

dresden elektronik ingenieurtechnik gmbh • Enno-Heidebroek-Str. 12 • D-01237 Dresden

Federal Communications Commission
Equipment Authorization Branch
7435 Oakland Mills Rd
Columbia MD 21046-1609

Dresden, 13 Oktober 2011

RF Exposure Calculation

dresden elektronik ingenieurtechnik gmbh
FCC ID: XVV-ARM715A02
FCC Part 15 Certification

Dear Sir or Madam,

End-users may not be provided with the module installation instructions. OEM integrators and end users must be provided with transmitter operating conditions for satisfying RF exposure compliance.

For portable applications OEM integrators need no SAR evaluation. The max source-based time-averaged output of 8.51 mW is below the low threshold of 24 mW for distance < 2.5 cm.

Section 15.203: Antenna requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The Following calculation is the reference data for distance < 2.5cm.

name	value	log value
maximum conducted power	8.91 mW	9.50 dBm
maximum antenna gain	1.00	0.00 dBi
cable loss		0.20 dB
calculated radiated power	8.51 mW	9.30 dBm
duty cycle factor		
frequency	915 MHz	
dwell time	100 ms	
time of occupancy / pulse-train time	100 ms	
duty cycle factor	100 %	0.00 dB
maximum source-based time-averaged power		
conducted power	8.91 mW	9.50 dB
calculated radiated power	8.51 mW	9.30 dB
Specific power		
calculated with max source-based time-averaged power		
measured conducted power		
$S = \frac{P \cdot G}{4 \cdot \pi \cdot r^2} \left[\frac{mW}{cm^2} \right]$		
r [cm]	20.00	2.50
S [mW/cm ²]	0.0018	0.1135
limit general population [mW/cm ²]	1.0	
limit occupational population [mW/cm ²]	5.0	
calculated with max source-based time-averaged power		
measured radiated power		
$S = \frac{EIRP}{4 \cdot \pi \cdot r^2} \left[\frac{mW}{cm^2} \right]$		
r [cm]	20.00	2.50
S [mW/cm ²]	n.a.	n.a.
	1.50	n.a.
		1.0

Sincerely,

Signature

Name Michael Fleischmann
 Title Test Engineer
 Company dresden elektronik ingenieurtechnik gmbh