Test of Zebra Enterprise Solutions Corp. WhereLAN III Location Sensor

To: FCC 47 CFR Part 15.247 & IC 210

Test Report Serial No.: GBCC01-U1 Rev A

TEST REPORT

Test of: Zebra Enterprise Solutions Corp. WhereLAN III Location Sensor

To: FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: GBCC01-U1 Rev A

This report supersedes: None

Applicant: Zebra Enterprise Solutions Corp.

2940 N. First Street

San Jose, CA 95134

USA

Product Function: Wireless Location Sensor

Copy No: pdf Issue Date: 6th December 2010

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

TESTING CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Serial #: GBCC01-U1

Issue Date: .6th December2010

Page: Page 3 of 72

TABLE OF CONTENTS

ı		REDITATION, LISTINGS & RECOGNITION	
		TESTING ACCREDITATION	
		RECOGNITION	
		PRODUCT CERTIFICATION	
2	DOC	CUMENT HISTORY	8
3	TES	T RESULT CERTIFICATE	9
4	REF	ERENCES AND MEASUREMENT UNCERTAINTY	10
		Normative References	
	4.2	Test and Uncertainty Procedures	11
5	TES	T SUMMARY	12
6		DDUCT DETAILS AND TEST CONFIGURATIONS	
		Test Program Scope	
	6.2	EUT Details	15
	6.3	External A.C/D.C Power Adaptor	16
		Operational Power Range	
	6.5	Types of Modulation Supported	17
		Antenna Details	
		Cabling and I/O Ports	
		EUT Configurations	
		Equipment Details	
		Test Configurations	
		1 Equipment Modifications	
_			
7		T RESULTS	
	7.1	6 dB and 99% Bandwidth	
	7.0	7.1.1 6 dB and 99% Bandwidth Results: DSSS	
	7.2	Peak Output Power	24
	7 2	7.2.1 Measurement Results: DSSS Peak Power Spectral Density	
	1.5	7.3.1 Measurement results for DSSS	21 28
	7 4	Maximum Permissible Exposure	
		Conducted Spurious	
		7.5.1 Measurement Results for DSSS	33
	7.6	Radiated Spurious Emissions	
		7.6.1 Measurement Results DSSS mode: Transmitter Radiated Spurious	
		Emissions	43
		7.6.2 DSSS Radiated Band Edge Emissions	
		7.6.3 Measurement Results AK-210-10 & AK-110-10: Band Edge	
		7.6.4 Measurement Results AK-210-10 & AK-110-10: Peak Emissions	
	7.7	Radiated Spurious Emissions – Digital Apparatus	52

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:	Zebra Enterprise Solutions WhereLAN II
To.	FCC 47 CFR Part 15 247 & IC RSS-210

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 4 of 72

	7.7.1 Measurement Results for Radiated Spurious Emissions – Digital	50
	Apparatus	
	7.8 Conducted Disturbance at Mains Terminal (150 kHz – 30 MHz)	
8	PHOTOGRAPHS	
•	8.1 Conducted RF Measurement Set Up	
	8.2 Radiated Spurious Emissions Below 1 GHz	69
	8.3 Radiated Spurious Emissions Above 1 GHz	
9	TEST EQUPIMENT DETAILS	71

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 5 of 72

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. schedule test available Labs following http://www.a2la.org/scopepdf/2381-01.pdf

The American Association for Laboratory Accreditation

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 14th day of April 2010.

President & CEO For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2011

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 6 of 72

1.2 RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA Federal Communications Commission (FCC)		TCB	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A
Japan	VCCI	-	-	No. 2959
	MIC	RCB	APEC MRA 2	
Europe	European Union	NB	N/A	
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea Ministry of Information and Communication Radio Research Laboratory (RRL)		CAB	APEC MRA 1	US0159
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 7 of 72

1.3 PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-02.pdf

The American Association for Laboratory Accreditation

World Class Accreditation

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996

General requirements for bodies operating product certification systems. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system for a Telecommunications Certification Body (TCB) meeting FCC (U.S.), and IC (Canada) requirements.

Presented this 24th day of June 2010.

President & CEO
For the Accreditation Council
Certificate Number 2381.02
Valid to November 30, 2011

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body

TCB Identifier - US0159

Industry Canada - Certification Body

CAB Identifier - US0159

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 8 of 72

2 DOCUMENT HISTORY

	Document History					
Revision Date		Comments				
Draft						
Rev A	6 th December 2010	Initial Release				

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 9 of 72

3 TEST RESULT CERTIFICATE

Applicant:	Zebra Enterprise Solutions Corp. 2940 N. First Street San Jose CA, 95134, USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566, USA
Product:	WhereLAN III Location Sensor	Telephone:	+1 925 462 0304
Model No.:	LOS-5000	Fax:	+1 925 462 0306
S/No's:	M12120901M12		
Date(s) Tested:	25 th Oct to 2 nd November 2010	Website:	www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC 47 CFR Part 15.247 & IC 210

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED

TESTING CERTIFICATE #2381.01

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 10 of 72

4 REFERENCES AND MEASUREMENT UNCERTAINTY

4.1 Normative References

Ref.	Publication	Year	Title
i.	47 CFR Part 15, SubPart 15.247	2007	For Digitally Modulated Intentional Radiators
ii.	Industry Canada RSS- 210	Issue 7 June 2007	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
iii.	Industry Canada RSS- Gen	Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment.
iv.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
V.	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
vi.	М 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
vii. LAB34 Edition 1 Aug 2002 The expression of the second		The expression of uncertainty in EMC Testing	
viii.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
ix.	A2LA	9 th June 2010	Reference to A2LA Accreditation Status – A2LA Advertising Policy

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 11 of 72

4.2 Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 12 of 72

5 TEST SUMMARY

List of Measurements:

The following table represents the list of measurements required under the FCC CFR47 Part 15.247 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	≥500 kHz	Conducted	Complies	7.1
15.247(b)(3) 15.31(e) A8.4(4)	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies	7.2
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	7.3
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	7.4
15.247(d) 15.205 / 15.209 A8.5 2.2	Spurious Emissions (30MHz - 26 GHz b/g and 30 MHz – 40 GHz a)	The radiated emission in any 100 kHz of outband shall be at least 20 dB below the highest inband spectral density	Conducted	Complies	7.5

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 13 of 72

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210, and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 /	Radiated Emissions	Restricted Bands	Radiated	Complies	7.6
15.209 A8.5 2.2 2.6	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	
4.7	Radiated Band Edge	Band-edge results Peak Emissions		Complies	
Industry Canada only RSS-Gen §4.10, §6	Receiver Spurious Emissions	Emissions above 1 GHz	Conducted	Complies	7.7
15.205 / 15.209 2.2	Radiated Spurious Emissions	Emissions <1 GHz (30M- 1 GHz)	Radiated	Complies	7.8
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	Complies	7.9

- Note 1: Test results reported in this document relate only to the items tested
- **Note 2:** The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria
- **Note 3:** Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 14 of 72

6 PRODUCT DETAILS AND TEST CONFIGURATIONS

6.1 Test Program Scope

The scope of the test program was to test the Zebra Enterprise Solutions Corp. WhereLAN III Location Sensor Wireless Location System for compliance against FCC 47 CFR Part 15, SubPart 15.247 & IC RSS-210.

APPLICANT: Zebra Enterprise Solutions Corp.

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 15 of 72

6.2 EUT Details

Detail	Description
Purpose:	Test of the Zebra Enterprise Solutions Corp.
	WhereLAN III Location Sensor Wireless Location
	System for compliance against FCC 47 CFR Part
A 12 4	15, SubPart 15.247 & IC RSS- 210
Applicant:	
Manufacturer:	
Test Laboratory:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
Toot report reference numbers	Pleasanton, California 94566 USA
Test report reference number:	GBCC01
Date EUT received:	25 th October 2010 25 th October to 2 nd November 2010
Dates of test (from - to):	1
No of Units Tested:	'
Product Name:	WhereLAN III Location Sensor WhereLAN III Location Sensor
Manufacturers Trade Name:	
Model No.:	LOS-5000
Equipment Primary Function:	Wireless Location System
Equipment Secondary Function(s):	None
Type of Technology:	Wireless (802.11b/g and ISO24730)
Installation type:	Fixed
Construction/Location for Use:	Indoor/Outdoor
Software/Firmware Release:	Rev B
Hardware Release:	Rev 01
Test Software Release:	Windows XP HyperTerminal and FEPdebugger.exe dated 1/13/2009
Transmit/Receive Operation:	Full Duplex
Output Power Type	Stepped fixed for ISO
AutomaticTransmit Power Control Available:	N/A
Remote Frequency Control Available:	N/A
Operating Frequency:	2441.75 MHz
Rated Input Voltage and Current DC:	Nominal: 48 Max: 36 Min: 57
	Current: 0.35 (A)
Operating Temperature Range °C:	Min: -40 Max: +60°C
ITU Emission Designator(s):	802.11b/g
	ISO24730 DSSS BPSK
Long Term Frequency Stability:	20 ppm
Equipment Dimensions:	10.25 in X 12.25 in X 1.50 in
Weight:	7 lbs

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 16 of 72

6.3 External A.C/D.C Power Adaptor

Туре	Manufacturer	Manufacturers P/N	Input	Output
AC/DC P/S	MEPOS	SIDA25A-S11	100-240V (47- 63Hz) 0.55A	48Vdc 0.52A
AC/DC P/S MEPOS STDA		STDA16A-S11	100-240V (47- 63Hz) 0.4A	48Vdc 0.31A
POE	ITE	PW182RB4800F01	100-240V (50- 60Hz) 0.6A	48Vdc 0.35A

6.4 Operational Power Range

Declared O/P Power Range	Mode 1		
	Max	Min	
EUT	10	0	

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 17 of 72

6.5 Types of Modulation Supported

Modulation / Mode	BW 1
ISO24730 DSSS BPSK	60 MHz
802.11b/g	22 MHz

6.6 Antenna Details

The following is a description of the EUT antennas.

Antenna Type:	Manufacturer	Model	Gain (dBi)	Frequency Range (MHz)
ISO24730, Helical	ZES	AK-210-10	3	2412-2472
ISO24730, Helical	ZES	AK-110-10	3	2412-1472
802.11, Dipole	Cisco	AIR-ANT4941	2	2402-2495
802.11, Dipole	Cisco	AIR-ANT2506	5.2	2400-2484
802.11 Yagi	Cisco	AIR-ANT1949	13.5	2400-2484

6.7 Cabling and I/O Ports

The following is a description of the cable and input, output ports available on the EUT.

Type of I/O Ports	Description	Screened (Y/N)	Qty
RJ-45	Eithernet	N	1
RJ-22	Timing Ports	N	3
DB-9 Male	Serial Port	N	1
MCX female	RF output ports for ISO24730	Y	2
SMB male	RF output port for WIFI	у	1

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 18 of 72

6.8 EUT Configurations

Band (GHz)	Mode	Freq Band (MHz)	Freq Range (MHz)	Low ch	Mid ch	High ch	# Ch	Ch Spacing (MHz)	ChBW (MHz)
2.4	ISO24730 DSSS	2400 - 2483.5	2412 - 2462		2441.75		1		67

6.9 Equipment Details

The following is a description of EUT and supporting equipment used during the test program.

Type (EUT/Support)	Equipment Description	Manufacturer	Model No.	Part No (s).
EUT	Location Sensor	Zebra Enterprise Solutions Corp.	LOS-5000	LOS-5000-01AA
Support	Remote Telemetry Module	Zebra Enterprise Solutions Corp.	TFF-2225	TFF-2225-00AA
Support	Laptop PC	Dell	PP18L	72MUF A02
Support	Laptop PC	Dell	PPL	9172P

6.10 Test Configurations

Operational Mode(s)	Data Rate Tested	Duty Cycle
ISO24730 DSSS	59.7 kbps	100

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 19 of 72

6.11 Equipment Modifications

The following modifications were required to bring the equipment into compliance:

• No modifications required.

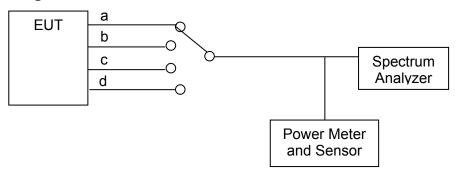
6.12 Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

• No deviations required.

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 20 of 72

7 TEST RESULTS


7.1 6 dB and 99% Bandwidth

Test Procedure

The test methodology and conditions utilized for each measurement is referenced in the following test results matrix. 6 dB and 99% bandwidth were measured per the Test Configuration identified below.

Testing was restricted to a single port.

Test Configuration

Test configuration for 6 dB & 99% Bandwidth

Specification

Limits

§15.247 (a)(2) & RSS-210 §A8.2(1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

§ IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

§ IC RSS-Gen 4.4.2 6 dB Bandwidth Where indicated, the 6 dB bandwidth is measured at the points when the spectral density of the signal is 6 dB down from the in –band spectral density of the modulated signal, with the transmitter modulated by a representative signal.

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 21 of 72

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0252, 0313, 0314, 0116, 0117, 0287, 0363
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

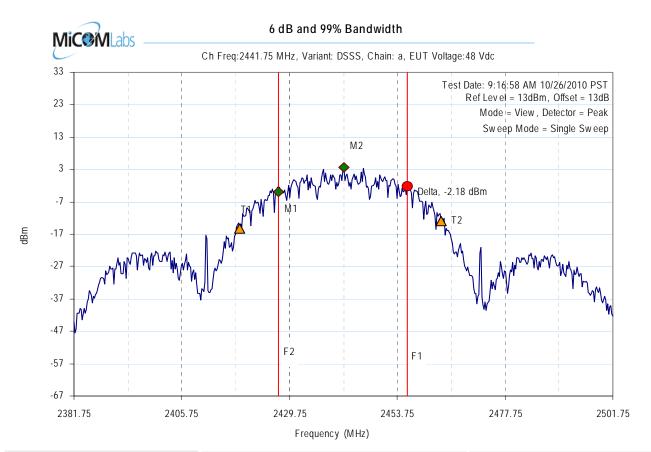
Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 22 of 72

7.1.1 6 dB and 99% Bandwidth Results: DSSS

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	DSSS	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	3	dBi	
Applied Voltage:	48.00 Vdc				
Notes 1:					
Notes 2:					

6 dB Bandwidth

Test Frequency	6 dB Bandwidth MHz			Minimum Bandwidth		Margin	
MHz	а	b	С	d	kHz	MHz	MHz
2441.750	28.858000						-28.358000
					500	0.5	


99% Bandwidth

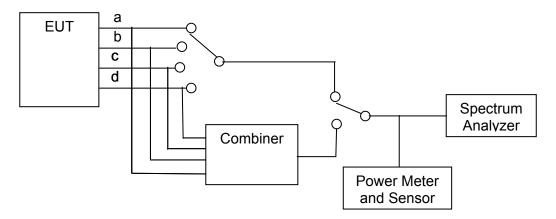
99 / Dalluwiu	99 / Bandwidth						
Test		99 % Bandwidth					
Frequency	MHz						
MHz	а	b	С	d			
2441.750	45.210000	-					
		-					

Measurement uncertainty:	±2.81 dB

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 23 of 72

Analyser Setup	Marker : Frequency : Amplitude	Test Results
RBW = 100.00KHz	M1: 2427.200902MHz: -3.894dBm	Center frequency = 2441.75MHz
VBW = 300.00KHz	M2: 2441.870240MHz: 3.539dBm	6dB BW(Delta-M1) = 28.857715MHz
Sw eep time(s) = 20	Delta: 2456.058617MHz: -2.182dBm	99% OBW(T2-T1) = 45.210421MHz
RF Atten (dB) = 10	T1: 2418.543587MHz: -15.346dBm	
Span = 120.00MHz	T2: 2463.513527MHz: -12.859dBm	

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 24 of 72


7.2 Peak Output Power

Test Procedure

The test methodology and conditions utilized for each measurement is referenced in the test results matrix. The average output power was measured per the test configuration identified below.

Per the standard measurements were taken at ambient conditions, nominal voltage.

Test Configuration

Measurement set-up for Peak Output Power

Total Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power [10 $\log_{10} (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$], G = Antenna Gain,

Y = Beam Forming Gain, x = Duty Cycle

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 25 of 72

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

15.247 (b) (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.247 (c) Operation with directional antenna gains greater than 6 dBi.

- (1) Fixed point-to-point operation:
- (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
- (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.
- **§15.31 (e)** For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

§ RSS-210 A8.4(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands the maximum peak conducted power shall not exceed 1 watt.

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF	0158, 0252, 0313, 0314, 0223, 0116, 0117, 0287,
Output Power'	0363

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 26 of 72

7.2.1 Measurement Results: DSSS

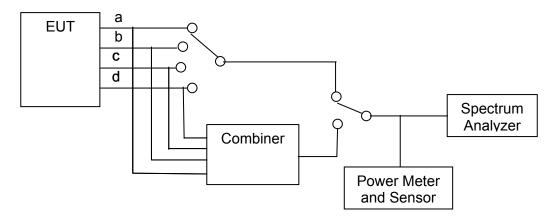
Test Conditions:	15.247 (b)	Rel. Humidity (%):	35	to	42
Variant:	DSSS	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming	N/A dB	Antenna Gain:	3	dBi	
Applied Voltage:	48.00 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				Total Po	ver (dRm)	Limit	Margin
Frequenc		RF Port (dBm) Total Power (dBm)		wer (abiii)	Liiiiit	Waigiii		
MHz	а	b	С	d	Combined	Calculated	dBm	dB
2442	18.52				18.52		30.00	-11.48
0		-					30.00	
0							30.00	

Measurement uncertainty:	±1.33 dB

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 27 of 72

7.3 Peak Power Spectral Density


Test Procedure

The test methodology and conditions utilized for each measurement is referenced in the following test results matrix. RF output power, transmit power control and power density were measured per the Test Configuration identified below.

Testing was performed on the highest and lowest power settings of the equipment.

Per the standard measurements were taken at ambient and extreme temperature conditions at nominal and extreme voltage levels.

Test Configuration

Measurement set-up for Peak Power Spectral Density

Specification

Peak Power Spectral Density Limits

§15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

RSS-210 §A8.2(2) The transmitter power spectral density (into the antenna) shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

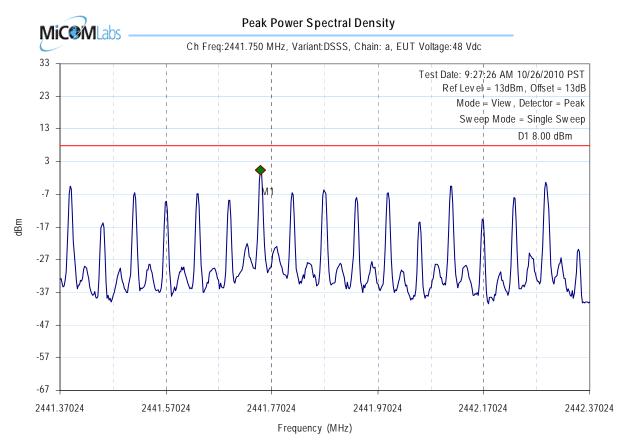
Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF	0158, 0252, 0313, 0314, 0223, 0116, 0117, 0287,
Output Power'	0363

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 28 of 72

7.3.1 Measurement results for DSSS

Test Conditions:	15.247 (e)	Rel. Humidity (%):	35	to	42
Variant:	DSSS	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming	N/A dB	Antenna Gain:	3	dBi	
Applied Voltage:	48.00 Vdc				
Notes 1:					
Notes 2:					


Toot	Measured Power Density				Total Dog	de Danier		
Test Frequency				Total Pea Spectral De		Limit	Margin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
2441.750	0.47				0.47		8.00	-7.53
0.000							8.00	
0.000							8.00	

Measurement uncertainty: ± 1.33 dB

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 29 of 72

Analyser SetupMarker : Frequency : AmplitudeTest ResultsRBW = 3.00KHzM1 : 2441.748998MHz : .472dBmCenter frequency = 2441.75MHz

VBW = 10.00KHz Sw eep time(s) = 350 RF Atten (dB) = 20 Span = 1.00MHz

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 30 of 72

7.4 Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.407(f) Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm2) = EIRP/ $(4\pi d2)$

EIRP = P * G

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 ^ (G (dBi)/10)$

The peak power in the table below is calculated by assuming a worst case scenario where all of the EUT transmitters are operating simultaneously in the same band. The Peak Power in mW is the highest transmitter power measured and summed across all transmitters.

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm2

Freq. Band (MHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
2400 – 2500	3.0	2.0	18.52	71.12	3.4	20.00

^{*}Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

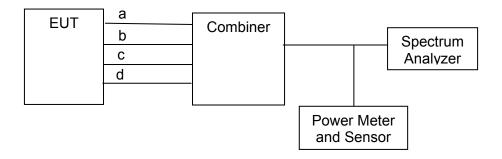
FCC §1.1310 Limit = 1mW / cm2 from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the application requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty ±1.33 dB

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 31 of 72


7.5 Conducted Spurious

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Measurements were made using a combiner with the transmitter tuned to the channel closest to the band-edge being measured. All emissions were maximized during measurement. Limits which were derived from the peak emission.

Test Measurement Set up

Conducted Spurious Emission measurement test configuration

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 32 of 72

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
2,400 MHz	2,483.5 MHz	≥ 20 dB
5725 MHz	5850 MHz	≥ 20 UB

§15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0252, 0313, 0314, 0223, 0116, 0117,
instruction WI-05 'Measurement of	0287, 0363.
Spurious Emissions'	

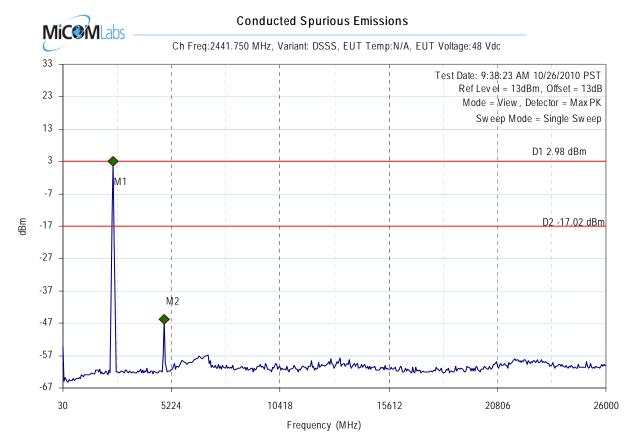
Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 33 of 72

7.5.1 <u>Measurement Results for DSSS</u>

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	DSSS	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.00 Vdc				
Notes 1:					
Notes 2:					

Conducted Spurious Measurment

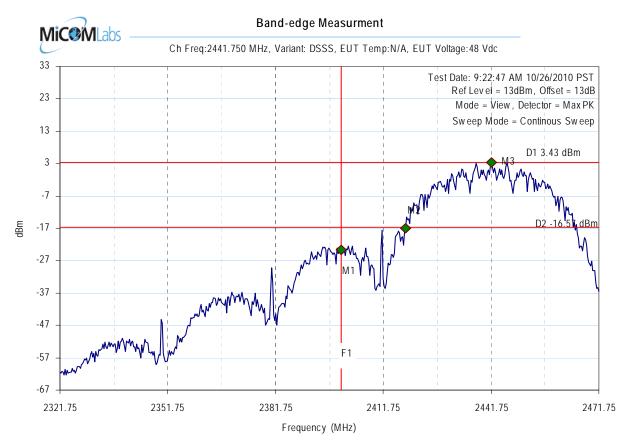
Test Frequency	Start Frequency	Stop Frequency	Maximum Observed Emission	Limit (20 dB below peak of fundamental)	
MHz	MHz	MHz	dBm	dBm	
2441.750	30.00	26000.00	-45.75	-17.02	


Band-edge Measurment

Test Frequency	Band-edge Frequency	Emission Amplitude @ Band-edge	Limit (20 dB below peak of fundamental)	Margin
MHz	MHz	dBm	dBm	dB
2441.750	2400.00	-23.70	-16.57	-7.13
2441.750	2483.50	-25.28	-16.93	-8.36

Measurement uncertainty: ±2.81 dB

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 34 of 72


Analyser Setup RBW = 100.00KHz VBW = 300.00KHz Sw eep time(s) = 60 RF Atten (dB) = 10 Span = 25.97GHz Marker : Frequency : AmplitudeTest ResultsM1 : 2424.028056MHz : 2.978dBmCenter frequency

M2: 4870.100200MHz: -45.749dBm

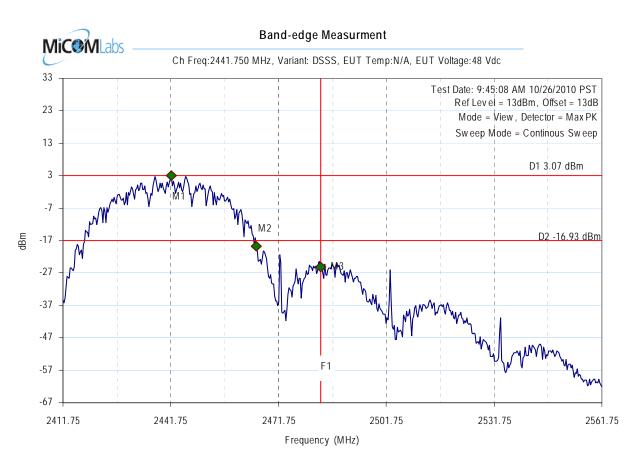
Center frequency = 2441.75MHz

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 35 of 72

 Analyser Setup
 Marker : Frequency : Amplitude
 Test Results

 RBW = 100.00KHz
 M1 : 2400.000000MHz : -23.699dBm
 Center frequency = 2441.75MHz

 VBW = 300.00KHz
 M2 : 2417.942385MHz : -17.061dBm


 Sw eep time(s) = 20
 M3 : 2441.990481MHz : 3.427dBm

 RF Atten (dB) = 10

 Span = 150.00MHz

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 36 of 72

 Analyser Setup
 Marker : Frequency : Amplitude
 Test Results

 RBW = 100.00KHz
 M1 : 2441.810120MHz : 3.073dBm
 Center frequency = 2441.75MHz

 VBW = 300.00KHz
 M2 : 2465.557615MHz : -18.836dBm

 Sw eep time(s) = 20
 M3 : 2483.500000MHz : -25.283dBm

 RF Atten (dB) = 10

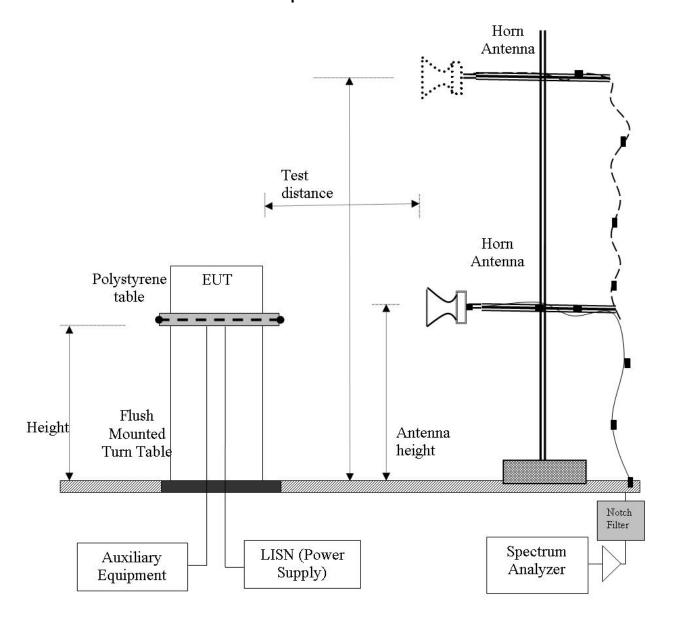
 Span = 150.00MHz

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 37 of 72

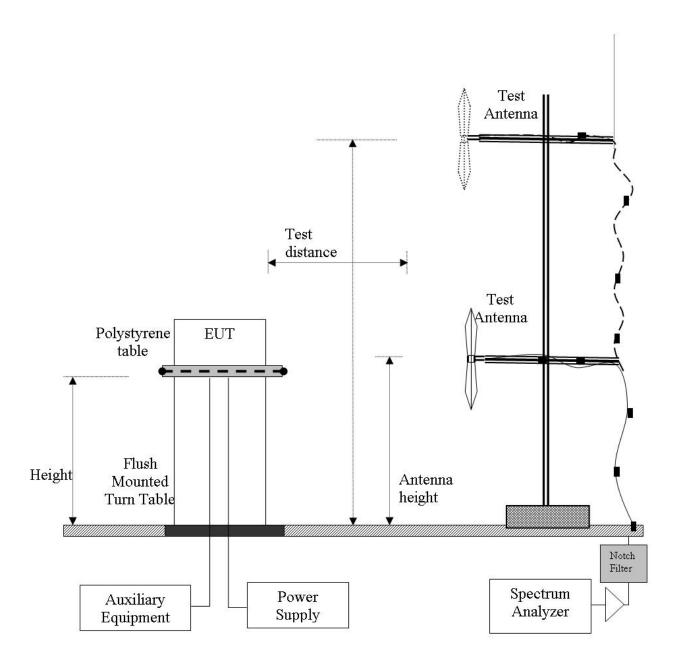
7.6 Radiated Spurious Emissions

Test Procedure


Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 38 of 72


Radiated Emission Measurement Setup - Above 1 GHz

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 39 of 72

Radiated Emission Measurement Setup - Below 1 GHz

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 40 of 72

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 41 of 72

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Serial #: GBCC01-U1 Rev A **Issue Date**: 6th December 2010

Page: Page 42 of 72

Table 1: FCC 15.209 and RSS-Gen §6 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement Uncertainty	+5.6/ -4.5 dB

Traceability:

Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

Legend:

Title: Zebra Enterprise Solutions WhereLAN III **To:** FCC 47 CFR Part 15.247 & IC RSS-210

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 43 of 72

7.6.1 Measurement Results DSSS mode: Transmitter Radiated Spurious Emissions

	Freq.	2412 MHz					Е	ngineer	SB			
٧	ariant	DSSS 2	DSSS 2441.75				Temp (°C)		mp (°C)	22		
Freq.	Range	1000 N	1000 MHz - 18000 MHz				Rel. Hum.(%)		Hum .(%)	34		
Power S	etting	18 dBn	n max po	ow er			Press. (m Bars)		1005			
An	tenna	AK-210)-10 "Bเ	ıll Horn" C	mni all w eather			Duty C	ycle (%)	100		
Test N	otes 1	25 w F	SU									
Test N	otes 2											
MiC®M	Labs	Vasona by EMiSoft 27 Oct 10 16:48 PR										
						VabccD1	f - zebra	ngis\fo	6 15.247 a	nd rss 210	annexov	di
Formally	/ mea			ission	peaks	Appec 01	- zebra	ngis\fo	oc 15.247 a	nd rss 210	annexos	di
	/ mea			ission Level dBuV	peaks Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
Frequency	Raw	Sure	d em	Level	M easurement		Hgt	Azt	Limit	M argin	Pass	
Frequency MHz	Raw dBuV	Cable Loss	d em	Level dBuV	M easurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	M argin dB	Pass /Fail	
Frequency M Hz 1465.056	Raw dBuV	Cable Loss	AF dB -14.6	Level dBuV 38.9	M easurement Type Peak	Pol V	Hgt cm	Azt Deg 360	Limit dBuV	Margin dB -35.1	Pass /Fail Pass	
Frequency M Hz 1465.056 4883.464	Raw dBuV 51.2 51.8	Cable Loss 2.4 4.5	AF dB -14.6 -9.3	Level dBuV 38.9 47.0	Measurement Type Peak Peak	Pol V	Hgt cm 147	Azt Deg 360 170	Limit dBuV 74.0 74.0	M argin dB -35.1 -27.0	Pass /Fail Pass Pass	
Frequency M Hz 1465.056 4883.464 1709.200	Raw dBuV 51.2 51.8 54.6	Cable Loss 2.4 4.5 2.5	AF dB -14.6 -9.3 -13.4	Level dBuV 38.9 47.0 43.7	Measurement Type Peak Peak Peak	Pol V V	Hgt cm 147 98	Azt Deg 360 170 245	Limit dBuV 74.0 74.0 74	Margin dB -35.1 -27.0 -30.3	Pass /Fail Pass Pass	
Frequency M Hz 1465.056 4883.464 1709.200 1465.056	Raw dBuV 51.2 51.8 54.6 58.4	Cable Loss 2.4 4.5 2.5 2.4	AF dB -14.6 -9.3 -13.4 -14.6	38.9 47.0 43.7 46.1	Measurement Type Peak Peak Peak Average	Pol V V V	Hgt cm 147 98 98	Azt Deg 360 170 245 360	Limit dBuV 74.0 74.0 74	Margin dB -35.1 -27.0 -30.3 -7.9	Pass /Fail Pass Pass Pass	
Frequency M Hz 1465.056 4883.464 1709.200 1465.056 4883.464 1709.200	Raw dBuV 51.2 51.8 54.6 58.4 45.2	Cable Loss 2.4 4.5 2.5 2.4 4.5	AF dB -14.6 -9.3 -13.4 -14.6 -9.3	38.9 47.0 43.7 46.1 40.4	Measurement Type Peak Peak Peak Average Average	Pol V V V	Hgt cm 147 98 98 98	Azt Deg 360 170 245 360 170	Limit dB uV 74.0 74.0 74 54 54	Margin dB -35.1 -27.0 -30.3 -7.9 -13.6	Pass /Fail Pass Pass Pass Pass	
Frequency MHz 1465.056 4883.464 1709.200 1465.056 4883.464	Raw dBuV 51.2 51.8 54.6 58.4 45.2 49.7	Cable Loss 2.4 4.5 2.5 2.4 4.5	AF dB -14.6 -9.3 -14.6 -9.3 -13.4	Level dBuV 38.9 47.0 43.7 46.1 40.4 38.8	Measurement Type Peak Peak Peak Average Average Average	Pol V V V V	Hgt cm 147 98 98 98 98	Azt Deg 360 170 245 360 170 245	T4.0 74.0 74.0 74 54 54 54	Margin dB -35.1 -27.0 -30.3 -7.9 -13.6 -15.2	Pass /Fail Pass Pass Pass Pass Pass	Comments

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

Serial #: GBCC01-U1 Rev A lssue Date: 6th December 2010

Page: Page 44 of 72

7.6.2 DSSS Radiated Band Edge Emissions

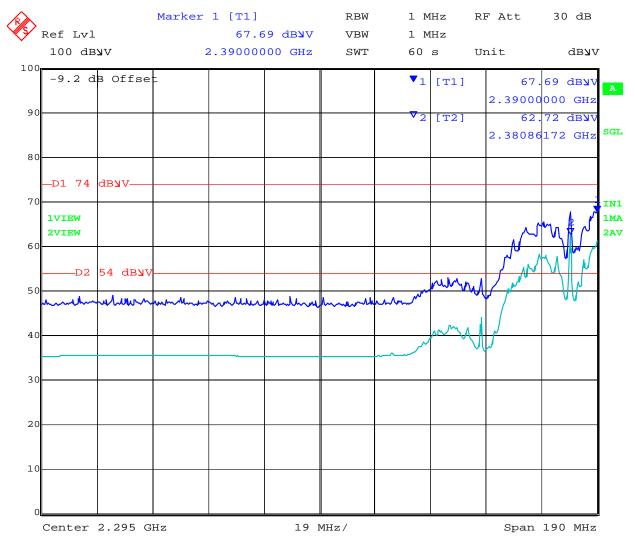
Duty cycle correction factor was applied to spurious emissions in the restricted bands closest to the fundamental transmission.

EUT Operational Duty Cycle: 2.55%

Correction Factor = 20 * LOG (2.55 / 100)

Correction Factor = -31.87 dB

Corrected Value = Measured Value (dB) - 31.87 (dB)


Frequency (MHz)	Measured Value (dBuV/m)	Measurement Type	Corrected Value	Margin (dB)	Pass / Fail
2390.000	67.69	Peak	35.82	-38.18	Pass
2380.861	62.72	Average	30.85	-23.15	Pass
2485.880	78.70	Peak	46.83	-27.17	Pass
2488.294	69.03	Average	37.16	-16.84	Pass

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 45 of 72

7.6.3 Measurement Results AK-210-10 & AK-110-10: Band Edge

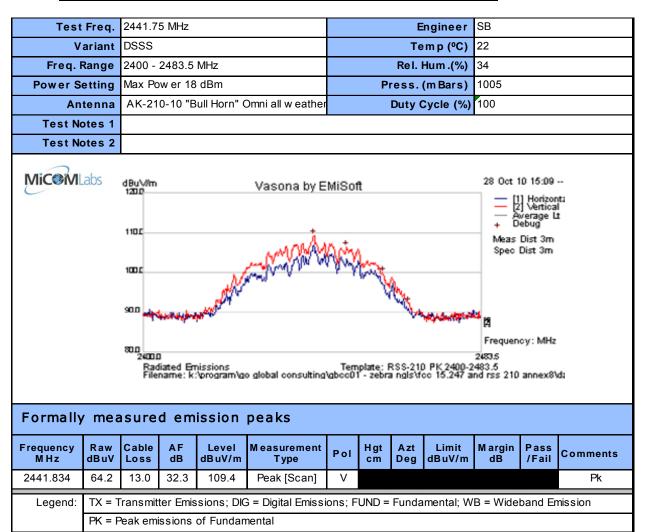
Band Edge 2390-2400 MHz DSSS 2441.75mhz h=100cm azt=180

Date: 28.OCT.2010 13:44:25

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 46 of 72

BE 2483.5-2500 MHz DSSS 2441.75mhz h=100cm azt=180


Date: 28.OCT.2010 13:59:23

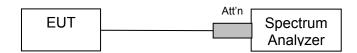
Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 47 of 72

7.6.4 Measurement Results AK-210-10 & AK-110-10: Peak Emissions

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 48 of 72


7.7 Receiver Conducted Spurious Emissions

Industry Canada RSS-Gen §4.10, §6

Test Procedure

Conducted emissions were measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in receive mode.

Test Measurement Set up

Receiver Conducted spurious emission measurement test configuration

Specification

Receiver Radiated Spurious Emissions

Industry Canada RSS-Gen §4.10.

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

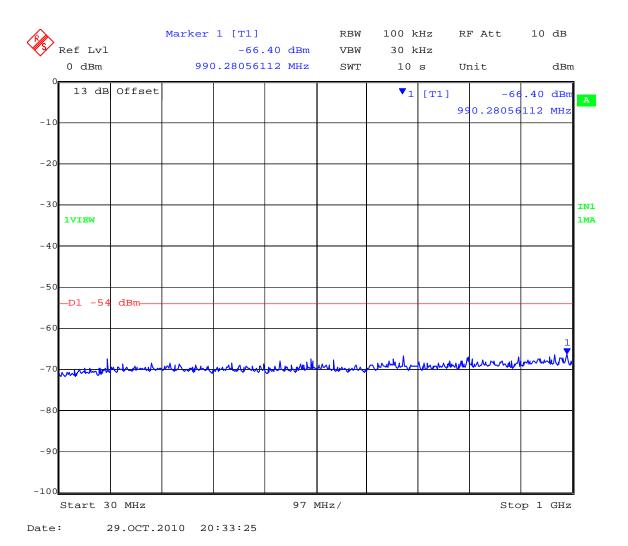
For emissions below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector with the same measurement bandwidth as that for CISPR quasi-peak measurements. Above 1 GHz, measurements shall be performed using an average detector and a resolution bandwidth of 300 kHz to 1 MHz.

RSS-Gen §6 (b)

If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 49 of 72

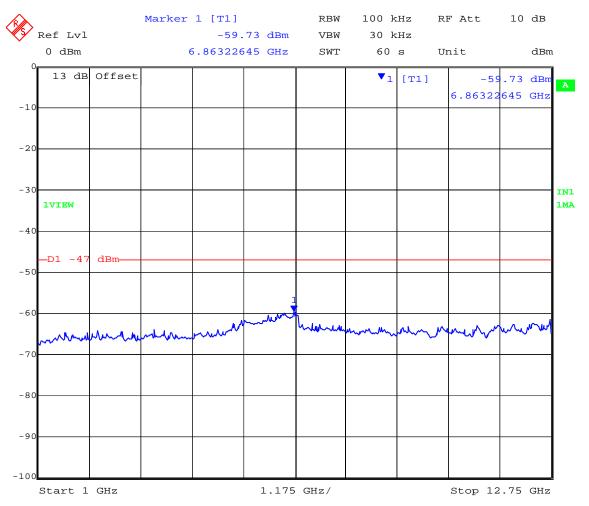
Traceability


Method	Test Equipment Used
Measurements were made per work	0287, 0158, 0252, 0223, 0116, 0117, 0287,
instruction WI-05 'Measurement of	0363.
Spurious Emissions'	

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 50 of 72

Receiver Conducted Emissions 30 MHz to 1GHz



Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 51 of 72

Receiver Conducted Emissions 1 GHz to 12.75 GHz

Date: 29.OCT.2010 20:38:58

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

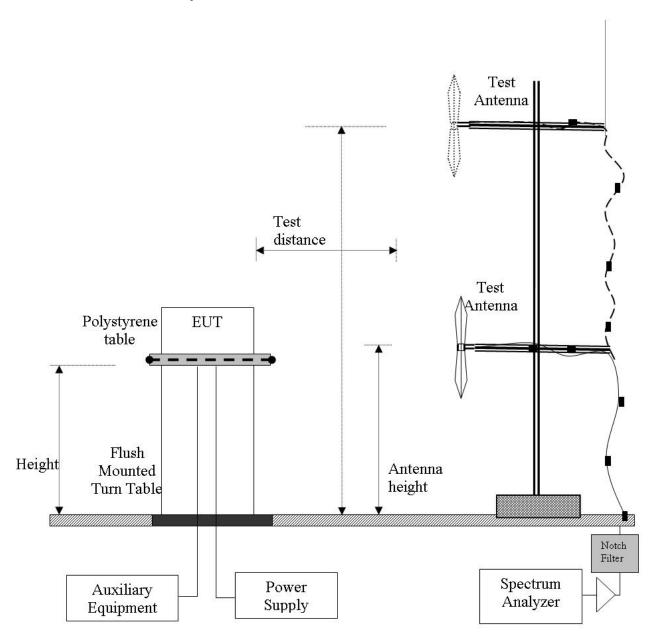
Page: Page 52 of 72

7.8 Radiated Spurious Emissions – Digital Apparatus

Standard Reference

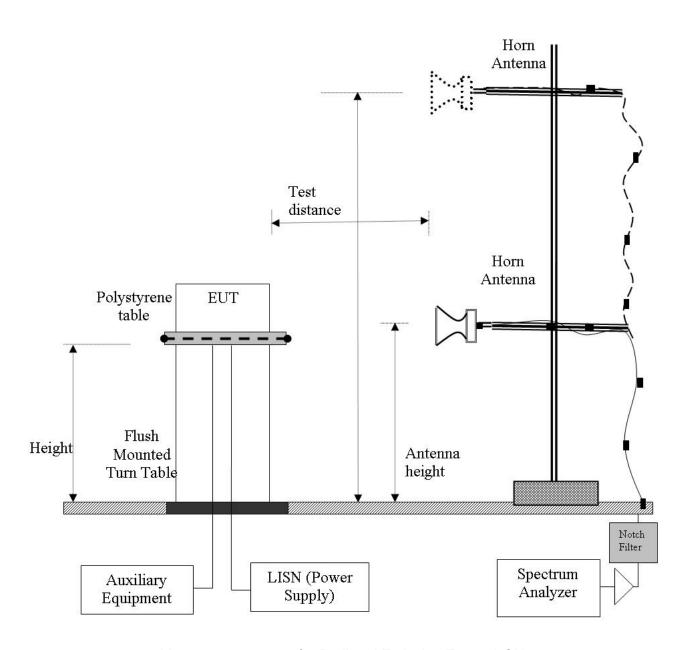
FCC, Part 15 Subpart B §15.109 Industry Canada ICES-003 §5

Test Procedure


Testing was performed in a 3-meter semi-anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Only the highest emissions relative to the limit are listed.

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 53 of 72


Test Measurement Set up

Measurement set up for Radiated Emission Test < 1 GHz

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 54 of 72

Measurement set up for Radiated Emission Test > 1 GHz

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 55 of 72

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength
R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \, dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}_{\mu}\text{V/m} = 100 \text{ }_{\mu}\text{V/m}$

 $48 \text{ dB}_{\mu}\text{V/m} = 250 \text{ }_{\mu}\text{V/m}$

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 56 of 72

Specification

Radiated Spurious Emissions – Digital Apparatus

FCC, Part 15 Subpart B §15.109

A representative type or model of each digital apparatus shall be tested in accordance with the measurement methods described in FCC Part 15; Subpart A - General and FCC Subpart B – Unintentional Radiators.

Industry Canada ICES-003

A representative type or model of each digital apparatus shall be tested in accordance with the measurement method described in the publication referred to in Section 7.1 [Canadian Standards Association Standard CAN/CSA-CEI/IEC CISPR 22:02, "Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment."].

FCC, Part 15 Subpart B §15.109 Spurious Emissions Limits

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values.

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Field Strength of radiated emissions for a Class A digital device are as follows.

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	49.5	3
88-216	150	54.0	3
216-960	200	57.0	3
Above 960	500	60.0	3

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 57 of 72

ICES-003 §5 Spurious Emissions Limits

Class A Digital Device: The field intensity of radio noise emissions that are radiated from a Class A digital apparatus shall not exceed the limits specified in Table 5 of the publication referred to in Section 7.1, within the indicated frequency range.

Frequency range MHz	Quasi-peak limits dB(µV/m) @ 10m	Quasi-peak limits dB(μV/m) @ 3m		
30 to 230	40	50.5		
230 to 1 000	47	57.5		
Note 1	The lower limit shall apply at the transition frequency.			
Note 2	Additional provisions may be required for cases where interference			
14010 2	occurs			

Class B Digital Device: The field intensity of radio noise emissions that are radiated from a Class B digital apparatus shall not exceed the limits specified in Table 6 of the publication referred to in Section 7.1, within the indicated frequency range.

Frequency range	Quasi-peak limits dB(µV/m) @	Quasi-peak limits dB(µV/m) @	
MHz	10m	3m	
30 to 230	30	40.5	
230 to 1 000	37	47.5	
Note 1	The lower limit shall apply at the transition frequency.		
Note 2	Additional provisions may be required for cases where interference		
NOIG Z	occurs		

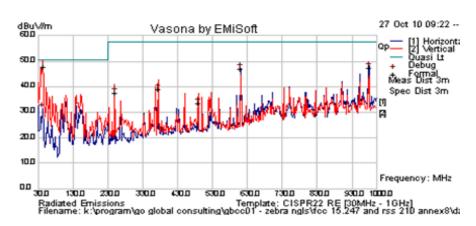
Laboratory Measurement Uncertainty for Spectrum Measurement

Traceability

Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

Page: Page 58 of 72


7.8.1 Measurement Results for Radiated Spurious Emissions – Digital Apparatus

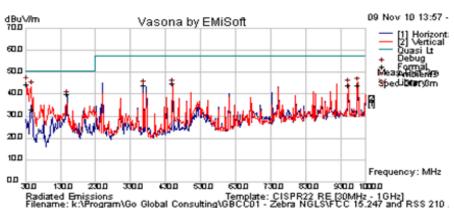
Please note: Radio emissions were investigated during digital emissions testing. No radio emissions were witnessed in the range 30 - 1000 MHz during testing.

POE Configuration

Test Freq.	2441.75 MHz	Engineer	SB					
Variant	Digital Emissions	22						
Freq. Range	30 MHz - 1000 MHz	30 MHz - 1000 MHz Rel. Hum.(%) 34						
Power Setting	18 dBm Max	Press. (mBars)	1005					
Antenna	AK-210-10 "Bull Horn" Omni all weather							
Test Notes 1	POE Adapter no ferrite(s)							
Test Notes 2	S/N# PW182RB4800F01							

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
43.797	63.9	3.6	-19.6	48.0	Quasi Max	٧	119	30	50.5	-2.6	Pass	DIG
611.219	51.9	6.4	-11.1	47.2	Peak [Scan]	Η	98	343	57.5	-10.3	Pass	DIG
249.924	51.3	5.0	-18.8	37.5	Peak [Scan]	V	98	343	57.5	-20.0	Pass	DIG
374.069	48.5	5.6	-15.2	38.9	Peak [Scan]	V	98	343	57.5	-18.6	Pass	DIG
978.757	46.2	7.6	-6.3	47.5	Peak [Scan]	Н	98	343	57.5	-10.0	Pass	DIG
489.181	39.9	6.0	-12.5	33.4	Peak [Scan]	V	98	343	57.5	-24.2	Pass	DIG


Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010

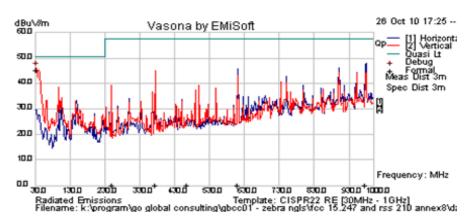
Page: Page 59 of 72

PSU-STDA16A-S11

Test Freq.	2441.75 MHz	Engineer	SB					
Variant	Digital Emissions	Temp (°C)	22					
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	34					
Power Setting	18 dBm Max	Press. (mBars)	1005					
Antenna	AK-210-10 "Bull Horn" Omni all weather							
Test Notes 1	AC to DC PSU MEPOS Switching PSU ST	C to DC PSU MEPOS Switching PSU STDA16A-S11 (15 W)						
Test Notes 2								

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
32.619	52.2	3.4	-11.1	44.5	Quasi Peak	٧	98	360	50.5	-6.0	Pass	DIG
450.000	52.7	5.8	-13.8	44.7	Quasi Max	٧	112	0	57.5	-12.8	Pass	DIG
950.015	42.9	7.5	-6.6	43.9	Quasi Max	٧	99	286	57.5	-13.6	Pass	DIG
366.260	53.4	5.5	-15.2	43.7	Quasi Max	Ι	98	117	57.5	-13.8	Pass	DIG
150.005	53.8	4.5	-18.3	40.0	Quasi Max	Ι	173	136	50.5	-10.5	Pass	DIG
976.694	42.6	7.6	-6.4	43.9	Quasi Max	>	98	107	57.5	-13.6	Pass	DIG
48.108	50.9	3.7	-21.7	32.9	Quasi Max	V	145	117	50.5	-17.6	Pass	DIG



Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 60 of 72

PSU SIDA25A-S11

Test Freq.	2441.75 MHz	Engineer	SB				
Variant	Digital Emissions	Temp (°C)	22				
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	33				
Power Setting	18 dBm Max	Press. (mBars)	1000				
Antenna	AK-210-10 "Bull Horn" Omni all weather						
Test Notes 1	AC to DC Power Supply SIDA25A-S11 (25 W)						
Test Notes 2							

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
33.679	53.8	3.5	-12.1	45.2	Quasi Max	V	98	170	50.5	-5.3	Pass	DIG
250.005	52.5	5.0	-18.8	38.7	Peak [Scan]	>	98	-	57.5	-18.8	Pass	DIG
374.989	54.2	5.6	-15.1	44.7	Peak [Scan]	V	98	-	57.5	-12.8	Pass	DIG
610.428	50.0	6.4	-11.2	45.3	Peak [Scan]	Η	98	-	57.5	-12.2	Pass	DIG
976.693	46.7	7.6	-6.4	47.9	Peak [Scan]	Н	98		57.5	-9.6	Pass	DIG
500.391	45.5	5.9	-12.9	38.4	Peak [Scan]	V	98		57.5	-19.1	Pass	DIG

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 61 of 72

Note: Emissions above 1 GHz did not change based on power supply used, Radio transmit frequency, or modulation type.

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 62 of 72

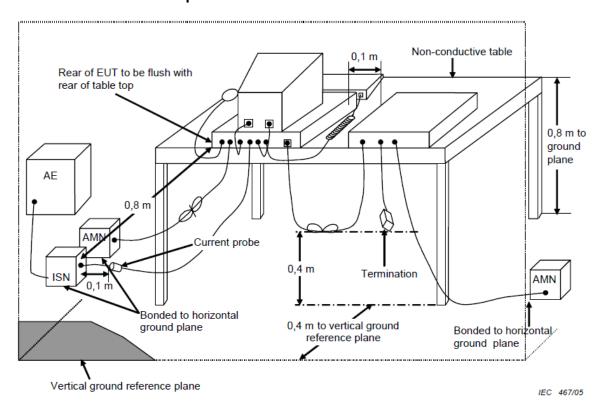
7.9 Conducted Disturbance at Mains Terminal (150 kHz – 30 MHz)

Standard Reference

FCC, Part 15 Subpart C §15.107 Industry Canada ICES-003 §5.3

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.


If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 63 of 72

Test Measurement Set up

Measurement set up for Conducted Disturbance at Mains Terminals

Serial #: GBCC01-U1 Rev A **Issue Date:** 6th December 2010

Page: Page 64 of 72

Specification

Conducted Disturbance at Mains Terminal – Digital Apparatus

FCC, Part 15 Subpart B §15.107

(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

(b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms LISN. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Industry Canada ICES-003

The voltage of radio noise emissions that are conducted along the power supply lines of a Class A digital apparatus shall not exceed the limits specified in Table 1 of the publication referred to in Section 7.1 [Canadian Standards Association Standard CAN/CSA-CEI/IEC CISPR 22:02, "Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment."], within the indicated frequency range.

The voltage of radio noise emissions that are conducted along the power supply lines of a Class B digital apparatus shall not exceed the limits specified in Table 2 of the publication referred to in Section 7.1 [Canadian Standards Association Standard CAN/CSA-CEI/IEC CISPR 22:02, "Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment."], within the indicated frequency range.

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 65 of 72

FCC, Part 15 Subpart B §15.107 & Industry Canada ICES-003 Limits

Limits for conducted disturbance at the mains ports of class B ITE

Frequency of emission (MHz)	Quasi-peak dBuV	Average dBuV
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50
Note 1	* Decreases with the logarithm of	the frequency
Note 2	* The lower limit applies at the bou	indary between frequency
	ranges	

Limits for conducted disturbance at the mains ports of class A ITE

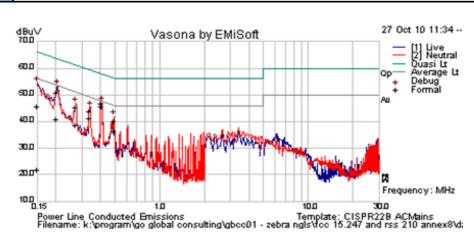
Frequency of emission (MHz)	Quasi-peak dBuV	Average dBuV
0.15–0.5	79	66
0.5–30	73	60
Note 1	* The lower limit shall apply at the	transition frequency.

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Work instruction WI-EMC-01	0158, 0184, 0193, 0190, 0293, 0307



Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 66 of 72

7.9.1 Conducted Disturbance at Mains Terminal (150 kHz – 30 MHz)

Test Freq.	N/A	Engineer	SB				
Variant	AC Mains	Temp (°C)	22				
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	34				
Power Setting	Max Output	Press. (mBars)	1005				
Antenna	AK-210-10 "Bull Horn" Omni all weather						
Test Notes 1	MEPOS 25 W AC to DC Adapter						
Test Notes 2	AC to DC Power Supply SIDA25A-S11 (25 mW	<i>(</i>)					

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.338	33.7	9.9	0.1	43.7	Quasi Peak	Live	59.25	-15.6	Pass	
0.203	40.9	9.9	0.1	50.9	Quasi Peak	Live	63.47	-12.6	Pass	
0.492	30.0	9.9	0.1	40.0	Quasi Peak	Neutral	56.14	-16.1	Pass	
0.406	36.8	9.9	0.1	46.7	Quasi Peak	Neutral	57.74	-11.0	Pass	
0.150	35.9	9.9	0.1	45.8	Quasi Peak	Neutral	65.99	-20.2	Pass	
0.271	35.2	9.9	0.1	45.1	Quasi Peak	Neutral	61.08	-16.0	Pass	
0.338	31.3	9.9	0.1	41.3	Average	Live	49.25	-8.0	Pass	
0.203	30.8	9.9	0.1	40.8	Average	Live	53.47	-12.7	Pass	
0.492	26.4	9.9	0.1	36.4	Average	Neutral	46.14	-9.7	Pass	
0.406	35.8	9.9	0.1	45.8	Average	Neutral	47.74	-2.0	Pass	
0.150	11.7	9.9	0.1	21.7	Average	Neutral	55.99	-34.3	Pass	
0.271	28.5	9.9	0.1	38.5	Average	Neutral	51.08	-12.6	Pass	

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 67 of 72

Test Freq.	N/A		SB		
Variant	AC Main		22		
Freq. Range	0.150 MHz - 30 MHz		34		
Power Setting	Max Output		1005		
Antenna	AK-210-10 "Bull Horn" Omni all weather				
Test Notes 1	MEPOS 15 W AC to DC Adapter				
Test Notes 2	DC Cable Ferrite 0431167281 1 loop 2 turns 7 inchs tip of power adapter plug input				

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.522	38.6	9.9	0.1	48.6	Quasi Peak	Neutral	56.0	-7.4	Pass	
0.427	39.9	9.9	0.1	49.8	Quasi Peak	Neutral	57.3	-7.5	Pass	
0.497	36.0	9.9	0.1	46.0	Quasi Peak	Neutral	56.1	-10.1	Pass	
0.653	34.9	10.0	0.1	45.0	Quasi Peak	Neutral	56.0	-11.1	Pass	
0.979	33.2	9.9	0.1	43.2	Quasi Peak	Neutral	56.0	-12.8	Pass	
0.784	32.6	10.0	0.1	42.6	Quasi Peak	Neutral	56.0	-13.4	Pass	
2.867	29.8	10.1	0.1	40.1	Quasi Peak	Neutral	56.0	-16.0	Pass	
1.308	30.4	10.0	0.1	40.4	Quasi Peak	Neutral	56.0	-15.6	Pass	
0.522	25.8	9.9	0.1	35.8	Average	Neutral	46.0	-10.2	Pass	
0.427	27.2	9.9	0.1	37.2	Average	Neutral	47.3	-10.1	Pass	
0.497	23.8	9.9	0.1	33.8	Average	Neutral	46.1	-12.3	Pass	
0.653	22.9	10.0	0.1	32.9	Average	Neutral	46.0	-13.1	Pass	
0.979	23.7	9.9	0.1	33.8	Average	Neutral	46.0	-12.3	Pass	
0.784	20.8	10.0	0.1	30.9	Average	Neutral	46.0	-15.1	Pass	
2.867	23.2	10.1	0.1	33.4	Average	Neutral	46.0	-12.6	Pass	
1.308	21.8	10.0	0.1	31.8	Average	Neutral	46.0	-14.2	Pass	
Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

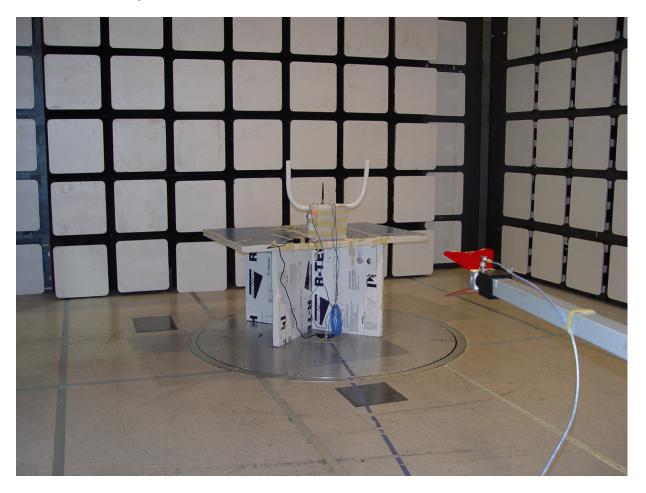
NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 68 of 72

8 PHOTOGRAPHS

8.1 Conducted RF Measurement Set Up

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 69 of 72


8.2 Radiated Spurious Emissions Below 1 GHz

Serial #: GBCC01-U1 Rev A Issue Date: 6th December 2010 Page: Page 70 of 72

8.3 Radiated Spurious Emissions Above 1 GHz

Serial #: GBCC01-U1 Rev A
Issue Date: 6th December 2010
Page: Page 71 of 72

9 TEST EQUPIMENT DETAILS

Asset #	Instrument	Manufacturer	Model #	Serial #
0072	Signal Generator	Hewlett Packard	HP 83640A	2927A00105
0075	Environmental Chamber	Thermatron	SE-300-2-2	27946
0338	Antenna (30M-3GHz)	Sunol Sciences	JB3	A052907
0083	Coupler	Hewlett Packard	HP 87301D	3116A00389
0287	EMI Receiver	Rhode & Schwartz	ESIB 40	100201
0335	Horn Antenna	The Electro-Mechanics Company	3117	00066580
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0134	Amplifier	ComPower	PA-122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2844
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007
0223	Power Meter	Hewlett Packard	HP EPM-442A	US37480256
0252	K-Cable	Megaphase	Sucoflex 104	Unknown
0253	K-Cable	Megaphase	Sucoflex 104	Unknown
0256	K-Cable	Megaphase	Sucoflex 104	Unknown
0251	K-Cable	Megaphase	Sucoflex 104	Unknown
0305	20M-2GHz Amplifier	ML	ML001	001
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30 dB N-Type Attenuator	ARRA	N944-30	1623
Dipole	20MHz-1GHz Dipole Antennas	EMCO	3121C	9009-505

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306

www.micomlabs.com