

ADDENDUM TO IMPINJ, INCORPORATED TEST REPORT FC06-010

FOR THE

SPEEDWAY READER, IPJ-R1000

FCC PART 15 SUBPART B SECTIONS 15.107 & 15.109 CLASS B, SUBPART C SECTIONS 15.207, 15.209 & 15.247 AND RSS-210

COMPLIANCE

DATE OF ISSUE: FEBRUARY 10, 2006

PREPARED FOR:

PREPARED BY:

Impinj, Incorporated 701 N. 34th Street, Suite 300 Seattle, WA 98103 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: 01143 W.O. No.: 83127 Date of test: January 25-26, 2006

Report No.: FC06-010A

This report contains a total of 67 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 67 Report No: FC06-010A

TABLE OF CONTENTS

Administrative Information	4
FCC to Canada Transmitter Standard Correlation Matrix	5
Conditions for Compliance	5
Approvals	
Equipment Under Test (EUT) Description	6
FCC 15.31(e) Voltage Variation	6
FCC 15.31(m) Number Of Channels	6
FCC 15.33(a) Frequency Ranges Tested	6
FCC 15.35 Analyzer Bandwidth Settings	6
FCC 15.203 Antenna Requirements	6
FCC 15.205 Restricted Bands	7
EUT Operating Frequency	7
Equipment Under Test	7
Peripheral Devices	7
Report of Measurements	
Table 1: FCC 15.107 Six Highest Conducted Emission Levels	8
Table 2: FCC 15.109 Six Highest Radiated Emission Levels	9
Table 3: FCC 15.207 Six Highest Conducted Emission Levels	10
Table 4: FCC 15.209 Six Highest Radiated Emission Levels: 10-30 MHz	11
Table 5: FCC 15.209/15.247 Six Highest Radiated Emission Levels	
FCC 15.247(a)(1) 20dB Bandwidth	13
FCC 15.247(a)(1) Frequency Separation	16
FCC 15.247(a)(1) Number Of Hopping Channels	17
FCC 15.247(a)(1) Dwell Time Per Hop	18
FCC 15.247(a)(1) (i) Average Time Of Occupancy	
RSS-210 Average Time Of Occupancy – 10 Seconds	
Table 6: FCC 15.247(b)(2) Fundamental Emission Levels	
FCC 15.247(d) Bandedge	24
RSS-210 99% Bandwidth	
Temperature And Humidity During Testing	
EUT Setup	
Correction Factors	
Table A: Sample Calculations	29
Test Instrumentation and Analyzer Settings	
Spectrum Analyzer Detector Functions	30
Peak	
Quasi-Peak	30
Average	30
EUT Testing	31
Mains Conducted Emissions	
Antenna Conducted Emissions	
Radiated Emissions	31

Page 2 of 67 Report No: FC06-010A

Appendix A: Test Setup Photographs	32
Photograph Showing Voltage Variations	33
Photograph Showing Mains Conducted Emissions	34
Photograph Showing Mains Conducted Emissions	35
Photograph Showing Radiated Emissions	36
Photograph Showing Radiated Emissions	37
Photograph Showing Radiated Emissions	38
Photograph Showing Direct Connect Power	39
Photograph Showing Direct Connect Spurious Emissions	
Appendix B: Test Equipment List	
Appendix C: Measurement Data Sheets	

Page 3 of 67 Report No: FC06-010A

ADMINISTRATIVE INFORMATION

DATE OF TEST:	January 25-26, 2006
DATE OF RECEIPT:	January 25, 2006
MANUFACTURER:	Impinj, Incorporated 701 N. 34th Street, Suite 300 Seattle, WA 98103
REPRESENTATIVE:	William Ashley
TEST LOCATION:	CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823
TEST METHOD:	ANSI C63.4 (2003), DA 02-2138 August 30, 2002, DA 00-705 March 30, 2000, KDB Publication No. 558074, RSS-210, RSS-310and RSS-GEN
PURPOSE OF TEST:	To demonstrate the compliance of the Speedway Reader, IPJ-R1000, with the requirements for FCC part 15 Subpart B sections 15.107 & 15.109 Class B, Subpart C Sections 15.207, 15.209 &15.247 and RSS-210 devices. Addendum A is to clarify the plot on page 21.

FCC TO CANADA TRANSMITTER STANDARD CORRELATION MATRIX

Canadian	Canadian	FCC	FCC Section	Test Description
Standard	Section	Standard		
RSS GEN	7.1.4	47CFR	15.203	Antenna Connector Requirements
RSS GEN	7.2.1	47CFR	15.35(c)	Pulsed Operation
RSS GEN	7.2.2	47CFR	15.207	AC Mains Conducted Emissions
				Requirement
RSS 210	2.1	47CFR	15.215(c)	Frequency Stability Recommendation
RSS 210	2.2	47CFR	15.205	Restricted Bands of Operation
RSS 210	2.6	47CFR	15.209	General Radiated Emissions Requirement
RSS 210	A8.1	47CFR	15.247(a)(1)	Definition of FHSS
RSS 210	A8.1	47CFR	15.247(h)	Incorporation of Intelligence
RSS 210	A8.1(1)	47CFR	15.247(a)(1)	Minimum Channel Bandwidth
RSS 210	A8.1(1)	47CFR	15.247(g)	Hopping Sequence
RSS 210	A8.1(2)	47CFR	15.247(a)(1)	Carrier Separation
RSS 210	A8.1(3)	47CFR	15.247(a)(1)(i)	Carrier Separation
RSS 210	A8.1(3)	47CFR	15.247(a)(1)(i)	Average Time of Occupancy
RSS 210	A8.1(3)	47CFR	15.247(a)(1)(i)	Number of Hopping Channels
RSS 210	A8.4(1)	47CFR	15.247(b)(2)	RF Power Output
RSS 210	A8.5	47CFR	15.247(d)	Spurious Emissions
	IC 3172-D		100638	Site File No.

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE: TEST PERSONNEL:

Joyce Walker, Quality Assurance Administrative

Septimiu Apahidean, EMC Test Engineer

Manager

Page 5 of 67 Report No: FC06-010A

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit. The EUT is a commercial RFID fixed transceiver (duplex) using FHSS.

FCC 15.31(e) Voltage Variations

FREQUENCY MHz	CORRECTED READING dBm 85%	CORRECTED READING dBm 100%	CORRECTED READING dBm 115%	SPEC LIMIT dBm
902.75	29.7	29.7	29.8	30.0
915.25	29.8	29.8	29.8	30.0
927.25	29.7	29.9	29.9	30.0

Test Method: ANSI C63.4 (2003)

Spec Limit: FCC Part 15 Subpart C Section 15.247(b)(1)/15.31(e)

Test Distance: No Distance

FCC 15.31(m) Number Of Channels

This device operates on 50 channels and 3 channels were tested. Channels span the frequency range of 902.75 MHz to 927.75 MHz at 500 kHz spacing. Low (902.75), middle (915.25) and high (927.25) channels were tested.

FCC 15.33(a) Frequency Ranges Tested

15.107 Conducted Emissions: 150 kHz – 30 MHz 15.109 Radiated Emissions: 30 MHz – 1000 MHz 15.207 Conducted Emissions: 150 kHz – 30 MHz 15.209/15.247 Radiated Emissions: 10 MHz – 10 GHz

FCC SECTION 15.35: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE										
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING							
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz							
RADIATED EMISSIONS	10 MHz	30 MHz	9 kHz							
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz							
RADIATED EMISSIONS	1000 MHz	10 GHz	1 MHz							

FCC 15.203 Antenna Requirements

The Speedway reader uses reverse-polarity TNC female connectors for its antenna ports. The reverse-polarity connector is a non-standard RF connector type. The use of these connectors prohibits connection to a RF antenna with standard RF connectors (e.g. N-type). Speedway certified antennas possess a female reverse-polarity TNC connector and can be connected directly to the reader. The antenna gain is 6 dBi.

Page 6 of 67 Report No: FC06-010A

FCC 15.205 Restricted Bands

The fundamental operating frequency lies outside the restricted bands and therefore complies with the requirements of Section 15.205 of the FCC rules. Any spurious emission coming from the EUT was investigated to determine if any portion lies inside the restricted band. If any portion of a spurious emissions signal was found to be within a restricted band, investigation was performed to ensure compliance with Section 15.209.

EUT Operating Frequency

The EUT is a frequency hopping device operating in the 902 – 928 MHz band.

EQUIPMENT UNDER TEST

UHF RFID		<u>Antenna</u>	
Manuf:	Impinj, Incorporated	Manuf:	Cushcraft
Model:	IPJ-R1000	Model:	S9028PCL
Serial:	40306020043	Serial:	NA
FCC ID:	TWYIPJR1000 (pending)	FCC ID:	DoC

Power Supply

THE DEID

Manuf: CUI Inc.

DSA-60W-20 1 24060 Model: Mfg. P/N: DTS240259U-P11P-DB

Serial: NA FCC ID: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop

Manuf: Compaq

Presario V2000 Model: Serial: CNF5391NBO

FCC ID: DoC

> Page 7 of 67 Report No: FC06-010A

REPORT OF MEASUREMENTS

The following tables report the six highest worst case levels recorded during the tests performed on the EUT. All readings taken are peak readings unless otherwise noted. The data sheets from which these tables were compiled are contained in Appendix C.

	Table 1: FCC 15.107 Six Highest Conducted Emission Levels														
FREQUENCY MHz	METER READING dBμV	COR Att dB	RECTIC Cable dB	ON FACT HPF dB	TORS Lisn dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES						
0.168180	38.1	5.8	0.0	0.3	0.1	44.3	55.0	-10.7	W						
0.360890	31.9	5.8	0.0	0.2	0.1	38.0	48.7	-10.7	W						
0.362708	30.9	5.8	0.0	0.2	0.1	37.0	48.7	-11.7	В						
0.420884	31.2	5.8	0.0	0.2	0.1	37.3	47.4	-10.1	W						
0.422702	29.2	5.8	0.0	0.2	0.1	35.3	47.4	-12.1	В						
0.659044	28.2	5.8	0.1	0.3	0.1	34.5	46.0	-11.5	W						

Test Method: ANSI C63.4 (2003) NOTES: B = Black LeadSpec Limit: FCC Part 15 Subpart B Section 15.107 Class B W = White Lead

COMMENTS: EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 150 kHz – 30 MHz.

Page 8 of 67 Report No: FC06-010A

	Table 2: FCC 15.109 Six Highest Radiated Emission Levels														
FREQUENCY MHz	METER READING dBμV	COR Cable dB	RECTION Ant dB	ON FACT Amp dB	ORS HPF dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES						
1252.925	45.5	3.5	24.1	-40.3	16.1	48.9	54.0	-5.1	Н						
3661.050	52.4	6.7	29.9	-39.3	0.5	50.2	54.0	-3.8	VA						
3661.063	51.2	6.7	29.9	-39.3	0.5	49.0	54.0	-5.0	Н						
4575.712	48.3	7.4	31.4	-39.1	0.9	48.9	54.0	-5.1	Н						
4576.375	47.2	7.4	31.4	-39.1	0.9	47.8	54.0	-6.2	V						
6405.950	42.5	8.9	33.2	-38.4	1.0	47.2	54.0	-6.8	V						

Test Method: ANSI C63.4 (2003) NOTES: H = Horizontal PolarizationSpec Limit: FCC Part 15 Subpart B Section 15.109 Class B V = Vertical PolarizationTest Distance: 3 Meters A = Average Reading

COMMENTS: EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 30-1000 MHz.

Page 9 of 67 Report No: FC06-010A

	Table 3: FCC 15.207 Six Highest Conducted Emission Levels														
FREQUENCY MHz	METER READING dBµV	COR Att dB	RECTIC Cable dB	ON FACT HPF dB	TORS Lisn dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES						
0.151818	38.9	5.8	0.0	2.8	0.0	47.5	55.9	-8.4	В						
0.360890	30.6	5.8	0.0	0.2	0.1	36.7	48.7	-12.0	W						
0.540873	28.0	5.8	0.1	0.2	0.1	34.2	46.0	-11.8	W						
0.544509	28.7	5.8	0.1	0.2	0.1	34.9	46.0	-11.1	В						
0.666316	29.4	5.8	0.1	0.3	0.1	35.7	46.0	-10.3	W						
2.591480	28.7	5.8	0.1	0.1	0.2	34.9	46.0	-11.1	W						

Test Method: ANSI C63.4 (2003) NOTES: B = Black LeadSpec Limit: FCC Part 15 Subpart C Section 15.207 W = White Lead

COMMENTS: EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: $150 \, \text{kHz} - 30 \, \text{MHz}$.

Page 10 of 67 Report No: FC06-010A

	Table 4: FCC 15.209 Six Highest Radiated Emission Levels: 10-30 MHz														
FREQUENCY MHz	METER READING dBμV	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES						
10.002	67.3	10.9	-27.2	0.7		51.7	69.5	-17.8	РА-Н						
10.002	65.8	10.9	-27.2	0.7		50.2	69.5	-19.3	PA-M						
10.004	66.7	10.9	-27.2	0.7		51.1	69.5	-18.4	PE-L						
10.005	66.1	10.9	-27.2	0.7		50.5	69.5	-19.0	PA-L						
10.060	66.6	10.9	-27.2	0.7		51.0	69.5	-18.5	PE-M						
10.060	61.6	10.9	-27.2	0.7		46.0	69.5	-23.5	PE-H						

Test Method: ANSI C63.4 (2003)

Spec Limit: FCC Part 15 Subpart C Section 15.209

Test Distance: 3 Meters

NOTES: PA = Parallel

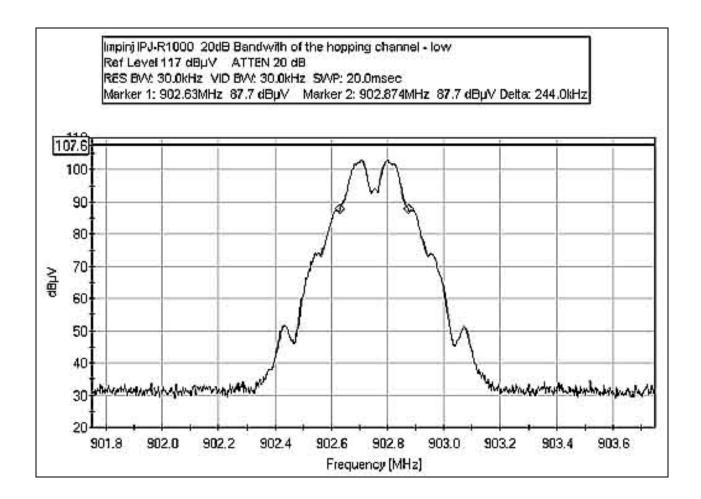
PE = Perpendicular

$$\begin{split} L &= Low \\ M &= Middle \\ H &= High \end{split}$$

COMMENTS: EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 10 MHz – 30 MHz.

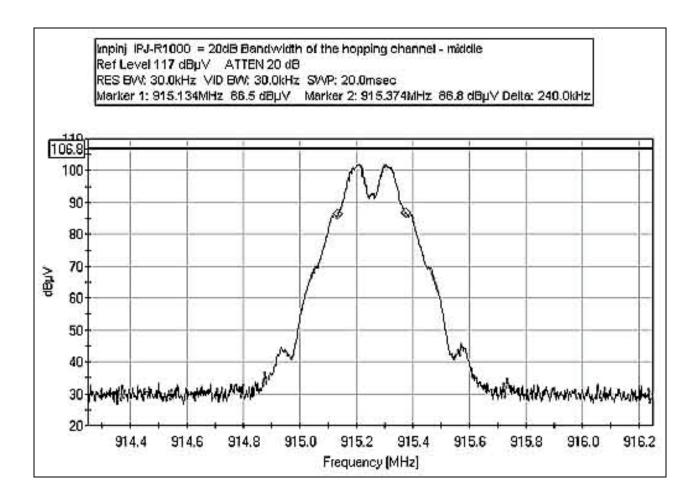
Page 11 of 67 Report No: FC06-010A

	Table 5: FCC 15.209/15.247 Six Highest Radiated Emission Levels														
FREQUENCY MHz	METER READING dBμV	CoR Cable dB	RECTION Ant dB	ON FACT Amp dB	ORS HPF dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN dB	NOTES						
1252.925	45.5	3.5	24.1	-40.3	16.1	48.9	54.0	-5.1	Н						
3661.050	52.4	6.7	29.9	-39.3	0.5	50.2	54.0	-3.8	VA						
3661.063	51.2	6.7	29.9	-39.3	0.5	49.0	54.0	-5.0	Н						
4575.712	48.3	7.4	31.4	-39.1	0.9	48.9	54.0	-5.1	Н						
4576.375	47.2	7.4	31.4	-39.1	0.9	47.8	54.0	-6.2	V						
6405.950	42.5	8.9	33.2	-38.4	1.0	47.2	54.0	-6.8	V						


Test Method: ANSI C63.4 (2003) NOTES: H = Horizontal PolarizationSpec Limit: FCC Part 15 Subpart C Sections 15.209 and 15.247 V = Vertical PolarizationTest Distance: V = Vertical PolarizationV = Vertical Polarization

COMMENTS: EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: $30 \, \text{MHz} - 10 \, \text{GHz}$.

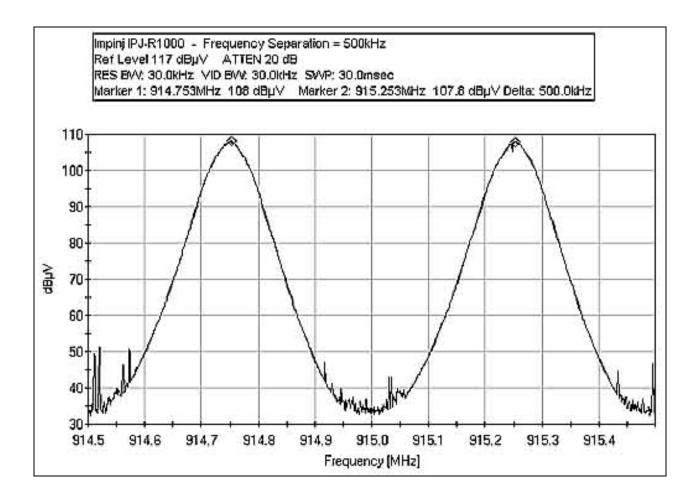
Page 12 of 67 Report No: FC06-010A


FCC 15.247(a)(1) 20dB BANDWIDTH - LOW CHANNEL

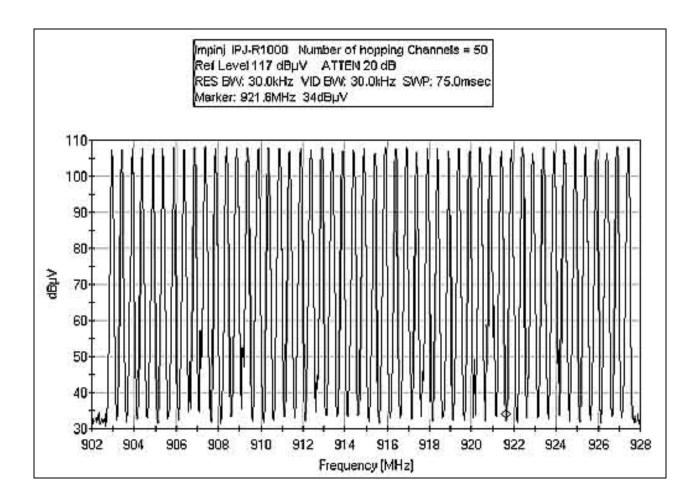
Page 13 of 67 Report No: FC06-010A

FCC 15.247(a)(1) 20dB BANDWIDTH - MIDDLE CHANNEL

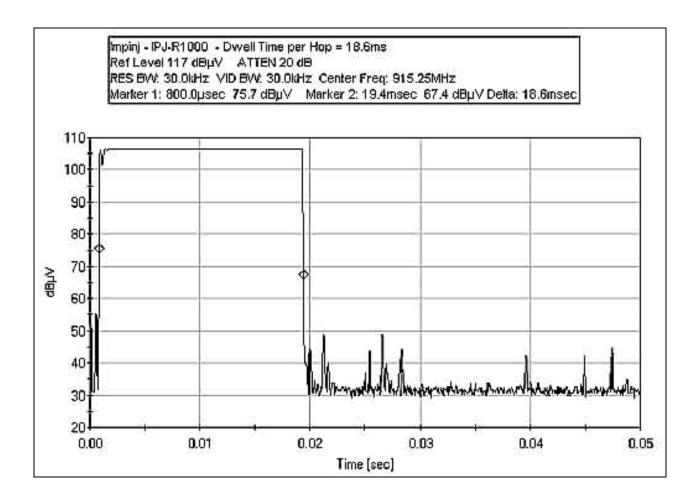
Page 14 of 67 Report No: FC06-010A


FCC 15.247(a)(1) 20dB BANDWIDTH - HIGH

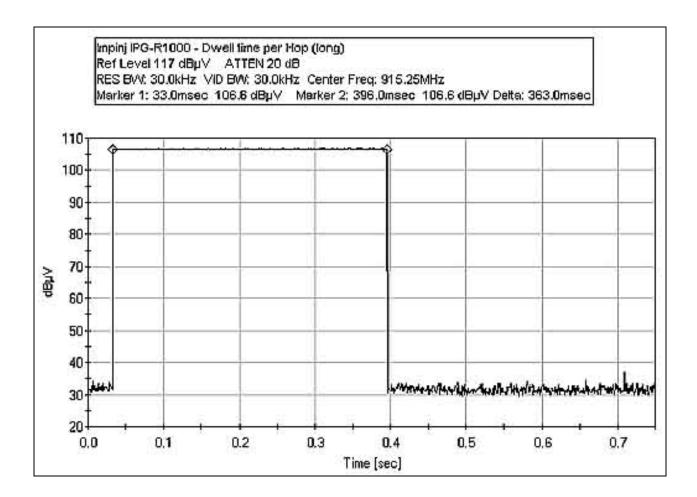
Page 15 of 67 Report No: FC06-010A


FCC 15.247(a)(1) FREQUENCY SEPARATION

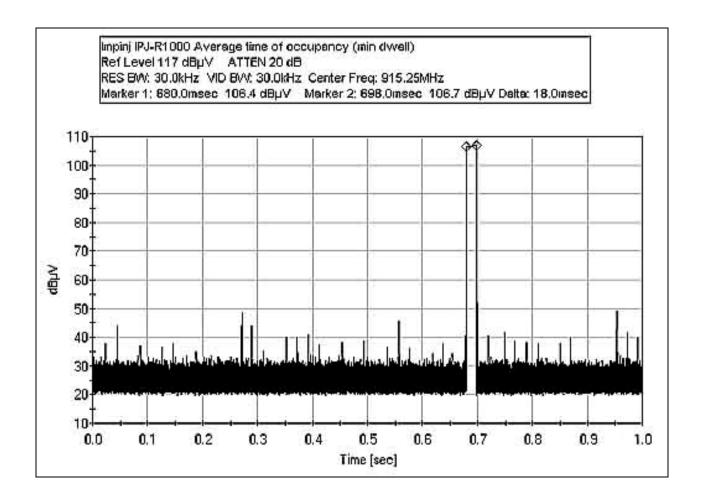
Page 16 of 67 Report No: FC06-010A


FCC 15.247(a)(1) NUMBER OF HOPPING CHANNELS

Page 17 of 67 Report No: FC06-010A


FCC 15.247(a)(1) DWELL TIME PER HOP - SHORT

Page 18 of 67 Report No: FC06-010A

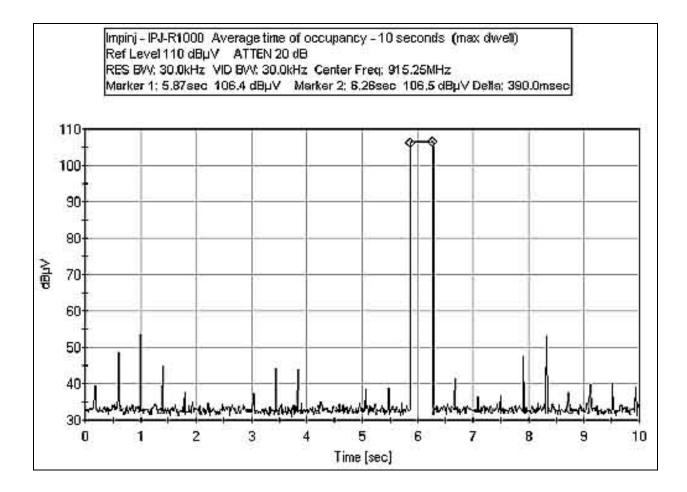

FCC 15.247(a)(1) DWELL TIME PER HOP - LONG

Page 19 of 67 Report No: FC06-010A

FCC 15.247(a)(1) (i) AVERAGE TIME OF OCCUPANCY - MIN DWELL

Page 20 of 67 Report No: FC06-010A

FCC 15.247(a)(1) (i) AVERAGE TIME OF OCCUPANCY - MAX DWELL



Note: The limit per the standard is 400 milliseconds and this plot shows the unit is compliant at 380 milliseconds.

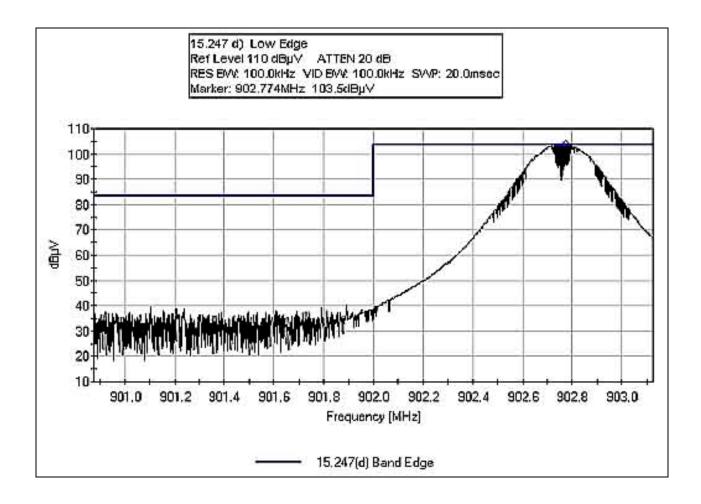
Page 21 of 67 Report No: FC06-010A

RSS-210 AVERAGE TIME OF OCCUPANCY - 10 SECONDS

Page 22 of 67 Report No: FC06-010A

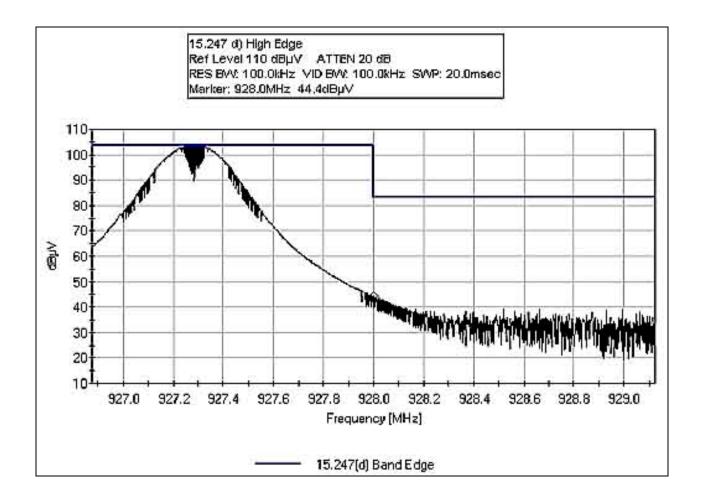
Table 6: FCC 15.247(b)(2) Fundamental Emission Levels										
FREQUENCY MHz	METER READING dBm	COR Ant dB	RECTION Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBm	SPEC LIMIT dBm	MARGIN dB	NOTES	
902.690	28.9	0.0		0.8		29.7	30.0	-0.3	N	
915.280	29.0	0.0		0.8		29.8	30.0	-0.2	N	
927.280	29.1	0.0		0.8		29.9	30.0	-0.1	N	

Test Method: ANSI C63.4 (2003) NOTES: N = No Polarization

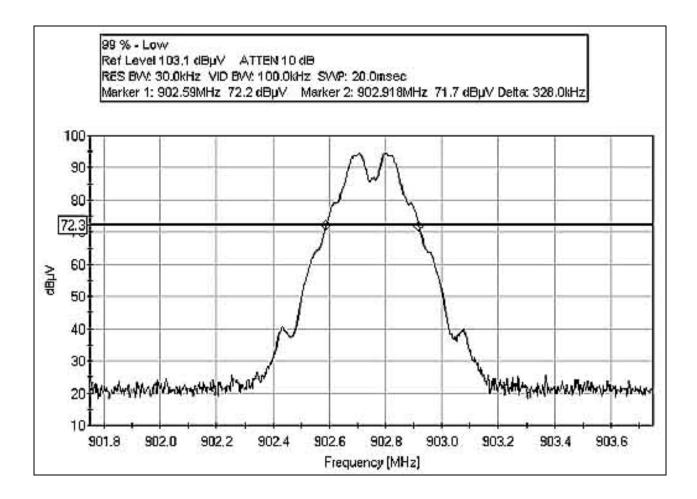

Spec Limit: FCC Part 15 Subpart C Sections 15.247(b)(2)

COMMENTS: EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. RF power Output for Low, Middle and High. Frequency range: Fundamental.

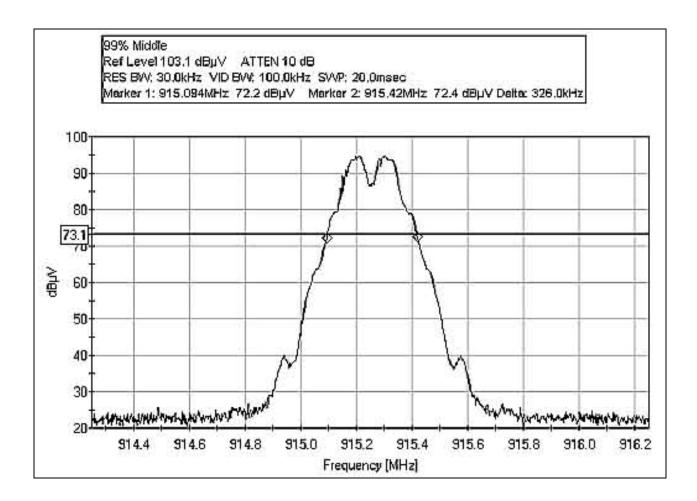
Page 23 of 67 Report No: FC06-010A


FCC 15.247(d) BANDEDGE - LOW EDGE

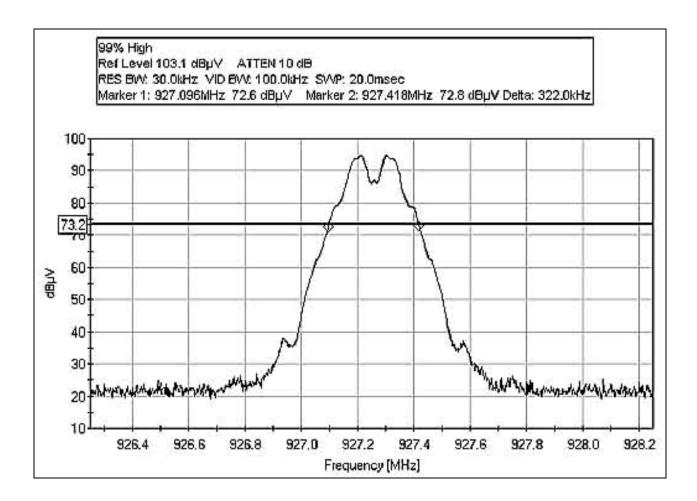
Page 24 of 67 Report No: FC06-010A


FCC 15.247(d) BANDEDGE - HIGH EDGE

Page 25 of 67 Report No: FC06-010A


RSS-210 99% BANDWIDTH - LOW

Page 26 of 67 Report No: FC06-010A


RSS-210 99% BANDWIDTH - MIDDLE

Page 27 of 67 Report No: FC06-010A

RSS-210 99% BANDWIDTH - HIGH

Page 28 of 67 Report No: FC06-010A

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EUT SETUP

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the photographs in Appendix A. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables. The corrected data was then compared to the applicable emission limits to determine compliance.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available I/O ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. I/O cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The radiated and conducted emissions data of the EUT was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in Table A.

Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula in Table A. This reading was then compared to the applicable specification limit to determine compliance.

TAl	TABLE A: SAMPLE CALCULATIONS						
	Meter reading	$(dB\mu V)$					
+	Antenna Factor	(dB)					
+	Cable Loss	(dB)					
_	Distance Correction	(dB)					
_	Preamplifier Gain	(dB)					
=	Corrected Reading	$(dB\mu V/m)$					

Page 29 of 67 Report No: FC06-010A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the EUT. For radiated measurements from 10 MHz to 30 MHz, the magnetic loop antenna was used. For radiated measurements from 30 to 1000 MHz, the biconilog antenna was used. The horn antenna was used for frequencies above 1000 MHz. Conducted emissions tests required the use of the FCC type LISNs.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of $10~\mathrm{dB}$ per division were used. A $10~\mathrm{dB}$ external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with $0~\mathrm{dB}$ of attenuation, a reference level of $97~\mathrm{dB}\mu\mathrm{V}$, and a vertical scale of $10~\mathrm{dB}$ per division.

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the Tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

Page 30 of 67 Report No: FC06-010A

EUT TESTING

Mains Conducted Emissions

During conducted emissions testing, the EUT was located on a wooden table measuring approximately 80 cm high, 1 meter deep, and 1.5 meters in length. One wall of the room where the EUT was located has a minimum 2 meter by 2 meter conductive plane. The EUT was mounted on the wooden table 40 cm away from the conductive plane, and 80 cm from any other conductive surface.

The vertical metal plane used for conducted emissions was grounded to the earth. Power to the EUT was provided through a LISN. The LISN was grounded to the ground plane. All other objects were kept a minimum of 80 cm away from the EUT during the conducted test.

The LISNs used were $50 \,\mu\text{H}$ -/+ $50 \,\text{ohms}$. A 30 to 50 second sweep time was used for automated measurements in the frequency bands of 150 kHz to 500 kHz, and 500 kHz to 30 MHz. All readings within 20 dB of the limit were recorded, and those within 6 dB of the limit were examined with additional measurements using a slower sweep time.

Antenna Conducted Emissions

For measuring the signal strength on the RF output port of the EUT, the spectrum analyzer was connected directly to the EUT. The sweep time of the analyzer was adjusted so that the spectrum analyzer readings were always in a calibrated range. All readings within 20 dB of the limit were recorded.

Radiated Emissions

The EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters.

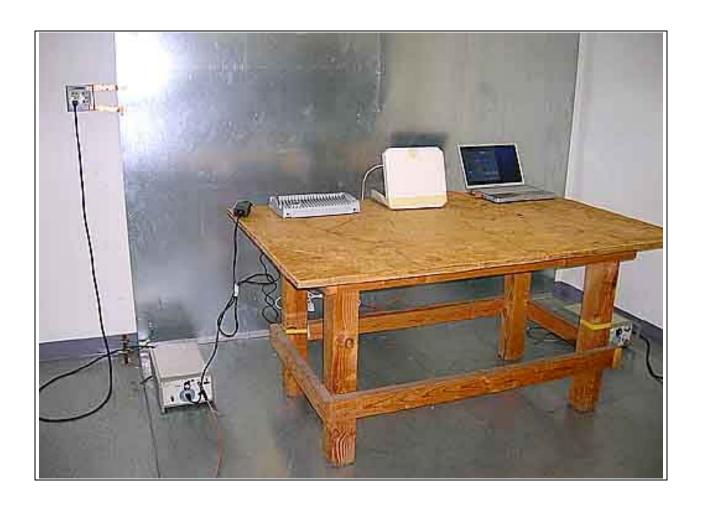
During the preliminary radiated scan, the EUT was powered up and operating in its defined FCC test mode. For radiated measurements from 10 MHz to 30 MHz, the magnetic loop antenna was used. The frequency range of 30 MHz to 1000 MHz was scanned with the biconilog antenna located about 1.5 meter above the ground plane in the vertical polarity. During this scan, the turntable was rotated and all peaks at or near the limit were recorded. A scan of the FM band from 88 to 110 MHz was then made using a reduced resolution bandwidth and frequency span. The biconilog antenna was changed to the horizontal polarity and the above steps were repeated. For frequencies exceeding 1000 MHz, the horn antenna was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

Page 31 of 67 Report No: FC06-010A

APPENDIX A TEST SETUP PHOTOGRAPHS

Page 32 of 67 Report No: FC06-010A


PHOTOGRAPH SHOWING VOLTAGE VARIATIONS

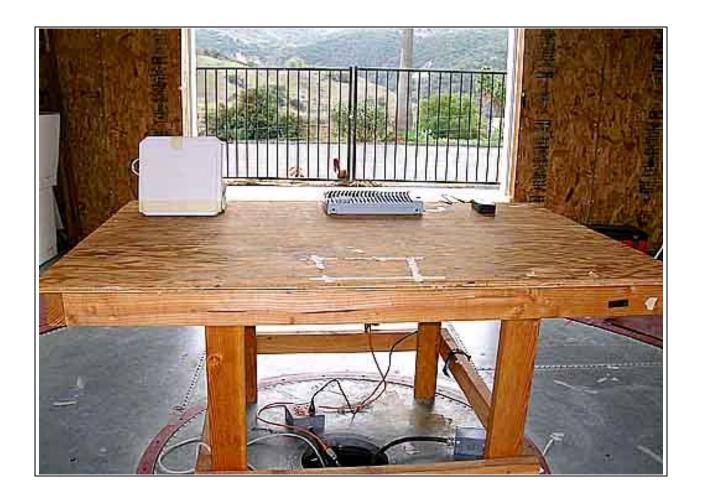
Page 33 of 67 Report No: FC06-010A

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

Page 34 of 67 Report No: FC06-010A

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS



Mains Conducted Emissions - Side View

Page 35 of 67 Report No: FC06-010A

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

Page 36 of 67 Report No: FC06-010A

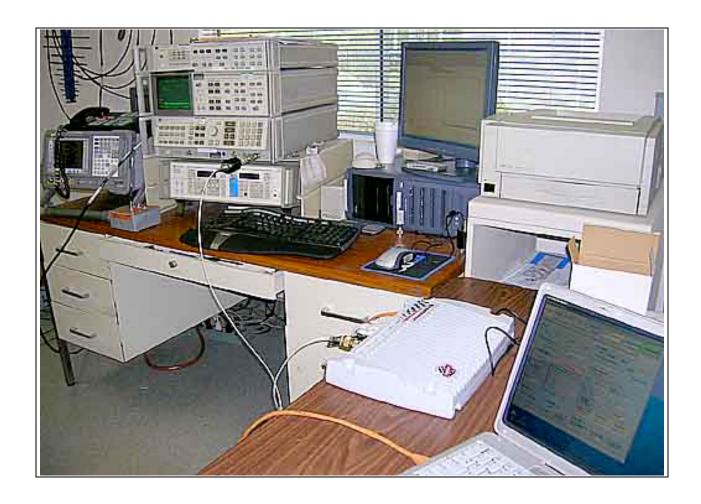
PHOTOGRAPH SHOWING RADIATED EMISSIONS



Radiated Emissions - Back View

Page 37 of 67 Report No: FC06-010A

PHOTOGRAPH SHOWING RADIATED EMISSIONS



Radiated Emissions - Back View

Page 38 of 67 Report No: FC06-010A

PHOTOGRAPH SHOWING DIRECT CONNECT POWER

Page 39 of 67 Report No: FC06-010A

PHOTOGRAPH SHOWING DIRECT CONNECT SPURIOUS EMISSIONS

Page 40 of 67 Report No: FC06-010A

APPENDIX B

TEST EQUIPMENT LIST

Radiated Emissions

Radiated Emissions						
Spectrum Analyzer RF Section	02462	HP	8568B	2928A04874	100804	100806
Spectrum Analyzer	02472	HP	85662A	3001A18430	100804	100806
Display Section						
QP Adapter	01437	HP	85650A	3303A01884	100804	100806
Bilog Antenna	00851	Schaffner- Chase EMC	CBL6111C	2629	031604	031606
Antenna cable (10 meter site D)	NA	Andrew	LDF1-50	Cable#17	100204	100207
Antenna cable from bulkhead to antenna	N/A	Pasternack	RG-214/U	Cable #33	040105	040106
Preamp to SA Cable (3 feet)	NA	Pasternack	E100316-I	Cable #22	080904	080906
Pre-amp	00010	HP	8447D	2727A05392	070204	070206
Antenna cable (Heliax)	NA	Andrew	LDF1-50	P05348 (Cable#19)	092805	092807
Horn Antenna	01646	EMCO	3115	9603-4683	072204	072206
Microwave Pre-amp	00787	HP	83017A	3123A00282	052705	052707
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032505	032507
24" SMA Cable (White)	P5183	Pasterneck	NA	1-40GHz_white	122304	122306
Loop Antenna	00314	EMCO	6502	2014	062804	062806

Conducted emissions

Conducted emissions	•					
Spectrum Analyzer RF Section	02462	HP	8568B	2928A04874	100804	100806
Kr Section						
Spectrum Analyzer	02472	HP	85662A	3001A18430	100804	100806
Display Section						
QP Adapter	01437	HP	85650A	3303A01884	100804	100806
Coaxial Cable	-	Harbour	M17/60-	Cable #8	070204	070206
		Industries	RG142			
LISN	02128	EMCO	3816/2	1090	051605	051607
150kHZ HPF	02610	TTE	HB9615-	G7755	041604	041606
			150k-50-720			
6dB Attenuator	P05268	Weinschel	18W	(none)	092805	092807

Page 41 of 67 Report No: FC06-010A

APPENDIX C MEASUREMENT DATA SHEETS

Page 42 of 67 Report No: FC06-010A

CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823 Test Location:

Customer: Impinj, Incorporated

Specification: FCC 15.107 Class B COND [AVE]

Work Order #: 83127 Date: 1/25/2006 Test Type: Time: 1:25:41 PM **Conducted Emissions**

Equipment: **UHF RFID** Sequence#: 2

Manufacturer: Impinj Inc Tested By: Septimiu Apahidean Model:

120V 60Hz IPJ-R1000

S/N: 40306020043

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
UHF RFID*	Impinj Inc	IPJ-R1000	40306020043
Antenna	Cushcraft	S9028PCL	-
Power Supply	CUI Inc.	DSA-60W-20 1 24060	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Compaq	Presario V2000	CNF5391NBO

Test Conditions / Notes:

EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 150 kHz - 30 MHz.

Transducer Legend:

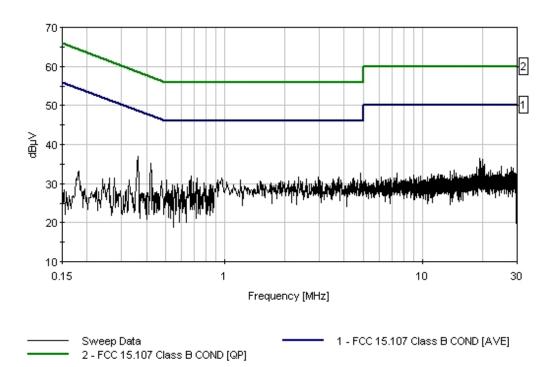
T1=6dB Attenuator P05268_092807	T2=Cable #8 Conducted Site D
T3=HP Filter AN 02343	T4=(L1) LISN Insertion Loss 02128

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	362.708k	30.9	+5.8	+0.0	+0.2	+0.1	+0.0	37.0	48.7	-11.7	Black
2	422.702k	29.2	+5.8	+0.0	+0.2	+0.1	+0.0	35.3	47.4	-12.1	Black
3	4.865M	26.4	+5.8	+0.1	+0.1	+0.2	+0.0	32.6	46.0	-13.4	Black
4	19.418M	29.0	+5.8	+0.4	+0.2	+1.1	+0.0	36.5	50.0	-13.5	Black
5	20.032M	28.7	+5.8	+0.4	+0.2	+1.1	+0.0	36.2	50.0	-13.8	Black
6	671.770k	25.7	+5.8	+0.1	+0.3	+0.0	+0.0	31.9	46.0	-14.1	Black
7	2.952M	25.7	+5.8	+0.1	+0.1	+0.1	+0.0	31.8	46.0	-14.2	Black
8	3.782M	25.5	+5.8	+0.1	+0.2	+0.2	+0.0	31.8	46.0	-14.2	Black
9	19.482M	28.3	+5.8	+0.4	+0.2	+1.1	+0.0	35.8	50.0	-14.2	Black
10	2.348M	25.5	+5.8	+0.1	+0.1	+0.1	+0.0	31.6	46.0	-14.4	Black

Page 43 of 67 Report No: FC06-010A

11	19.698M	28.1	+5.8	+0.4	+0.2	+1.1	+0.0	35.6	50.0	-14.4	Black
12	958.407k	25.4	+5.8	+0.1	+0.2	+0.0	+0.0	31.5	46.0	-14.5	Black
13	722.675k	25.2	+5.8	+0.1	+0.3	+0.0	+0.0	31.4	46.0	-14.6	Black
14	4.477M	25.2	+5.8	+0.1	+0.1	+0.2	+0.0	31.4	46.0	-14.6	Black
15	2.591M	25.2	+5.8	+0.1	+0.1	+0.1	+0.0	31.3	46.0	-14.7	Black
16	662.680k	24.8	+5.8	+0.1	+0.3	+0.0	+0.0	31.0	46.0	-15.0	Black
17	20.564M	27.5	+5.8	+0.4	+0.2	+1.1	+0.0	35.0	50.0	-15.0	Black
18	508.149k	24.7	+5.8	+0.0	+0.2	+0.1	+0.0	30.8	46.0	-15.2	Black
19	913.294k	24.6	+5.8	+0.1	+0.2	+0.1	+0.0	30.8	46.0	-15.2	Black
20	1.202M	24.7	+5.8	+0.1	+0.2	+0.0	+0.0	30.8	46.0	-15.2	Black
21	1.509M	24.5	+5.8	+0.1	+0.2	+0.1	+0.0	30.7	46.0	-15.3	Black
22	1.906M	24.5	+5.8	+0.1	+0.1	+0.1	+0.0	30.6	46.0	-15.4	Black
23	2.249M	24.5	+5.8	+0.1	+0.1	+0.1	+0.0	30.6	46.0	-15.4	Black
24	19.626M	27.0	+5.8	+0.4	+0.2	+1.1	+0.0	34.5	50.0	-15.5	Black
25	20.239M	26.9	+5.8	+0.4	+0.2	+1.1	+0.0	34.4	50.0	-15.6	Black
26	25.076M	26.7	+5.8	+0.4	+0.2	+1.3	+0.0	34.4	50.0	-15.6	Black
27	689.950k	24.1	+5.8	+0.1	+0.3	+0.0	+0.0	30.3	46.0	-15.7	Black
28	18.805M	26.9	+5.8	+0.4	+0.2	+1.0	+0.0	34.3	50.0	-15.7	Black
29	20.104M	26.8	+5.8	+0.4	+0.2	+1.1	+0.0	34.3	50.0	-15.7	Black
30	475.425k	24.5	+5.8	+0.0	+0.2	+0.1	+0.0	30.6	46.4	-15.8	Black
31	20.429M	26.7	+5.8	+0.4	+0.2	+1.1	+0.0	34.2	50.0	-15.8	Black
32	780.851k	24.1	+5.8	+0.1	+0.1	+0.0	+0.0	30.1	46.0	-15.9	Black
33	1.698M	23.9	+5.8	+0.1	+0.2	+0.1	+0.0	30.1	46.0	-15.9	Black
34	27.990M	26.2	+5.8	+0.5	+0.2	+1.4	+0.0	34.1	50.0	-15.9	Black
35	19.951M	26.5	+5.8	+0.4	+0.2	+1.1	+0.0	34.0	50.0	-16.0	Black

Page 44 of 67 Report No: FC06-010A



36	28.775M	26.0	+5.8	+0.5	+0.2	+1.4	+0.0	33.9	50.0	-16.1	Black
37	575.416k	23.6	+5.8	+0.1	+0.3	+0.0	+0.0	29.8	46.0	-16.2	Black
38	839.028k	23.7	+5.8	+0.1	+0.1	+0.0	+0.0	29.7	46.0	-16.3	Black
39	20.050M	26.2	+5.8	+0.4	+0.2	+1.1	+0.0	33.7	50.0	-16.3	Black
40	539.055k	23.4	+5.8	+0.1	+0.2	+0.1	+0.0	29.6	46.0	-16.4	Black
41	609.958k	23.4	+5.8	+0.1	+0.3	+0.0	+0.0	29.6	46.0	-16.4	Black
42	849.936k	23.4	+5.8	+0.1	+0.2	+0.1	+0.0	29.6	46.0	-16.4	Black
43	1.798M	23.5	+5.8	+0.1	+0.1	+0.1	+0.0	29.6	46.0	-16.4	Black
44	26.600M	25.9	+5.8	+0.4	+0.2	+1.3	+0.0	33.6	50.0	-16.4	Black
45	797.213k	23.5	+5.8	+0.1	+0.1	+0.0	+0.0	29.5	46.0	-16.5	Black
46	19.752M	26.0	+5.8	+0.4	+0.2	+1.1	+0.0	33.5	50.0	-16.5	Black
47	553.599k	23.2	+5.8	+0.1	+0.3	+0.0	+0.0	29.4	46.0	-16.6	Black
48	866.298k	23.2	+5.8	+0.1	+0.2	+0.1	+0.0	29.4	46.0	-16.6	Black
49	14.384M	26.4	+5.8	+0.3	+0.2	+0.7	+0.0	33.4	50.0	-16.6	Black
50	22.098M	25.8	+5.8	+0.4	+0.2	+1.2	+0.0	33.4	50.0	-16.6	Black

Page 45 of 67 Report No: FC06-010A

Date: 1/25/2006 Time: 1:25:41 PM Impinj Inc. WO#: 83127 FCC 15:107 Class B COND [AVE] Test Lead: Black 120V 60Hz Sequence#: 2

Page 46 of 67 Report No: FC06-010A

CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823 Test Location:

Customer: Impinj, Incorporated

Specification: FCC 15.107 Class B COND [AVE]

Work Order #: Date: 1/25/2006 83127 Test Type: Time: 1:27:39 PM **Conducted Emissions**

Equipment: **UHF RFID** Sequence#: 3

Manufacturer: Impinj Inc Tested By: Septimiu Apahidean Model: IPJ-R1000

120V 60Hz

S/N: 40306020043

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
UHF RFID*	Impinj Inc	IPJ-R1000	40306020043	
Antenna	Cushcraft	S9028PCL	-	
Power Supply	CUI Inc.	DSA-60W-20 1 24060		

Support Devices:

Function	Manufacturer	Model #	S/N		
Laptop	Compaq	Presario V2000	CNF5391NBO		

Test Conditions / Notes:

EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 150 kHz - 30 MHz.

Transducer Legend:

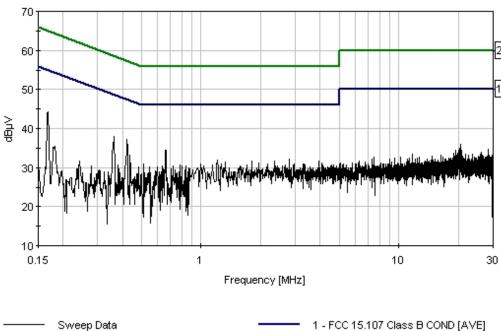
T1=6dB Attenuator P05268_092807	T2=Cable #8 Conducted Site D
T3=HP Filter AN 02343	T4=(L2) LISN Insertion Loss 02128

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	420.884k	31.2	+5.8	+0.0	+0.2	+0.1	+0.0	37.3	47.4	-10.1	White
2	168.180k	38.1	+5.8	+0.0	+0.3	+0.1	+0.0	44.3	55.0	-10.7	White
3	360.890k	31.9	+5.8	+0.0	+0.2	+0.1	+0.0	38.0	48.7	-10.7	White
4	659.044k	28.2	+5.8	+0.1	+0.3	+0.1	+0.0	34.5	46.0	-11.5	White
5	437.246k	27.2	+5.8	+0.0	+0.2	+0.1	+0.0	33.3	47.1	-13.8	White
6	2.781M	26.0	+5.8	+0.1	+0.1	+0.2	+0.0	32.2	46.0	-13.8	White
7	1.211M	25.8	+5.8	+0.1	+0.2	+0.1	+0.0	32.0	46.0	-14.0	White
8	2.808M	25.8	+5.8	+0.1	+0.1	+0.2	+0.0	32.0	46.0	-14.0	White
9	20.655M	28.4	+5.8	+0.4	+0.2	+1.2	+0.0	36.0	50.0	-14.0	White
10	2.339M	25.6	+5.8	+0.1	+0.1	+0.2	+0.0	31.8	46.0	-14.2	White

Page 47 of 67 Report No: FC06-010A

11	3.927M	25.5	+5.8	+0.1	+0.2	+0.2	+0.0	31.8	46.0	-14.2	White
12	1.807M	25.6	+5.8	+0.1	+0.1	+0.1	+0.0	31.7	46.0	-14.3	White
13	1.319M	25.2	+5.8	+0.1	+0.2	+0.1	+0.0	31.4	46.0	-14.6	White
14	1.951M	25.2	+5.8	+0.1	+0.1	+0.1	+0.0	31.3	46.0	-14.7	White
15	20.546M	27.6	+5.8	+0.4	+0.2	+1.2	+0.0	35.2	50.0	-14.8	White
16	1.265M	24.8	+5.8	+0.1	+0.2	+0.1	+0.0	31.0	46.0	-15.0	White
17	3.331M	24.8	+5.8	+0.1	+0.1	+0.2	+0.0	31.0	46.0	-15.0	White
18	994.497k	24.7	+5.8	+0.1	+0.2	+0.1	+0.0	30.9	46.0	-15.1	White
19	2.943M	24.7	+5.8	+0.1	+0.1	+0.2	+0.0	30.9	46.0	-15.1	White
20	20.321M	27.3	+5.8	+0.4	+0.2	+1.2	+0.0	34.9	50.0	-15.1	White
21	513.603k	24.7	+5.8	+0.0	+0.2	+0.1	+0.0	30.8	46.0	-15.2	White
22	2.167M	24.7	+5.8	+0.1	+0.1	+0.1	+0.0	30.8	46.0	-15.2	White
23	28.270M	26.6	+5.8	+0.5	+0.3	+1.6	+0.0	34.8	50.0	-15.2	White
24	780.851k	24.6	+5.8	+0.1	+0.1	+0.1	+0.0	30.7	46.0	-15.3	White
25	2.655M	24.5	+5.8	+0.1	+0.1	+0.2	+0.0	30.7	46.0	-15.3	White
26	3.367M	24.5	+5.8	+0.1	+0.1	+0.2	+0.0	30.7	46.0	-15.3	White
27	4.558M	24.5	+5.8	+0.1	+0.1	+0.2	+0.0	30.7	46.0	-15.3	White
28	1.698M	24.4	+5.8	+0.1	+0.2	+0.1	+0.0	30.6	46.0	-15.4	White
29	2.925M	24.4	+5.8	+0.1	+0.1	+0.2	+0.0	30.6	46.0	-15.4	White
30	20.249M	27.0	+5.8	+0.4	+0.2	+1.2	+0.0	34.6	50.0	-15.4	White
31	802.667k	24.4	+5.8	+0.1	+0.1	+0.1	+0.0	30.5	46.0	-15.5	White
32	1.031M	24.3	+5.8	+0.1	+0.2	+0.1	+0.0	30.5	46.0	-15.5	White
33	1.572M	24.2	+5.8	+0.1	+0.2	+0.1	+0.0	30.4	46.0	-15.6	White
34	2.573M	24.2	+5.8	+0.1	+0.1	+0.2	+0.0	30.4	46.0	-15.6	White
35	19.382M	26.8	+5.8	+0.4	+0.2	+1.2	+0.0	34.4	50.0	-15.6	White
-											

Page 48 of 67 Report No: FC06-010A



36	20.050M	26.8	+5.8	+0.4	+0.2	+1.2	+0.0	34.4	50.0	-15.6	White
37	20.799M	26.7	+5.8	+0.4	+0.2	+1.3	+0.0	34.4	50.0	-15.6	White
38	639.046k	24.0	+5.8	+0.1	+0.3	+0.1	+0.0	30.3	46.0	-15.7	White
39	719.039k	24.0	+5.8	+0.1	+0.3	+0.1	+0.0	30.3	46.0	-15.7	White
40	839.028k	24.2	+5.8	+0.1	+0.1	+0.1	+0.0	30.3	46.0	-15.7	White
41	19.446M	26.7	+5.8	+0.4	+0.2	+1.2	+0.0	34.3	50.0	-15.7	White
42	20.158M	26.7	+5.8	+0.4	+0.2	+1.2	+0.0	34.3	50.0	-15.7	White
43	599.050k	23.9	+5.8	+0.1	+0.3	+0.1	+0.0	30.2	46.0	-15.8	White
44	549.963k	23.8	+5.8	+0.1	+0.3	+0.1	+0.0	30.1	46.0	-15.9	White
45	480.879k	24.1	+5.8	+0.0	+0.2	+0.1	+0.0	30.2	46.3	-16.1	White
46	864.480k	23.7	+5.8	+0.1	+0.2	+0.1	+0.0	29.9	46.0	-16.1	White
47	26.149M	26.0	+5.8	+0.4	+0.2	+1.5	+0.0	33.9	50.0	-16.1	White
48	2.862M	23.6	+5.8	+0.1	+0.1	+0.2	+0.0	29.8	46.0	-16.2	White
49	20.591M	26.2	+5.8	+0.4	+0.2	+1.2	+0.0	33.8	50.0	-16.2	White
50	18.958M	26.2	+5.8	+0.4	+0.2	+1.1	+0.0	33.7	50.0	-16.3	White

Page 49 of 67 Report No: FC06-010A

Date: 1/25/2006 Time: 1:27:39 PM Impinj Inc. WO#: 83127 FCC 15:107 Class B COND [AVE] Test Lead: White 120V 60Hz Sequence#: 3

> Page 50 of 67 Report No: FC06-010A

Test Location: CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823

Customer: Impinj, Incorporated Specification: FCC 15.109 Class B

Work Order #: 83127 Date: 1/25/2006
Test Type: Radiated Scan Time: 12:19:19
Equipment: UHF RFID Sequence#: 1

Manufacturer: Impinj Inc Tested By: Septimiu Apahidean

Model: IPJ-R1000 S/N: 40306020043

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
UHF RFID*	Impinj Inc	IPJ-R1000	40306020043
Antenna	Cushcraft	S9028PCL	-
Power Supply	CUI Inc.	DSA-60W-20 1 24060	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Compaq	Presario V2000	CNF5391NBO

Test Conditions / Notes:

EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 30-1000 MHz.

Transducer Legend:

T1=Chase bilog a/n 00851, s/n 2629	T2=Cable #22 080905 Preamp to SA
T3=Cable #33 44ft RG-214(ant to Bulkhead)	T4=Cable Heliax #17 84ft(10 meter) 100205
T5=Preamp 8447D Asset 00010	T6=
T7=Cable #19, 54' Heliax, Site D OATs	T8=DRG Horn_01646_072206
T9=HF Preamp Cal. HP-83017A,S/N- 3123A00282	T10=1-40 GHz Cable_122306
T11=HPF_AN02116_1.5GHz_062707	

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	3661.050M	52.4	+0.0	+0.0	+0.0	+0.0	+0.0	50.2	54.0	-3.8	Vert
	Ave		+0.0	+0.0	+5.0	+29.9					
			-39.3	+1.7	+0.5						
^	3661.063M	55.7	+0.0	+0.0	+0.0	+0.0	+0.0	53.5	54.0	-0.5	Vert
			+0.0	+0.0	+5.0	+29.9					
			-39.3	+1.7	+0.5						
3	3661.063M	51.2	+0.0	+0.0	+0.0	+0.0	+0.0	49.0	54.0	-5.0	Horiz
			+0.0	+0.0	+5.0	+29.9					
			-39.3	+1.7	+0.5						
4	1252.925M	45.5	+0.0	+0.0	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Horiz
			+0.0	+0.0	+2.5	+24.1					
			-40.3	+1.0	+16.1						
5	4575.712M	48.3	+0.0	+0.0	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Horiz
			+0.0	+0.0	+5.5	+31.4					
			-39.1	+1.9	+0.9						

Page 51 of 67 Report No: FC06-010A

6 4576.375M	47.2	+0.0	+0.0	+0.0	+0.0	+0.0	47.8	54.0	-6.2	Vert
		+0.0	+0.0	+5.5	+31.4					
		-39.1	+1.9	+0.9						
7 6405.950M	42.5	+0.0	+0.0	+0.0	+0.0	+0.0	47.2	54.0	-6.8	Vert
		+0.0	+0.0	+6.7	+33.2					
		-38.4	+2.2	+1.0						
8 1277.000M	46.9	+0.0	+0.0	+0.0	+0.0	+0.0	47.1	54.0	-6.9	Horiz
		+0.0	+0.0	+2.5	+24.2					
		-40.2	+1.0	+12.7						
9 2354.962M	53.5	+0.0	+0.0	+0.0	+0.0	+0.0	46.6	54.0	-7.4	Vert
		+0.0	+0.0	+3.5	+27.0					
		-39.4	+1.3	+0.7						
10 9149.600M	36.5	+0.0	+0.0	+0.0	+0.0	+0.0	46.3	54.0	-7.7	Vert
		+0.0	+0.0	+8.6	+35.6					
		-38.0	+2.8	+0.8						
11 2355.075M	53.0	+0.0	+0.0	+0.0	+0.0	+0.0	46.1	54.0	-7.9	Horiz
		+0.0	+0.0	+3.5	+27.0					
10 0004 0503 5	27.6	-39.4	+1.3	+0.7	0.0	0.0	45.0	7.4.0	0.1	X 7 .
12 8234.850M	37.6	+0.0	+0.0	+0.0	+0.0	+0.0	45.9	54.0	-8.1	Vert
		+0.0	+0.0	+7.7	+35.3					
12 202 (24)/	15.7	-38.1	+2.7	+0.7	. 2. 2	. 0. 0	27.0	46.0	0.1	II
13 383.624M	45.7	+14.4	+0.4	+2.1	+2.3	+0.0	37.9	46.0	-8.1	Horiz
		-27.0								
14 5491.175M	41.2	+0.0	+0.0	+0.0	+0.0	+0.0	45.2	54.0	-8.8	Vert
14 J491.1/JW	41.2	+0.0 +0.0	+0.0 +0.0	+6.5	+32.1	+0.0	43.2	34.0	-0.0	vert
		-38.2	+2.1	+1.5	+32.1					
15 7319.650M	38.1	+0.0	+0.0	+0.0	+0.0	+0.0	45.0	54.0	-9.0	Vert
13 /319.030W	36.1	+0.0	+0.0	+7.4	+34.6	+0.0	45.0	34.0	-9.0	VCIT
		-38.4	+2.5	+0.8	134.0					
16 119.700M	47.1	+11.5	+0.2	+1.1	+1.3	+0.0	34.4	43.5	-9.1	Vert
10 117.700141	77.1	-26.8	10.2	11.1	11.5	10.0	54.4	43.3	7.1	VCIT
		20.0								
17 2745.875M	48.5	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Vert
1, 2, 10,0,01,1	.0.0	+0.0	+0.0	+4.2	+28.3	. 0.0	,	0	10.0	, 010
		-39.3	+1.4	+0.6	. 20.0					
18 1830.657M	50.6	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0	-12.2	Horiz
		+0.0	+0.0	+3.3	+25.6					
		-39.4	+1.2	+0.5						
19 125.076M	43.5	+11.6	+0.2	+1.1	+1.3	+0.0	30.9	43.5	-12.6	Vert
		-26.8								
20 1830.595M	49.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.0	54.0	-13.0	Vert
		+0.0	+0.0	+3.3	+25.6					
		-39.4	+1.2	+0.5						
21 85.754M	43.7	+8.1	+0.1	+1.0	+1.2	+0.0	27.0	40.0	-13.0	Horiz
		-27.1								
22 173.183M	42.4	+11.4	+0.2	+1.4	+1.5	+0.0	30.2	43.5	-13.3	Vert
		-26.7								

Page 52 of 67 Report No: FC06-010A

23	225.308M	44.8	+10.3	+0.3	+1.6	+1.7	+0.0	32.1	46.0	-13.9	Vert
			-26.6								
24	220.716M	44.2	+10.2	+0.3	+1.6	+1.7	+0.0	31.4	46.0	-14.6	Horiz
			-26.6								
25	80.531M	42.0	+7.7	+0.1	+0.9	+1.1	+0.0	24.8	40.0	-15.2	Horiz
			-27.0								
26	151.728M	39.9	+12.2	+0.2	+1.3	+1.4	+0.0	28.2	43.5	-15.3	Vert
			-26.8								
27	263.662M	42.3	+10.6	+0.3	+1.7	+2.0	+0.0	30.4	46.0	-15.6	Horiz
			-26.5								
28	450.245M	36.1	+15.7	+0.4	+2.4	+2.4	+0.0	29.3	46.0	-16.7	Vert
			-27.7								
29	139.459M	38.1	+12.0	+0.2	+1.2	+1.4	+0.0	26.1	43.5	-17.4	Vert
			-26.8								
30	110.448M	39.3	+10.8	+0.1	+1.1	+1.2	+0.0	25.6	43.5	-17.9	Horiz
			-26.9								
31	1190.950M	46.4	+0.0	+0.0	+0.0	+0.0	+0.0	33.1	54.0	-20.9	Vert
			+0.0	+0.0	+2.4	+23.9					
			-40.5	+0.9	+0.0						
32	300.072M	36.4	+10.7	+0.3	+1.8	+2.0	+0.0	24.8	46.0	-21.2	Vert
			-26.4								
33	1253.150M	45.0	+0.0	+0.0	+0.0	+0.0	+0.0	32.3	54.0	-21.7	Vert
			+0.0	+0.0	+2.5	+24.1					
			-40.3	+1.0	+0.0						
34	1277.150M	44.6	+0.0	+0.0	+0.0	+0.0	+0.0	32.1	54.0	-21.9	Vert
			+0.0	+0.0	+2.5	+24.2					
			-40.2	+1.0	+0.0						
35	300.002M	21.1	+10.7	+0.3	+1.8	+2.0	+0.0	9.5	46.0	-36.5	Vert
			-26.4								

Page 53 of 67 Report No: FC06-010A

CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823 Test Location:

Customer: Impinj, Incorporated Specification: **FCC 15.207 COND [AVE]**

Work Order #: 83127 Date: 1/25/2006 Test Type: Time: 1:34:55 PM **Conducted Emissions**

Equipment: **UHF RFID** Sequence#: 5

Manufacturer: Impinj Inc Tested By: Septimiu Apahidean Model:

120V 60Hz

IPJ-R1000 S/N: 40306020043

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
UHF RFID*	Impinj Inc	IPJ-R1000	40306020043	
Antenna	Cushcraft	S9028PCL	-	
Power Supply	CUI Inc.	DSA-60W-20 1 24060		

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Compaq	Presario V2000	CNF5391NBO

Test Conditions / Notes:

EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 150 kHz - 30 MHz.

Transducer Legend:

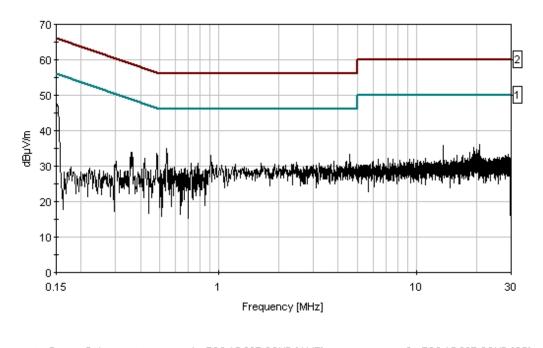
T1=6dB Attenuator P05268_092807	T2=Cable #8 Conducted Site D
T3=HP Filter AN 02343	T4=(L1) LISN Insertion Loss 02128

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	151.818k	38.9	+5.8	+0.0	+2.8	+0.0	+0.0	47.5	55.9	-8.4	Black
2	544.509k	28.7	+5.8	+0.1	+0.2	+0.1	+0.0	34.9	46.0	-11.1	Black
3	4.585M	27.1	+5.8	+0.1	+0.1	+0.2	+0.0	33.3	46.0	-12.7	Black
4	484.515k	27.4	+5.8	+0.0	+0.2	+0.1	+0.0	33.5	46.3	-12.8	Black
5	904.272k	26.8	+5.8	+0.1	+0.2	+0.1	+0.0	33.0	46.0	-13.0	Black
6	20.673M	28.6	+5.8	+0.4	+0.2	+1.1	+0.0	36.1	50.0	-13.9	Black
7	13.617M	28.8	+5.8	+0.3	+0.2	+0.7	+0.0	35.8	50.0	-14.2	Black
8	4.414M	25.3	+5.8	+0.1	+0.1	+0.2	+0.0	31.5	46.0	-14.5	Black
9	3.819M	25.1	+5.8	+0.1	+0.2	+0.2	+0.0	31.4	46.0	-14.6	Black
10	19.473M	27.9	+5.8	+0.4	+0.2	+1.1	+0.0	35.4	50.0	-14.6	Black

Page 54 of 67 Report No: FC06-010A

11	364.526k	27.7	+5.8	+0.0	+0.2	+0.1	+0.0	33.8	48.6	-14.8	Black
12	4.640M	24.9	+5.8	+0.1	+0.1	+0.2	+0.0	31.1	46.0	-14.9	Black
13	2.474M	24.9	+5.8	+0.1	+0.1	+0.1	+0.0	31.0	46.0	-15.0	Black
14	3.196M	24.8	+5.8	+0.1	+0.1	+0.1	+0.0	30.9	46.0	-15.1	Black
15	724.493k	24.7	+5.8	+0.1	+0.2	+0.0	+0.0	30.8	46.0	-15.2	Black
16	1.626M	24.6	+5.8	+0.1	+0.2	+0.1	+0.0	30.8	46.0	-15.2	Black
17	419.066k	26.1	+5.8	+0.0	+0.2	+0.1	+0.0	32.2	47.5	-15.3	Black
18	782.669k	24.7	+5.8	+0.1	+0.1	+0.0	+0.0	30.7	46.0	-15.3	Black
19	1.906M	24.5	+5.8	+0.1	+0.1	+0.1	+0.0	30.6	46.0	-15.4	Black
20	4.964M	24.4	+5.8	+0.1	+0.1	+0.2	+0.0	30.6	46.0	-15.4	Black
21	20.140M	27.1	+5.8	+0.4	+0.2	+1.1	+0.0	34.6	50.0	-15.4	Black
22	1.211M	24.4	+5.8	+0.1	+0.2	+0.0	+0.0	30.5	46.0	-15.5	Black
23	3.665M	24.3	+5.8	+0.1	+0.1	+0.2	+0.0	30.5	46.0	-15.5	Black
24	967.429k	24.3	+5.8	+0.1	+0.2	+0.0	+0.0	30.4	46.0	-15.6	Black
25	20.068M	26.9	+5.8	+0.4	+0.2	+1.1	+0.0	34.4	50.0	-15.6	Black
26	931.339k	24.1	+5.8	+0.1	+0.2	+0.1	+0.0	30.3	46.0	-15.7	Black
27	2.988M	24.2	+5.8	+0.1	+0.1	+0.1	+0.0	30.3	46.0	-15.7	Black
28	3.539M	24.1	+5.8	+0.1	+0.1	+0.2	+0.0	30.3	46.0	-15.7	Black
29	1.031M	24.1	+5.8	+0.1	+0.2	+0.0	+0.0	30.2	46.0	-15.8	Black
30	3.115M	24.1	+5.8	+0.1	+0.1	+0.1	+0.0	30.2	46.0	-15.8	Black
31	2.772M	24.0	+5.8	+0.1	+0.1	+0.1	+0.0	30.1	46.0	-15.9	Black
32	3.647M	23.9	+5.8	+0.1	+0.1	+0.2	+0.0	30.1	46.0	-15.9	Black
33	19.707M	26.6	+5.8	+0.4	+0.2	+1.1	+0.0	34.1	50.0	-15.9	Black
34	1.076M	23.9	+5.8	+0.1	+0.2	+0.0	+0.0	30.0	46.0	-16.0	Black
35	2.790M	23.9	+5.8	+0.1	+0.1	+0.1	+0.0	30.0	46.0	-16.0	Black

Page 55 of 67 Report No: FC06-010A



37 777.215k 23.9 +5.8 +0.1 +0.1 +0.0 +0.0 29.9 46.0 -16.1 H 38 595.414k 23.6 +5.8 +0.1 +0.3 +0.0 +0.0 29.8 46.0 -16.2 H 39 3.449M 23.6 +5.8 +0.1 +0.1 +0.2 +0.0 29.8 46.0 -16.2 H 40 18.597M 26.4 +5.8 +0.4 +0.2 +1.0 +0.0 29.8 46.0 -16.2 H 41 20.483M 26.3 +5.8 +0.4 +0.2 +1.1 +0.0 33.8 50.0 -16.2 H 42 1.166M 23.6 +5.8 +0.1 +0.2 +0.0 +0.0 29.7 46.0 -16.3 H 43 755.399k 23.5 +5.8 +0.1 +0.2 +0.0 +0.0 29.6 46.0 -16.4 H 44 2.682M 23.5 +5.8 +0.1 +0.1 +0.1 +0.0 29.5 46.0 -16.4 <th></th>												
38 595.414k 23.6 +5.8 +0.1 +0.3 +0.0 +0.0 29.8 46.0 -16.2 E 39 3.449M 23.6 +5.8 +0.1 +0.1 +0.2 +0.0 29.8 46.0 -16.2 E 40 18.597M 26.4 +5.8 +0.4 +0.2 +1.0 +0.0 33.8 50.0 -16.2 E 41 20.483M 26.3 +5.8 +0.4 +0.2 +1.1 +0.0 33.8 50.0 -16.2 E 42 1.166M 23.6 +5.8 +0.1 +0.2 +0.0 +0.0 29.7 46.0 -16.3 E 43 755.399k 23.5 +5.8 +0.1 +0.2 +0.0 +0.0 29.6 46.0 -16.4 E 44 2.682M 23.5 +5.8 +0.1 +0.1 +0.1 +0.1 +0.0 29.6 46.0 -16.4 E 45 577.234k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 E 46 671.770k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 E 47 20.402M 26.0 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 E 48 566.325k 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6 E 49 3.602M 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6 E	36	3.277M	23.9	+5.8	+0.1	+0.1	+0.1	+0.0	30.0	46.0	-16.0	Black
39 3.449M 23.6 +5.8 +0.1 +0.1 +0.2 +0.0 29.8 46.0 -16.2 E 40 18.597M 26.4 +5.8 +0.4 +0.2 +1.0 +0.0 33.8 50.0 -16.2 E 41 20.483M 26.3 +5.8 +0.4 +0.2 +1.1 +0.0 33.8 50.0 -16.2 E 42 1.166M 23.6 +5.8 +0.1 +0.2 +0.0 +0.0 29.7 46.0 -16.3 E 43 755.399k 23.5 +5.8 +0.1 +0.2 +0.0 +0.0 29.6 46.0 -16.4 E 44 2.682M 23.5 +5.8 +0.1 +0.1 +0.1 +0.1 +0.0 29.6 46.0 -16.4 E 45 577.234k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 E 46 671.770k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 E 47 20.402M 26.0 +5.8 +0.4 +0.2 +1.1 +0.0 33.5 50.0 -16.5 E 48 566.325k 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6 E 49 3.602M 23.2 +5.8 +0.1 +0.1 +0.1 +0.2 +0.0 29.4 46.0 -16.6 E	37	777.215k	23.9	+5.8	+0.1	+0.1	+0.0	+0.0	29.9	46.0	-16.1	Black
40 18.597M 26.4 +5.8 +0.4 +0.2 +1.0 +0.0 33.8 50.0 -16.2 H 41 20.483M 26.3 +5.8 +0.4 +0.2 +1.1 +0.0 33.8 50.0 -16.2 H 42 1.166M 23.6 +5.8 +0.1 +0.2 +0.0 +0.0 29.7 46.0 -16.3 H 43 755.399k 23.5 +5.8 +0.1 +0.2 +0.0 +0.0 29.6 46.0 -16.4 H 44 2.682M 23.5 +5.8 +0.1 +0.1 +0.1 +0.0 29.6 46.0 -16.4 H 45 577.234k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 H 46 671.770k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 H 47 20.402M 26.0 +5.8 +0.4 +0.2 +1.1 +0.0 29.4 46.0 -16.6 </td <td>38</td> <td>595.414k</td> <td>23.6</td> <td>+5.8</td> <td>+0.1</td> <td>+0.3</td> <td>+0.0</td> <td>+0.0</td> <td>29.8</td> <td>46.0</td> <td>-16.2</td> <td>Black</td>	38	595.414k	23.6	+5.8	+0.1	+0.3	+0.0	+0.0	29.8	46.0	-16.2	Black
41 20.483M 26.3 +5.8 +0.4 +0.2 +1.1 +0.0 33.8 50.0 -16.2 I 42 1.166M 23.6 +5.8 +0.1 +0.2 +0.0 +0.0 29.7 46.0 -16.3 I 43 755.399k 23.5 +5.8 +0.1 +0.2 +0.0 +0.0 29.6 46.0 -16.4 I 44 2.682M 23.5 +5.8 +0.1 +0.1 +0.1 +0.0 29.6 46.0 -16.4 I 45 577.234k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 I 46 671.770k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 I 47 20.402M 26.0 +5.8 +0.4 +0.2 +1.1 +0.0 29.4 46.0 -16.5 I 48 566.325k 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6<	39	3.449M	23.6	+5.8	+0.1	+0.1	+0.2	+0.0	29.8	46.0	-16.2	Black
42 1.166M 23.6 +5.8 +0.1 +0.2 +0.0 +0.0 29.7 46.0 -16.3 II 43 755.399k 23.5 +5.8 +0.1 +0.2 +0.0 +0.0 29.6 46.0 -16.4 II 44 2.682M 23.5 +5.8 +0.1 +0.1 +0.1 +0.0 29.6 46.0 -16.4 II 45 577.234k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 II 46 671.770k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 II 47 20.402M 26.0 +5.8 +0.4 +0.2 +1.1 +0.0 33.5 50.0 -16.5 II 48 566.325k 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6 II 49 3.602M 23.2 +5.8 +0.1 +0.1 +0.2 +0.0 29.4 46.0 -16.6 II	40	18.597M	26.4	+5.8	+0.4	+0.2	+1.0	+0.0	33.8	50.0	-16.2	Black
43 755.399k 23.5 +5.8 +0.1 +0.2 +0.0 +0.0 29.6 46.0 -16.4 II 44 2.682M 23.5 +5.8 +0.1 +0.1 +0.1 +0.0 29.6 46.0 -16.4 II 45 577.234k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 II 46 671.770k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 II 47 20.402M 26.0 +5.8 +0.4 +0.2 +1.1 +0.0 33.5 50.0 -16.5 II 48 566.325k 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6 II 49 3.602M 23.2 +5.8 +0.1 +0.1 +0.2 +0.0 29.4 46.0 -16.6 II	41	20.483M	26.3	+5.8	+0.4	+0.2	+1.1	+0.0	33.8	50.0	-16.2	Black
44 2.682M 23.5 +5.8 +0.1 +0.1 +0.1 +0.0 29.6 46.0 -16.4 I 45 577.234k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 I 46 671.770k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 I 47 20.402M 26.0 +5.8 +0.4 +0.2 +1.1 +0.0 33.5 50.0 -16.5 I 48 566.325k 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6 I 49 3.602M 23.2 +5.8 +0.1 +0.1 +0.2 +0.0 29.4 46.0 -16.6 I	42	1.166M	23.6	+5.8	+0.1	+0.2	+0.0	+0.0	29.7	46.0	-16.3	Black
45 577.234k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 H 46 671.770k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 H 47 20.402M 26.0 +5.8 +0.4 +0.2 +1.1 +0.0 33.5 50.0 -16.5 H 48 566.325k 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6 H 49 3.602M 23.2 +5.8 +0.1 +0.1 +0.2 +0.0 29.4 46.0 -16.6 H	43	755.399k	23.5	+5.8	+0.1	+0.2	+0.0	+0.0	29.6	46.0	-16.4	Black
46 671.770k 23.3 +5.8 +0.1 +0.3 +0.0 +0.0 29.5 46.0 -16.5 H 47 20.402M 26.0 +5.8 +0.4 +0.2 +1.1 +0.0 33.5 50.0 -16.5 H 48 566.325k 23.2 +5.8 +0.1 +0.0 +0.0 29.4 46.0 -16.6 H 49 3.602M 23.2 +5.8 +0.1 +0.1 +0.2 +0.0 29.4 46.0 -16.6 H	44	2.682M	23.5	+5.8	+0.1	+0.1	+0.1	+0.0	29.6	46.0	-16.4	Black
47 20.402M 26.0 +5.8 +0.4 +0.2 +1.1 +0.0 33.5 50.0 -16.5 H 48 566.325k 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6 H 49 3.602M 23.2 +5.8 +0.1 +0.1 +0.2 +0.0 29.4 46.0 -16.6 H	45	577.234k	23.3	+5.8	+0.1	+0.3	+0.0	+0.0	29.5	46.0	-16.5	Black
48 566.325k 23.2 +5.8 +0.1 +0.3 +0.0 +0.0 29.4 46.0 -16.6 H 49 3.602M 23.2 +5.8 +0.1 +0.1 +0.2 +0.0 29.4 46.0 -16.6 H	46	671.770k	23.3	+5.8	+0.1	+0.3	+0.0	+0.0	29.5	46.0	-16.5	Black
49 3.602M 23.2 +5.8 +0.1 +0.1 +0.2 +0.0 29.4 46.0 -16.6 H	47	20.402M	26.0	+5.8	+0.4	+0.2	+1.1	+0.0	33.5	50.0	-16.5	Black
	48	566.325k	23.2	+5.8	+0.1	+0.3	+0.0	+0.0	29.4	46.0	-16.6	Black
50 19.193M 26.0 +5.8 +0.4 +0.2 +1.0 +0.0 33.4 50.0 -16.6 H	49	3.602M	23.2	+5.8	+0.1	+0.1	+0.2	+0.0	29.4	46.0	-16.6	Black
	50	19.193M	26.0	+5.8	+0.4	+0.2	+1.0	+0.0	33.4	50.0	-16.6	Black

Page 56 of 67 Report No: FC06-010A

Date: 1/25/2006 Time: 1:34:55 PM Impinj Inc. WO#: 83127 FCC 15.207 COND [AVE] Test Lead: Black 120V 60Hz Sequence#: 5

——— Sweep Data ——— 1 - FCC 15.207 COND [AVE] ———— 2 - FCC 15.207 COND [QP]

CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823 Test Location:

Customer: Impinj, Incorporated Specification: **FCC 15.207 COND [AVE]**

Work Order #: Date: 1/25/2006 83127 Test Type: Time: 1:32:35 PM **Conducted Emissions**

Equipment: **UHF RFID** Sequence#: 4

Manufacturer: Impinj Inc Tested By: Septimiu Apahidean Model: IPJ-R1000

120V 60Hz

S/N: 40306020043

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
UHF RFID*	Impinj Inc	IPJ-R1000	40306020043
Antenna	Cushcraft	S9028PCL	-
Power Supply	CULInc.	DSA-60W-20 1 24060	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Compaq	Presario V2000	CNF5391NBO

Test Conditions / Notes:

EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 150 kHz - 30 MHz.

Transducer Legend:

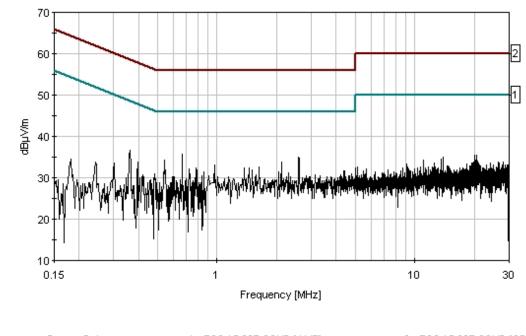
T1=6dB Attenuator P05268_092807	T2=Cable #8 Conducted Site D
T3=HP Filter AN 02343	T4=(L2) LISN Insertion Loss 02128

Measur	Measurement Data: Reading listed by margin.						Test Lead: White						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar		
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant		
1	666.316k	29.4	+5.8	+0.1	+0.3	+0.1	+0.0	35.7	46.0	-10.3	White		
2	2.591M	28.7	+5.8	+0.1	+0.1	+0.2	+0.0	34.9	46.0	-11.1	White		
3	540.873k	28.0	+5.8	+0.1	+0.2	+0.1	+0.0	34.2	46.0	-11.8	White		
4	360.890k	30.6	+5.8	+0.0	+0.2	+0.1	+0.0	36.7	48.7	-12.0	White		
5	2.113M	27.8	+5.8	+0.1	+0.1	+0.1	+0.0	33.9	46.0	-12.1	White		
6	967.429k	26.9	+5.8	+0.1	+0.2	+0.1	+0.0	33.1	46.0	-12.9	White		
7	1.635M	26.5	+5.8	+0.1	+0.2	+0.1	+0.0	32.7	46.0	-13.3	White		
8	784.487k	26.4	+5.8	+0.1	+0.1	+0.1	+0.0	32.5	46.0	-13.5	White		
9	1.364M	26.3	+5.8	+0.1	+0.2	+0.1	+0.0	32.5	46.0	-13.5	White		
10	1.446M	26.2	+5.8	+0.1	+0.2	+0.1	+0.0	32.4	46.0	-13.6	White		

Page 58 of 67 Report No: FC06-010A

11	720.857k	25.8	+5.8	+0.1	+0.3	+0.1	+0.0	32.1	46.0	-13.9	White
12	395.432k	27.6	+5.8	+0.0	+0.2	+0.1	+0.0	33.7	47.9	-14.2	White
13	1.509M	25.6	+5.8	+0.1	+0.2	+0.1	+0.0	31.8	46.0	-14.2	White
14	4.423M	25.5	+5.8	+0.1	+0.1	+0.2	+0.0	31.7	46.0	-14.3	White
15	4.351M	25.4	+5.8	+0.1	+0.1	+0.2	+0.0	31.6	46.0	-14.4	White
16	853.572k	25.2	+5.8	+0.1	+0.2	+0.1	+0.0	31.4	46.0	-14.6	White
17	2.050M	25.3	+5.8	+0.1	+0.1	+0.1	+0.0	31.4	46.0	-14.6	White
18	20.014M	27.8	+5.8	+0.4	+0.2	+1.2	+0.0	35.4	50.0	-14.6	White
19	20.519M	27.8	+5.8	+0.4	+0.2	+1.2	+0.0	35.4	50.0	-14.6	White
20	2.294M	25.1	+5.8	+0.1	+0.1	+0.2	+0.0	31.3	46.0	-14.7	White
21	13.852M	28.0	+5.8	+0.3	+0.2	+0.8	+0.0	35.1	50.0	-14.9	White
22	4.811M	24.7	+5.8	+0.1	+0.1	+0.2	+0.0	30.9	46.0	-15.1	White
23	3.142M	24.6	+5.8	+0.1	+0.1	+0.2	+0.0	30.8	46.0	-15.2	White
24	482.697k	24.8	+5.8	+0.0	+0.2	+0.1	+0.0	30.9	46.3	-15.4	White
25	4.207M	24.3	+5.8	+0.1	+0.2	+0.2	+0.0	30.6	46.0	-15.4	White
26	13.626M	27.5	+5.8	+0.3	+0.2	+0.8	+0.0	34.6	50.0	-15.4	White
27	20.167M	27.0	+5.8	+0.4	+0.2	+1.2	+0.0	34.6	50.0	-15.4	White
28	20.564M	26.9	+5.8	+0.4	+0.2	+1.2	+0.0	34.5	50.0	-15.5	White
29	837.210k	24.3	+5.8	+0.1	+0.1	+0.1	+0.0	30.4	46.0	-15.6	White
30	11.073M	27.4	+5.8	+0.3	+0.2	+0.7	+0.0	34.4	50.0	-15.6	White
31	597.232k	24.0	+5.8	+0.1	+0.3	+0.1	+0.0	30.3	46.0	-15.7	White
32	20.366M	26.7	+5.8	+0.4	+0.2	+1.2	+0.0	34.3	50.0	-15.7	White
33	604.504k	23.9	+5.8	+0.1	+0.3	+0.1	+0.0	30.2	46.0	-15.8	White
34	1.004M	24.0	+5.8	+0.1	+0.2	+0.1	+0.0	30.2	46.0	-15.8	White
35	1.148M	24.0	+5.8	+0.1	+0.2	+0.1	+0.0	30.2	46.0	-15.8	White

Page 59 of 67 Report No: FC06-010A



37 3.593M 24.0 +5.8 +0.1 +0.1 +0.2 +0.0 30.2 46.0 -15.8 Whi 38 20.230M 26.6 +5.8 +0.4 +0.2 +1.2 +0.0 34.2 50.0 -15.8 Whi 39 20.853M 26.3 +5.8 +0.4 +0.2 +1.3 +0.0 34.0 50.0 -16.0 Whi 40 20.627M 26.3 +5.8 +0.4 +0.2 +1.2 +0.0 33.9 50.0 -16.1 Whi 41 26.294M 25.9 +5.8 +0.4 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 42 27.854M 25.8 +5.8 +0.5 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 43 3.927M 23.5 +5.8 +0.1 +0.2 +0.2 +0.0 29.8 46.0 -16.2 Whi 44 19.743M 26.2 +5.8 +0.4 +0.2 +1.2 +0.0 33.8 50.0 -16.2 Whi 45 695.405k 23.4 +5.8 +0.1 +0.3 +0.1 +0.0 29.7 46.0 -16.3 Whi 46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 Whi 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 48 19.427M 26.0 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 Whi												
38 20.230M 26.6 +5.8 +0.4 +0.2 +1.2 +0.0 34.2 50.0 -15.8 Whi 39 20.853M 26.3 +5.8 +0.4 +0.2 +1.3 +0.0 34.0 50.0 -16.0 Whi 40 20.627M 26.3 +5.8 +0.4 +0.2 +1.2 +0.0 33.9 50.0 -16.1 Whi 41 26.294M 25.9 +5.8 +0.4 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 42 27.854M 25.8 +5.8 +0.5 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 43 3.927M 23.5 +5.8 +0.1 +0.2 +0.2 +0.0 29.8 46.0 -16.2 Whi 44 19.743M 26.2 +5.8 +0.4 +0.2 +1.2 +0.0 33.8 50.0 -16.2 Whi 45 695.405k 23.4 +5.8 +0.1 +0.3 +0.1 +0.0 29.7 46.0 -16.3 Whi 46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 Whi 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 Whi 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 Whi	36	2.357M	24.0	+5.8	+0.1	+0.1	+0.2	+0.0	30.2	46.0	-15.8	White
39 20.853M 26.3 +5.8 +0.4 +0.2 +1.3 +0.0 34.0 50.0 -16.0 Whi 40 20.627M 26.3 +5.8 +0.4 +0.2 +1.2 +0.0 33.9 50.0 -16.1 Whi 41 26.294M 25.9 +5.8 +0.4 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 42 27.854M 25.8 +5.8 +0.5 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 43 3.927M 23.5 +5.8 +0.1 +0.2 +0.2 +0.0 29.8 46.0 -16.2 Whi 44 19.743M 26.2 +5.8 +0.4 +0.2 +1.2 +0.0 33.8 50.0 -16.2 Whi 45 695.405k 23.4 +5.8 +0.1 +0.3 +0.1 +0.0 29.7 46.0 -16.3 Whi 46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 Whi 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 Whi 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 Whi	37	3.593M	24.0	+5.8	+0.1	+0.1	+0.2	+0.0	30.2	46.0	-15.8	White
40 20.627M 26.3 +5.8 +0.4 +0.2 +1.2 +0.0 33.9 50.0 -16.1 Whi 41 26.294M 25.9 +5.8 +0.4 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 42 27.854M 25.8 +5.8 +0.5 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 43 3.927M 23.5 +5.8 +0.1 +0.2 +0.2 +0.0 29.8 46.0 -16.2 Whi 44 19.743M 26.2 +5.8 +0.4 +0.2 +1.2 +0.0 33.8 50.0 -16.2 Whi 45 695.405k 23.4 +5.8 +0.1 +0.3 +0.1 +0.0 29.7 46.0 -16.3 Whi 46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 Whi 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 Whi 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 Whi	38	20.230M	26.6	+5.8	+0.4	+0.2	+1.2	+0.0	34.2	50.0	-15.8	White
41 26.294M 25.9 +5.8 +0.4 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 42 27.854M 25.8 +5.8 +0.5 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 43 3.927M 23.5 +5.8 +0.1 +0.2 +0.2 +0.0 29.8 46.0 -16.2 Whi 44 19.743M 26.2 +5.8 +0.4 +0.2 +1.2 +0.0 23.8 50.0 -16.2 Whi 45 695.405k 23.4 +5.8 +0.1 +0.3 +0.1 +0.0 29.7 46.0 -16.3 Whi 46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 Whi 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0	39	20.853M	26.3	+5.8	+0.4	+0.2	+1.3	+0.0	34.0	50.0	-16.0	White
42 27.854M 25.8 +5.8 +0.5 +0.2 +1.6 +0.0 33.9 50.0 -16.1 Whi 43 3.927M 23.5 +5.8 +0.1 +0.2 +0.2 +0.0 29.8 46.0 -16.2 Whi 44 19.743M 26.2 +5.8 +0.4 +0.2 +1.2 +0.0 33.8 50.0 -16.2 Whi 45 695.405k 23.4 +5.8 +0.1 +0.3 +0.1 +0.0 29.7 46.0 -16.3 Whi 46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 Whi 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 Whi 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0	40	20.627M	26.3	+5.8	+0.4	+0.2	+1.2	+0.0	33.9	50.0	-16.1	White
43 3.927M 23.5 +5.8 +0.1 +0.2 +0.2 +0.0 29.8 46.0 -16.2 Whi 44 19.743M 26.2 +5.8 +0.4 +0.2 +1.2 +0.0 33.8 50.0 -16.2 Whi 45 695.405k 23.4 +5.8 +0.1 +0.3 +0.1 +0.0 29.7 46.0 -16.3 Whi 46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 Whi 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 Whi 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 Whi	41	26.294M	25.9	+5.8	+0.4	+0.2	+1.6	+0.0	33.9	50.0	-16.1	White
44 19.743M 26.2 +5.8 +0.4 +0.2 +1.2 +0.0 33.8 50.0 -16.2 Whi 45 695.405k 23.4 +5.8 +0.1 +0.3 +0.1 +0.0 29.7 46.0 -16.3 Whi 46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 Whi 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 Whi 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 Whi	42	27.854M	25.8	+5.8	+0.5	+0.2	+1.6	+0.0	33.9	50.0	-16.1	White
45 695.405k 23.4 +5.8 +0.1 +0.3 +0.1 +0.0 29.7 46.0 -16.3 Whi 46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 Whi 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 Whi 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 Whi 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 Whi	43	3.927M	23.5	+5.8	+0.1	+0.2	+0.2	+0.0	29.8	46.0	-16.2	White
46 1.085M 23.5 +5.8 +0.1 +0.2 +0.1 +0.0 29.7 46.0 -16.3 White 47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 White 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 40.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	44	19.743M	26.2	+5.8	+0.4	+0.2	+1.2	+0.0	33.8	50.0	-16.2	White
47 1.752M 23.6 +5.8 +0.1 +0.1 +0.1 +0.0 29.7 46.0 -16.3 White 48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 White 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 40.0 +0.2 +1.3 +0.0 +0.2 +1.2 +1.3 +0.0 +0.2 +1.3 +0.	45	695.405k	23.4	+5.8	+0.1	+0.3	+0.1	+0.0	29.7	46.0	-16.3	White
48 19.427M 26.0 +5.8 +0.4 +0.2 +1.2 +0.0 33.6 50.0 -16.4 Whi 49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 Whi	46	1.085M	23.5	+5.8	+0.1	+0.2	+0.1	+0.0	29.7	46.0	-16.3	White
49 21.124M 25.9 +5.8 +0.4 +0.2 +1.3 +0.0 33.6 50.0 -16.4 Whi	47	1.752M	23.6	+5.8	+0.1	+0.1	+0.1	+0.0	29.7	46.0	-16.3	White
	48	19.427M	26.0	+5.8	+0.4	+0.2	+1.2	+0.0	33.6	50.0	-16.4	White
50 26.880M 25.6 +5.8 +0.4 +0.2 +1.6 +0.0 33.6 50.0 -16.4 Whi	49	21.124M	25.9	+5.8	+0.4	+0.2	+1.3	+0.0	33.6	50.0	-16.4	White
	50	26.880M	25.6	+5.8	+0.4	+0.2	+1.6	+0.0	33.6	50.0	-16.4	White

Page 60 of 67 Report No: FC06-010A

Date: 1/25/2006 Time: 1:32:35 PM Impinj Inc. WO#: 83127 FCC 15.207 COND [AVE] Test Lead: White 120V 60Hz Sequence#: 4

- Sweep Data ----- 1 - FCC 15.207 COND [AVE] ------ 2 - FCC 15.207 COND [QP]

Test Location: CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823

Customer: Impinj, Incorporated

Specification: FCC 15.209

 Work Order #:
 83127
 Date: 1/25/2006

 Test Type:
 Radiated Scan
 Time: 15:04:29

Equipment: UHF RFID Sequence#: 5

Manufacturer: Impinj Inc Tested By: Septimiu Apahidean

Model: IPJ-R1000 S/N: 40306020043

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
UHF RFID*	Impinj Inc	IPJ-R1000	40306020043
Antenna	Cushcraft	S9028PCL	-
Power Supply	CUI Inc.	DSA-60W-20 1 24060	

Support Devices:

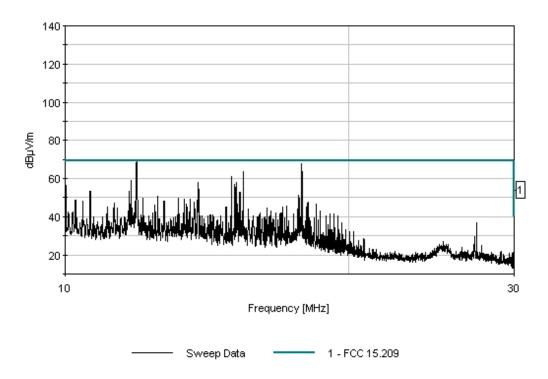
Function	Manufacturer	Model #	S/N
Laptop	Compaq	Presario V2000	CNF5391NBO

Test Conditions / Notes:

EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 10 MHz - 30 MHz.

Transducer Legend:

Transaucer Begena.	
T1=6502 Active Loop Antenna_062806	T2=Cable #22 080905 Preamp to SA
T3=Cable #33 44ft RG-214(ant to Bulkhead)	T4=Cable Heliax #17 84ft(10 meter) 100205
T5=Preamp 8447D Asset 00010	


Measur	ement Data:	Re	argin.	Test Distance: 3 Meters							
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	10.002M	67.3	+10.9	+0.0	+0.3	+0.4	+0.0	51.7	69.5	-17.8	Paral
			-27.2						HIGH		
2	10.004M	66.7	+10.9	+0.0	+0.3	+0.4	+0.0	51.1	69.5	-18.4	Perpe
			-27.2						LOW		
3	10.060M	66.6	+10.9	+0.0	+0.3	+0.4	+0.0	51.0	69.5	-18.5	Perpe
			-27.2						MID		•
4	10.005M	66.1	+10.9	+0.0	+0.3	+0.4	+0.0	50.5	69.5	-19.0	Paral
			-27.2						LOW		
5	10.002M	65.8	+10.9	+0.0	+0.3	+0.4	+0.0	50.2	69.5	-19.3	Paral
			-27.2						MID		
6	10.060M	61.6	+10.9	+0.0	+0.3	+0.4	+0.0	46.0	69.5	-23.5	Perpe
			-27.2						HIGH		
7	19.850M	53.1	+10.2	+0.0	+0.4	+0.5	+0.0	37.0	69.5	-32.5	Paral
			-27.2						MID		
8	24.904M	48.0	+9.6	+0.1	+0.5	+0.6	+0.0	31.6	69.5	-37.9	Perpe
			-27.2						LOW		•
9	19.854M	47.5	+10.2	+0.0	+0.4	+0.5	+0.0	31.4	69.5	-38.1	Paral
			-27.2						HIGH		

Page 62 of 67 Report No: FC06-010A

10	20.382M	45.9	+10.1	+0.0	+0.4	+0.5	+0.0	29.7	69.5	-39.8	Paral
			-27.2						MID		
11	19.985M	44.6	+10.2	+0.0	+0.4	+0.5	+0.0	28.5	69.5	-41.0	Perpe
			-27.2						LOW		
12	20.389M	44.4	+10.1	+0.0	+0.4	+0.5	+0.0	28.2	69.5	-41.3	Paral
			-27.2						HIGH		
13	20.420M	44.1	+10.1	+0.0	+0.4	+0.5	+0.0	27.9	69.5	-41.6	Perpe
			-27.2						HIGH		_
14	24.840M	43.1	+9.6	+0.1	+0.5	+0.6	+0.0	26.7	69.5	-42.8	Perpe
			-27.2						MID		_
15	20.384M	42.2	+10.1	+0.0	+0.4	+0.5	+0.0	26.0	69.5	-43.5	Paral
			-27.2						LOW		
16	24.902M	41.7	+9.6	+0.1	+0.5	+0.6	+0.0	25.3	69.5	-44.2	Paral
			-27.2						LOW		
17	25.090M	40.2	+9.6	+0.1	+0.5	+0.6	+0.0	23.8	69.5	-45.7	Perpe
			-27.2						HIGH		•
18	20.320M	39.4	+10.2	+0.0	+0.4	+0.5	+0.0	23.3	69.5	-46.2	Perpe
			-27.2						MID		-
19	20.013M	38.5	+10.2	+0.0	+0.4	+0.5	+0.0	22.4	69.5	-47.1	Paral
			-27.2						LOW		
20	24.903M	35.7	+9.6	+0.1	+0.5	+0.6	+0.0	19.3	69.5	-50.2	Paral
			-27.2						MID		

Date: 1/25/2006 Time: 15:04:29 Impinj Inc. WO#: 83127 FCC 15:209 Test Distance: 3 Meters Sequence#: 5

Test Location: CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823

Customer: **Impinj, Incorporated** Specification: **FCC 15.209/15.247**

Work Order #: 83127 Date: 1/25/2006
Test Type: Radiated Scan Time: 12:19:19
Equipment: UHF RFID Sequence#: 10

Manufacturer: Impinj Inc Tested By: Septimiu Apahidean

Model: IPJ-R1000 S/N: 40306020043

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
UHF RFID*	Impinj Inc	IPJ-R1000	40306020043
Antenna	Cushcraft	S9028PCL	-
Power Supply	CUI Inc.	DSA-60W-20 1 24060	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Compaq	Presario V2000	CNF5391NBO

Test Conditions / Notes:

EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT. Frequency range tested: 30 MHz - 10 GHz.

Transducer Legend:

T1=Chase bilog a/n 00851, s/n 2629	T2=Cable #22 080905 Preamp to SA
T3=Cable #33 44ft RG-214(ant to Bulkhead)	T4=Cable Heliax #17 84ft(10 meter) 100205
T5=Preamp 8447D Asset 00010	T6=
T7=Cable #19, 54' Heliax, Site D OATs	T8=DRG Horn_01646_072206
T9=HF Preamp Cal. HP-83017A,S/N- 3123A00282	T10=1-40 GHz Cable_122306
T11=HPF_AN02116_1.5GHz_062707	

Measurement Data: Reading listed by margin. Test Distance: 3	Meters
--	--------

Measurement Data: Reading fisted by filargiff.				argini.	Test Distance. 5 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	1 3661.050M	52.4	+0.0	+0.0	+0.0	+0.0	+0.0	50.2	54.0	-3.8	Vert
	Ave		+0.0	+0.0	+5.0	+29.9					
			-39.3	+1.7	+0.5						
,	^ 3661.063M	55.7	+0.0	+0.0	+0.0	+0.0	+0.0	53.5	54.0	-0.5	Vert
			+0.0	+0.0	+5.0	+29.9					
			-39.3	+1.7	+0.5						
3	3 3661.063M	51.2	+0.0	+0.0	+0.0	+0.0	+0.0	49.0	54.0	-5.0	Horiz
			+0.0	+0.0	+5.0	+29.9					
			-39.3	+1.7	+0.5						
	4 4575.712M	48.3	+0.0	+0.0	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Horiz
			+0.0	+0.0	+5.5	+31.4					
			-39.1	+1.9	+0.9						

Page 64 of 67 Report No: FC06-010A

5	1252.925M	45.5	+0.0	+0.0	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Horiz
			+0.0	+0.0	+2.5	+24.1					
			-40.3	+1.0	+16.1						
6	4576.375M	47.2	+0.0	+0.0	+0.0	+0.0	+0.0	47.8	54.0	-6.2	Vert
			+0.0	+0.0	+5.5	+31.4					
			-39.1	+1.9	+0.9						
7	6405.950M	42.5	+0.0	+0.0	+0.0	+0.0	+0.0	47.2	54.0	-6.8	Vert
			+0.0	+0.0	+6.7	+33.2					
			-38.4	+2.2	+1.0						
8	1277.000M	46.9	+0.0	+0.0	+0.0	+0.0	+0.0	47.1	54.0	-6.9	Horiz
			+0.0	+0.0	+2.5	+24.2					
			-40.2	+1.0	+12.7						
9	2354.962M	53.5	+0.0	+0.0	+0.0	+0.0	+0.0	46.6	54.0	-7.4	Vert
			+0.0	+0.0	+3.5	+27.0					
10	0140 (00) (26.5	-39.4	+1.3	+0.7	. 0. 0	. 0. 0	16.2	7.4.0	7.7	X7 /
10	9149.600M	36.5	$^{+0.0}_{+0.0}$	+0.0	+0.0	+0.0	+0.0	46.3	54.0	-7.7	Vert
				+0.0	+8.6	+35.6					
1.1	2355.075M	53.0	-38.0	+2.8	+0.8	ι Ο Ο	ι Ο Ο	46.1	540	-7.9	Homin
11	2555.075WI	33.0	$^{+0.0}_{+0.0}$	+0.0	+0.0	$+0.0 \\ +27.0$	+0.0	40.1	54.0	-1.9	Horiz
			-39.4	+0.0 +1.3	+3.5 +0.7	+27.0					
12	8234.850M	37.6	+0.0	+0.0	+0.7	+0.0	+0.0	45.9	54.0	-8.1	Vert
12	6234.630W	37.0	+0.0	+0.0	+7.7	+35.3	+0.0	43.9	34.0	-0.1	VCIT
			-38.1	+2.7	+0.7	⊤33.3					
13	383.624M	45.7	+14.4	+0.4	+2.1	+2.3	+0.0	37.9	46.0	-8.1	Horiz
13	303.02411	73.7	-27.0	10.4	12.1	12.3	10.0	31.7	-10.0	-0.1	110112
			27.0								
14	5491.175M	41.2	+0.0	+0.0	+0.0	+0.0	+0.0	45.2	54.0	-8.8	Vert
	0.511170111		+0.0	+0.0	+6.5	+32.1	. 0.0		<i>c</i>	0.0	, 610
			-38.2	+2.1	+1.5						
15	7319.650M	38.1	+0.0	+0.0	+0.0	+0.0	+0.0	45.0	54.0	-9.0	Vert
			+0.0	+0.0	+7.4	+34.6					
			-38.4	+2.5	+0.8						
16	119.700M	47.1	+11.5	+0.2	+1.1	+1.3	+0.0	34.4	43.5	-9.1	Vert
			-26.8								
17	2745.875M	48.5	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Vert
			+0.0	+0.0	+4.2	+28.3					
			-39.3	+1.4	+0.6						
18	1830.657M	50.6	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	54.0	-12.2	Horiz
			+0.0	+0.0	+3.3	+25.6					
			-39.4	+1.2	+0.5						
19	125.076M	43.5	+11.6	+0.2	+1.1	+1.3	+0.0	30.9	43.5	-12.6	Vert
			-26.8								
20	1920 50514	40.0	ΙΟ Ο	100	ΙΔΩ	Ι Δ Δ	100	41.0	540	12.0	Vant
20	1830.595M	49.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.0	54.0	-13.0	Vert
			+0.0 -39.4	+0.0	+3.3	+25.6					
21	85.754M	43.7		+1.2	+0.5	+1.2	+0.0	27.0	40.0	-13.0	Horiz
21	03./34IVI	43.7	+8.1 -27.1	+0.1	+1.0	+1.2	+0.0	27.0	40.0	-13.0	HOHZ
			-2/.1								

Page 65 of 67 Report No: FC06-010A

22	173.183M	42.4	+11.4	+0.2	+1.4	+1.5	+0.0	30.2	43.5	-13.3	Vert
			-26.7								
23	225.308M	44.8	+10.3	+0.3	+1.6	+1.7	+0.0	32.1	46.0	-13.9	Vert
	220.000.11		-26.6	. 0.0	. 1.0		. 0.0	02.11		10.,	. 010
			20.0								
24	220.716M	44.2	+10.2	+0.3	+1.6	⊥1 7	+0.0	31.4	46.0	-14.6	Horiz
24	220.7 TOW	77.2	-26.6	10.5	11.0	11./	10.0	31.7	-1 0.0	-14.0	HOHZ
			-20.0								
25	80.531M	42.0	+7.7	+0.1	+0.9	+1.1	+0.0	24.8	40.0	-15.2	Horiz
23	00.331WI	42.0	-27.0	+0.1	±0.9	⊤1.1	+0.0	24.0	40.0	-13.2	HOHZ
			-27.0								
26	151.728M	39.9	+12.2	+0.2	+1.3	+1.4	+0.0	28.2	43.5	-15.3	Vert
20	131.720W	37.7	-26.8	+0.2	+1.5	±1. 4	+0.0	20.2	43.3	-13.3	V CI t
			-20.8								
27	263.662M	42.3	+10.6	+0.3	+1.7	+2.0	+0.0	30.4	46.0	-15.6	Horiz
21	203.002M	42.3	+10.6 -26.5	+0.5	+1./	+2.0	+0.0	30.4	40.0	-13.0	попи
			-20.3								
28	450.245M	36.1	+15.7	+0.4	+2.4	+2.4	+0.0	29.3	46.0	-16.7	Vert
28	450.245M	30.1		+0.4	+2.4	+2.4	+0.0	29.3	40.0	-10./	vert
			-27.7								
20	139.459M	38.1	+12.0	+0.2	.1.2	+1.4	+0.0	26.1	43.5	-17.4	V
29	139.439M	38.1	+12.0	+0.2	+1.2	+1.4	+0.0	20.1	43.5	-1/.4	Vert
			-26.8								
20	110 4403 4	20.2	. 10.0	. 0.1	. 1 1	. 1.0	. 0. 0	25.6	12.5	17.0	TT .
30	110.448M	39.3	+10.8	+0.1	+1.1	+1.2	+0.0	25.6	43.5	-17.9	Horiz
			-26.9								
21	1100 0503 6	46.4	0.0	0.0	0.0	0.0	0.0	22.1	7.4.0	20.0	T. 7
31	1190.950M	46.4	+0.0	+0.0	+0.0	+0.0	+0.0	33.1	54.0	-20.9	Vert
			+0.0	+0.0	+2.4	+23.9					
			-40.5	+0.9	+0.0						
32	300.072M	36.4	+10.7	+0.3	+1.8	+2.0	+0.0	24.8	46.0	-21.2	Vert
			-26.4								
33	1253.150M	45.0	+0.0	+0.0	+0.0	+0.0	+0.0	32.3	54.0	-21.7	Vert
			+0.0	+0.0	+2.5	+24.1					
			-40.3	+1.0	+0.0						
34	1277.150M	44.6	+0.0	+0.0	+0.0	+0.0	+0.0	32.1	54.0	-21.9	Vert
			+0.0	+0.0	+2.5	+24.2					
			-40.2	+1.0	+0.0						
35	300.002M	21.1	+10.7	+0.3	+1.8	+2.0	+0.0	9.5	46.0	-36.5	Vert
			-26.4								
. — —											

Page 66 of 67 Report No: FC06-010A

Test Location: CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823

Customer: Impinj, Incorporated

Specification: **15.247(b)(2)**

Work Order #: 83127 Date: 1/26/2006
Test Type: Radiated Scan Time: 11:03:48
Equipment: UHF RFID Sequence#: 15

Manufacturer: Impinj Inc Tested By: Septimiu Apahidean

Model: IPJ-R1000 S/N: 40306020043

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
UHF RFID*	Impinj Inc	IPJ-R1000	40306020043
Antenna	Cushcraft	S9028PCL	-
Power Supply	CUI Inc.	DSA-60W-20 1 24060	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Compaq	Presario V2000	CNF5391NBO

Test Conditions / Notes:

EUT is connected to the remote laptop via ethernet cable, connected to the EUT is the antenna on port one, a DB9 cable connected to the serial port and a DB25 cable connected to the GPIO port. The EUT is powered by an external AC/DC power adapter. The remote laptop is controlling the EUT.; RF power Output for Low, Middle and High. Frequency range: Fundamental.

Transducer Legend:

T1=1-40 GHz Cable_122306

Measu	Measurement Data:		Reading listed by margin.			Test Distance: None					
#	Freq MHz	Rdng dBm	T1 dB	dB	dB	dB	Dist Table	Corr dBm	Spec dBm	Margin dB	Polar Ant
1	927.280M	29.1	+0.8				+0.0	29.9	30.0	-0.1	None
2	915.280M	29.0	+0.8				+0.0	29.8	30.0	-0.2	None
3	902.690M	28.9	+0.8				+0.0	29.7	30.0	-0.3	None

Page 67 of 67 Report No: FC06-010A