off

PLOT 18 Transient Frequency - 824MHz - Off

PLOT 19 Transient Frequency - 862MHz - Off


PLOT 20 Transient Frequency - 869MHz - Off

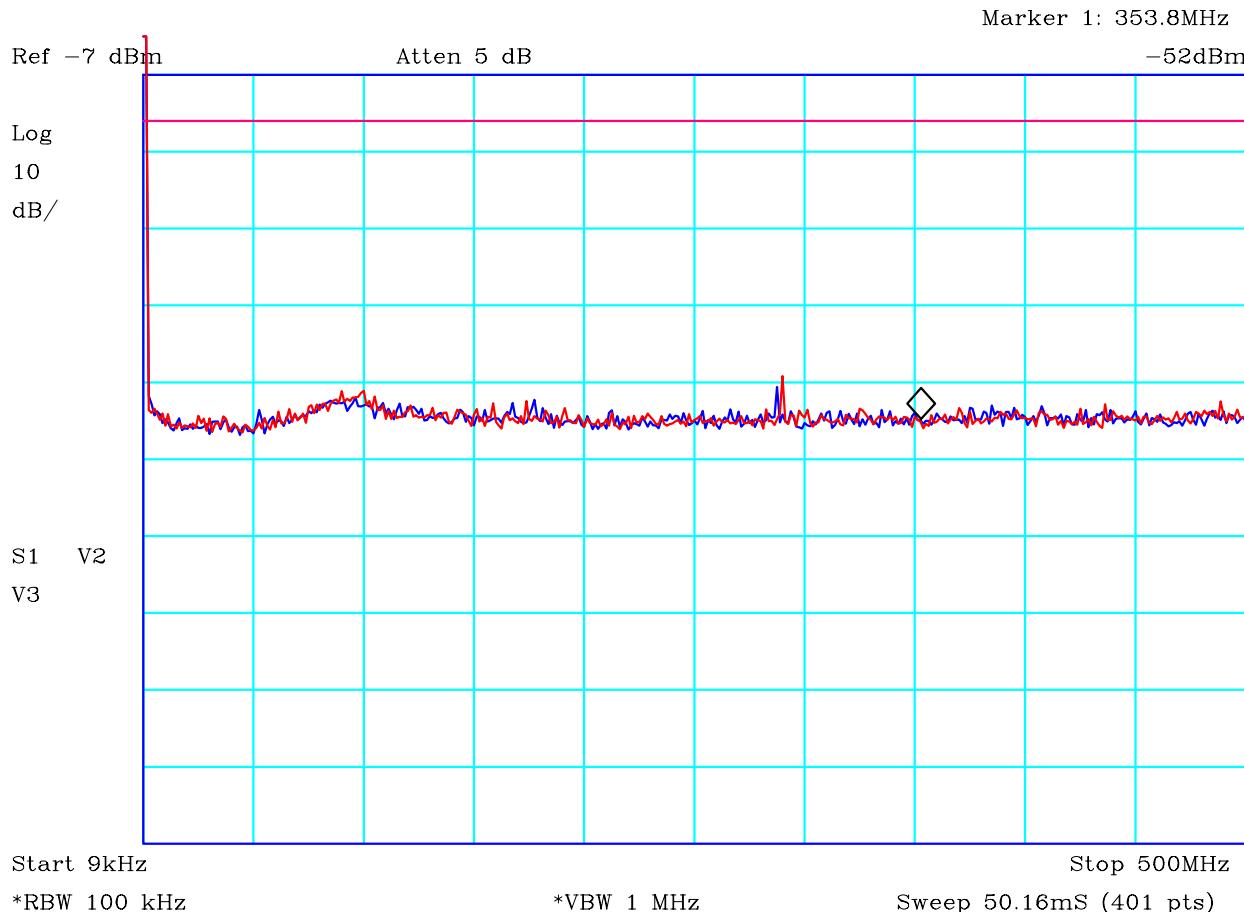
	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report

Page: 55 of 100

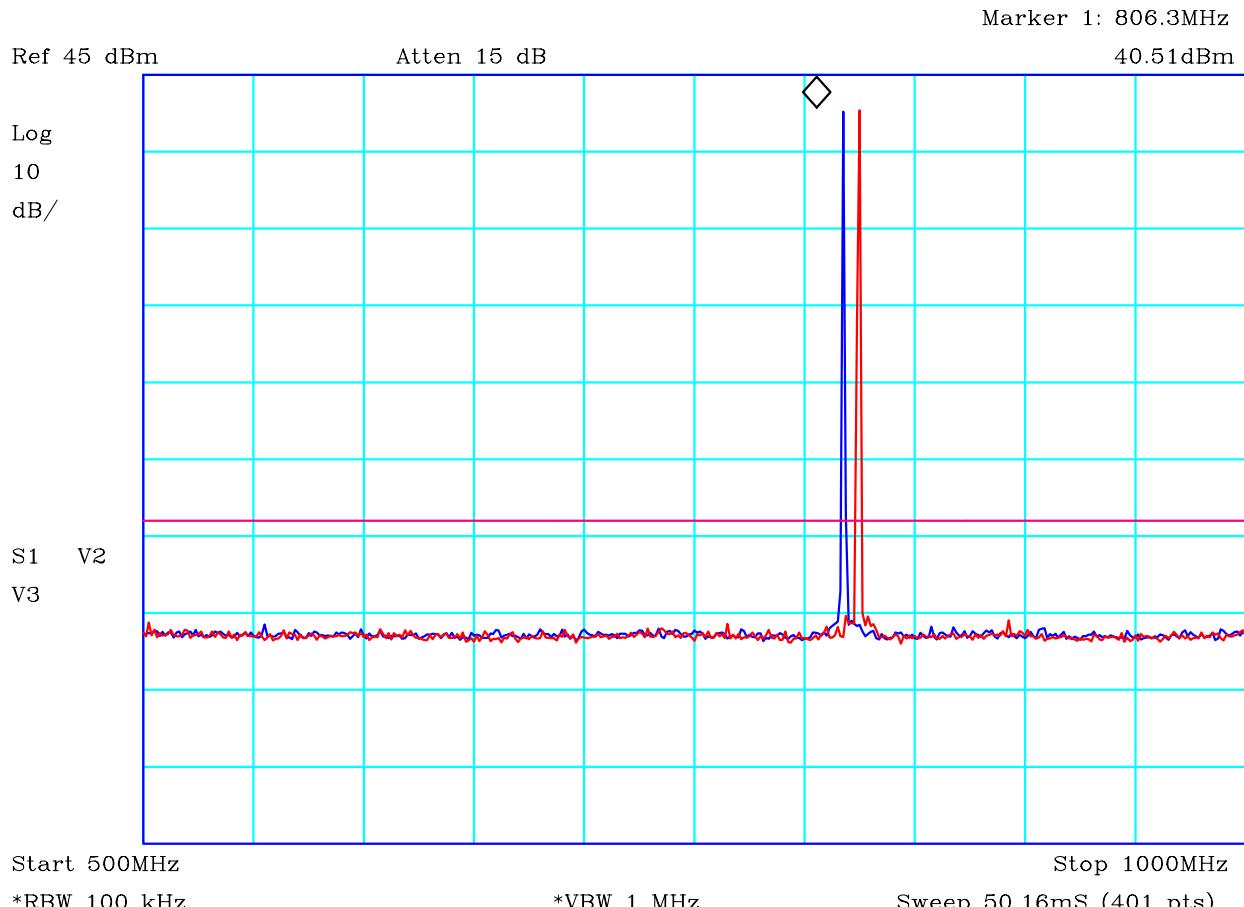
PLOT 21 Antenna Conducted Spur Emissions - 817 to 824 Band - 9kHz to 500MHz


Company:	Sepura	Product:	SRG3500
Date:	07/06/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	-13dBm	Limit2:	
Limit3:		Limit4:	
Blue: 817MHz			
Red 824MHz			
Limit -13dBm			
Facility:	Environ	Mode:	1
		Modification State:	0
		File:	H25076E6

	Report No: R3112 Issue No: 1
Test No: T4354	

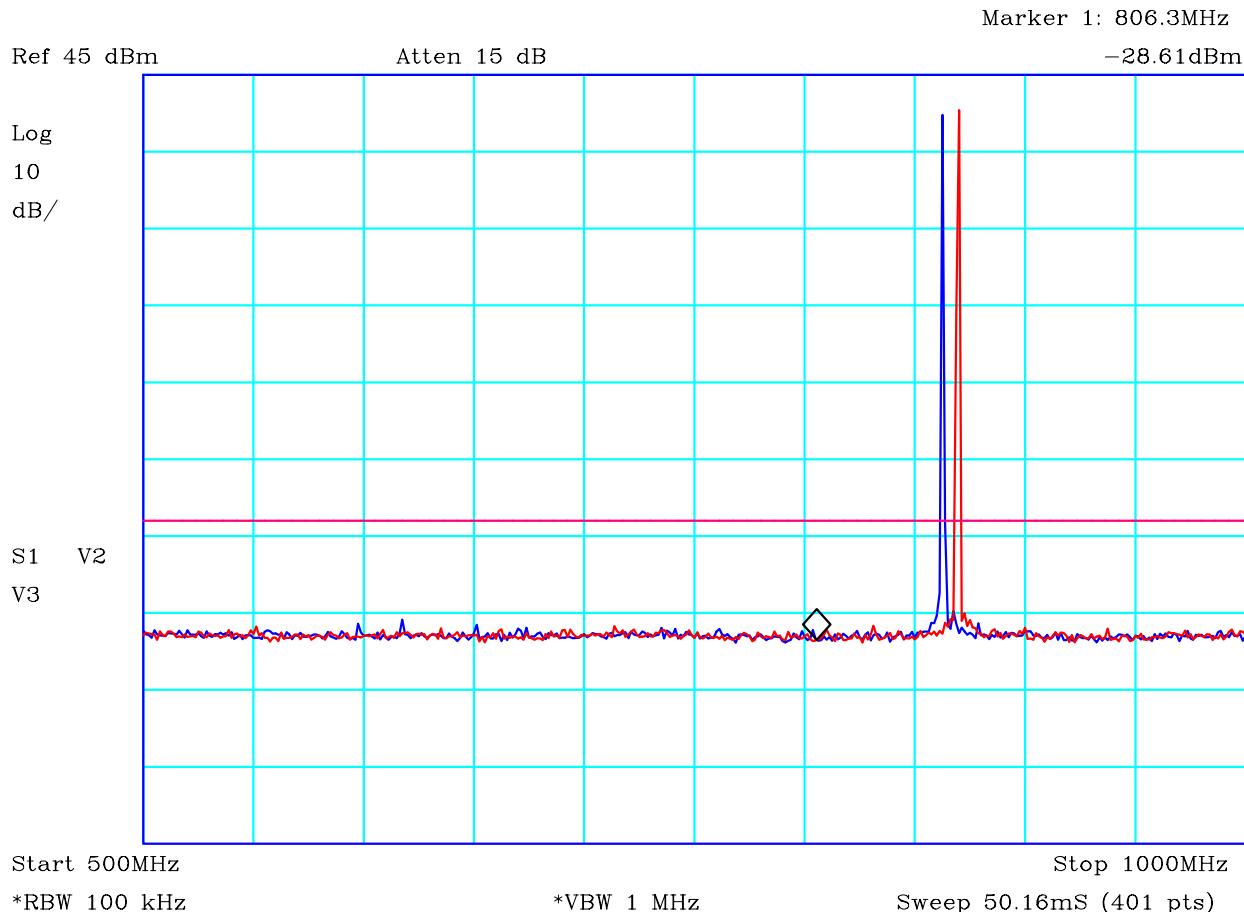
FCC ID: XX6-SRG3500XB

Test Report


Page: 56 of 100

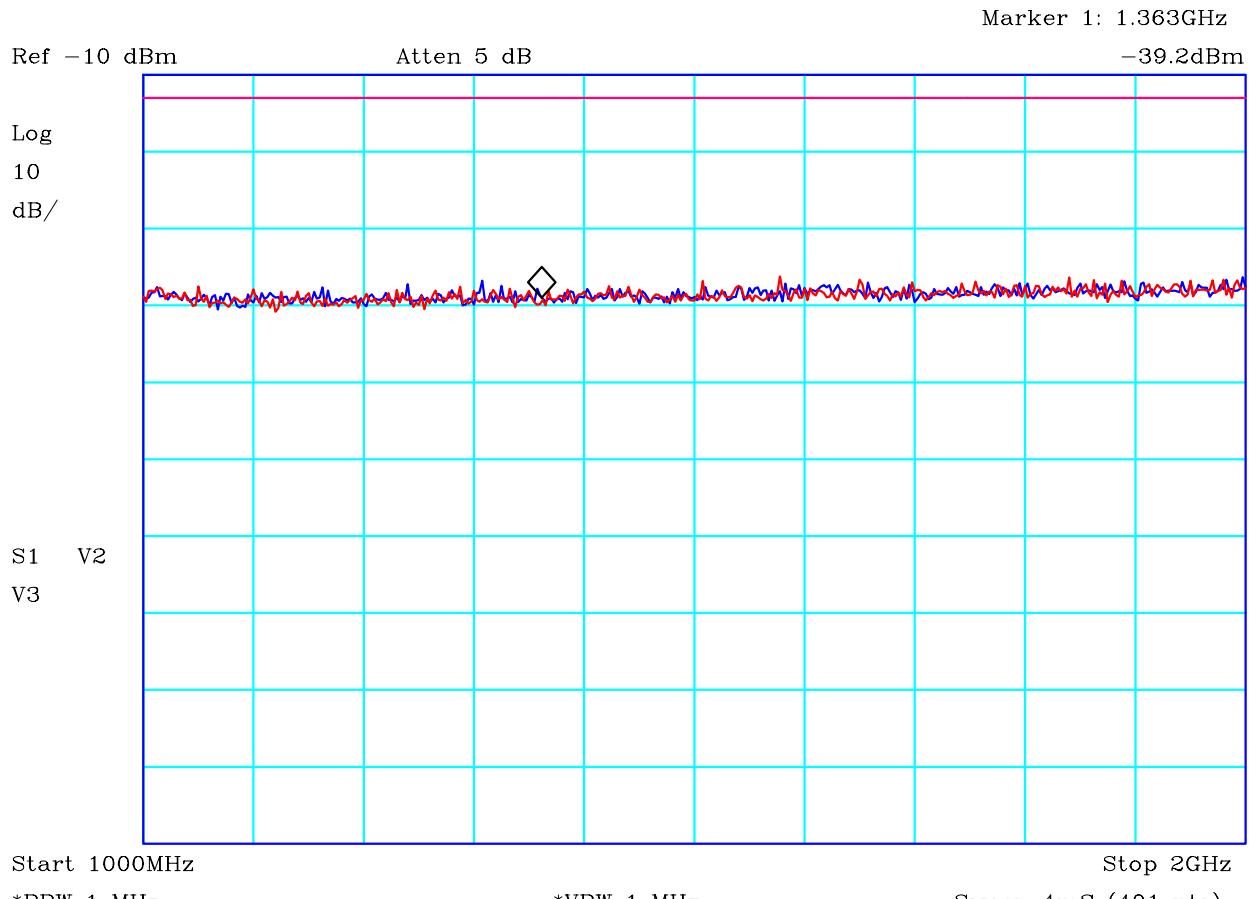
PLOT 22 Antenna Conducted Spur Emissions - 862 to 869 Band - 9kHz to 500MHz

Company:	Sepura	Product:	SRG3500
Date:	07/06/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	-13dBm	Limit2:	
Limit3:		Limit4:	
Blue: 862MHz Red 869MHz Limit -13dBm			
Facility:	Environ	Mode:	1
		Modification State:	0
		File:	H25076F1


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 57 of 100

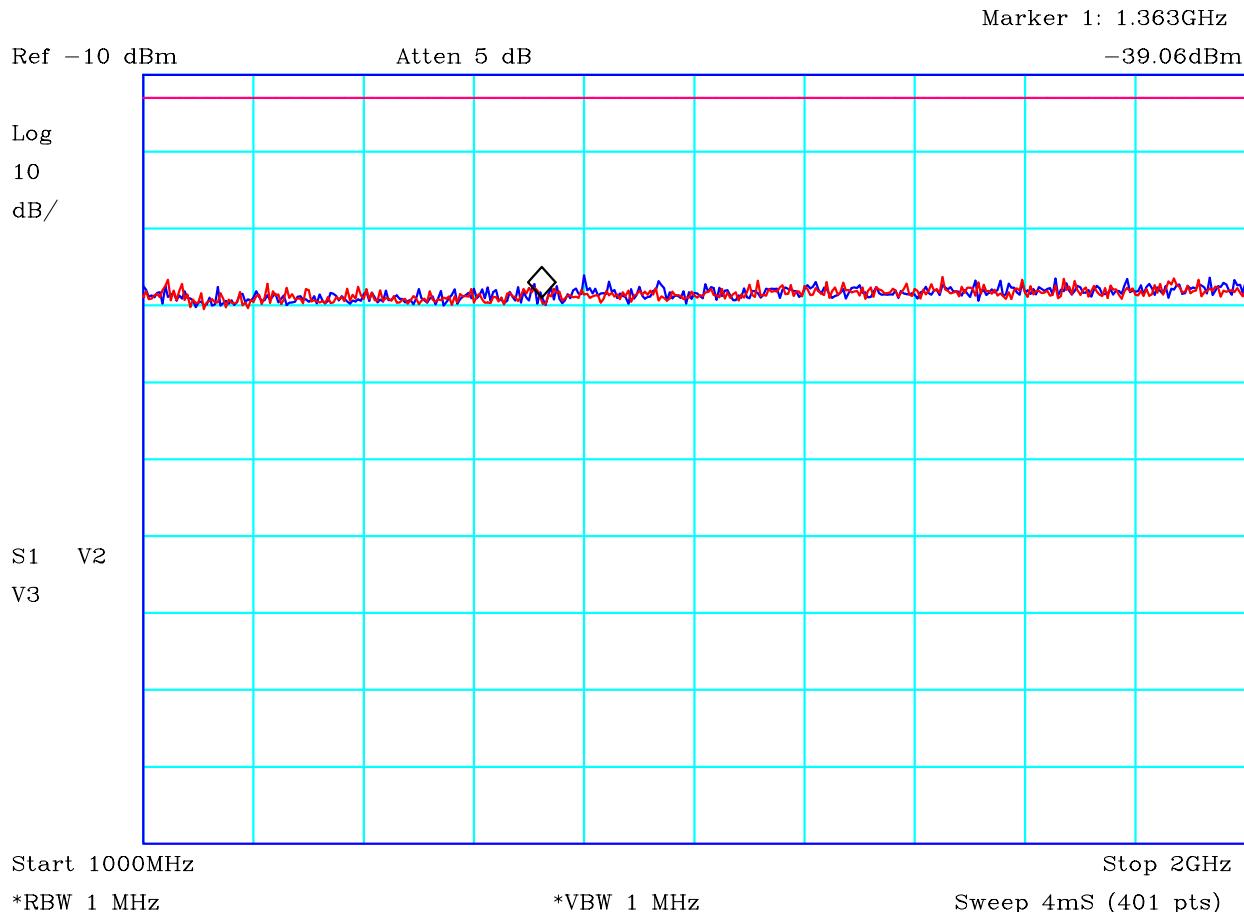
PLOT 23 Antenna Conducted Spur Emissions - 817 to 824 Band - 500MHz to 1GHz

Company: Sepura	Product: SRG3500
Date: 07/06/2012	Test Eng: Dave Smith
Method: FCC Part 90	Method:
Limit1:(VIO) -13dBm	Limit2:
Limit3:	Limit4:
Blue: 817MHz	
Red 824MHz	
Limit -13dBm	
Facility: Environ	Mode: 1
	Modification State: 0
File: H250771E	


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 58 of 100

PLOT 24 Antenna Conducted Spur Emissions - 862 to 869 Band - 500MHz to 1GHz

Company: Sepura	Product: SRG3500
Date: 07/06/2012	Test Eng: Dave Smith
Method: FCC Part 90	Method:
Limit1:(VIO) -13dBm	Limit2:
Limit3:	Limit4:
Blue: 862MHz	
Red 869MHz	
Limit -13dBm	
Facility: Environ	Mode: 1
	Modification State: 0
File: H2507724	

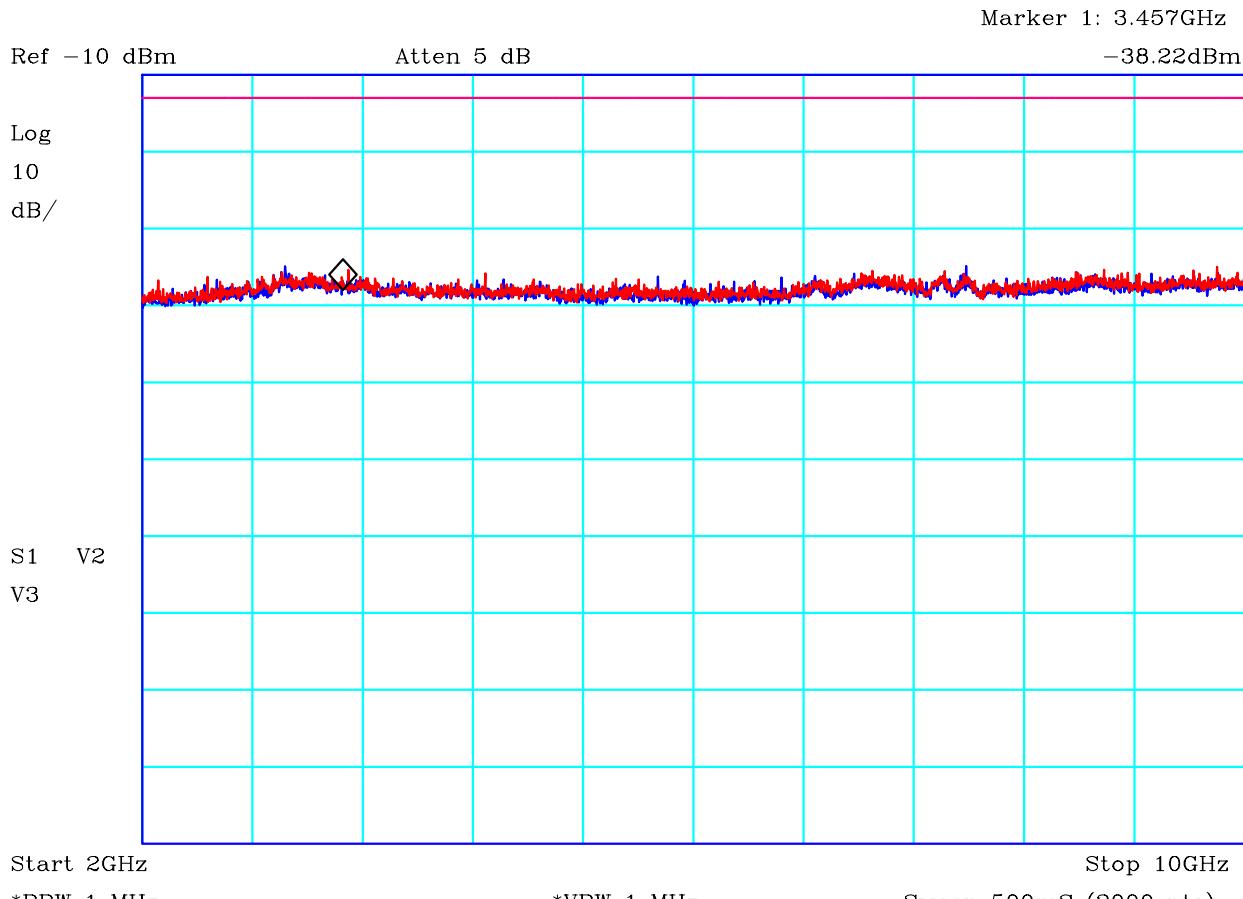

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 59 of 100

PLOT 25 Antenna Conducted Spur Emissions - 817 to 824 Band - 1GHz to 2GHz

Company: Sepura	Product: SRG3500
Date: 07/06/2012	Test Eng: Dave Smith
Method: FCC Part 90	Method:
Limit1:(VIO) -13dBm	Limit2:
Limit3:	Limit4:
Blue: 817MHz Red 824MHz Limit -13dBm	
Facility: Environ	Mode: 1
	Modification State: 0
File: H250777A	

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 60 of 100

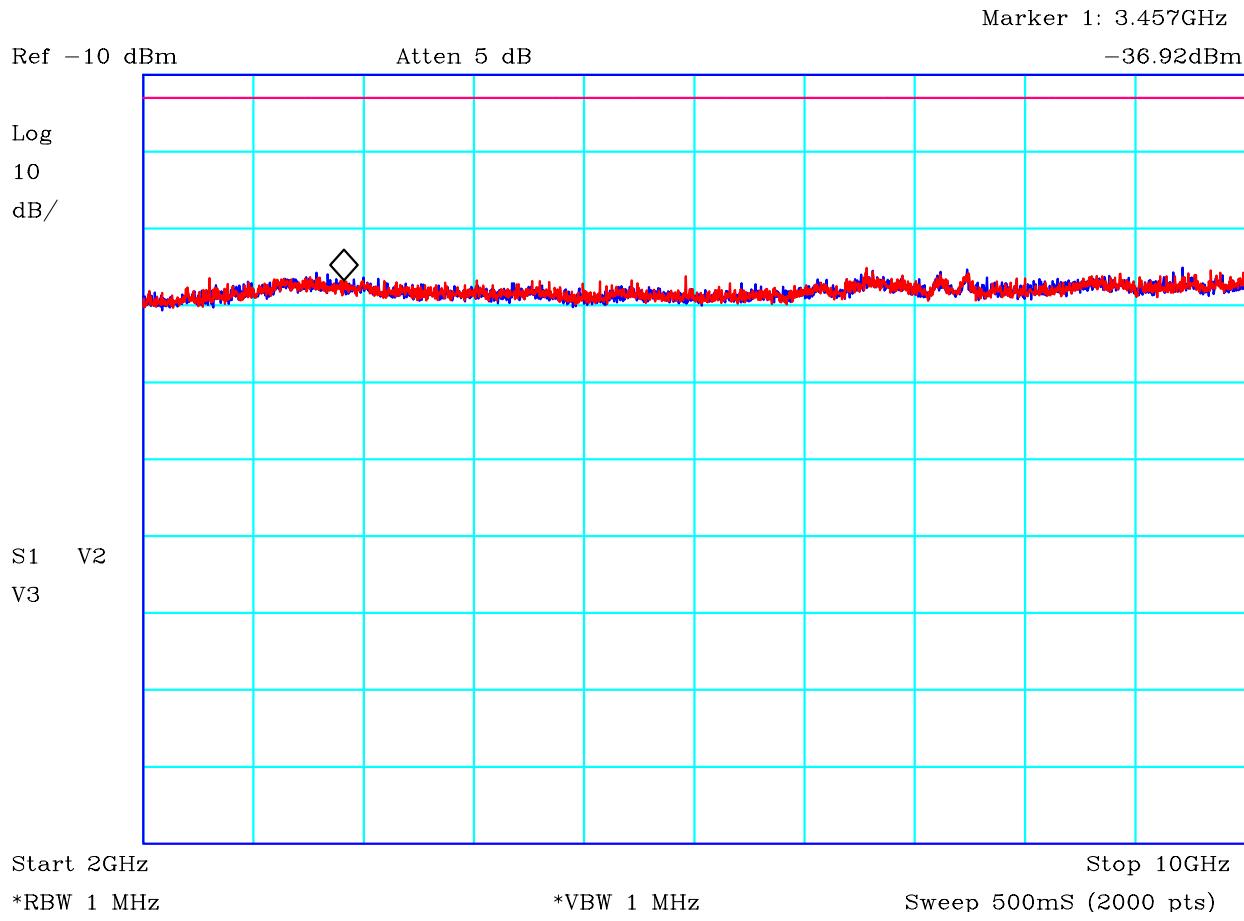
PLOT 26 Antenna Conducted Spur Emissions - 862 to 869 Band - 1GHz to 2GHz


Company: Sepura	Product: SRG3500
Date: 07/06/2012	Test Eng: Dave Smith
Method: FCC Part 90	Method:
Limit1:(VIO) -13dBm	Limit2:
Limit3:	Limit4:
Blue: 862MHz	
Red 869MHz	
Limit -13dBm	
Facility: Environ	Mode: 1
	Modification State: 0
File: H2507781	

	Report No: R3112 Issue No: 1
Test No: T4354	

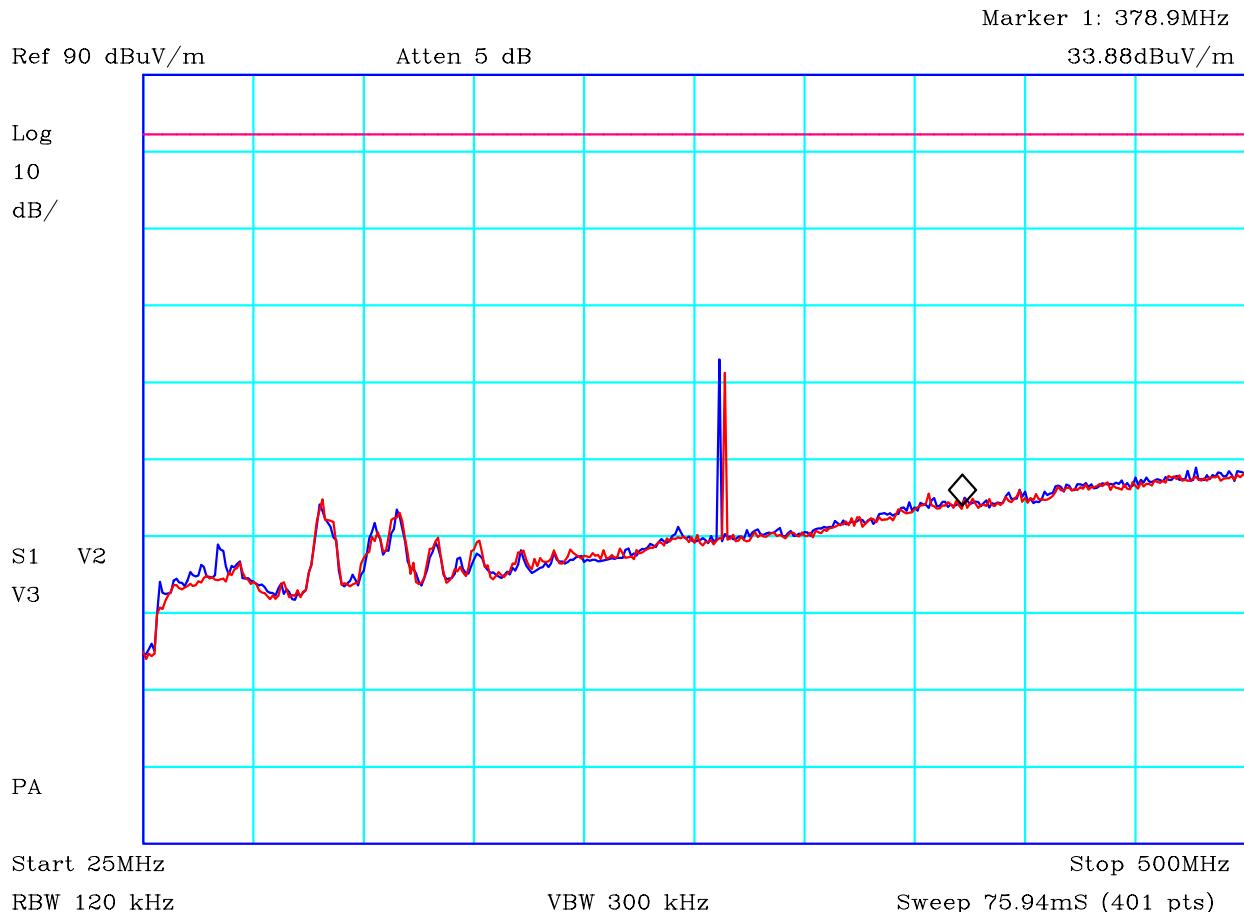
FCC ID: XX6-SRG3500XB

Test Report


Page: 61 of 100

PLOT 27 Antenna Conducted Spur Emissions - 817 to 824 Band - 2GHz to 10GHz

Company:	Sepura	Product:	SRG3500
Date:	07/06/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	-13dBm	Limit2:	
Limit3:		Limit4:	
Blue: 817MHz			
Red 824MHz			
Limit -13dBm			
Facility:	Environ	Mode:	1
		Modification State:	0
		File:	H25077B8

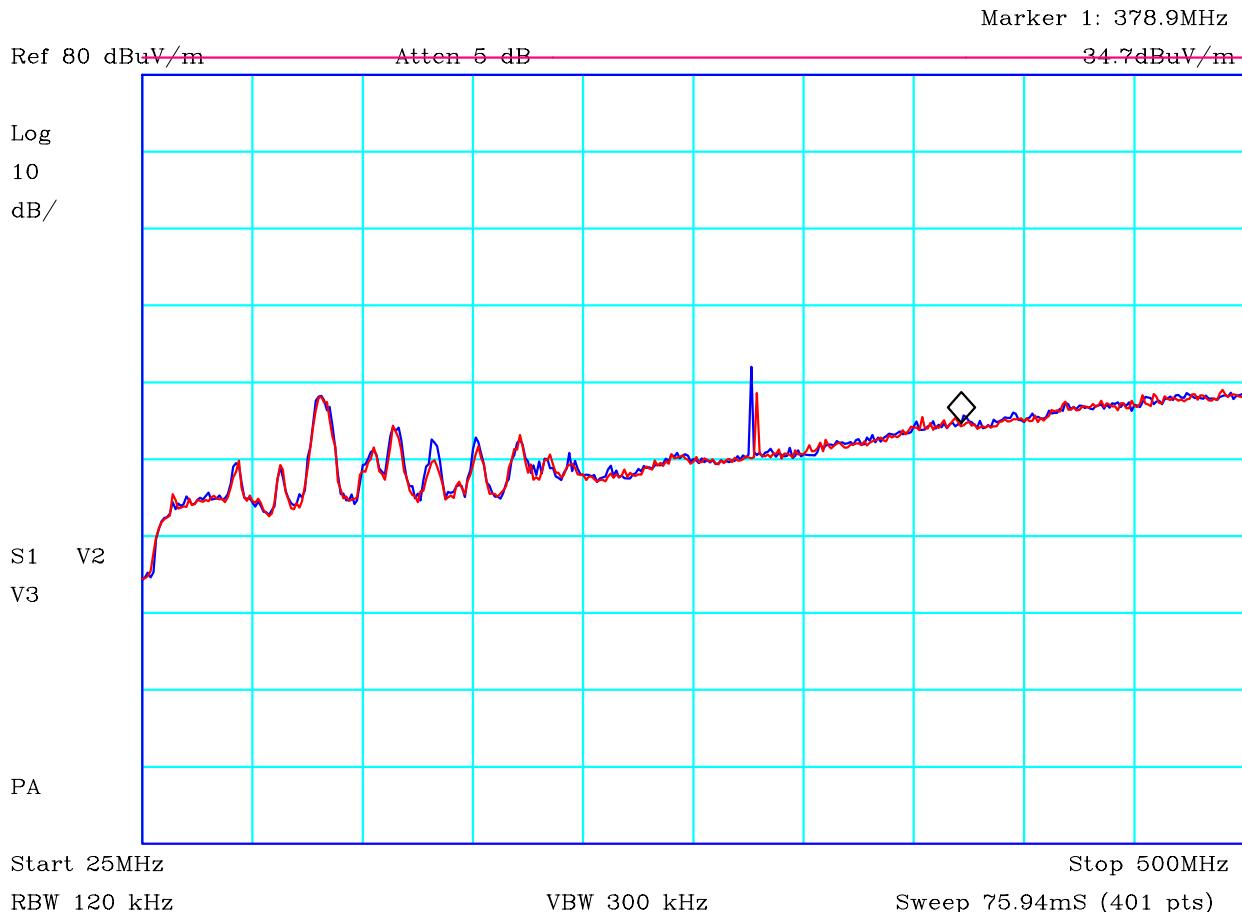

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 62 of 100

PLOT 28 Antenna Conducted Spur Emissions - 862 to 869 Band - 2GHz to 10GHz

Company: Sepura	Product: SRG3500
Date: 07/06/2012	Test Eng: Dave Smith
Method: FCC Part 90	Method:
Limit1:(VIO) -13dBm	Limit2:
Limit3:	Limit4:
Blue: 862MHz Red 869MHz Limit -13dBm	
Facility: Environ	Mode: 1
	Modification State: 0
File: H25077C1	

	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1			
Test No: T4354	Test Report		Page: 63 of 100	

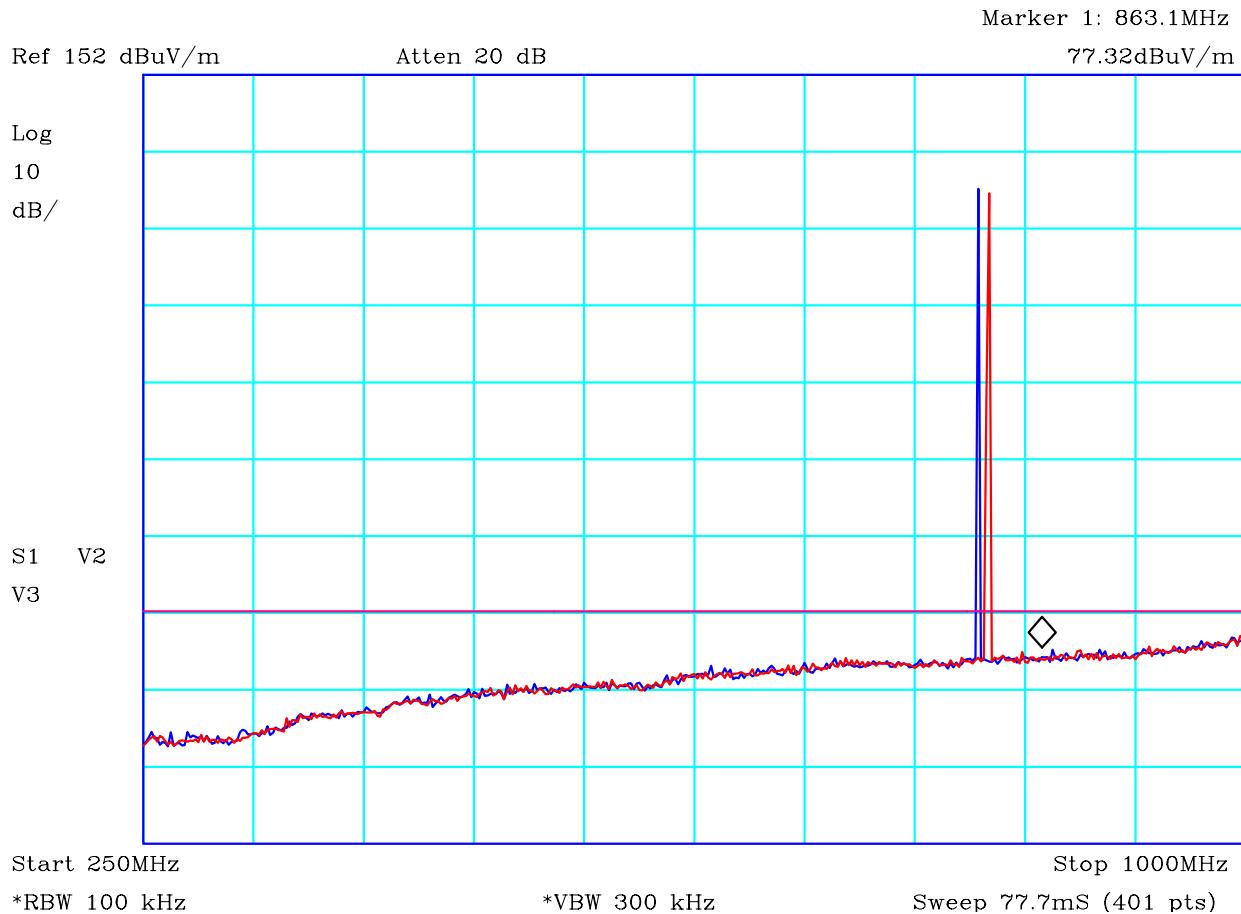
PLOT 29 Radiated Emissions - Config 1 - 817 - 824 band Tx - 25MHz to 500MHz


Company:	Sepura	Product:	SRG3500
Date:	18/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
<p>Config 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 817MHz Red 824MHz Limit is approximate field strength correlation to -13dBm</p>			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H2418559
Mode:	1	Modification State:	0

	Report No: R3112 Issue No: 1
Test No: T4354	

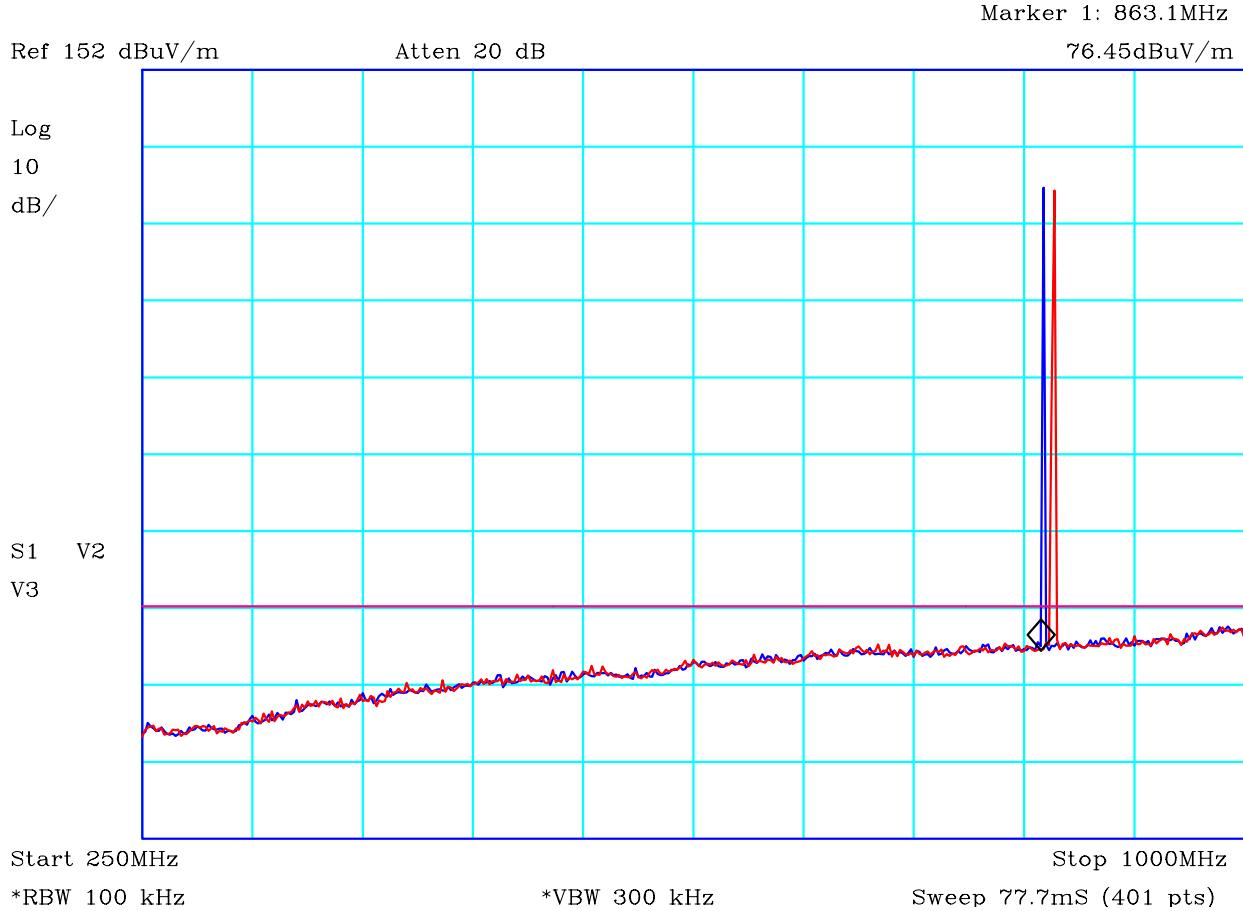
FCC ID: XX6-SRG3500XB

Test Report


Page: 64 of 100

PLOT 30 Radiated Emissions - Config 1 - 862 - 869 band Tx - 25MHz to 500MHz

Company:	Sepura	Product:	SRG3500
Date:	18/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
Config 1			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H2418577
Mode:	1	Modification State:	0


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB		
Test No: T4354	Test Report		Page: 65 of 100	

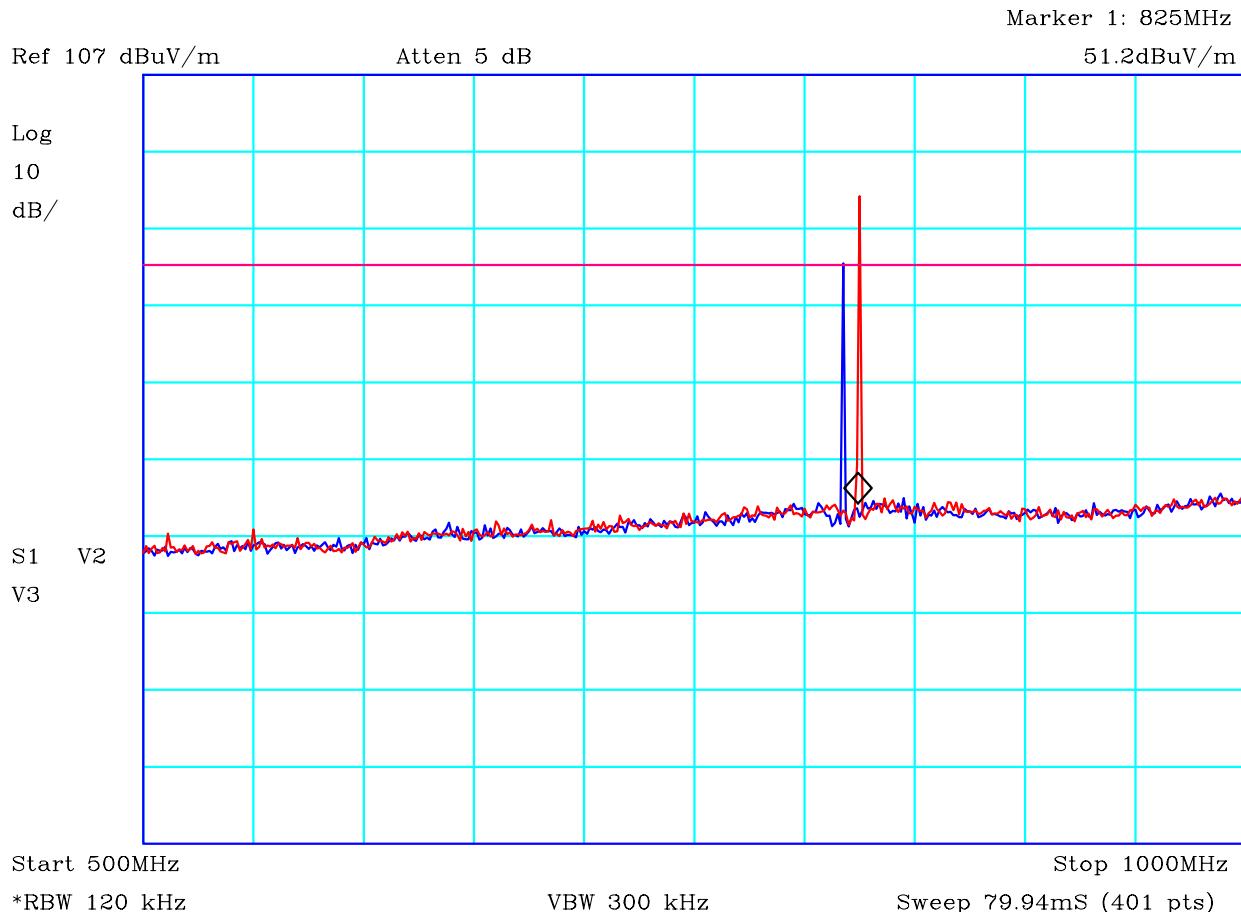
PLOT 31 Radiated Emissions - Config 1 - 817 - 824 band Tx - 250MHz to 1GHz

Company:	Sepura	Product:	SRG3500
Date:	14/05/2012	Test Eng:	Dave Smith
Method:	FCC part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
Configuration 1			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 817MHz			
Red 824MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H24157A3
Mode:	1	Modification State:	0

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 66 of 100

CF1:A24_3m_101116 CF2:CBL059_CBL018_CBL065_CBL060_100806

PLOT 32 Radiated Emissions - Config 1 - 862 - 869 band Tx - 250MHz to 1GHz

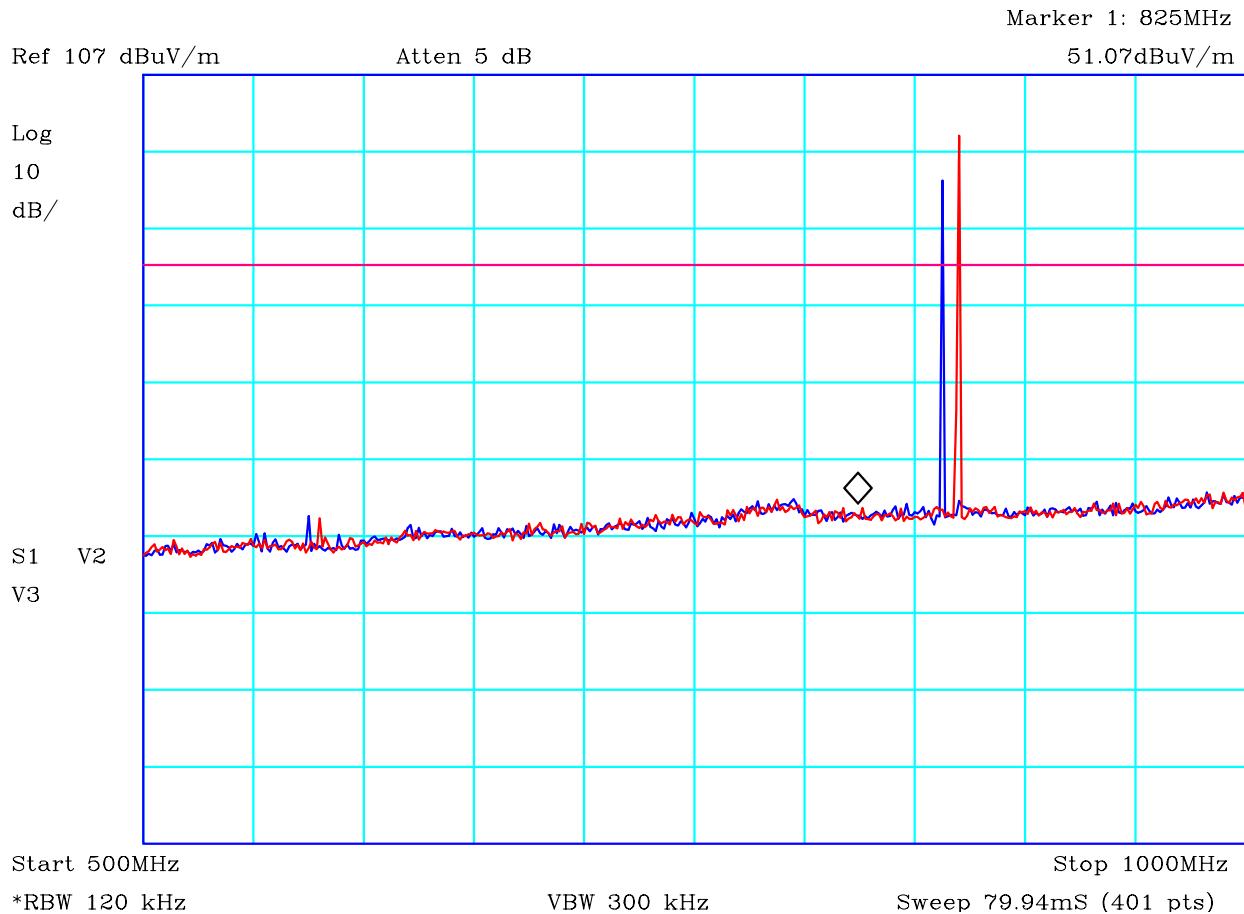

Company:	Sepura	Product:	SRG3500		
Date:	14/05/2012	Test Eng:	Dave Smith		
Method:	FCC Part 90	Method:			
Limit1:(VIO)	43+10 log(P)@3m	Limit2:			
Limit3:		Limit4:			
Configuration 1					
Transmit mode. Maximum of both horizontal and vertical.					
Blue: 862MHz					
Red 869MHz					
Limit is approximate field strength correlation to -13dBm					
Facility:	Anech_2	Height	1.5	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24157EE		

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report

Page: 67 of 100

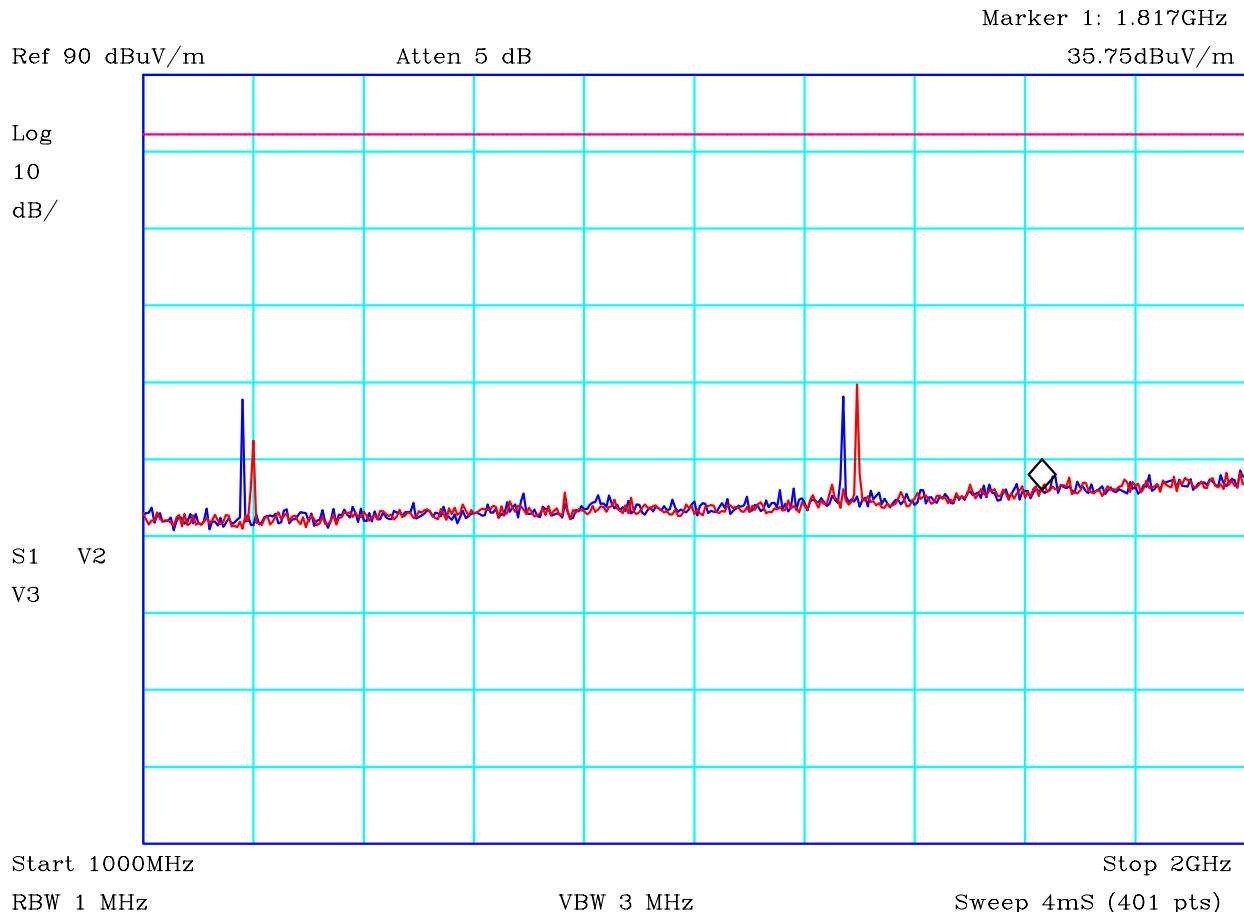

PLOT 33 Radiated Emissions - Config 1 - 817 - 824 band Tx - 500MHz to 1GHz - with notch filter

Company:	Sepura	Product:	SRG3500
Date:	18/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	

Config 1. Using notch filter.
Transmit mode. Maximum of both horizontal and vertical.
Blue: 817MHz
Red 824MHz
Limit is approximate field strength correlation to -13dBm

Facility:	Anech_2	Height	1.5	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24185C8		

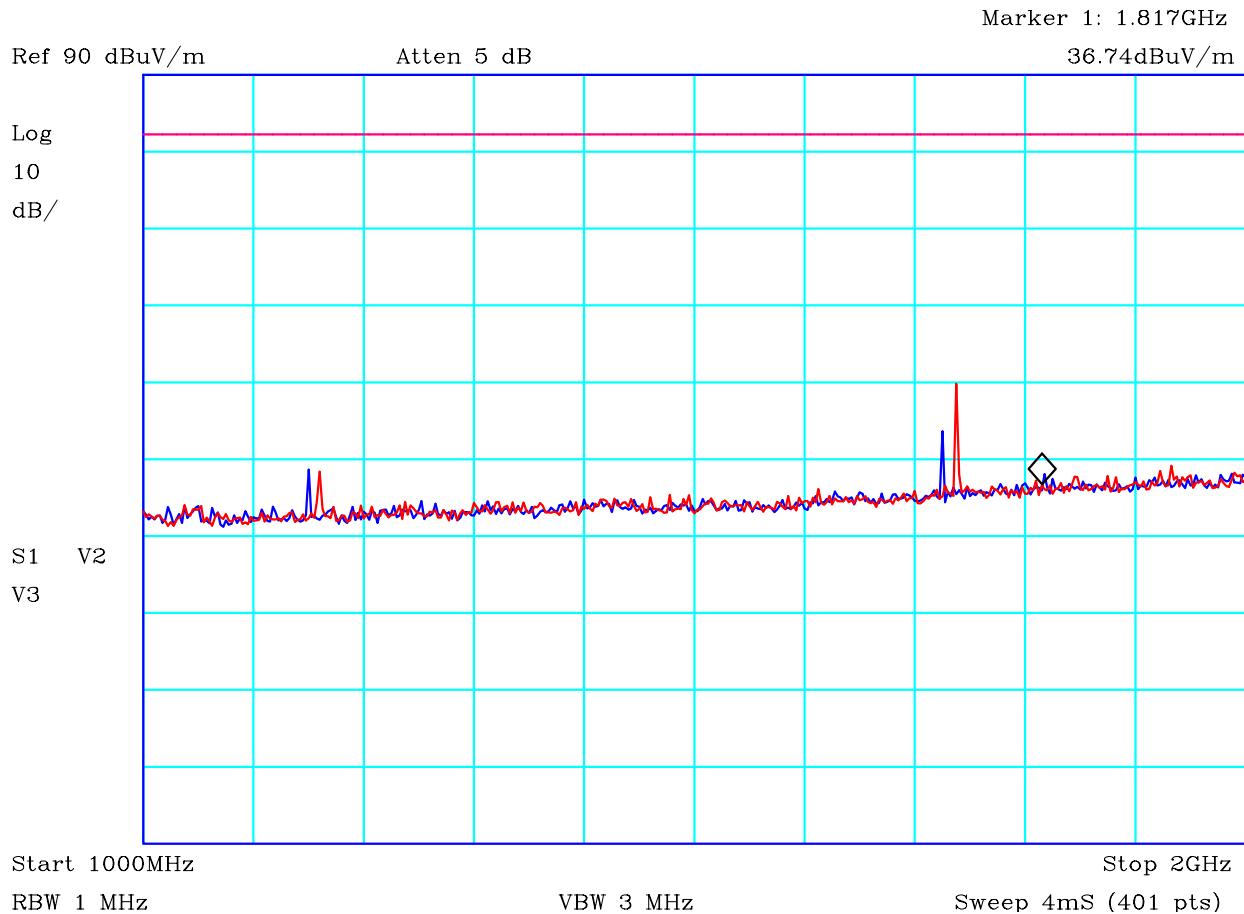
	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 68 of 100


PLOT 34 Radiated Emissions - Config 1 - 862 - 869 band Tx - 500MHz to 1GHz - with notch filter

Company:	Sepura	Product:	SRG3500
Date:	18/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	

Config 1. Using notch filter.
 Transmit mode. Maximum of both horizontal and vertical.
 Blue: 862MHz
 Red 869MHz
 Limit is approximate field strength correlation to -13dBm

Facility:	Anech_2	Height	1.5	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H24185EA		


	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1	Test Report		
Test No: T4354			Page: 69 of 100	

PLOT 35 Radiated Emissions - Config 1 - 817 - 824 band Tx - 1GHz to 2GHz

Company:	Sepura	Product:	SRG3500
Date:	21/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
Configuration 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 817MHz Red 824MHz Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H2421804
Mode:	1	Modification State:	0

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB		
Test No: T4354	Test Report		Page: 70 of 100	

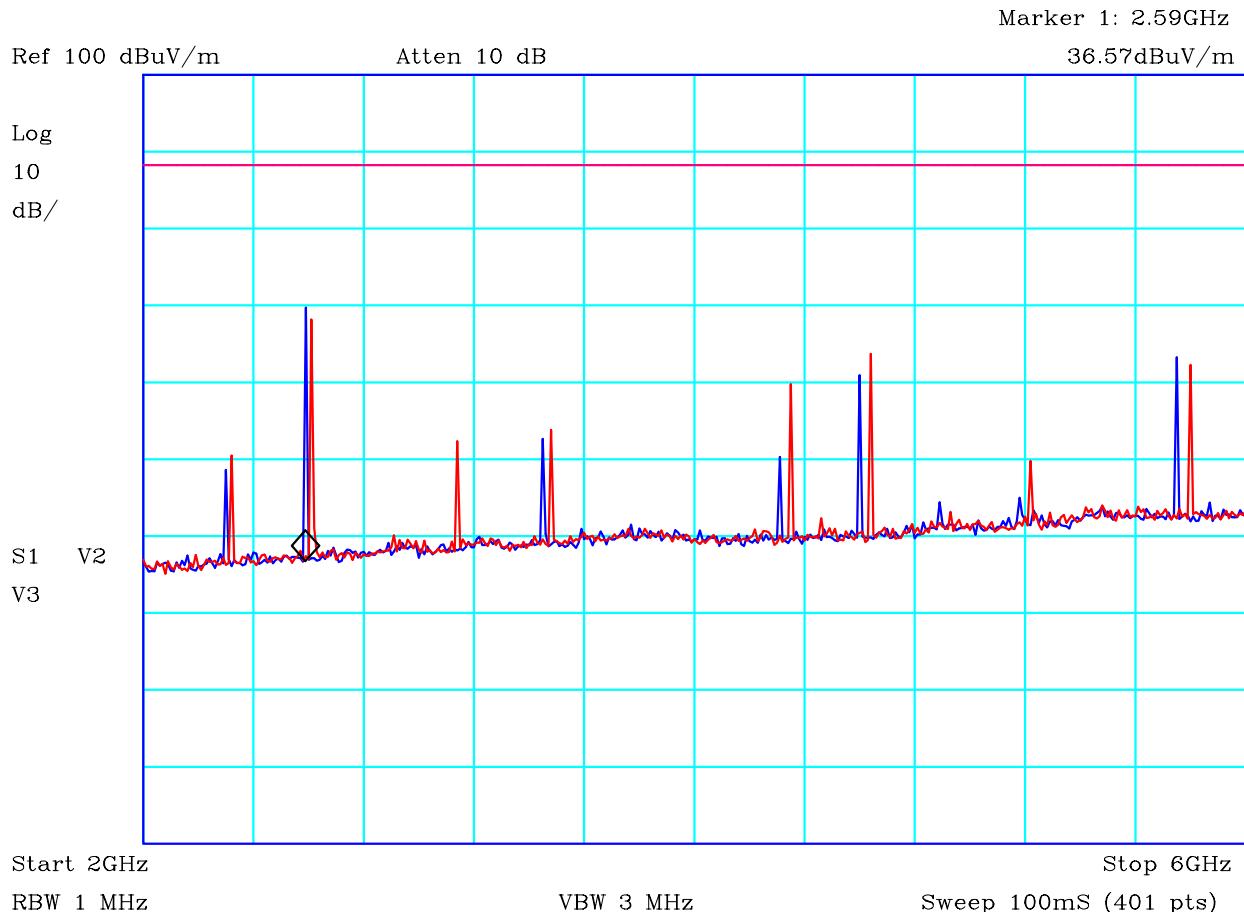
PLOT 36 Radiated Emissions - Config 1 - 862 - 869 band Tx - 1GHz to 2GHz


Company:	Sepura	Product:	SRG3500
Date:	22/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
Configuration 1			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H24223CB
Mode:	1	Modification State:	0

	Report No: R3112 Issue No: 1
Test No: T4354	

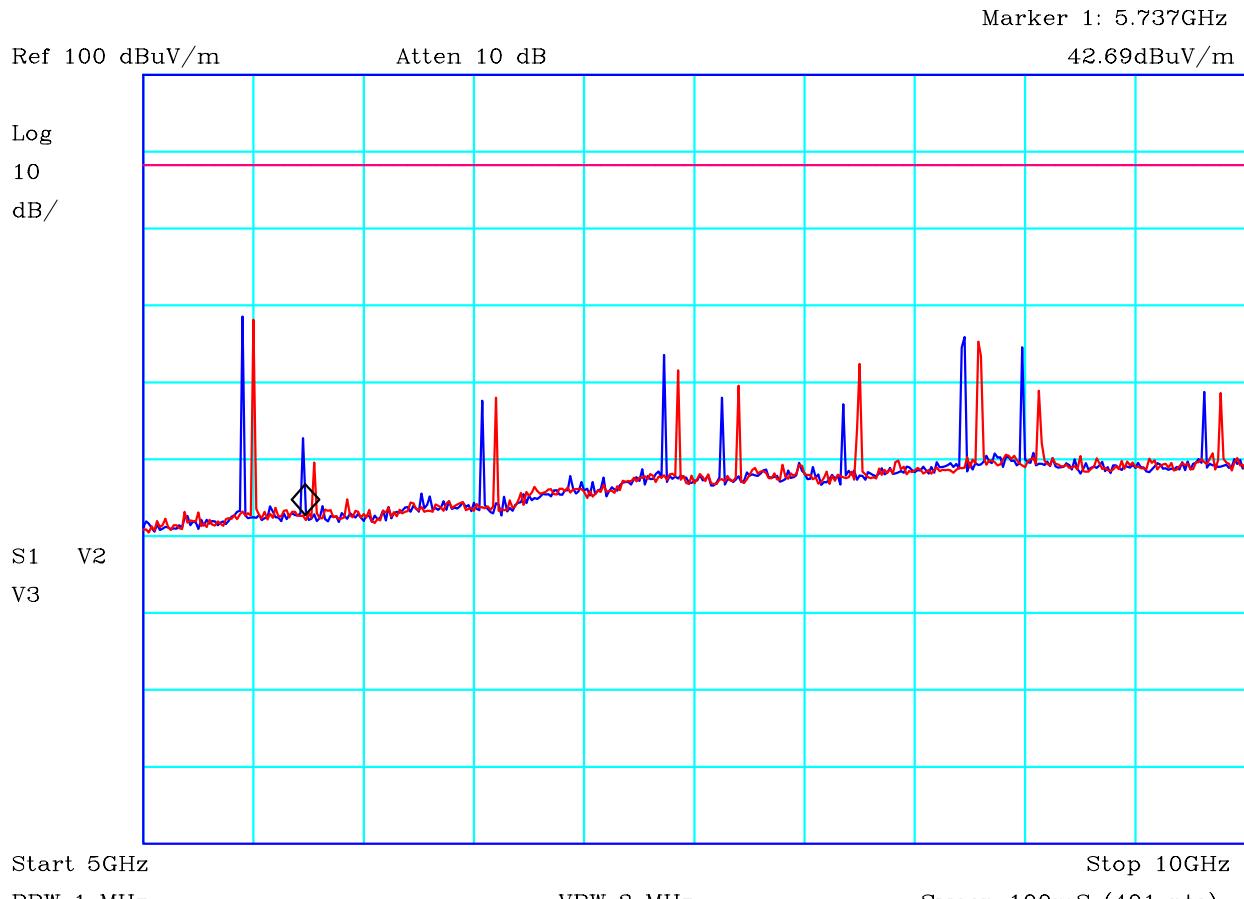
FCC ID: XX6-SRG3500XB

Test Report


Page: 71 of 100

PLOT 37 Radiated Emissions - Config 1 - 817 - 824 band Tx- 2GHz to 6GHz

Company:	Sepura	Product:	SRG3500
Date:	22/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:	
Limit3:		Limit4:	
Configuration 1			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 817MHz			
Red 824MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H24254BD
Mode:	1	Modification State:	0

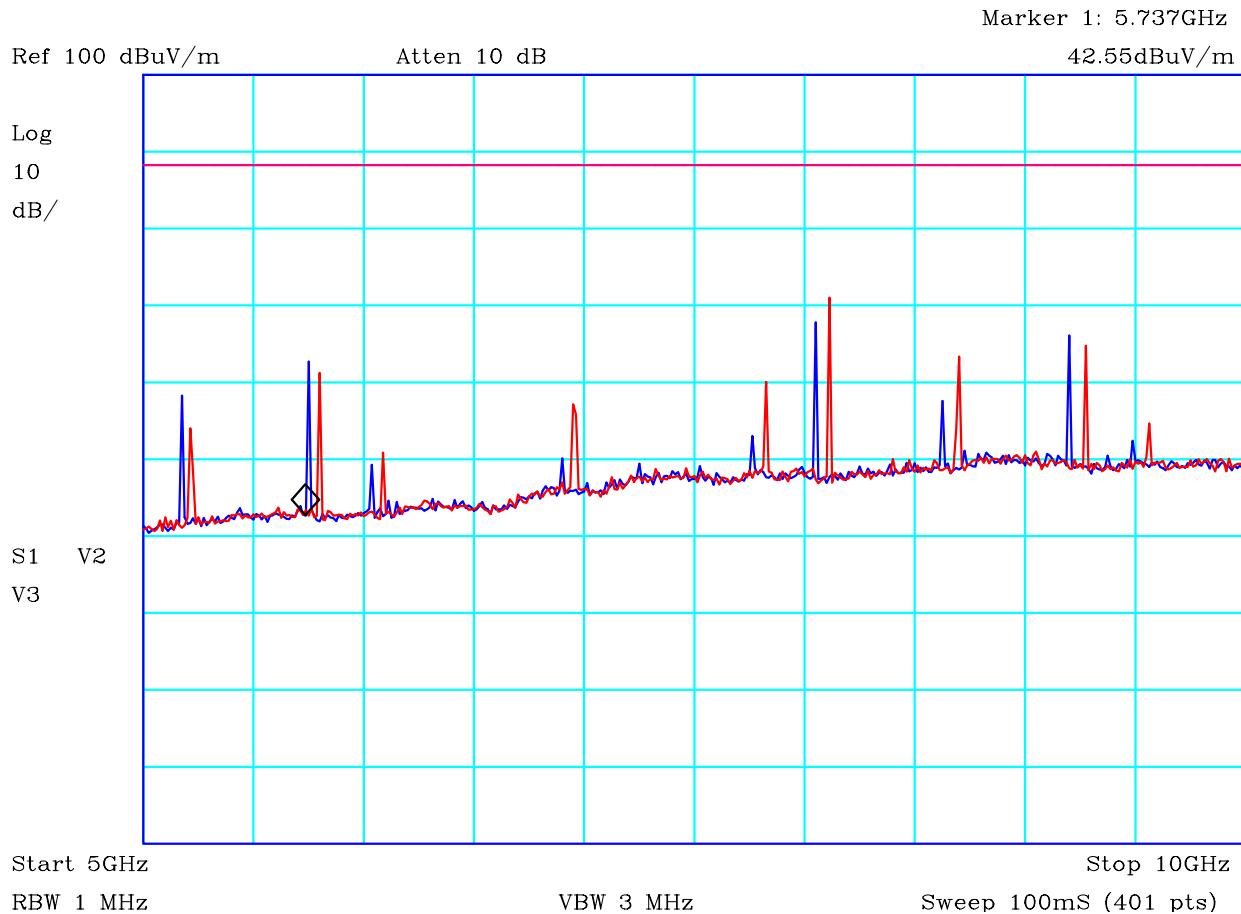

	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1			
Test No: T4354	Test Report		Page: 72 of 100	

PLOT 38 Radiated Emissions - Config 1 - 862 - 869 band Tx- 2GHz to 6GHz

Company:	Sepura	Product:	SRG3500
Date:	25/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:	
Limit3:		Limit4:	
Configuration 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz Limit is approximate field strength correlation to -13dBc			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H2425598
Mode:	1	Modification State:	0

	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1			
Test No: T4354	Test Report		Page: 73 of 100	

PLOT 39 Radiated Emissions - Config 1 - 817 - 824 band Tx- 5GHz to 10GHz


Company:	Sepura	Product:	SRG3500
Date:	25/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:	
Limit3:		Limit4:	
Configuration 1 Transmit mode. Maximum of both horizontal and vertical. Blue: 817MHz Red 824MHz Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H24255B0

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report

Page: 74 of 100

CF1:A23_3m_100806 CF2:CBL049_110107 CF3:PRE3_110113 CF4:RFF22_110221

PLOT 40 Radiated Emissions - Config 1 - 862 - 869 band Tx- 5GHz to 10GHz

Company:	Sepura	Product:	SRG3500
Date:	25/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:	
Limit3:		Limit4:	
Configuration 1			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H24255CE
Mode:	1	Modification State:	0

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 75 of 100

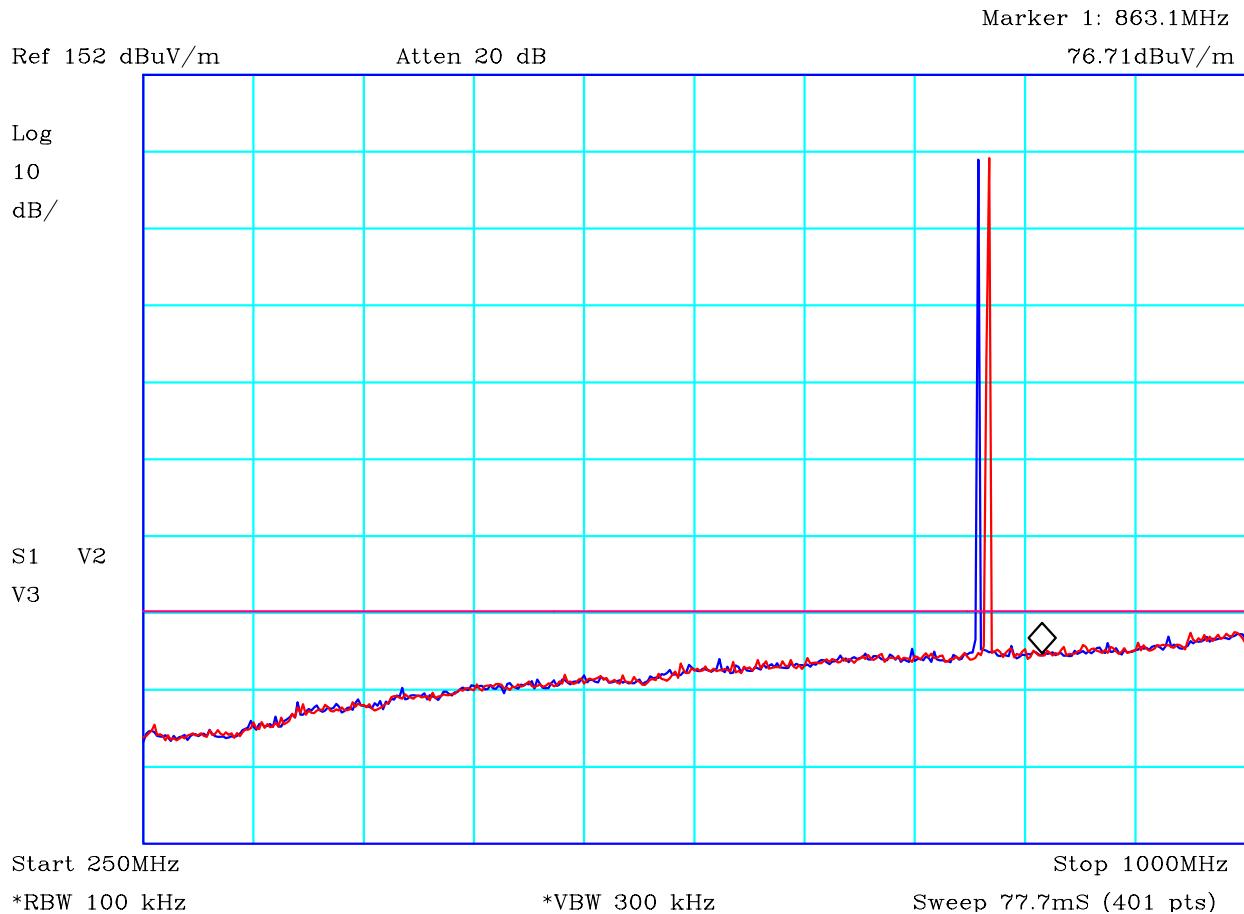
PLOT 41 Radiated Emissions - DMU - 817 - 824 band Tx - 25MHz to 500MHz

Company:	Sepura	Product:	SRG3500
Date:	14/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	Mask Y @3m	Limit2:	
Limit3:		Limit4:	
DMU			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 817MHz			
Red 824MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H24156F4
Mode:	1	Modification State:	0

	Report No: R3112 Issue No: 1
Test No: T4354	

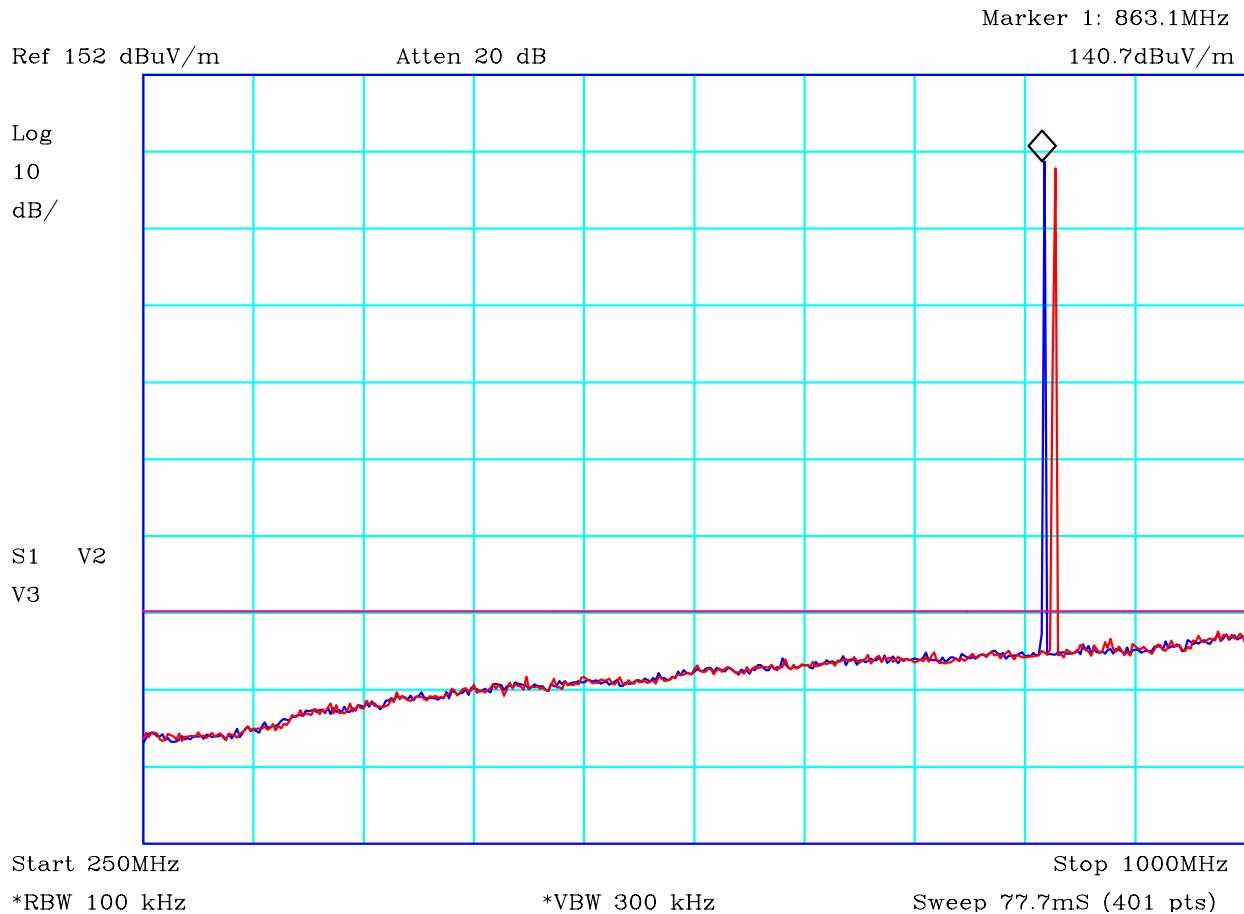
FCC ID: XX6-SRG3500XB

Test Report


Page: 76 of 100

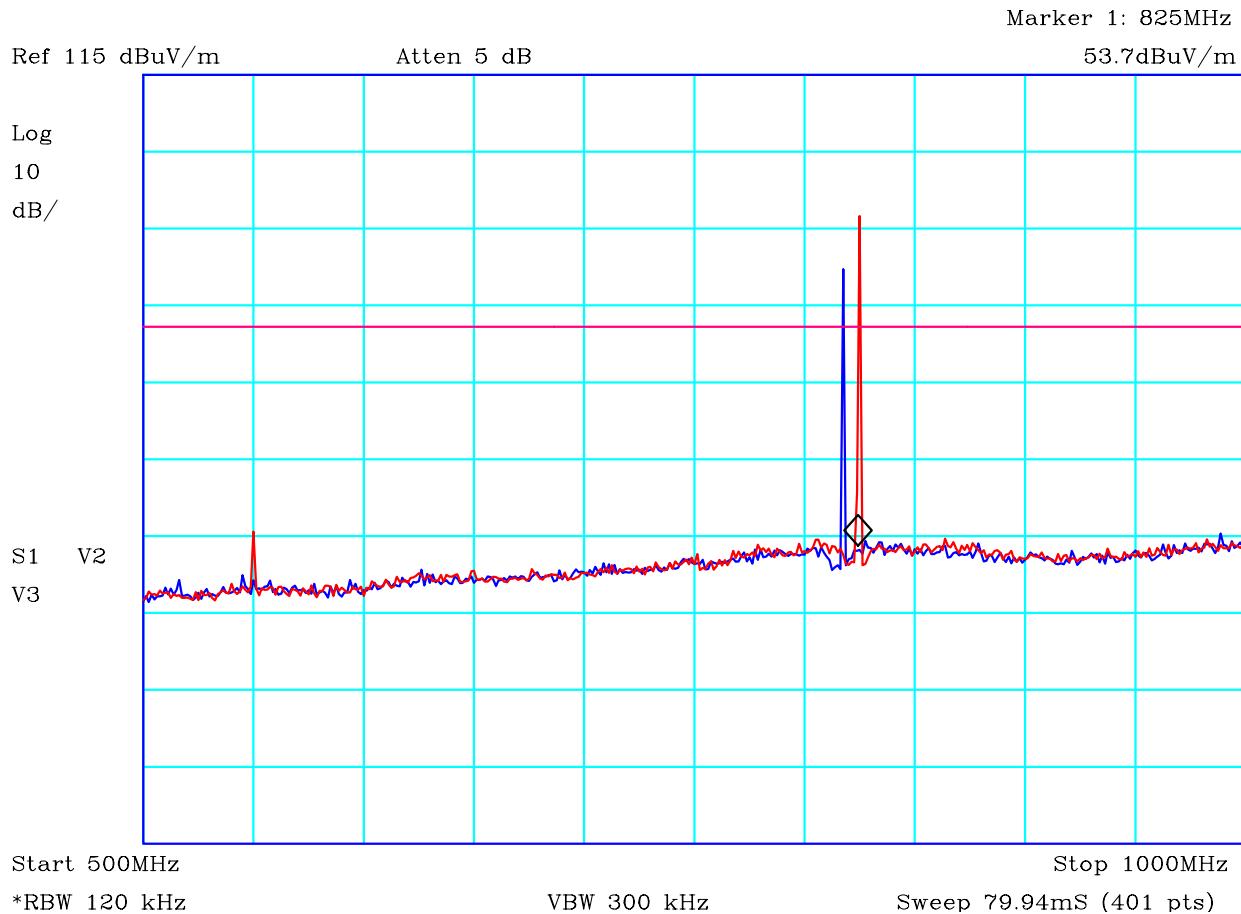
PLOT 42 Radiated Emissions - DMU - 862 - 869 band Tx - 25MHz to 500MHz

Company:	Sepura	Product:	SRG3500
Date:	14/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
DMU			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H241574D
Mode:	1	Modification State:	0


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB		
Test No: T4354	Test Report		Page: 77 of 100	

PLOT 43 Radiated Emissions - DMU - 817 - 824 band Tx - 250MHz to 1GHz

Company:	Sepura	Product:	SRG3500
Date:	14/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
DMU			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 817MHz			
Red 824MHz			
Limit is approximate field strength correlation to -57dBc			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H2415516
Mode:	1	Modification State:	0

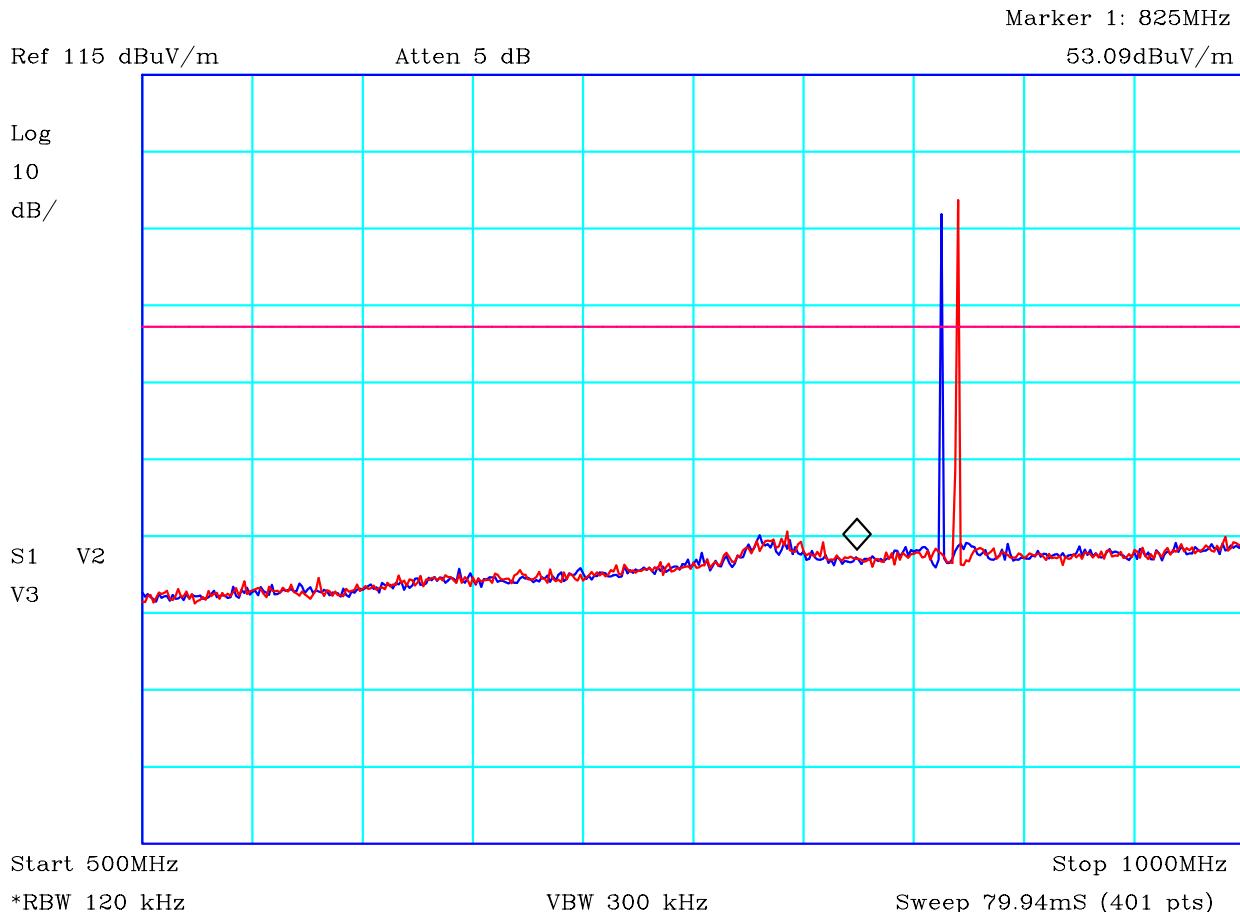

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB		
Test No: T4354	Test Report		Page: 78 of 100	

PLOT 44 Radiated Emissions - DMU - 862 - 869 band Tx - 250MHz to 1GHz

Company:	Sepura	Product:	SRG3500
Date:	14/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
DMU			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Limit is approximate field strength correlation to -13dBc			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H24154E6
Mode:	1	Modification State:	0

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 79 of 100

PLOT 45 Radiated Emissions - DMU - 817 - 824 band Tx - 500MHz to 1GHz - with notch filter

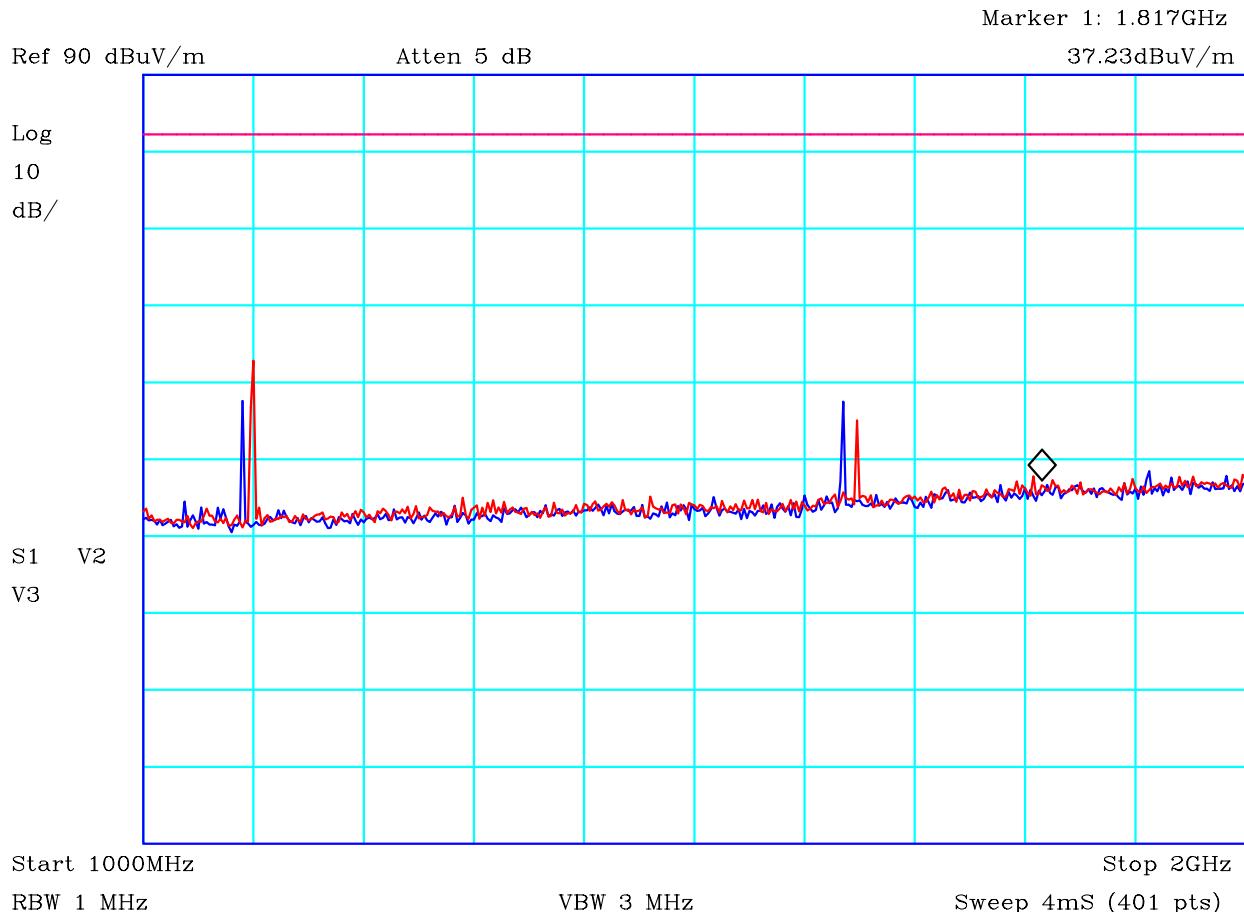

Company:	Sepura	Product:	SRG3500
Date:	14/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
DMU. Using notch filter. Transmit mode. Maximum of both horizontal and vertical. Blue: 817MHz Red 824MHz Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H241553F

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report

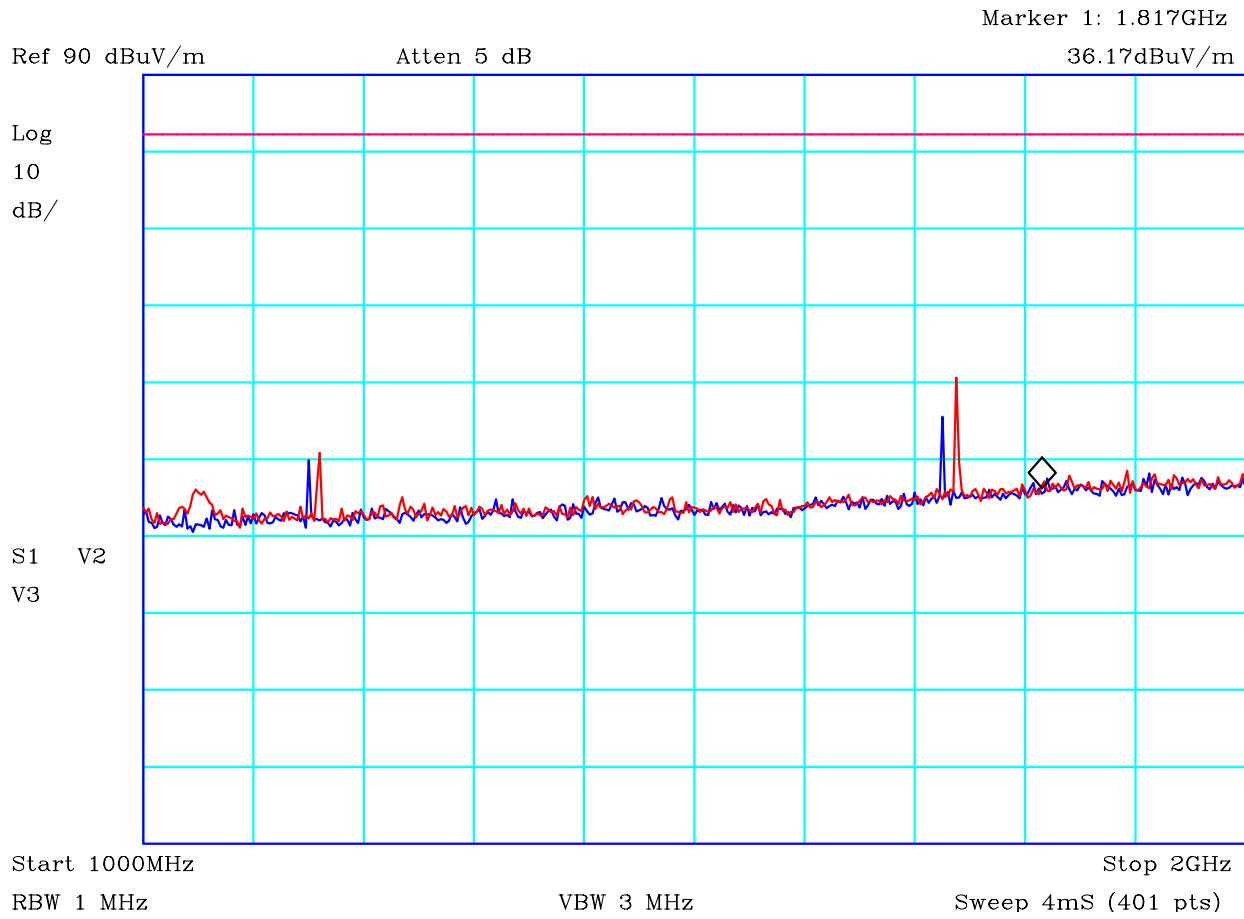
Page: 80 of 100


PLOT 46 Radiated Emissions - DMU - 862 - 869 band Tx - 500MHz to 1GHz - with notch filter

Company:	Sepura	Product:	SRG3500
Date:	14/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	

DMU. Using notch filter.
Transmit mode. Maximum of both horizontal and vertical.
Blue: 862MHz
Red 869MHz
Limit is approximate field strength correlation to -13dBm

Facility:	Anech_2	Height	1.5	Mode:	1
Distance	3m	Polarisation	V+H	Modification State:	0
Angle	0-360	File:	H2415567		

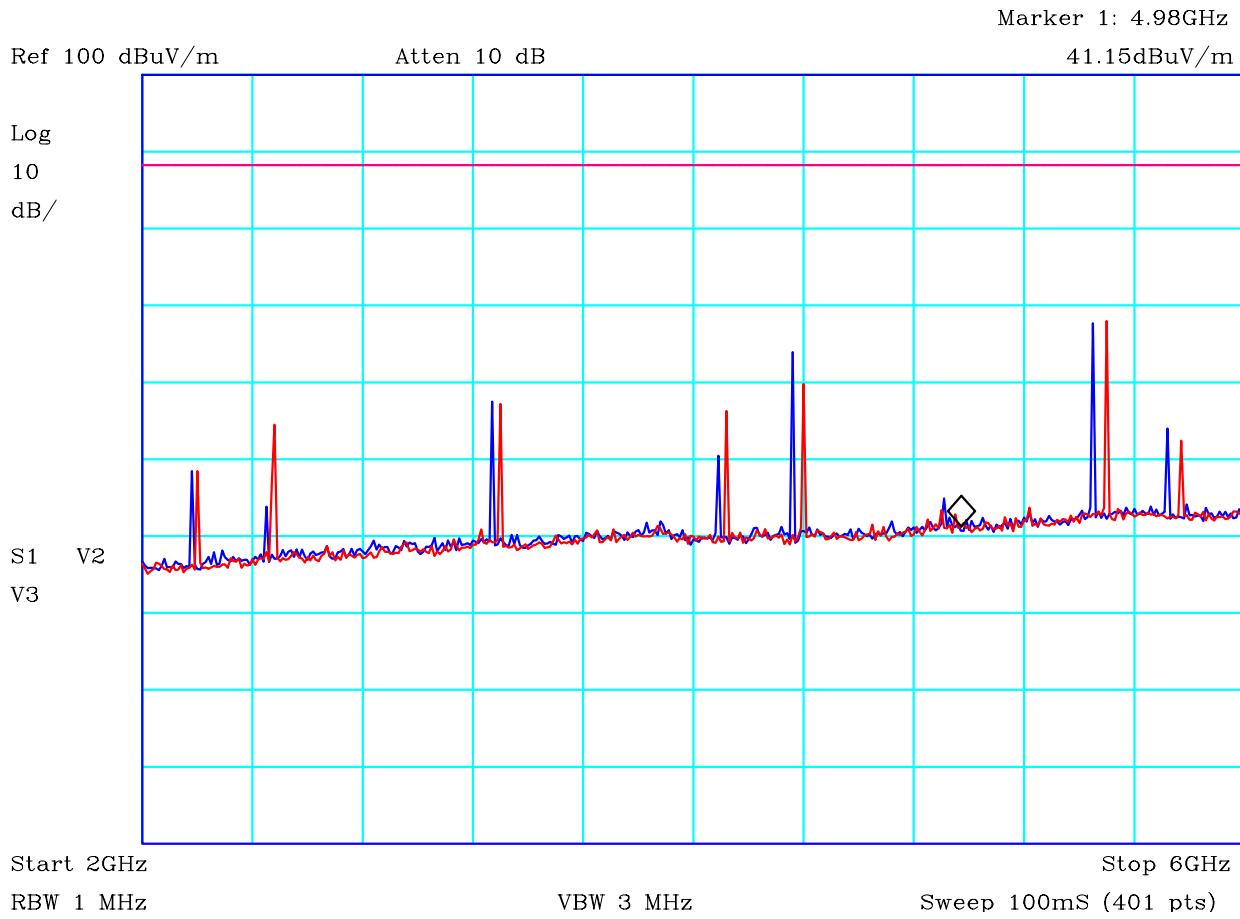

	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1	Test Report		
Test No: T4354			Page: 81 of 100	

PLOT 47 Radiated Emissions - DMU - 817 - 824 band Tx - 1GHz to 2GHz

Company:	Sepura	Product:	SRG3500
Date:	22/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
DMU Transmit mode. Maximum of both horizontal and vertical. Blue: 817MHz Red 824MHz Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H2422422

	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB		
Test No: T4354	Test Report		Page: 82 of 100	

PLOT 48 Radiated Emissions - DMU - 862 - 869 band Tx - 1GHz to 2GHz


Company:	Sepura	Product:	SRG3500
Date:	22/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@3m	Limit2:	
Limit3:		Limit4:	
DMU			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H242245C
Mode:	1	Modification State:	0

	Report No: R3112 Issue No: 1
Test No: T4354	

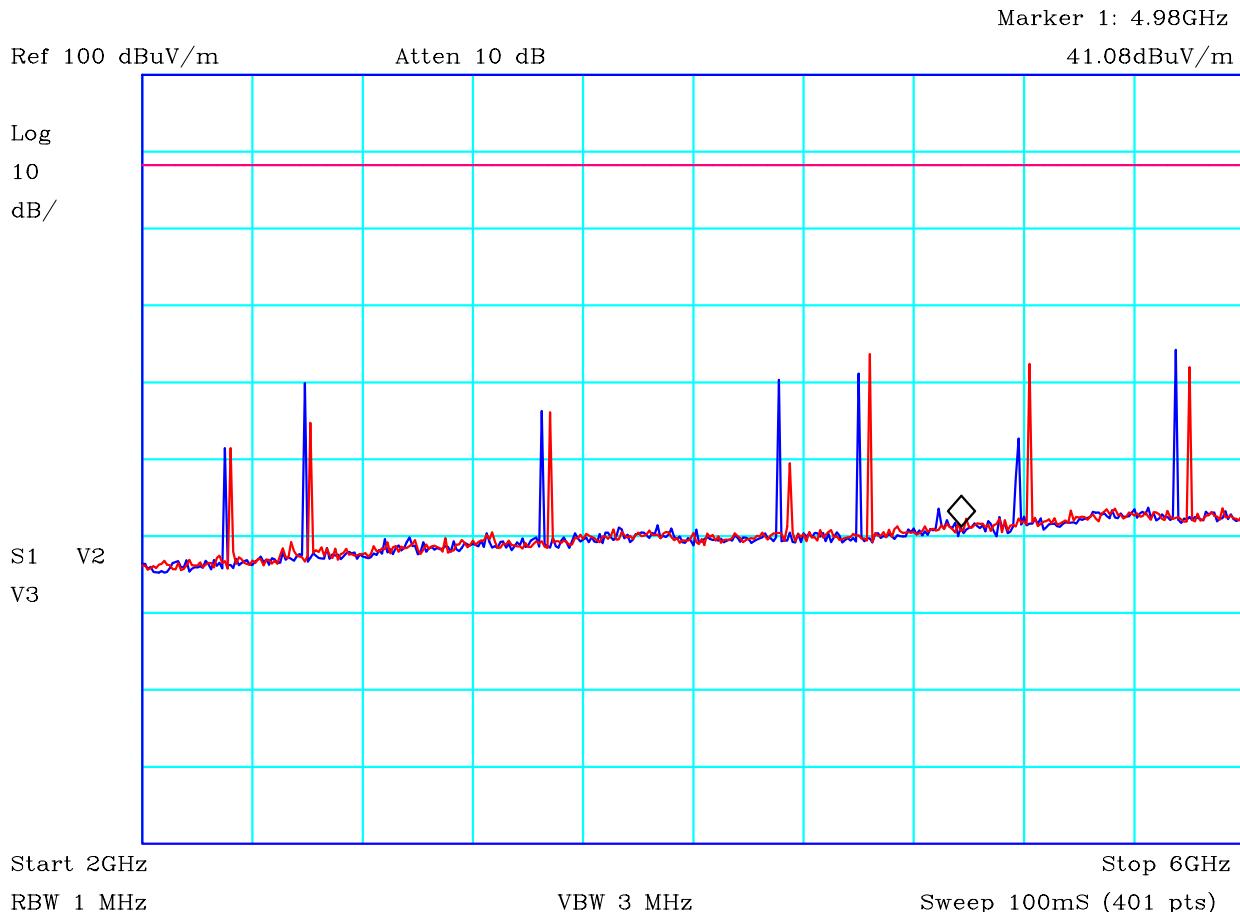
FCC ID: XX6-SRG3500XB

Test Report

Page: 83 of 100

CF1:A23_3m_100806 CF2:CBL049_110107 CF3:PRE3_110113 CF4:RFF22_110221

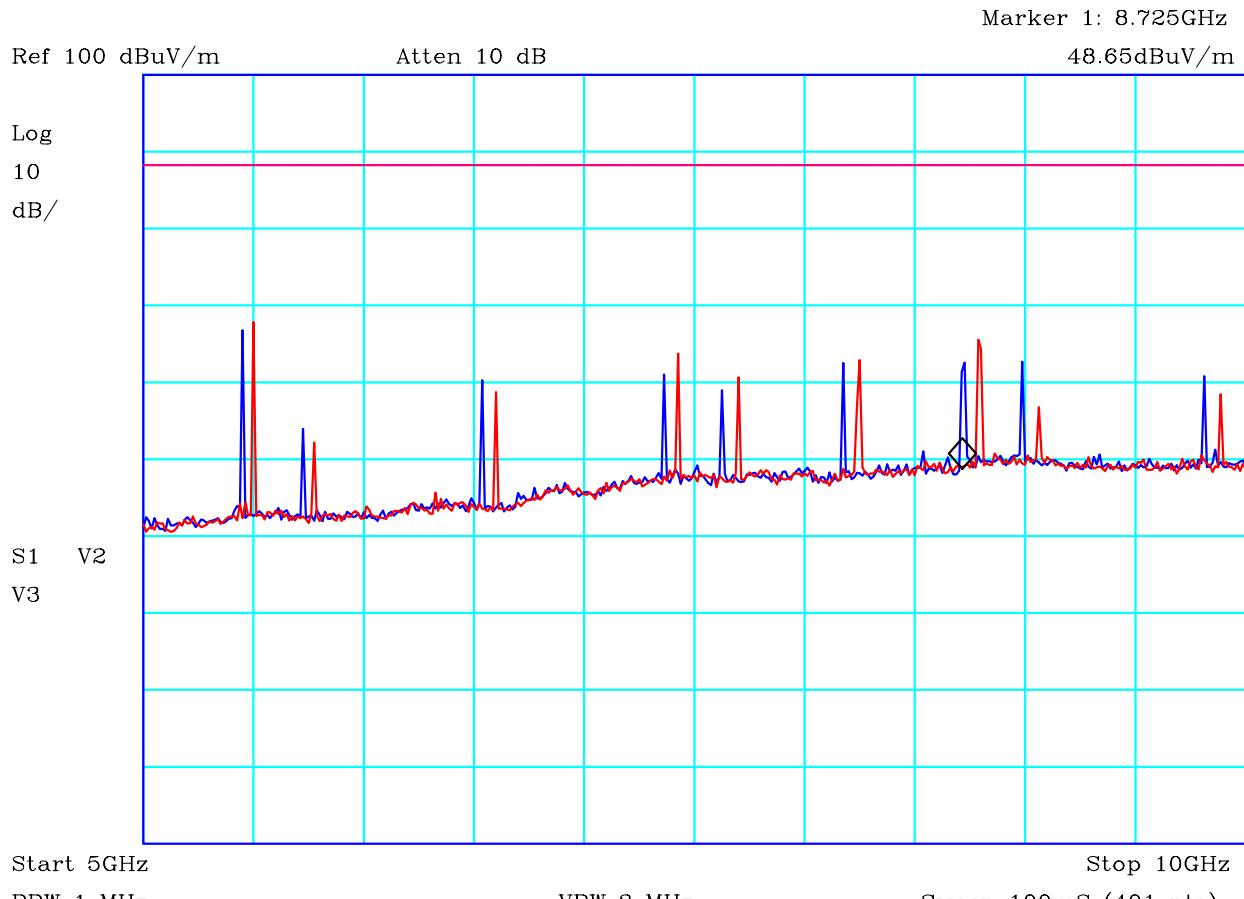
PLOT 49 Radiated Emissions - DMU - 817 - 824 band Tx- 2GHz to 6GHz


Company:	Sepura	Product:	SRG3500
Date:	25/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:	
Limit3:		Limit4:	
DMU			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 817MHz			
Red 824MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H24254BA
Mode:	1	Modification State:	0

	Report No: R3112 Issue No: 1
Test No: T4354	

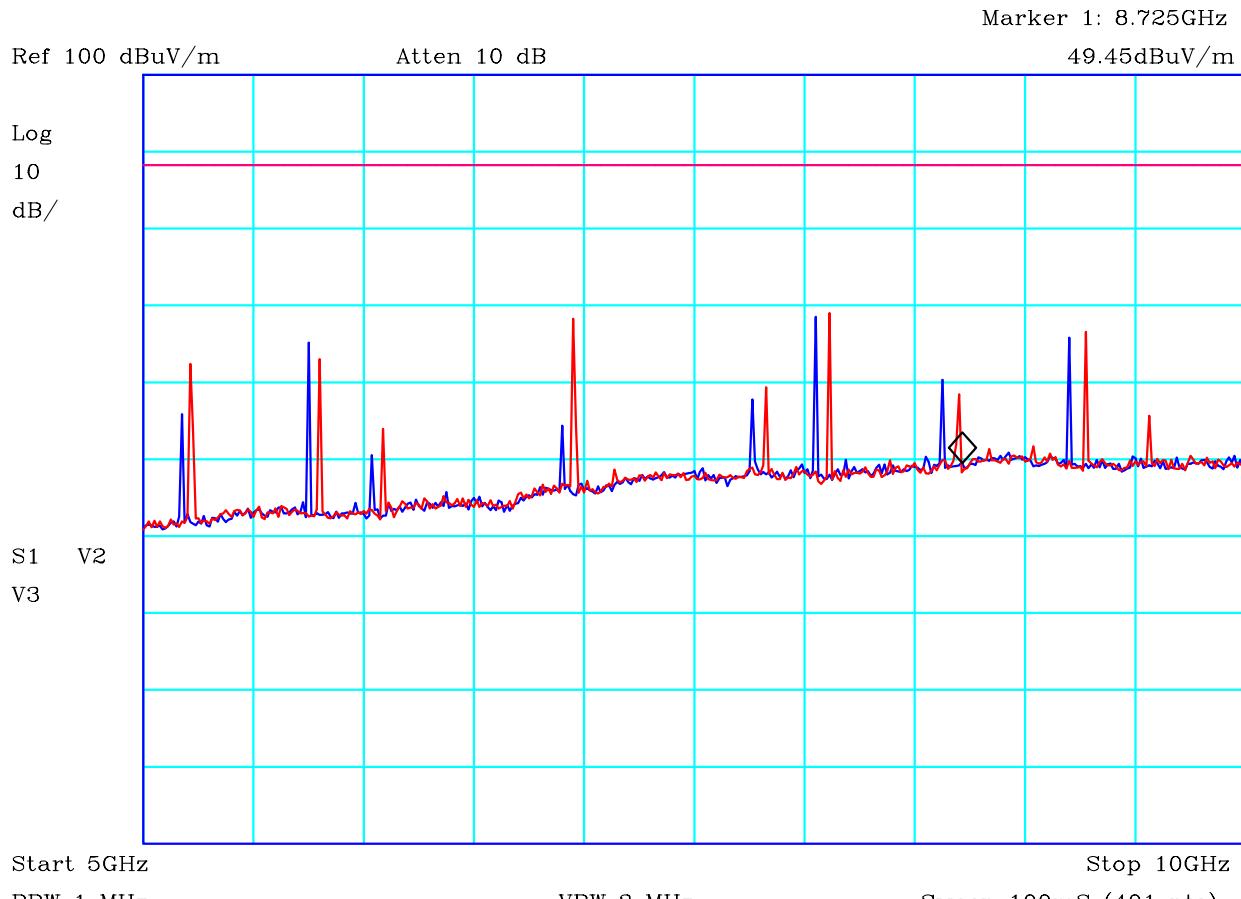
FCC ID: XX6-SRG3500XB

Test Report


Page: 84 of 100

PLOT 50 Radiated Emissions - DMU - 862 - 869 band Tx- 2GHz to 6GHz

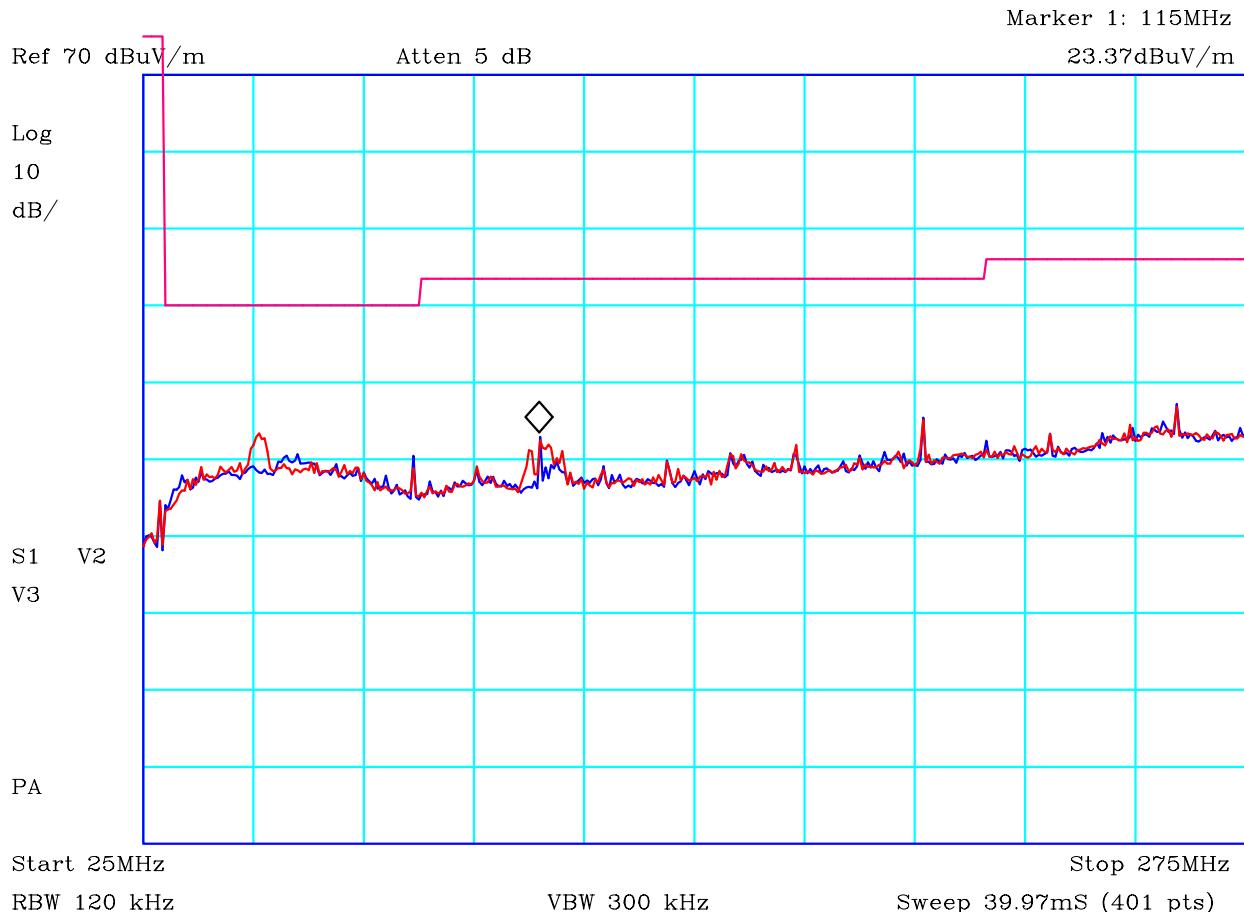
Company:	Sepura	Product:	SRG3500
Date:	25/05/2012	Test Eng:	Dave Smith
Method:	FCC part 90	Method:	
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:	
Limit3:		Limit4:	
DMU			
Transmit mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H24254D8
Mode:	1	Modification State:	0


	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1	Test Report		
Test No: T4354			Page: 85 of 100	

PLOT 51 Radiated Emissions - DMU - 817 - 824 band Tx- 5GHz to 10GHz

Company:	Sepura	Product:	SRG3500
Date:	25/05/2012	Test Eng:	Dave Smith
Method:	FCC Part 90	Method:	
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:	
Limit3:		Limit4:	
DMU Transmit mode. Maximum of both horizontal and vertical. Blue: 817MHz Red 824MHz Limit is approximate field strength correlation to -13dBm			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H242550C
Mode:	1	Modification State:	0

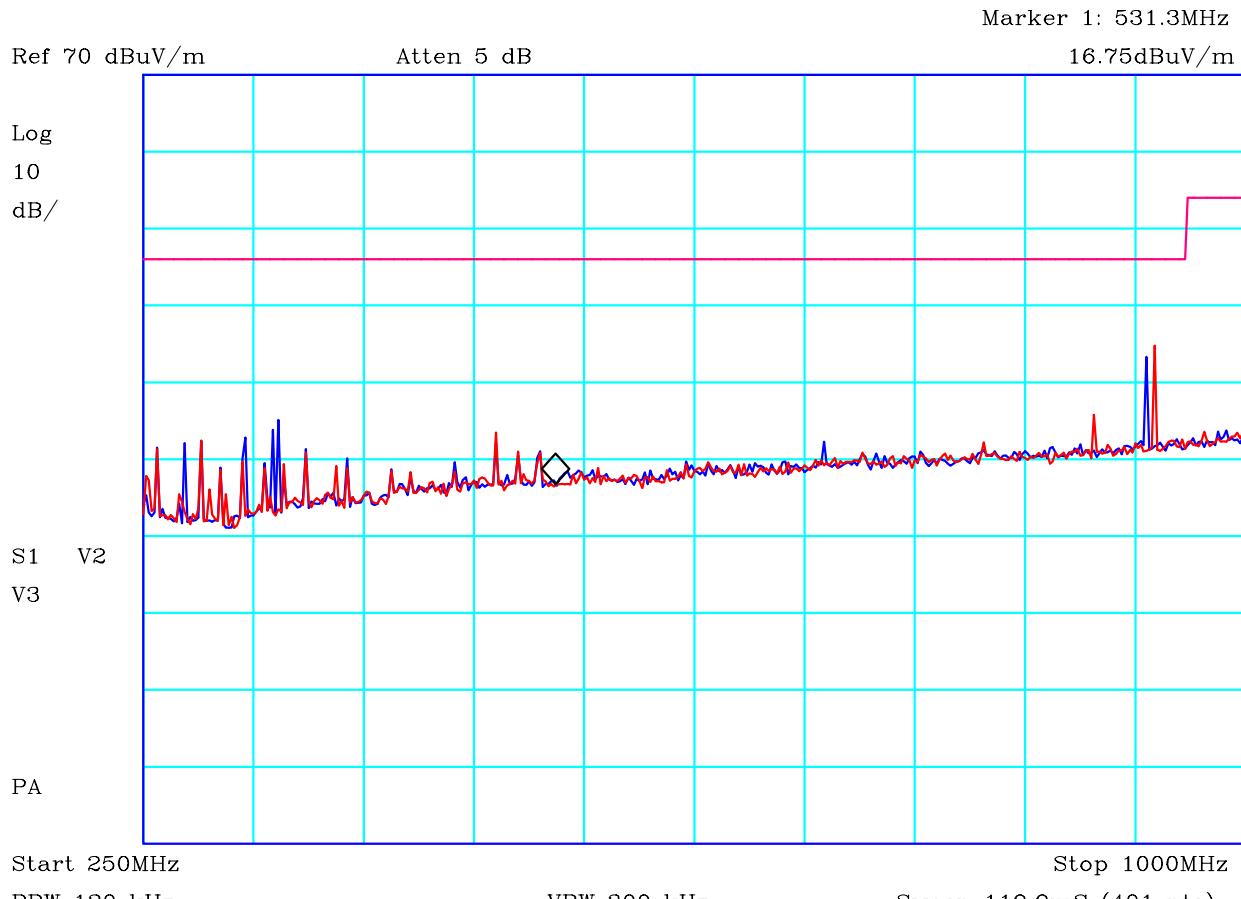
	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1			
Test No: T4354	Test Report		Page: 86 of 100	



CF1:A23_3m_100806 CF2:CBL049_110107 CF3:PRE3_110113 CF4:RFF22_110221

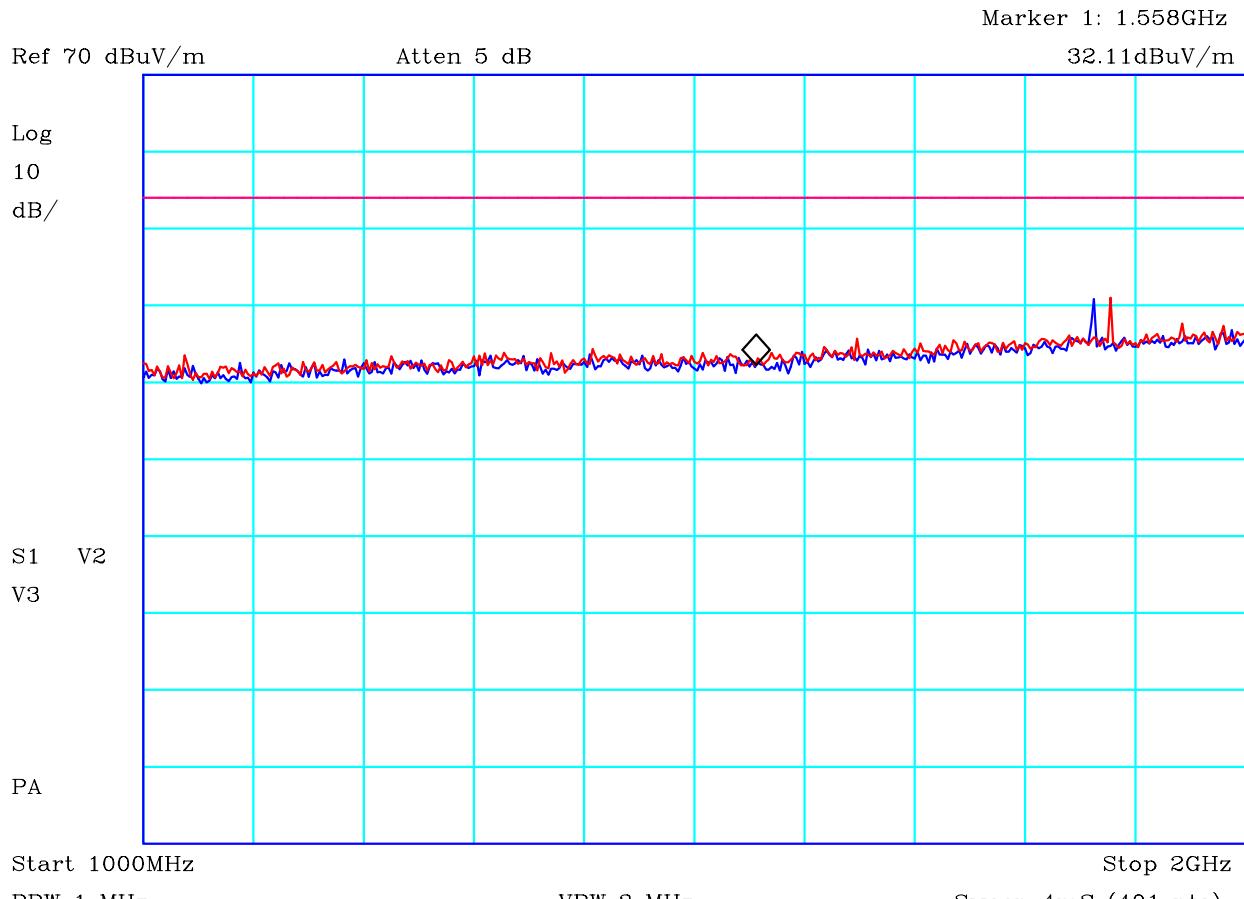
PLOT 52 Radiated Emissions - DMU - 862 - 869 band Tx- 5GHz to 10GHz

Company:	Sepura	Product:	SRG3500
Date:	25/05/2012	Test Eng:	Dave Smith
Method:	FCC part 90	Method:	
Limit1:(VIO)	43+10 log(P)@1.5m	Limit2:	
Limit3:		Limit4:	
<p>DMU Transmit mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz Limit is approximate field strength correlation to -13dBm</p>			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H242553A
Mode:	1	Modification State:	0


	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1			
Test No: T4354	Test Report		Page: 87 of 100	

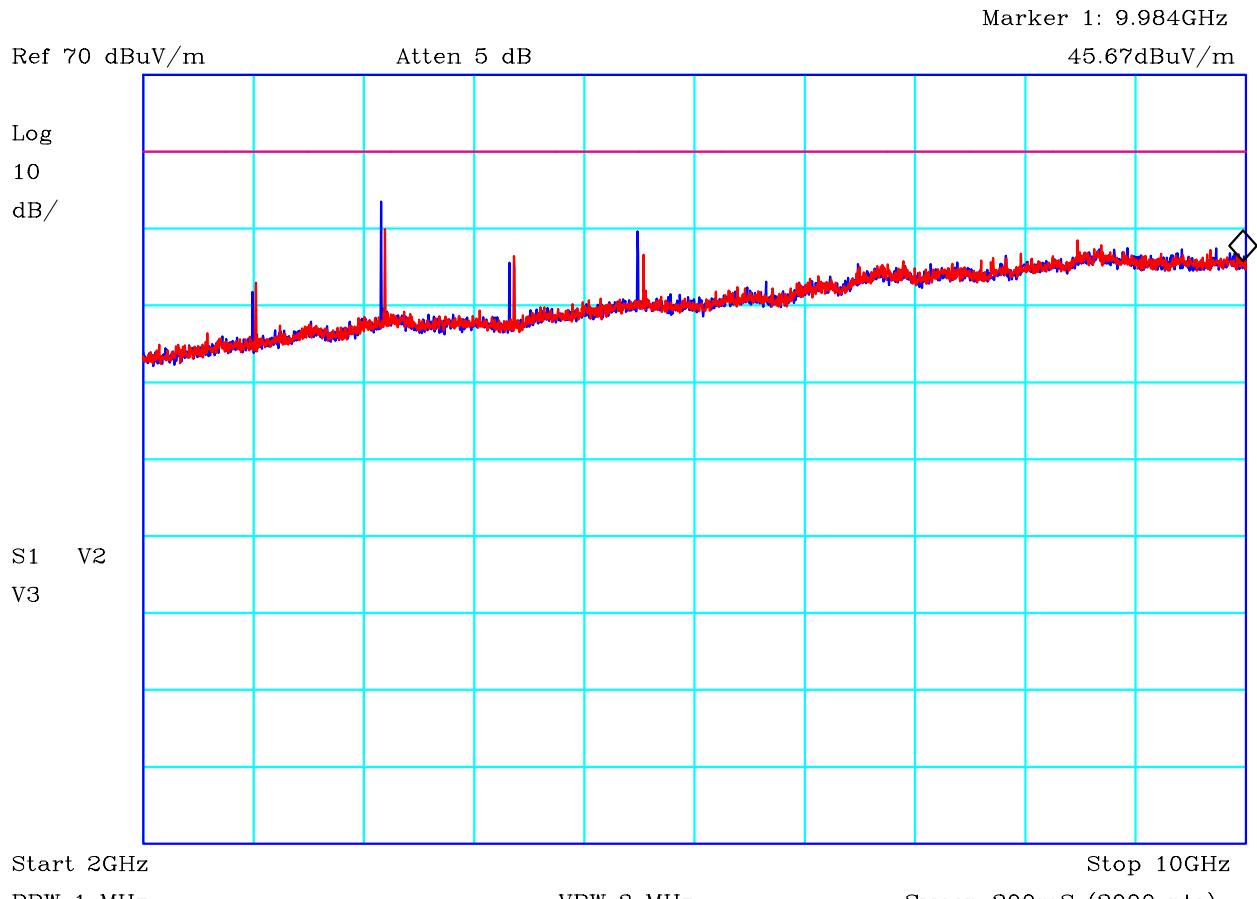
PLOT 53 Radiated Emissions - Config 1 - Rx - 25MHz to 275MHz

Company:	Sepura	Product:	SRG3500
Date:	18/05/2012	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(VIO)	FCC_B@3m	Limit2:	
Limit3:		Limit4:	
Config 1 Receive mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H24185AE
Mode:	2	Modification State:	0


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB		
Test No: T4354	Test Report		Page: 88 of 100	

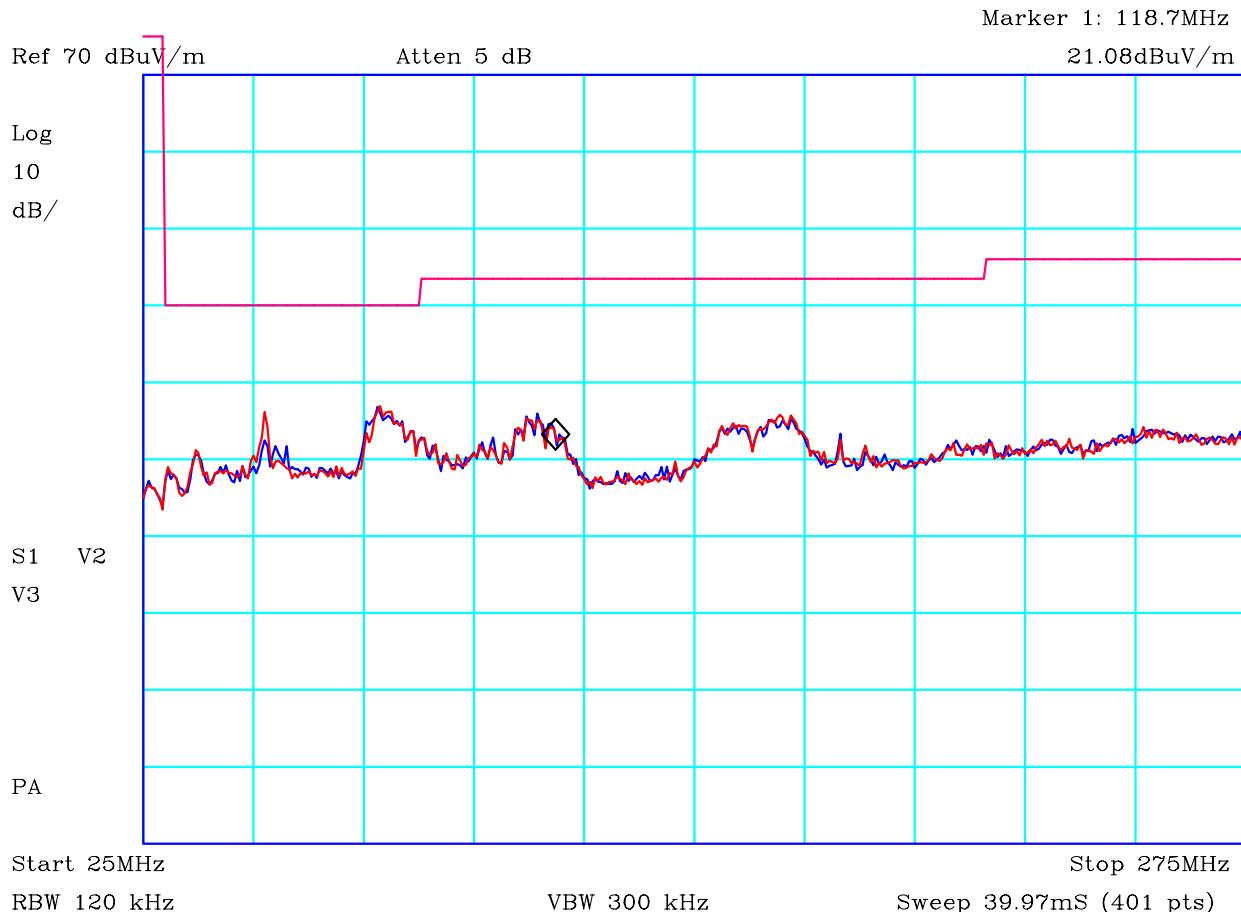
PLOT 54 Radiated Emissions - Config 1 - Rx - 250MHz to 1GHz

Company:	Sepura	Product:	SRG3500
Date:	14/05/2012	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(VIO)	FCC_B@3m	Limit2:	
Limit3:		Limit4:	
Config 1			
Receive mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H24157CC
Mode:	2	Modification State:	0


	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1	Test Report		
Test No: T4354			Page: 89 of 100	

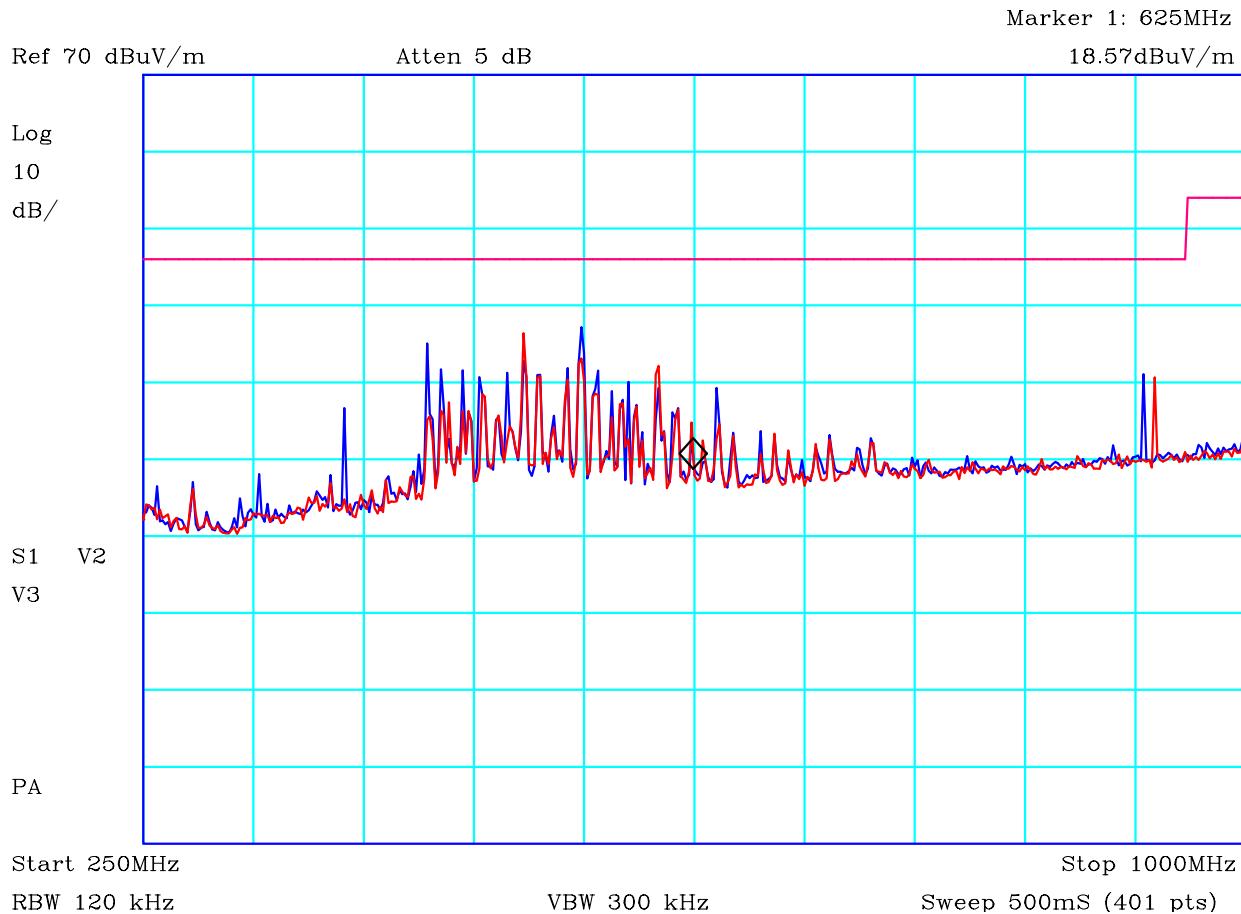
PLOT 55 Radiated Emissions - Config 1 - Rx - 1GHz to 2GHz

Company:	Sepura	Product:	SRG3500
Date:	21/05/2012	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(VIO)	FCC_B@3m	Limit2:	
Limit3:		Limit4:	
Configuration 1			
Receive mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Facility:	Anech_2	Height	1m
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H24217D8
Mode:	2	Modification State:	0


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB		
Test No: T4354	Test Report		Page: 90 of 100	

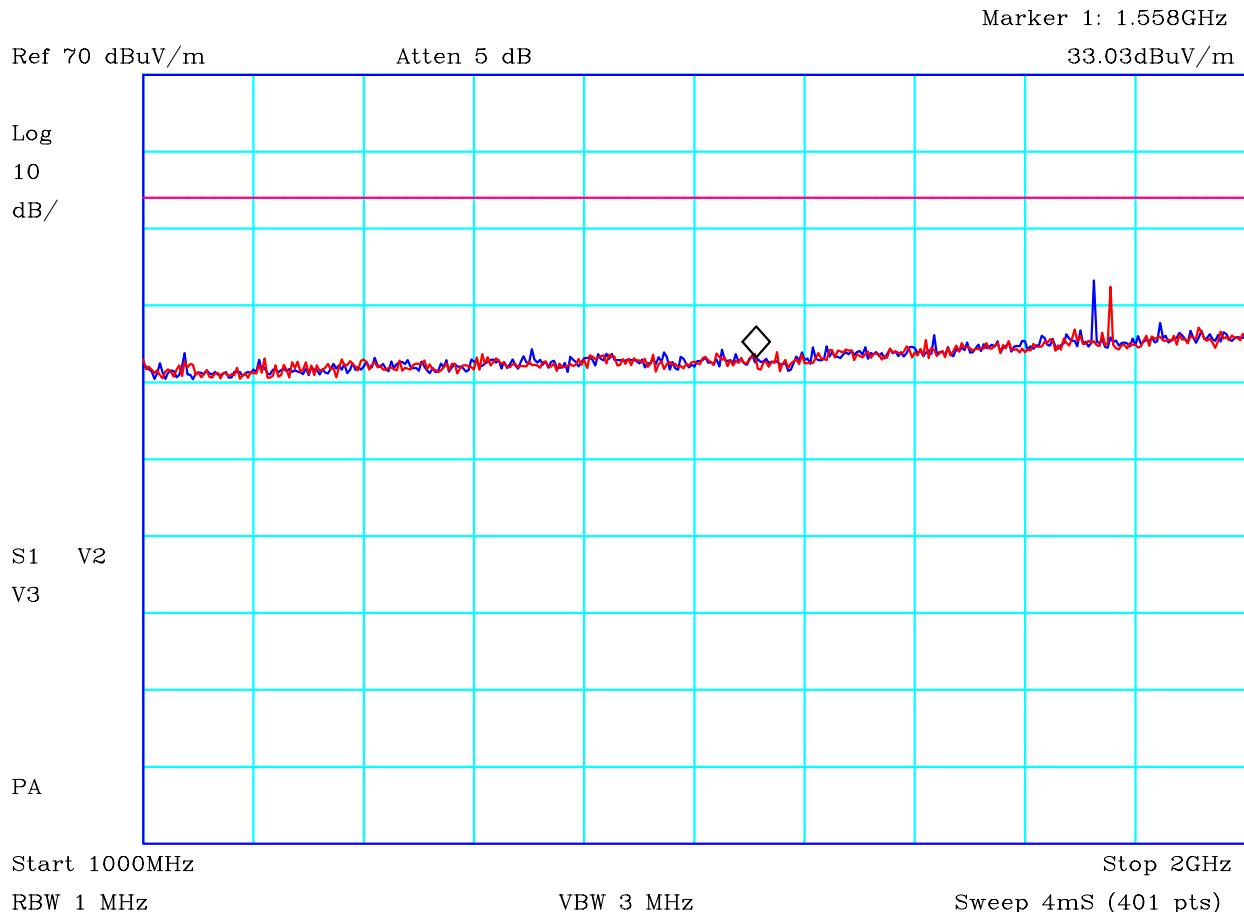
PLOT 56 Radiated Emissions - Config 1 - Rx - 2GHz to 10GHz

Company:	Sepura	Product:	SRG3500
Date:	22/05/2012	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(VIO)	FCC_B@1.5m	Limit2:	
Limit3:		Limit4:	
Configuration 1			
Receive mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H2422779
Mode:	2	Modification State:	0


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 91 of 100

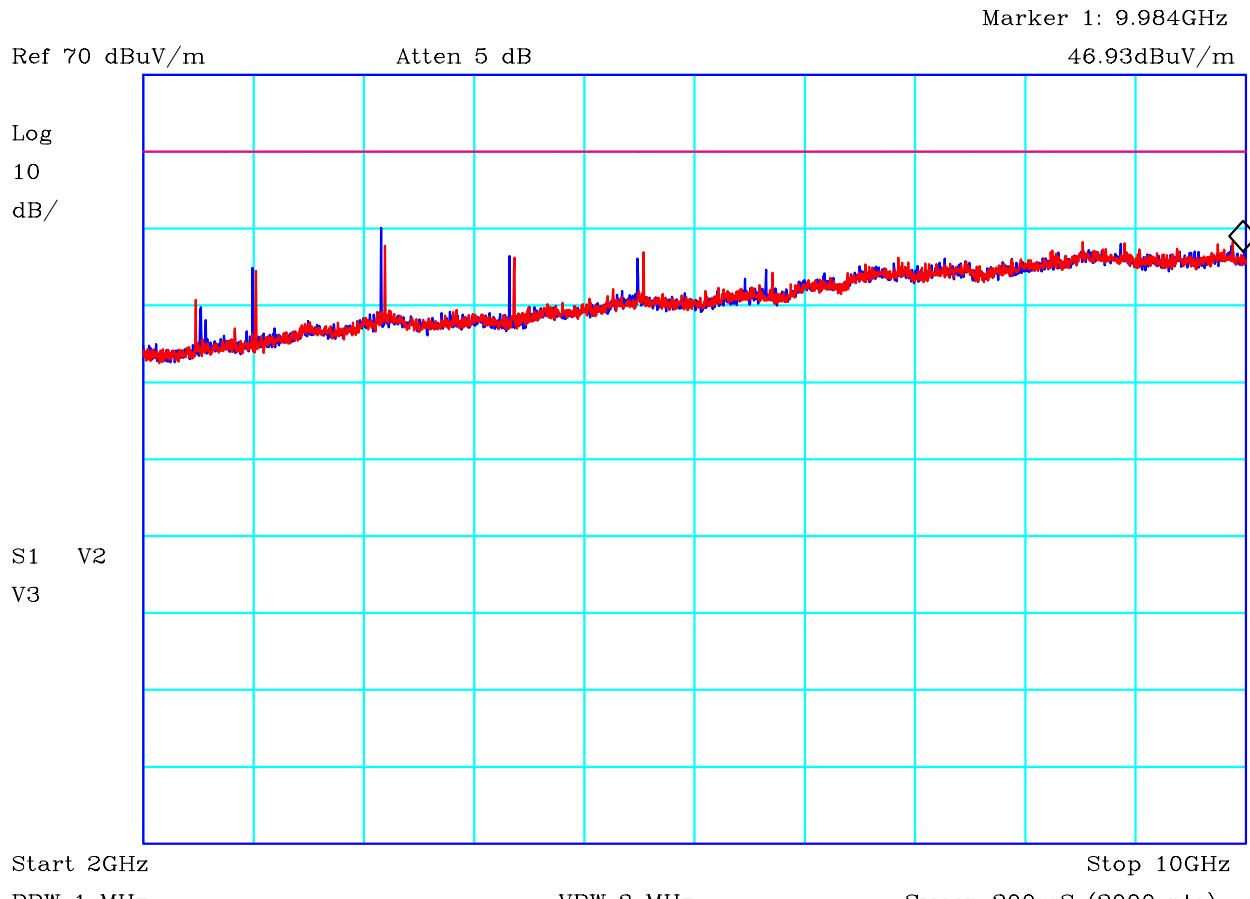
PLOT 57 Radiated Emissions - DMU - Rx - 25MHz to 275MHz

Company:	Sepura	Product:	SRG3500
Date:	14/05/2012	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(VIO)	FCC_B@3m	Limit2:	
Limit3:		Limit4:	
DMU			
Receive mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H24155C0
Mode:	2	Modification State:	0


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 92 of 100

PLOT 58 Radiated Emissions - DMU - Rx - 250MHz to 1GHz

Company:	Sepura	Product:	SRG3500
Date:	18/05/2012	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(VIO)	FCC_Bx@3m	Limit2:	
Limit3:		Limit4:	
DMU			
Receive mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Facility:	Anech_2	Height	1.5
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H24184DF
Mode:	2	Modification State:	0


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 93 of 100

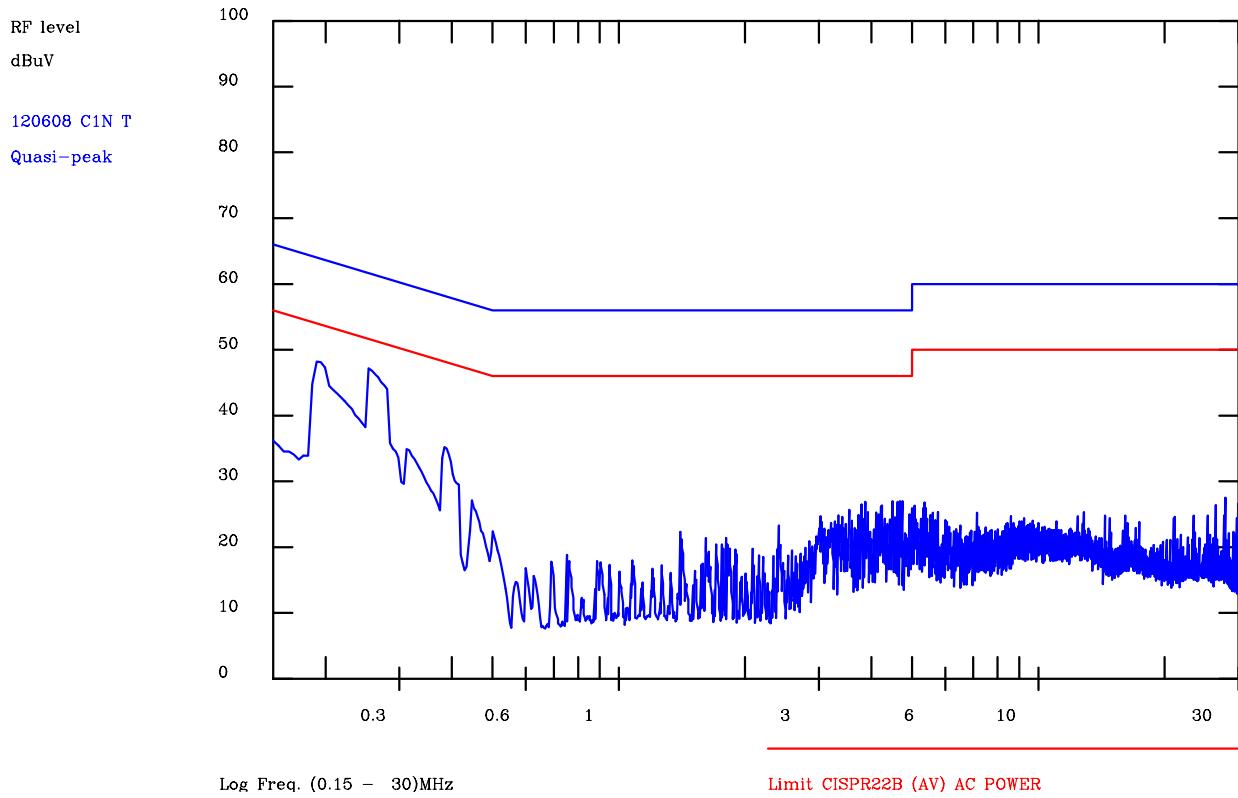
PLOT 59 Radiated Emissions - DMU - Rx - 1GHz to 2GHz

Company:	Sepura	Product:	SRG3500
Date:	22/05/2012	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(VIO)	FCC_B@3m	Limit2:	
Limit3:		Limit4:	
DMU			
Receive mode. Maximum of both horizontal and vertical.			
Blue: 862MHz			
Red 869MHz			
Facility:	Anech_2	Height	1m
Distance	3m	Polarisation	V+H
Angle	0-360	File:	H2422484
Mode:	2	Modification State:	0

	Report No: R3112	FCC ID: XX6-SRG3500XB		
	Issue No: 1	Test Report		
Test No: T4354			Page: 94 of 100	

PLOT 60 Radiated Emissions - DMU - Rx - 2GHz to 10GHz

Company:	Sepura	Product:	SRG3500
Date:	25/05/2012	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(VIO)	FCC_B@1.5m	Limit2:	
Limit3:		Limit4:	
DMU Receive mode. Maximum of both horizontal and vertical. Blue: 862MHz Red 869MHz			
Facility:	Anech_2	Height	1m
Distance	1.5m	Polarisation	V+H
Angle	0-360	File:	H2425553
Mode:	2	Modification State:	0


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
Test No: T4354		Test Report	Page: 95 of 100

Chase EMS 6.21

Notes

Analyse 120608 C1N Tx 817MHz

Test: 150kHz-30MHz (L1+CSET001) dBuV

PLOT 61 Conducted Emissions - Transmit Mode (817MHz) - Neutral Line

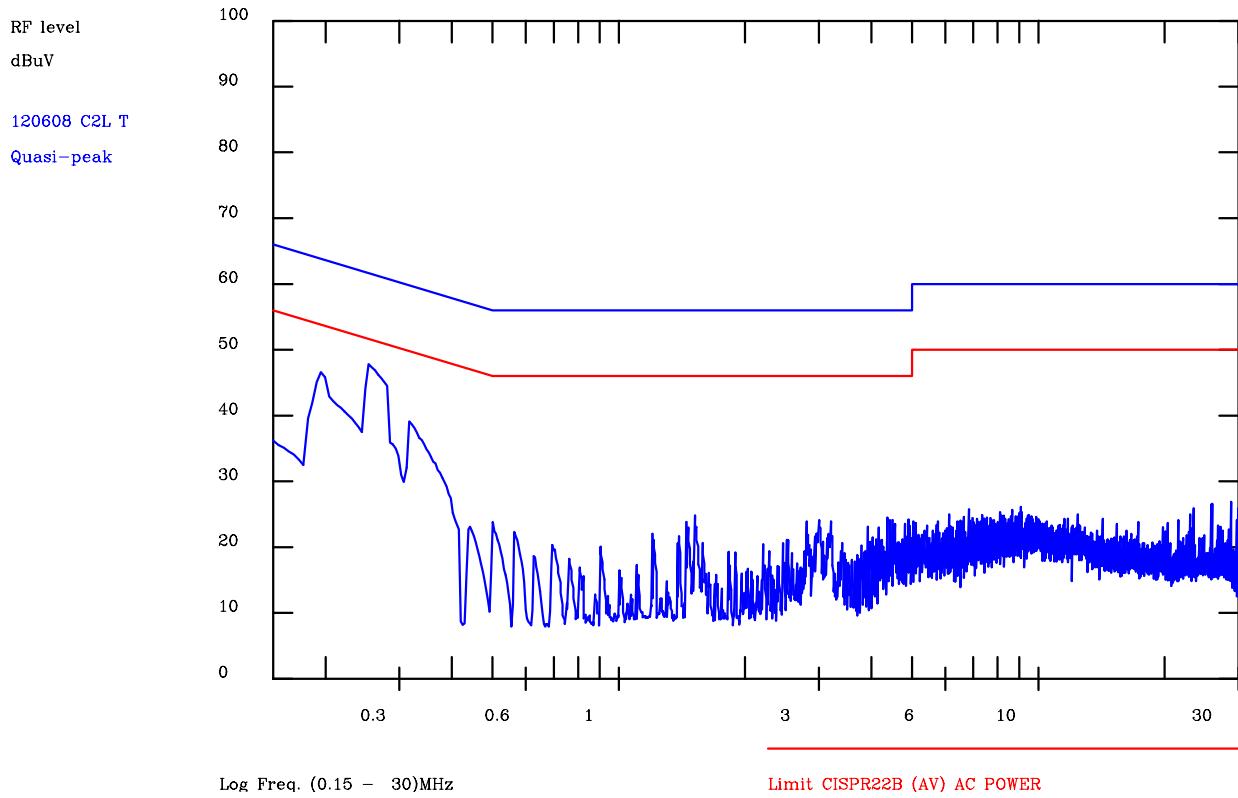
Company: Sepura	Product: SRG3500
Date: 08 Jun 12	Test Engineer: Dave Smith
Test: ANSI C63.4	Limit: Class B
Notes:	
Transmit 817MHz 115V, Dummy load on antenna port.	
L1 R1	
Line: Neutral	Attenuator: 10dB PAD
Detector: QuasiPeak	Operating Mode: 1
LISN: EMCO	Mod. State: 0
Filename: C26086A9.plt	

Frequency List (MHz)

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report


Page: **96 of 100**

Chase EMS 6.21

Notes

Analyse 120608 C2L Tx 817MHz

Test: 150kHz-30MHz (L1+CSET001) dBuV

PLOT 62 Conducted Emissions - Transmit Mode (817MHz) - Live Line

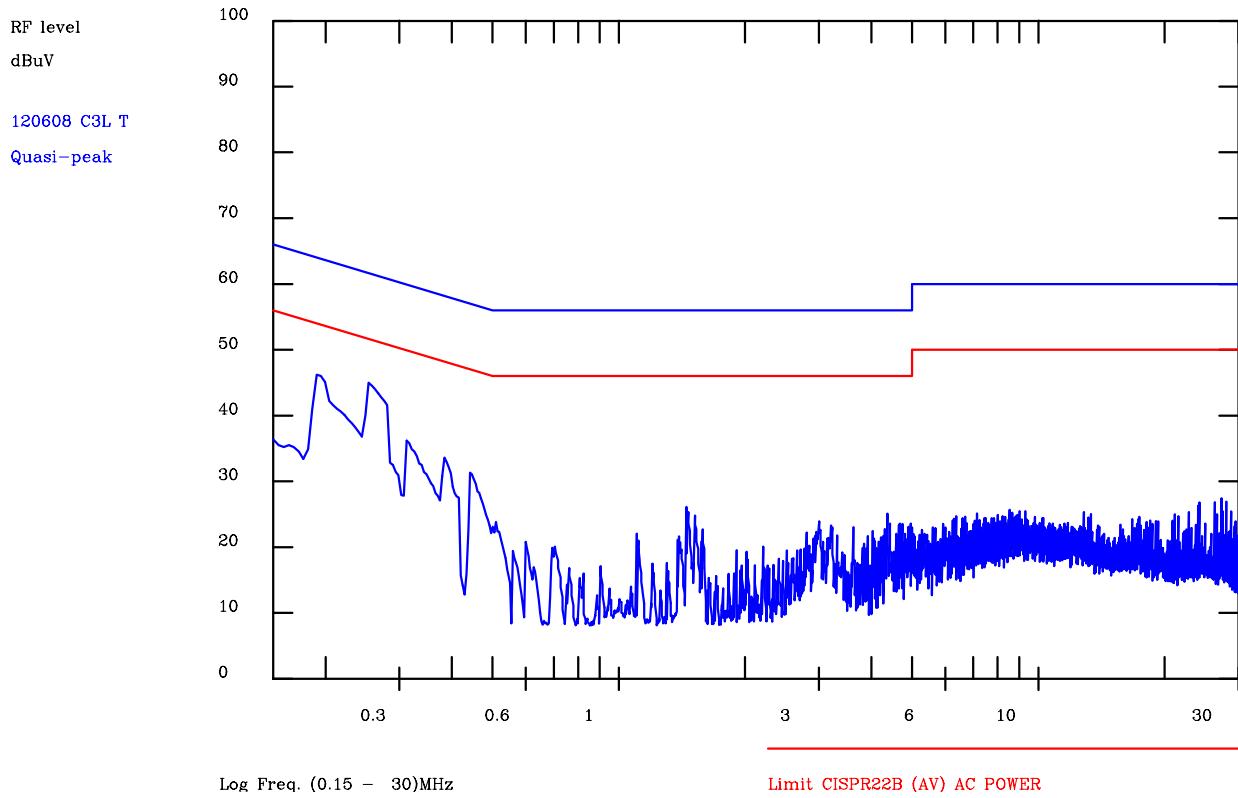
Company: Sepura	Product: SRG3500
Date: 08 Jun 12	Test Engineer: Dave Smith
Test: ANSI C63.4	Limit: Class B
Notes:	
Transmit 817MHz 115V, Dummy load on antenna port.	
L1 R1	
Line: Live	Attenuator: 10dB PAD
Detector: QuasiPeak	Operating Mode: 1
LISN: EMCO	Mod. State: 0
Filename: C26086B6.plt	

Frequency List (MHz)

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report


Page: **97 of 100**

Chase EMS 6.21

Notes

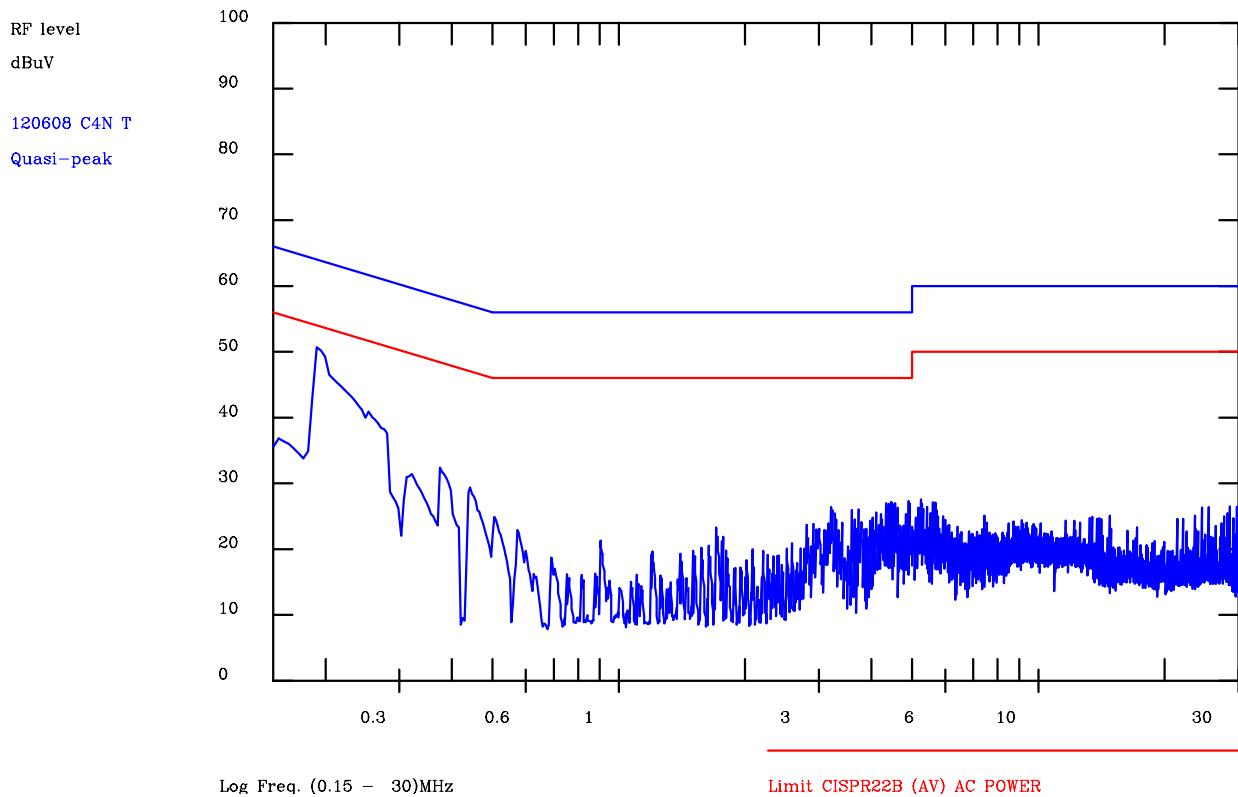
Analyse 120608 C3L Tx 862MHz

Test: 150kHz-30MHz (L1+CSET001) dBuV

PLOT 63 Conducted Emissions - Transmit Mode (862MHz) - Live Line

Company: Sepura	Product: SRG3500
Date: 08 Jun 12	Test Engineer: Dave Smith
Test: ANSI C63.4	Limit: Class B
Notes:	
Transmit 862MHz 115V, Dummy load on antenna port.	
L1 R1	
Line: Live	Attenuator: 10dB PAD
Detector: QuasiPeak	Operating Mode: 1
LISN: EMCO	Mod. State: 0
Filename: C26086C2.plt	

Frequency List (MHz)


	Report No: R3112 Issue No: 1	FCC ID: XX6-SRG3500XB	
	Test No: T4354	Test Report	Page: 98 of 100

Chase EMS 6.21

Notes

Analyse 120608 C4N Tx 862MHz

Test: 150kHz-30MHz (L1+CSET001) dBuV

PLOT 64 Conducted Emissions - Transmit Mode (862MHz) - Neutral Line

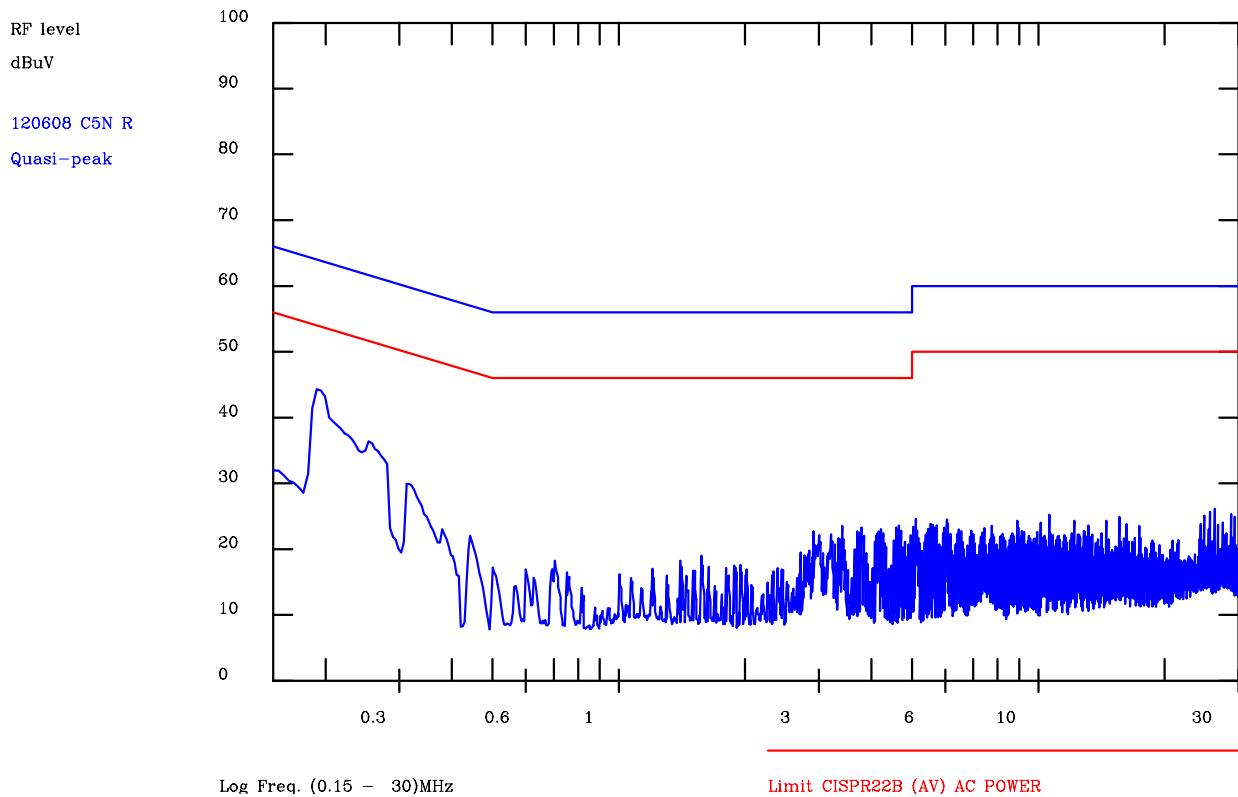
Company:	Sepura	Product:	SRG3500
Date:	08 Jun 12	Test Engineer:	Dave Smith
Test:	ANSI C63.4	Limit:	Class B
Notes:			
Transmit 862MHz 115V, Dummy load on antenna port.			
L1 R1			
Line:	Neutral	Attenuator:	10dB PAD
Detector:	QuasiPeak	Operating Mode:	1
LISN:	EMCO	Mod. State:	0
Filename:	C26086CA.plt		

Frequency List (MHz)

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report


Page: **99 of 100**

Chase EMS 6.21

Notes

Analyse 120608 C5N Rx 862MHz

Test: 150kHz-30MHz (L1+CSET001) dBuV

PLOT 65 Conducted Emissions - Receive Mode Neutral Line

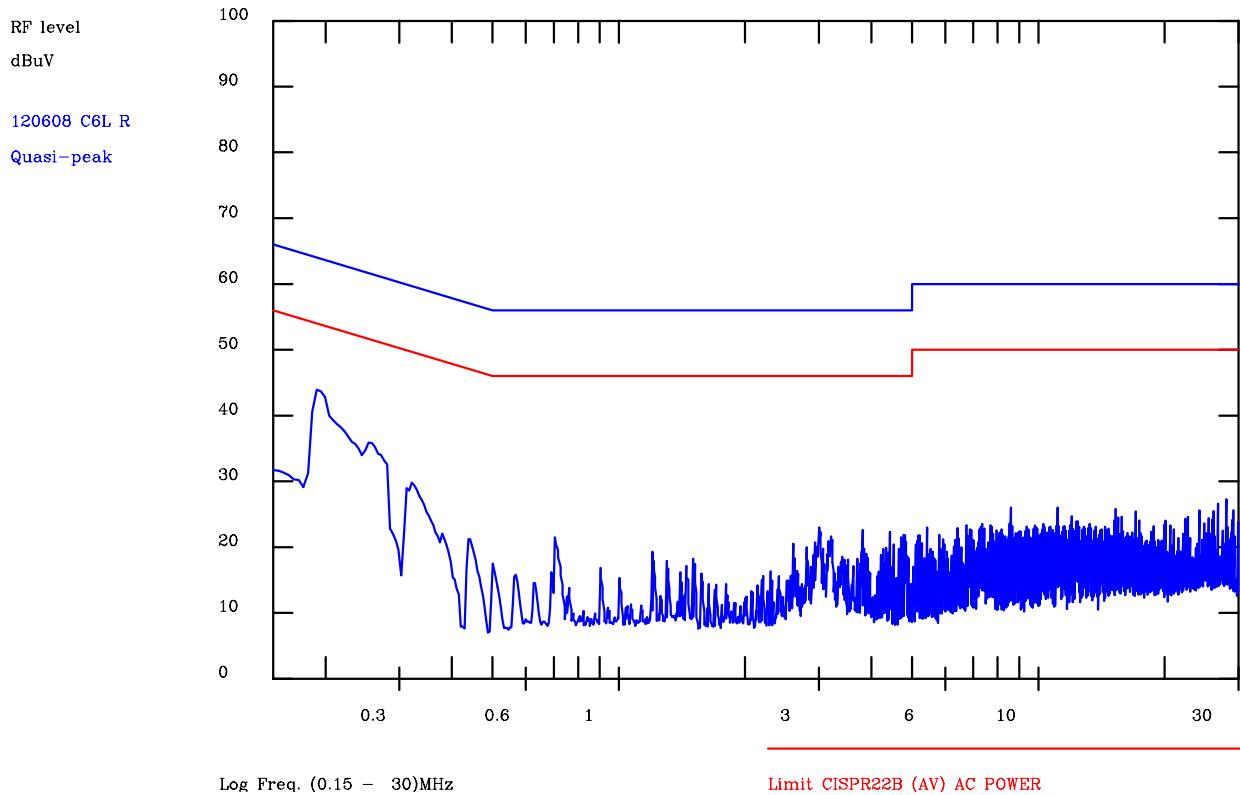
Company: Sepura	Product: SRG3500
Date: 08 Jun 12	Test Engineer: Dave Smith
Test: ANSI C63.4	Limit: Class B
Notes:	
Receive 862MHz 115V, Dummy load on antenna port.	
L1 R1	
Line: Neutral	Attenuator: 10dB PAD
Detector: QuasiPeak	Operating Mode: 2
LISN: EMCO	Mod. State: 0
Filename: C26086D5.plt	

Frequency List (MHz)

	Report No: R3112 Issue No: 1
Test No: T4354	

FCC ID: XX6-SRG3500XB

Test Report


Page: **100 of 100**

Chase EMS 6.21

Notes

Analyse 120608 C6L Rx 862MHz

Test: 150kHz-30MHz (L1+CSET001) dBuV

PLOT 66 Conducted Emissions - Receive Mode - Live Line

Company: Sepura	Product: SRG3500
Date: 08 Jun 12	Test Engineer: Dave Smith
Test: ANSI C63.4	Limit: Class B
Notes:	
Receive 862MHz 115V, Dummy load on antenna port.	
L1 R1	
Line: Live	Attenuator: 10dB PAD
Detector: QuasiPeak	Operating Mode: 2
LISN: EMCO	Mod. State: 0
Filename: C26086E1.plt	

Frequency List (MHz)
