

APPENDIX I

RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	450Mbps Wireless N Gigabit Router
Frequency band (Operating)	<input checked="" type="checkbox"/> WLAN: 2.412GHz ~ 2.462GHz <input type="checkbox"/> WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz <input type="checkbox"/> WLAN: 5.745GHz ~ 5.825GHz <input type="checkbox"/> Others
Device category	<input type="checkbox"/> Portable (<20cm separation) <input checked="" type="checkbox"/> Mobile (>20cm separation) <input type="checkbox"/> Others
Exposure classification	<input type="checkbox"/> Occupational/Controlled exposure ($S = 5\text{mW/cm}^2$) <input checked="" type="checkbox"/> General Population/Uncontrolled exposure ($S=1\text{mW/cm}^2$)
Antenna diversity	<input type="checkbox"/> Single antenna <input checked="" type="checkbox"/> Multiple antennas <input type="checkbox"/> Tx diversity <input type="checkbox"/> Rx diversity <input checked="" type="checkbox"/> Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 18.87 dBm(77.1 mW) IEEE 802.11g mode: 15.37 dBm(34.4 mW) draft 802.11n Standard-20 MHz Channel mode: 18.91 dBm(77.7 mW) draft 802.11n Wide-40 MHz Channel mode: 18.70 dBm(74.2 mW)
Antenna gain (Max)	Gina: IEEE 802.11b/g: 4 dBi (Numeric gain: 2.51) Gina : MIMO: 4 dBi + 10 log (3) = 8.77 dBi (Numeric gain: 7.53)
Evaluation applied	<input checked="" type="checkbox"/> MPE Evaluation* <input type="checkbox"/> SAR Evaluation <input type="checkbox"/> N/A

Remark:

1. The maximum output power is 18.91dBm (77.7mW) at 2462MHz (with 7.53 numeric antenna gain.)
2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given $E = \frac{\sqrt{30 \times P \times G}}{d}$ & $S = \frac{E^2}{3770}$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P \text{ (mW)} = P \text{ (W)} / 1000 \text{ and}$$

$$d \text{ (cm)} = d \text{ (m)} / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2} \quad \text{Equation 1}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

Maximum Permissible Exposure

Substituting the MPE safe distance using $d = 20$ cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

IEEE 802.11b mode:

EUT output power = 77.1mW

Numeric Antenna gain = 2.51

$\rightarrow \text{Power density} = 0.0385 \text{ mW/cm}^2$

IEEE 802.11g mode:

EUT output power = 34.4mW

Numeric Antenna gain = 2.51

$\rightarrow \text{Power density} = 0.0172 \text{ mW/cm}^2$

draft 802.11n Standard-20 MHz Channel mode:

EUT output power = 77.7mW

Numeric Antenna gain = 7.53

$\rightarrow \text{Power density} = 0.1164 \text{ mW/cm}^2$

draft 802.11n Wide-40 MHz Channel mode:

EUT output power = 74.2mW

Numeric Antenna gain = 7.53

$\rightarrow \text{Power density} = 0.1112 \text{ mW/cm}^2$

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)