

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093) and IEEE Std 1528-2013

Product Name: Professional Diagnostic Tool

Trademark: LAUNCH

Model Name: Millennium HD ProA

Family Model: See Page 7

Report No.: S25032803509001

FCC ID: XUJCREHDV2

Prepared for

LAUNCH TECH CO., LTD.

No.4012, Launch Industrial Park, North Wuhe Rd, Bantian Street, Longgang District, Shenzhen, 518129, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen Guangdong, People's Republic of China

Tel. 0755-23200050 Website: http://www.ntek.org.cn

Page 2 of 82

Report No.: S25032803509001

TEST RESULT CERTIFICATION

Applicant's name LAUNCH TECH CO., LTD.

No.4012, Launch Industrial Park, North Wuhe Rd, Bantian Street, Longgang Address.....

District, Shenzhen, 518129, China

Manufacturer's

LAUNCH TECH CO., LTD. Name

No.4012, Launch Industrial Park, North Wuhe Rd, Bantian Street, Longgang

Address District, Shenzhen, 518129, China

Product description

Product name...... Professional Diagnostic Tool

TrademarkLAUNCH

Model Name Millennium HD ProA

Family Model..... See Page 7

FCC 47 CFR Part 2(2.1093)

Standards..... IEEE Std 1528-2013

Published RF exposure KDB procedures

This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093). The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Test Sample Number \$250328035007

Date of Test

Date (s) of performance of tests... Apr. 17, 2025~ Apr. 24, 2025

Date of Issue May. 18, 2025

Test Result Pass

Prepared . Own Niao

(Project Engineer)

Reviewed

Approved . (

(Manager)

% % Revision History % %

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	May. 18, 2025	Owen Xiao

TABLE OF CONTENTS

1.	General Information	6
	1.1. RF exposure limits	6
	1.2. Statement of Compliance	7
	1.3. EUT Description	7
	1.4. Test specification(s)	8
	1.5. Ambient Condition	8
	1.6. Facilities And Accreditations	8
	1.6.1. Facilities	8
	1.6.2. Laboratory Accreditations And Listings	8
2.	SAR Measurement System	9
	2.1. SATIMO SAR Measurement Set-up Diagram	9
	2.2. Robot	10
	2.3. E-Field Probe	11
	2.3.1. E-Field Probe Calibration	11
	2.4. SAM phantoms	12
	2.4.1. Technical Data	13
	2.5. Device Holder	14
	2.6. Test Equipment List	15
3.	SAR Measurement Procedures	17
	3.1. Power Reference	17
	3.2. Area scan & Zoom scan	17
	3.3. Description of interpolation/extrapolation scheme	19
	3.4. Volumetric Scan	20
	3.5. Power Drift	20
4.	System Verification Procedure	21
	4.1. Tissue Verification	
	4.1.1. Tissue Dielectric Parameter Check Results	22
	4.2. System Verification Procedure	24
	4.2.1. System Verification Results	25
5.	SAR Measurement variability and uncertainty	26
	5.1. SAR measurement variability	26
	5.2. SAR measurement uncertainty	26
6.	RF Exposure Positions	27
	6.1. Generic device	27
7.	RF Output Power	28
	7.1. WLAN & Bluetooth Output Power	28
	7.1.1. Output Power Results Of WLAN	28
	7.1.2. Output Power Results Of Bluetooth	30

8.	Antenna Location	30
9.	Stand-alone SAR test exemption	33
10.	SAR Results	34
	10.1. SAR measurement results	34
	10.1.1. SAR measurement Result of WLAN 2.4G	34
	10.1.2. SAR measurement Result of WLAN 5.2G	34
	10.1.3. SAR measurement Result of WLAN 5.8G	35
	10.2. Simultaneous Transmission Analysis	36
11.	Appendix A. Photo documentation	37
12.	Appendix B. System Check Plots	38
13.	Appendix C. SAR Measurement Plots	45
14.	Appendix D. Calibration Certificate	52

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE: This product is used for inlaying inside the cabinet and operating by hand

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Millennium HD ProA are as follows.

	Max Reported SAR Value(W/kg)
Band	1-g Body
	(Separation distance of 0mm)
WLAN 2.4G	1.093
WLAN 5.2G	1.292
WLAN 5.8G	0.990
Max Simultaneous Tx	1.410

1.3. EUT Description

Device Information					
Product Name	Professional Diagnostic To	Professional Diagnostic Tool			
Trade Name	LAUNCH				
Model Name	Millennium HD ProA	Millennium HD ProA			
	Creader Professional 1235	S HD, Creader Profe	essional 129 HD		
Face the Mandal	V2, Creader Elite HD-CM	√2, Creader Elite H	D-IN V2, Creader		
Family Model	Elite HD-CT V2, Creader E	Elite HD-V V2, Crea	der Elite HD-H		
	V2, Creader Elite HD-IS V	2, Creader Elite HD	X V2		
Madal Difference	All models are the same ci	rcuit and RF modul	e, except for the		
Model Difference	color of the rubber sleeve	and the Vehicle bra	nd aredifferent.		
FCC ID	XUJCREHDV2				
Device Phase	Identical Prototype				
Exposure Category	General population / Uncontrolled environment				
Antenna Type	FPC Antenna				
Battery Information	DC 3.6V, 3000mAh, 10.8Wh				
Hardware version	N/A				
Software version	N/A				
Device Operating Configurations					
Supporting Mode(s)	WLAN 2.4G/5G, Bluetooth				
Test Modulation	WLAN(DSSS/OFDM), Bluetooth(GFSK, π/4-DQPSK, 8DPSK				
	Band	Tx (MHz)	Rx (MHz)		
	WLAN 2.4G 2412-2462		2462		
Operating Frequency Range(s)	WLAN 5.2G	5180-	5240		
	WLAN 5.8G 5745-5825		5825		
	Bluetooth 2402-2480		2480		

Page 8 of 82

Report No.: S25032803509001

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)
IEEE Std 1528-2013
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02 RF Exposure Reporting v01r02
KDB 447498 D01 General RF Exposure Guidance v06
KDB 248227 D01 802.11 Wi-Fi SAR v02r02
KDB 616217 D04 SAR for laptop and tablets v01r02

1.5. Ambient Condition

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

1.6. Facilities And Accreditations

1.6.1. **Facilities**

All measurement facilities used to collect the measurement data are located at Building 1, No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of IEC/IEEE 1528:2013

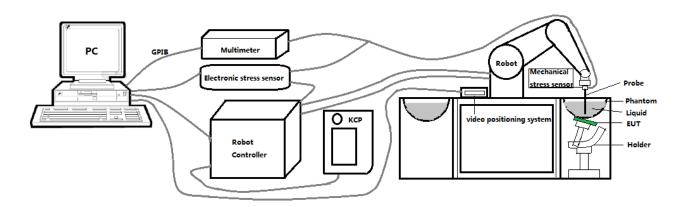
Laboratory Accreditations And Listings 1.6.2.

Site Description

CNAS Lab. : The Certificate Registration Number is L5516 : The Certificate Registration Number is 4298.01 A2LA Lab.

: Test Firm Registration Number: 463705 FCC Accredited

Designation Number: CN1184


ISED Registration: Company Number: 9270A

CAB identifier: CN0074

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ±0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Page 11 of 82 Report No.: S25032803509001

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe 0725O-448with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 2.5 mm

- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1

- Probe linearity: ±0.06 dB - Axial isotropy: ±0.01 dB

- Hemispherical Isotropy: ±0.01 dB

- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.

- Lower detection limit: 8mW/kg

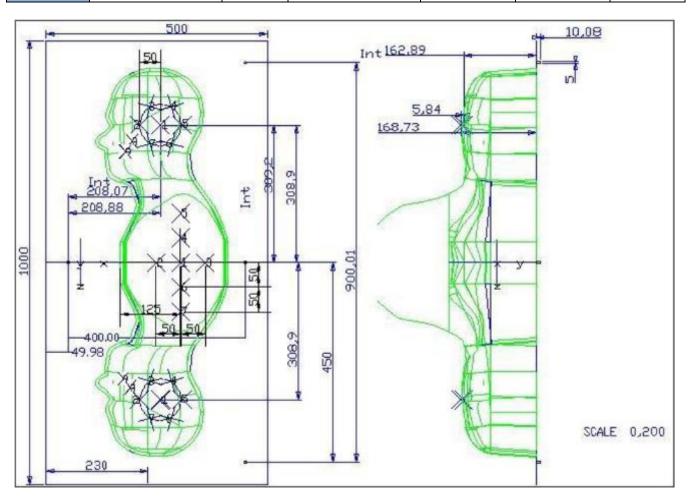
Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ±10%. The spherical isotropy shall be evaluated and within ±0.25dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. SAM phantoms

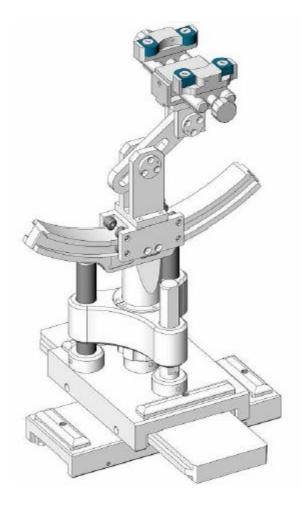
Photo of SAM phantom SN 16/15 SAM119


The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000 mm Width:500 mm Height:200 mm	Gelcoat with fiberglass	3.4	0.02

Serial Number	Left Head(mm)		Right Head(mm)		Flat Part(mm)	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
	5	2.08	5	2.08	4	2.10
SN 16/15 SAM119	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-


The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μm .

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	Holder Material	Permittivity	Loss Tangent	
SN 16/15 MSH100	Delrin	3.7	0.005	

15 of 82 Report No.: S25032803509001

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked \boxtimes

		Name of			Calibr	ation
	Manufacturer	Equipment	Type/Model	Serial Number	Last Cal.	Due
		Equipment			Lasi Cai.	Date
	MVG	E FIELD PROBE	SSE2	4024-EPGO-442	Oct. 04,	Oct. 03,
	WIVO	ETIELDTROBE	OOLZ	4024°L1 00°442	2024	2025
	MVG	750 MHz Dipole	SID750	SN 03/15 DIP	Feb. 21,	Feb. 20,
	101 0 0	700 WII IZ BIPOIC	012700	0G750-355	2024	2027
	MVG	835 MHz Dipole	SID835	SN 03/15 DIP	Feb. 21,	Feb. 20,
				0G835-347	2024	2027
	MVG	900 MHz Dipole	SID900	SN 03/15 DIP	Feb. 21,	Feb. 20,
				0G900-348	2024	2027
	MVG	1800 MHz Dipole	SID1800	SN 03/15 DIP	Feb. 21,	Feb. 20,
			<u> </u>	1G800-349	2024	2027
	MVG	1900 MHz Dipole	SID1900	SN 03/15 DIP		Feb. 20,
	10100	1000 Wii 12 Bipolo	1G900-350		2024	2027
	MVG	2000 MHz Dipole	SID2000	SN 03/15 DIP	Feb. 21,	Feb. 20,
	10100	2000 WII IZ DIPOIC	0102000	2G000-351	2024	2027
\boxtimes	MVG	2450 MHz Dipole	SID2450	SN 03/15 DIP	Feb. 21,	Feb. 20,
	10100	2400 WII IZ DIPOIC	0102400	2G450-352	2024	2027
	MVG	2600 MHz Dipole	SID2600	SN 03/15 DIP	Feb. 21,	Feb. 20,
	10100	2000 WII IZ DIPOIC	0102000	2G600-356	2024	2027
	MVG	5000 MHz Dipole	SWG5500	SN 13/14 WGA 33	Feb. 21,	Feb. 20,
	10100	3000 WII IZ DIPOIC		014 10/14 W 0/1 00	2024	2027
	MVG	Liquid measurement Kit	SCLMP	SN 21/15 OCPG 72	NCR	NCR
\boxtimes	MVG	Power Amplifier	N/A	AMPLISAR_28/14_0 03	NCR	NCR
\boxtimes	KEITHLEY	Millivoltmeter	2000	4072790	Nov. 29, 2024	Nov. 28, 2025
		Universal radio				
	R&S	communication	CMU200	117858	Apr. 26,	Apr. 25,
		tester			2024	2025
		Wideband radio			A	A 0.5
	R&S	communication	CMW500	103917	Apr. 26,	Apr. 25,
		tester			2024	2025
	HP	Network Analyzer	E5071C	LPS-461	Oct. 15,	Oct. 14,

ge 16 of 82 Report No.: S25032803509001

					2024	2025
\boxtimes	Agilent	Calibration Kit	85033E	N/A	May. 31, 2024	May. 30, 2025
\boxtimes	Agilent	MXG Vector Signal Generator	N5182A	MY47070317	Apr. 25, 2024	Apr. 24, 2025
\boxtimes	Agilent	Power meter	E4419B	MY45102538	Apr. 25, 2024	Apr. 24, 2025
\boxtimes	Agilent	Power sensor	E9301A	LES-413-C	May. 30, 2024	May. 29, 2025
\boxtimes	Agilent	Power sensor	E9301A	US39212148	Apr. 25, 2024	Apr. 24, 2025
\boxtimes	MCLI/USA	Directional Coupler	CB11-20	0D2L51502	Apr. 26, 2024	Apr. 25, 2027
\boxtimes	N/A	Thermometer	N/A	LES-085	Mar. 27, 2023	Mar. 26, 2026
	MVG	SAM Phantom	SSM2	SN 16/15 SAM119	NCR	NCR
\boxtimes	MVG	Device Holder	SMPPD	SN 16/15 MSH100	NCR	NCR
\boxtimes	Mini-Circuits	Low Pass	LFCW-6000+	N/A	NCR	NCR
\boxtimes	Mini-Circuits	Attenuator	BW-S3W2+	N/A	NCR	NCR
\boxtimes	Mini-Circuits	Attenuator	BW-S3W2+	N/A	NCR	NCR
\boxtimes	Weinschel	Attenuator	33-10-33	N/A	NCR	NCR

Measurement Software

Manufacturer	Software Name	Software Version
SATIMO	OpenSAR	V5.3.15.11

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: S25032803509001

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan

above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

CCREDITED Page 19 of 82 Report No.: S25032803509001

			≤ 3 GHz	> 3 GHz	
Maximum distance fro (geometric center of pr			5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
	Maximum probe angle from probe axis to phantom urface normal at the measurement location		30° ± 1°	20° ± 1°	
Maximum area scan sp	atial resolu	ntion: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the abothe measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. $ \Delta y_{Zoom} = \begin{cases} $		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$		
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz}: \le 4 \text{ mm}$ $4 - 5 \text{ GHz}: \le 3 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% of weight)	Head Tissue									
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23
Ingredients (% of weight)					Body ⁻	Tissue				
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88	79.54	79.54
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97	11.24	11.24
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99	9.22	9.22

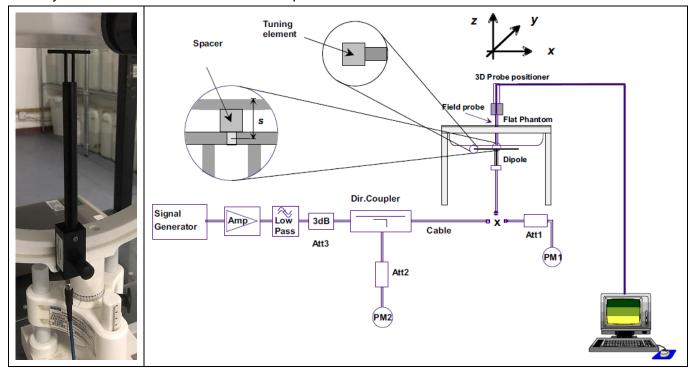
For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

Photo of Liquid depth for Head Position Photo of Liquid depth for Body Position

4.1.1. **Tissue Dielectric Parameter Check Results**

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

Tissue	Measured	Target Tissue		Measured Tissue		Delta(%)		Liquid	Toot Date
Туре	Frequency (MHz)	εr	σ (S/m)	εr	σ (S/m)	εr	σ (S/m)	Temp.	Test Date
Head 2450	2450	39.20	1.80	38.61	1.80	-1.51	0.00	21.6 °C	Apr. 17, 2025
Head 2450	2412	39.27	1.77	38.74	1.75	-1.35	-1.13	21.6 °C	Apr. 17, 2025
Head 2450	2437	39.22	1.79	38.62	1.79	-1.53	0.00	21.6 °C	Apr. 17, 2025
Head 2450	2462	39.18	1.81	38.59	1.83	-1.51	1.10	21.6 °C	Apr. 17, 2025
Head 5200	5200	36.00	4.66	37.52	4.61	4.22	-1.07	21.6 °C	Apr. 21, 2025
Head 5200	5180	36.02	4.64	37.59	4.59	4.36	-1.08	21.6 °C	Apr. 21, 2025
Head 5200	5240	35.96	4.70	37.37	4.65	3.92	-1.06	21.6 °C	Apr. 21, 2025
Head 5800	5800	35.30	5.27	35.32	5.32	0.06	0.95	21.4 °C	Apr. 24, 2025
Head 5800	5745	35.36	5.22	35.45	5.29	0.25	1.34	21.4 °C	Apr. 24, 2025
Head 5800	5785	35.32	5.26	35.39	5.27	0.20	0.19	21.4 °C	Apr. 24, 2025
Head 5800	5825	35.28	5.30	35.25	5.34	-0.09	0.75	21.4 °C	Apr. 24,


NOTE 4	<u> </u>							<u> </u>	2025
NOTE: 1. ambient of	The dielectric conditions and	parameters within 2 °	s of the C of the	tissue-ed condition	juivalent l ns expect	iquid sh ed durin	ould be i g the SA	measured u ∖R evaluatio	ınder simil on to satis
protocol r	equirements. Tested by : M								

4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:

4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

	Target SAR (1W)		Measured SAR		Measur	Measured SAR		Delta (%)			
System					(Normalized to 1W)				Liquid		
Verification	1-g (W/Kg)	10-g (W/Kg)	Input Power (mW)	1-g (W/Kg)	10-g (W/Kg)	1-g (W/Kg)	10-g (W/Kg)	1-g (%)	10-g (%)	Temp.	Test Date
2450MHz	50.05	23.80	100.00	5.167	2.214	51.67	22.14	3.24	-6.97	21.6 °C	Apr. 17, 2025
5200MHz	162.59	56.21	10.00	1.608	0.542	160.80	54.20	-1.10	-3.58	21.6 °C	Apr. 21, 2025
5800MHz	182.20	61.32	10.00	1.676	0.573	167.60	57.30	-8.01	-6.56	21.4 °C	Apr. 24, 2025

Tested by: Max Zhou

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. RF Exposure Positions 6.1. Generic device

The SAR evaluation shall be performed for surface of the DUT that are accessible during intended use, as indicated in Figure 6.1. Adjust the distance between the device surface and the flat phantom to 0mm.

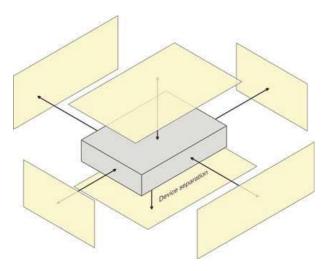


Figure 6.1 – Test positions for generic device

7. RF Output Power

7.1. WLAN & Bluetooth Output Power

7.1.1. Output Power Results Of WLAN

Mode	Channel	Frequency (MHz)	Tune-up	Output Power (dBm)
	1	2412	13.00	12.53
802.11b	6	2437	13.00	11.84
	11	2462	13.00	11.98
	1	2412	12.00	11.61
802.11g	6	2437	12.00	11.40
	11	2462	12.00	11.19
000.44	1	2412	12.00	11.75
802.11n	6	2437	12.00	11.34
HT20	11	2462	12.00	11.29
000 44 =	3	2422	12.00	11.58
802.11n	6	2437	12.00	11.63
HT40	9	2452	12.00	11.27

NOTE: Power measurement results of WLAN 2.4G.

Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	36	5180	8.50	7.70
802.11a	40	5200	8.50	7.72
	48	5240	8.50	8.06
	36	5180	8.00	6.80
802.11n HT20	40	5200	8.00	7.19
	48	5240	8.00	7.81
802.11n HT40	38	5190	8.00	7.08
602.1111 H140	46	5230	8.00	7.73
	36	5180	8.00	6.61
802.11ac VHT20	40	5200	8.00	7.04
	48	5240	8.00	7.62
902 11 oo VUT40	38	5190	8.00	7.03
802.11ac VHT40	46	5230	8.00	7.71
802.11ac VHT80	42	5210	7.50	7.06

NOTE: Power measurement results of WLAN 5.2G.

Tune-up **Output Power** Mode Channel Frequency (MHz) (dBm) (dBm) 5745 10.00 9.34 149 802.11a 157 5785 10.00 9.79 9.24 165 5825 10.00 149 5745 10.00 9.17 802.11n HT20 157 5785 10.00 9.69 165 5825 10.00 9.18 5755 9.38 151 10.00 802.11n HT40 159 5795 10.00 9.85 149 5745 10.00 9.17 802.11ac VHT20 157 5785 10.00 9.68 10.00 9.20 165 5825 5755 9.52 151 10.00 802.11ac VHT40 159 5795 10.00 9.87

5775

10.00

9.50

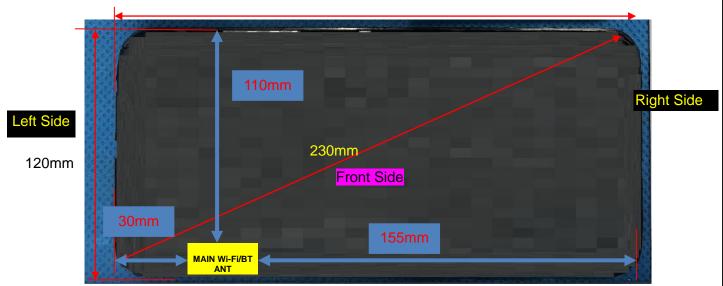
NOTE: Power measurement results of WLAN 5.8G.

155

802.11ac VHT80

7.1.2. **Output Power Results Of Bluetooth**

BLE	Channel	Tune-up (dBm)	Output Power (dBm)	
DLL	0CH	4.50	4.49	
	19CH	4.50	4.45	
	39CH	4.00	3.86	


	Output Power (dBm)						
	Data Rates	Tune-up	Channe				
		(dBm)	0CH	19CH	39CH		
BR+EDR	1M	4.00	3.82	3.78	3.27		
	2M	4.00	3.71	3.69	3.20		
	ЗМ	4.50	4.24	4.27	3.79		

NOTE: Power measurement results of Bluetooth.

8. Antenna Location

Top Side

218mm

Bottom Side

Front View

Note: Since the confidentiality request of EUT, the antenna location example diagram see as above.

Distance of the Antenna to the EUT surface/edge										
Antennas Front Side Back Side Left Side Right Side Top Side Bottom Side										
2.4G&5G WLAN 5 5 30 155 110 5										

Note: When the minimum separation distance is < 5 mm, a distance of 5 mm is applied to determine

SAR test exclusion.

	Positions for SAR tests	
Test separation distances ≤	50 mm	
Evaceura Decitions	Tune-up Maximum p	ower of WLAN 2.4G
Exposure Positions	13.00 dBm	19.95 mW
	Antenna to user(mm)	5
Front Side	SAR exclusion threshold(mW)	10
	SAR testing required?	YES
	Antenna to user(mm)	5
Back Side	SAR exclusion threshold(mW)	10
	SAR testing required?	YES
	Antenna to user(mm)	30
Left Side	SAR exclusion threshold(mW)	57
	SAR testing required?	NO
	Antenna to user(mm)	5
Bottom Side	SAR exclusion threshold(mW)	12.54
	SAR testing required?	YES
Exposure Positions	Tune-up Maximum p	
	8.50 dBm	7.08 mW
	Antenna to user(mm)	5
Front Side	SAR exclusion threshold(mW)	7
	SAR testing required?	YES
	Antenna to user(mm)	5
Back Side	SAR exclusion threshold(mW)	7
	SAR testing required?	YES
	Antenna to user(mm)	30
Left Side	SAR exclusion threshold(mW)	39
	SAR testing required?	NO
	Antenna to user(mm)	5
Bottom Side	SAR exclusion threshold(mW)	7
	SAR testing required?	YES
Exposure Positions	Tune-up Maximum p	
	10.00 dBm	10.00 mW
	Antenna to user(mm)	5
Front Side	SAR exclusion threshold(mW)	6
	SAR testing required?	YES
	Antenna to user(mm)	5
Back Side	SAR exclusion threshold(mW)	6
	SAR testing required?	YES

Left Side	Antenna to user(mm) SAR exclusion threshold(mW)	30 37
	SAR testing required?	NO
Bottom Side	Antenna to user(mm)	5
	SAR exclusion threshold(mW)	6
	SAR testing required?	YES

	Positions for SAR tests						
Test separation distances > \$	50 mm						
Evaceure Regitions	Tune-up Maximum p	ower of WLAN 2.4G					
Exposure Positions	13.00 dBm	19.95 mW					
	Antenna to user(mm)	155					
Right Side	SAR exclusion threshold(mW)	1146					
	SAR testing required?	NO					
	Antenna to user(mm)	110					
Top Side	SAR exclusion threshold(mW)	696					
	SAR testing required?	NO					
Exposure Positions	Tune-up Maximum power of WLAN 5.2G						
Exposure Fositions	8.50 dBm	7.08 mW					
	Antenna to user(mm)	155					
Right Side	SAR exclusion threshold(mW)	1116					
	SAR testing required?	NO					
	Antenna to user(mm)	110					
Top Side	SAR exclusion threshold(mW)	666					
	SAR testing required?	NO					
Exposure Positions	Tune-up Maximum p	ower of WLAN 5.8G					
Exposure Fositions	10.00 dBm	10.00 mW					
	Antenna to user(mm)	155					
Right Side	SAR exclusion threshold(mW)	1112					
	SAR testing required?	NO					
	Antenna to user(mm)	110					
Top Side	SAR exclusion threshold(mW)	662					
	SAR testing required?	NO					

9. Stand-alone SAR test exemption

Re Refer to FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHZ)}}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

- f_(GHZ) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Mode P _{max} (dBm)		Distance	f	SAR Exclusion	SAR test
iviode			(mm)	(GHz)	threshold	exemption
Bluetooth	4.50	2.82	5 2.48		3.0	YES

NOTE: Standalone SAR test exclusion for Bluetooth

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f_{(GHZ)}}/x]$ W/kg for test separation distances \leq 50mm, where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Position	P _{max} (dBm)	P _{max} (mW)	Distance (mm)	f (GHz)	х	Estimated SAR (W/Kg)
BR+EDR	Body	4.50	2.82	5	2.48	7.5	0.118
BLE	Body	4.50	2.82	5	2.48	7.5	0.118

NOTE: Estimated SAR calculation for Bluetooth

10. SAR Results

10.1. SAR measurement results

10.1.1. SAR measurement Result of WLAN 2.4G

Test Position of Body with Omm	Test channel /Freq.	Mode		Value /kg) 10-g	Power Drift(%)	Conducted Power (dBm)	Tune-up Power (dBm)	Scaled SAR 1-g (W/Kg)	Date	Plot
Front Side	1/2412	802.11b	0.459	0.157	-1.53	12.53	13.00	0.511	2025/4/17	
Back Side	1/2412	802.11b	0.072	0.025	0.45	12.53	13.00	0.080	2025/4/17	
Bottom Side	1/2412	802.11b	0.981	0.353	3.02	12.53	13.00	1.093	2025/4/17	3#
Bottom Side	6/2437	802.11b	0.815	0.241	-2.63	11.84	13.00	1.065	2025/4/17	
Bottom Side	11/2462	802.11b	0.838	0.327	-1.62	11.98	13.00	1.060	2025/4/17	
Bottom Side Repeated	1/2412	802.11b	0.975	0.346	-1.95	12.53	13.00	1.086	2025/4/17	
Bottom Side Repeated	6/2437	802.11b	0.807	0.237	-2.28	11.84	13.00	1.054	2025/4/17	
Bottom Side Repeated	11/2462	802.11b	0.825	0.310	-1.96	11.98	13.00	1.043	2025/4/17	

Report No.: S25032803509001

NOTE: 1.Body SAR test results of WLAN 2.4G

2. Tested by : Max Zhou

10.1.2. SAR measurement Result of WLAN 5.2G

Test Position of Body with 0mm	Test channel /Freq.	Mode		Value /kg) 10-g	Power Drift(%)	Conducted Power (dBm)	Tune-up Power (dBm)	Scaled SAR 1-g (W/Kg)	Date	Plot
Front Side	40/5200	802.11a	0.280	0.078	-0.80	7.72	8.50	0.335	2025/4/21	
Back Side	40/5200	802.11a	0.112	0.030	3.40	7.72	8.50	0.134	2025/4/21	
Bottom Side	36/5180	802.11a	1.080	0.299	-0.66	7.72	8.50	1.292	2025/4/21	1#
Bottom Side	48/5240	802.11a	1.021	0.299	-0.96	7.70	8.50	1.228	2025/4/21	

ACCREDITED Page 35 of 82 Report No.: S25032803509001

Bottom	40/5200	802.11a	0.998	0.274	-0.74	8.06	8.50	1.104	2025/4/21	
Side										
Bottom Side Repeated	36/5180	802.11a	1.077	0.292	-2.54	7.72	8.50	1.289	2025/4/21	
Bottom Side Repeated	48/5240	802.11a	0.965	0.261	1.88	7.70	8.50	1.160	2025/4/21	
Bottom Side Repeated	40/5200	802.11a	0.978	0.271	-0.28	8.06	8.50	1.082	2025/4/21	

NOTE: 1.Body SAR test results of WLAN 5.2G

2. Tested by : Max Zhou

10.1.3. SAR measurement Result of WLAN 5.8G

Test Position	Test on		SAR Value (W/kg)		Power	Conducted	Tune-up	Scaled SAR	_	
of Body with 0mm	channel /Freq.	Mode	1-g	10-g	Drift(%)	Power (dBm)	Power (dBm)	1-g (W/Kg)	Date	Plot
Front Side	157/5785	802.11a	0.240	0.066	-2.65	9.79	10.00	0.252	2025/4/24	
Back Side	157/5785	802.11a	0.098	0.028	1.43	9.79	10.00	0.103	2025/4/24	
Bottom Side	157/5785	802.11a	0.943	0.273	-2.90	9.79	10.00	0.990	2025/4/24	2#
Bottom Side	149/5745	802.11a	0.841	0.248	-1.57	9.34	10.00	0.979	2025/4/24	
Bottom Side	165/5825	802.11a	0.825	0.232	-2.41	9.24	10.00	0.983	2025/4/24	
Bottom Side Repeated	157/5785	802.11a	0.938	0.268	-1.64	9.79	10.00	0.984	2025/4/24	
Bottom Side Repeated	149/5745	802.11a	0.832	0.234	-2.29	9.34	10.00	0.969	2025/4/24	
Bottom Side Repeated	165/5825	802.11a	0.817	0.228	-1.08	9.24	10.00	0.973	2025/4/24	

NOTE: 1.Body SAR test results of WLAN 5.8G

2. Tested by : Max Zhou

10.2. Simultaneous Transmission Analysis

NO simultaneous transmissions are possible for this device of Bluetooth and 2.4G Wi-Fi.

Toot Dog	oition	Scaled	SAR _{MAX}	Σ1-g SAR	SPLSR	Domork	
Test Position		WLAN	DTS	(W/Kg)	SPLSK	Remark	
	Front Side	0.335	0.118	0.453	N/A	N/A	
Dody Morn	Back Side	0.134	0.118	0.252	N/A	N/A	
Body-Worn	Bottom	1 202	0.110	1 11	NI/A	N1/A	
	Side	1.292	0.118	1.41	N/A	N/A	

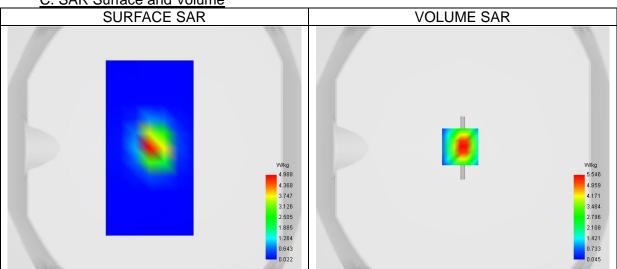
Refer to appendix Test S	etup photoSAR		

12. Appendix B. System Check Plots

Table of contents	
MEASUREMENT 1 System Performance Check - 2450MHz	
MEASUREMENT 2 System Performance Check - 5200MHz	
MEASUREMENT 3 System Performance Check - 5800MHz	

ge 39 of 82 Report No.: S25032803509001

1# System check at 2450 MHz Date of measurement: 17/4/2025

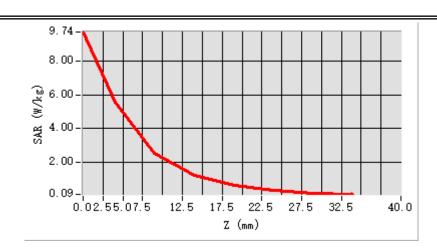

A. Experimental conditions.

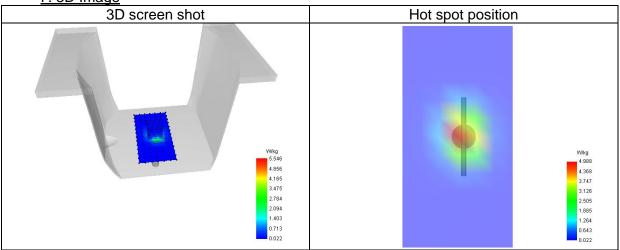
7 tr Experimental conditioner	
Probe	4024-EPGO-442
ConvF	2.74
Area Scan	dx=12mm dy=12mm, Complete
Zoom Scan	7x7x7,dx=5mm dy=5mm
	dz=5.0mm,Complete
Phantom	Validation plane
Device Position	Dipole
Band	CW2450
Channels/Frequency	Middle
Signal	CW

B. Permitivity

Middle TX Frequency (MHz)	2450.000
Relative permitivity (real part)	38.61
Relative permitivity (imaginary part)	13.25
Conductivity (S/m)	1.80

C. SAR Surface and Volume


Maximum location: X=-2.00, Y=1.00; SAR Peak: 10.01 W/kg

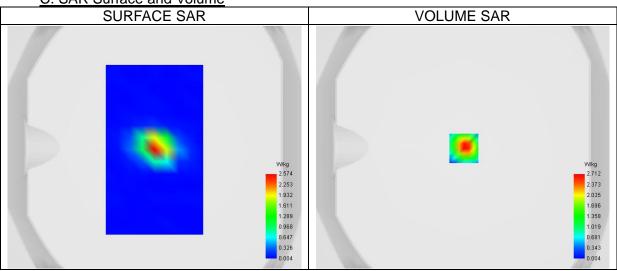

D. SAR 1g & 10g

<u> </u>	
SAR 10g (W/Kg)	2.214
SAR 1g (W/Kg)	5.167
Variation (%)	-0.50
Horizontal validation criteria: minimum distance (mm)	10.00
Vertical validation criteria: SAR ratio M2/M1	46.08
(%)	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	9.738	5.546	2.556	1.225	0.605	0.305	0.163

Page 41 of 82 Report No.: S25032803509001

2# System check at 5200 MHz Date of measurement: 21/4/2025

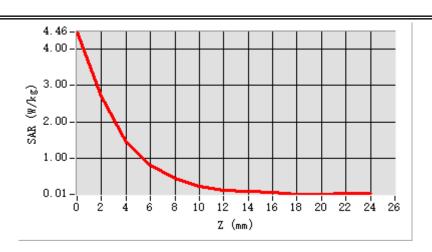

A. Experimental conditions.

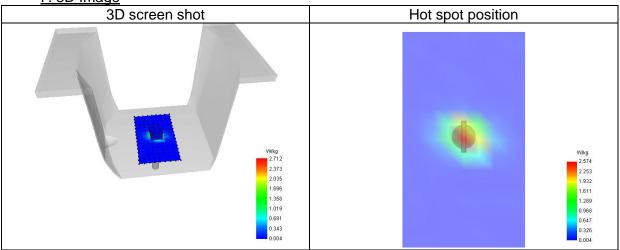
A. Experimental conditions.						
Probe	4024-EPGO-442					
ConvF	1.89					
Area Scan	dx=10mm dy=10mm, Complete					
Zoom Scan	7x7x12,dx=4mm dy=4mm					
	dz=2.0mm,Complete					
Phantom	Validation plane					
Device Position	Dipole					
Band	CW5200					
Signal	CW					
Channels/Frequency	Middle					

B. Permitivity

<u> </u>	
Middle TX Frequency (MHz)	5200.00
Relative permitivity (real part)	37.52
Relative permitivity (imaginary part)	15.95
Conductivity (S/m)	4.61

C. SAR Surface and Volume


Maximum location: X=1.00, Y=-1.00; SAR Peak: 4.86 W/kg

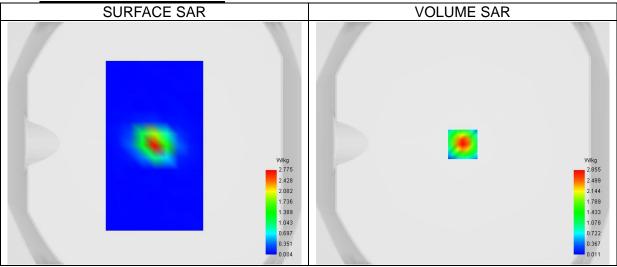

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.542
SAR 1g (W/Kg)	1.608
Variation (%)	-0.40
Horizontal validation criteria: minimum	8.94
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	52.56
(%)	

	0 0 0 0 1 1											
Z (mm)	0.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0
						0	0	0	0	0	0	0
SAR (W/Kg)	4.45	2.71	1.42	0.81	0.44	0.23	0.11	0.08	0.06	0.01	0.01	0.02
	7	2	5	5	2	8	8	6	2	1	1	7

Certificate #4298.01 Page 43 of 82 Report No.: S25032803509001

3# System check at 5800 MHz Date of measurement: 24/4/2025

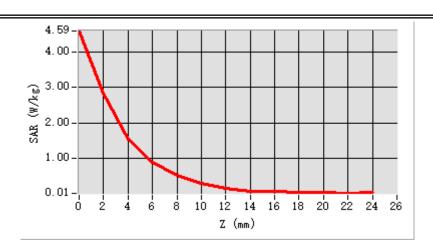

A. Experimental conditions.

71: Experimental conditione:						
Probe	4024-EPGO-442					
ConvF	1.90					
Area Scan	dx=10mm dy=10mm, Complete					
Zoom Scan	7x7x12,dx=4mm dy=4mm					
	dz=2.0mm,Complete					
Phantom	Validation plane					
Device Position	Dipole					
Band	CW5800					
Signal	CW					
Channels/Frequency	Middle					

B. Permitivity

<u>= : : ::::::::::</u>	
Middle TX Frequency (MHz)	5800.00
Relative permitivity (real part)	35.32
Relative permitivity (imaginary part)	16.52
Conductivity (S/m)	5.32

C. SAR Surface and Volume


Maximum location: X=0.00, Y=-1.00; SAR Peak: 5.07 W/kg


D. SAR 1g & 10g

<u>21 67 11 19 66 10 9</u>	
SAR 10g (W/Kg)	0.573
SAR 1g (W/Kg)	1.676
Variation (%)	1.18
Horizontal validation criteria: minimum	8.94
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	54.30
(%)	

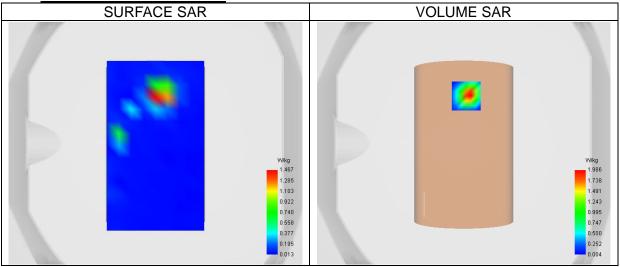
Z (mm)	0.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0
						0	0	0	0	0	0	0
SAR (W/Kg)	4.59	2.85	1.55	0.90	0.51	0.29	0.15	0.08	0.06	0.05	0.04	0.01
	4	5	0	3	7	8	2	4	2	1	2	5

13. Appendix C. SAR Measurement Plots

10. Appendix 0. OAK medsarement 1 lots					
Table of contents					
MEASUREMENT 1 WLAN 5.2G Body					
MEASUREMENT 2 WLAN 5.8G Body					
MEASUREMENT 3 WLAN 2.4G Body					

Certificate #4298.01 Page 46 of 82 Report No.: S25032803509001

<u>1# SAR Measurement at U-NII-1 (Body, Validation Plane)</u> Date of measurement: 21/4/2025

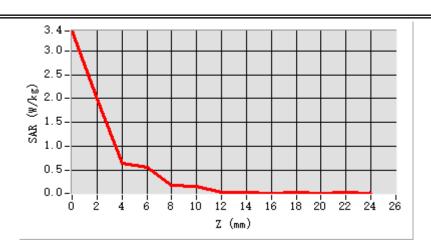

A. Experimental conditions.

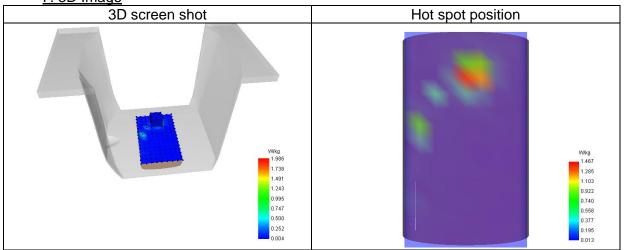
71: Experimental containers.	
Probe	0725-EPGO-448
ConvF	1.89
Area Scan	dx=10mm dy=10mm, Complete
Zoom Scan	7x7x12,dx=4mm dy=4mm
	dz=2.0mm,Complete
Phantom	Validation plane
Device Position	Body
Band	U-NII-1
Signal	IEEE 802.11 a
Channels/Frequency	Middle (40)/ frequency 5200.00 Mhz

B. Permitivity

Middle TX Frequency (MHz)	5200.00
Relative permitivity (real part)	37.52
Relative permitivity (imaginary part)	15.95
Conductivity (S/m)	4.61

C. SAR Surface and Volume

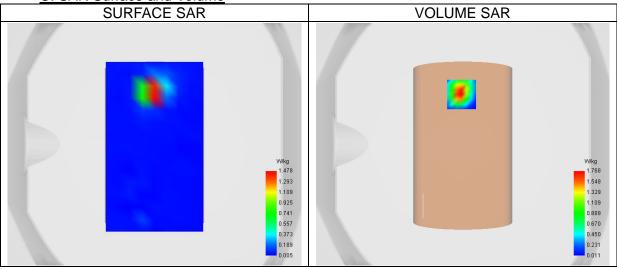

Maximum location: X=2.00, Y=39.00; SAR Peak: 3.59 W/kg


D. SAR 1g & 10g

<u> </u>	
SAR 10g (W/Kg)	0.299
SAR 1g (W/Kg)	1.080
Variation (%)	-0.66
Horizontal validation criteria: minimum	5.66
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	52.97
(%)	

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0
						0	0	0	0	0	0	0
SAR (W/Kg)	3.41	1.98	0.63	0.55	0.18	0.15	0.04	0.04	0.02	0.02	0.02	0.02
	6	6	9	9	5	2	2	4	2	6	4	7

<u>2# SAR Measurement at U-NII-3 (Body, Validation Plane)</u> Date of measurement: 24/4/2025


A. Experimental conditions.

7 to =27,0 0111110111011 001110111011	
Probe	0725-EPGO-448
ConvF	1.90
Area Scan	dx=10mm dy=10mm, Complete
Zoom Scan	7x7x12,dx=4mm dy=4mm
	dz=2.0mm,Complete
Phantom	Validation plane
Device Position	Body
Band	U-NII-3
Signal	IEEE 802.11 a
Channels/Frequency	Middle (157)/ frequency 5785.00 Mhz

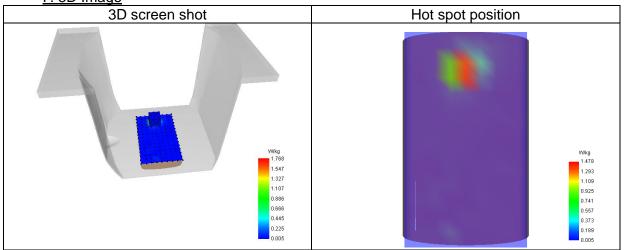
B. Permitivity

Middle TX Frequency (MHz)	5785.00
Relative permitivity (real part)	35.39
Relative permitivity (imaginary part)	16.40
Conductivity (S/m)	5.27

C. SAR Surface and Volume

Maximum location: X=-1.00, Y=41.00; SAR Peak: 3.43 W/kg

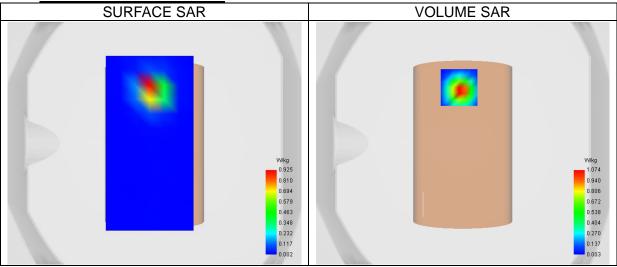

D. SAR 1g & 10g


<u> </u>	
SAR 10g (W/Kg)	0.273
SAR 1g (W/Kg)	0.943
Variation (%)	-2.90
Horizontal validation criteria: minimum	8.00
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	46.34
(%)	

Z (mm)	0.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0
						0	0	0	0	0	0	0
SAR (W/Kg)	3.08	1.76	0.81	0.40	0.17	0.07	0.04	0.03	0.02	0.02	0.02	0.02
	1	8	9	2	2	3	4	9	4	1	5	8

ge 49 of 82 Report No.: S25032803509001

3# SAR Measurement at ISM (Body, Validation Plane) Date of measurement: 17/4/2025


A. Experimental conditions.

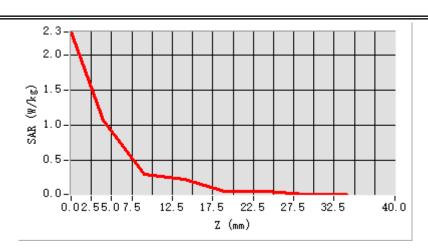
7 to =27.0 0111110111011 0011011101101	
Probe	0725-EPGO-448
ConvF	2.74
Area Scan	dx=12mm dy=12mm, Complete
Zoom Scan	7x7x7,dx=5mm dy=5mm
	dz=5.0mm,Complete
Phantom	Validation plane
Device Position	Body
Band	ISM
Signal	IEEE 802.11 b
Channels/Frequency	Middle (6)/ frequency 2437.00 Mhz

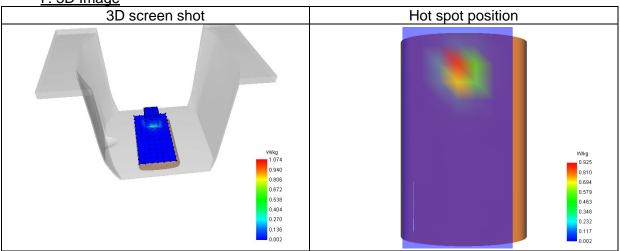
B. Permitivity

Middle TX Frequency (MHz)	2437.00
Relative permitivity (real part)	38.62
Relative permitivity (imaginary part)	13.24
Conductivity (S/m)	1.79

C. SAR Surface and Volume

Maximum location: X=-3.00, Y=46.00; SAR Peak: 2.02 W/kg


D. SAR 1a & 10a


<u> </u>	
SAR 10g (W/Kg)	0.353
SAR 1g (W/Kg)	0.981
Variation (%)	3.02
Horizontal validation criteria: minimum	7.07
distance (mm)	
Vertical validation criteria: SAR ratio M2/M1	44.96
(%)	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	2.336	1.074	0.291	0.221	0.057	0.046	0.009

ge 51 of 82 Report No.: S25032803509001

14. Appendix D. Calibration Certificate

Table of contents
E Field Probe - 4024-EPGO-442
2450 MHz Dipole - SN 03/15 DIP 2G450-352
5000-6000 MHz Dipole - SN 13/14 WGA 33

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-Field Probe Calibration Report

Ref: ACR.278.12.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: 4024-EPGO-442

Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 10/04/2024

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.278.12.24.BES.A

	Name	Function	Date	Signature
Prepared by:	Cyrille ONNEE	Measurement Responsible	10/4/2024	3
Checked & approved by:	Pedro Ruiz	Technical Manager	10/4/2024	fedurfling
Authorized by:	Pedro Ruiz	Laboratory Director	10/4/2024 — Assi	nado por:

Pedro RUIZ -29093B31C46F428...

	Customer Name
2000 No. 0	SHENZHEN NTEK TESTING
Distribution :	TECHNOLOGY
	CO., LTD.

Issue	Name	Date	Modifications
A	Cyrille ONNEE	10/4/2024	Initial release
7			

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.278.12.24.BES.A

TABLE OF CONTENTS

L	Devi	ce Under Test	
2	Prod	uct Description4	
	2.1	General Information	4
3		surement Method4	
	3.1	Sensitivity	4
	3.2	Linearity	
	3.3	Isotropy	
	3.4	Boundary Effect	
	3.5	Probe Modulation Response	
4	Mea	surement Uncertainty 6	
5	Calil	pration Results 6	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6		fication Results9	
7	List	of Equipment9	

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.278.12.24.BES.A

DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	4024-EPGO-442		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.206 MΩ		
	Dipole 2: R2=0.223 MΩ		
	Dipole 3: R3=0.235 MΩ		

PRODUCT DESCRIPTION 2

GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

SENSITIVITY 3.1

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

age 57 of 82 Report No.: S25032803509001

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.278.12.24.BES.A

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01 W/kg to 100 W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm step}$ along lines that are approximately normal to the surface:

$$\mathrm{SAR}_{\mathrm{uncertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \, \frac{\left(d_{\mathrm{be}} + d_{\mathrm{step}}\right)^2}{2d_{\mathrm{step}}} \, \frac{\left(e^{-d_{\mathrm{be}}/(\delta P)}\right)}{\delta/2} \quad \mathrm{for} \, \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \; \mathrm{mm}$$

where

SAR_{uncertaintv} is the uncertainty in percent of the probe boundary effect

dbe is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 $\Delta_{ ext{step}}$ is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

△SAR_{he} in percent of SAR is the deviation between the measured SAR value, at the

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit, 2%).

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 278 12 24 BES A

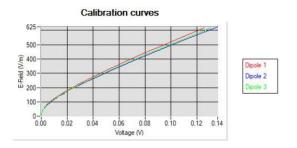
PROBE MODULATION RESPONSE

MVG's probe were evaluated experimentally with various modulated signal and the deviation from CW response were found neglectable in the used power range of the probe. So the correction to taking into account the linearization parameters for different modulation is null, therefore the CW factor given in this report can be used whatever the measured modulation

MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

CALIBRATION RESULTS

Ambient condition		
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

Page: 6/10

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 278 12 24 BES A

where

Vi=voltage readings on the 3 channels of the probe DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe

Normx dipole $1 (\mu V/(V/m)^2)$	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole 3 (μ V/(V/m) ²)
0.73	0.79	0.78

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
105	109	103

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho SAR}{\sigma}$$

where

σ=the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where

c=the specific heat for the liquid

dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4PW}{ah\delta}e^{\frac{-2z}{\delta}}$$

Page: 7/10

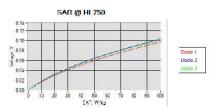
Template ACR.DDD.N.YY.MVGB.ISSUE COMOSAR Probe vM

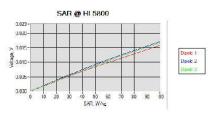
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 278 12 24 BES A


where

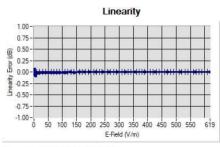

a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ=the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

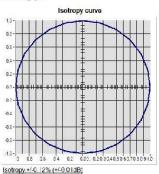
<u>Liquid</u>	Frequency (MHz*)	<u>Con∨F</u>
HL750	750	2.42
HL850	835	2.34
HL900	900	2.24
HL1800	1800	2.51
HL1900	1900	2.57
HL2000	2000	2.64
HL2300	2300	2.73
HL2450	2450	2.74
HL2600	2600	2.51
HL3300	3300	2.11
HL3500	3500	2.15
HL3700	3700	2.08
HL3900	3900	2.27
HL4200	4200	2.39
HL4600	4600	2.30
HL4900	4900	2.13
HL5200	5200	1.89
HL5400	5400	1.97
HL5600	5600	1.88
HL5800	5800	1.90

(*) Frequency validity is +/-50MHz below 600MHz, +/-100MHz from 600MHz to 6GHz and +/-700MHz above 6GHz

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3



COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref: ACR.278.12.24.BES.A

VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

Linearity:+/-1.90% (+/-0.08dB)

LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2026
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2026
USB Sensor	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG	SN 32/16 COAXCELL_1	Validated. No cal required.	Validated. No cal required.

Page: 9/10

Docusign Envelope ID: 223C1A7C-4751-4B95-8502-1618DC0951E3

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR. 278.12.24.BES.A

Temperature / Humidity Sensor	Testo 184 H1	44235403	02/2024	02/2027
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.

SAR Reference Dipole Calibration Report

Ref: ACR.53.29.24.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 03/15DIP2G450-352

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref : ACR.53.29.24.BES.A

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	2/22/2024	fedurating
Checked & approved by:	Jérôme Luc	Technical Manager	2/22/2024	JE
Authorized by:	Yann Toutain	Laboratory Director	2/27/2024	Yann TOUTANN

Signature Yann numérique de Yann Toutain ID Date: 2024.02.27 Yann 08:57:39 +01'00'

Customer Name SHENZHEN NTEK TESTING Distribution: **TECHNOLOGY** CO., LTD.

Name	Date	Modifications
Pedro Ruiz	2/22/2024	Initial release

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref : ACR.53.29.24.BES.A

TABLE OF CONTENTS

1	Int	Introduction			
2	Device Under Test				
3	Pro	educt Description			
	3.1	General Information			
4	М	easurement Method5			
	4.1	Mechanical Requirements	5		
	4.2	S11 parameter Requirements	5		
	4.3	SAR Requirements			
5	Ме	easurement Uncertainty			
	5.1	Mechanical dimensions	5		
	5.2	S11 Parameter			
	5.3	SAR	4		
6	Ca	libration Results6			
	6.1	Mechanical Dimensions	6		
	6.2	S11 parameter	6		
	6.3	SAR	6		
7	Lis	t of Equipment8			

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.53.29.24.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2450	
Serial Number	SN 03/15DIP2G450-352	
Product Condition (new / used)	Used	

PRODUCT DESCRIPTION

GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole