

FCC RADIO TEST REPORT

Applicant's company	TRENDnet, Inc.
Applicant Address	20675 Manhattan Place, Torrance, CA 90501
FCC ID	XU8TEW1200AC

Product Name	1. AC1200 Dual Band Wireless Router 2. AC1200 Dual Band Wireless Media Bridge
Brand Name	TRENDnet
Model No.	TEW-811DRU, TEW-800MB
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250MHz
Received Date	Mar. 21, 2013
Final Test Date	Apr. 04, 2013
Submission Type	Original Equipment
Operating Mode	Master

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac (5150 ~ 5250MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart E**,

KDB 789033 D01 v01r02 and KDB 662911 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CERTIFICATE OF COMPLIANCE	1
2. SUMMARY OF THE TEST RESULT	2
3. GENERAL INFORMATION	3
3.1. Product Details	3
3.2. Accessories	5
3.3. Table for Filed Antenna	6
3.4. Table for Carrier Frequencies	7
3.5. Table for Test Modes	8
3.6. Table for Testing Locations	9
3.7. Table for Multiple List	9
3.8. Table for Supporting Units	10
3.9. Table for Parameters of Test Software Setting	11
3.10. EUT Operation during Test	11
3.11. Duty Cycle	12
3.12. Test Configurations	15
4. TEST RESULT	19
4.1. AC Power Line Conducted Emissions Measurement	19
4.2. 26dB Bandwidth Measurement	23
4.3. Maximum Conducted Output Power Measurement	31
4.4. Power Spectral Density Measurement	34
4.5. Peak Excursion Measurement	40
4.6. Radiated Emissions Measurement	45
4.7. Band Edge Emissions Measurement	60
4.8. Frequency Stability Measurement	66
4.9. Antenna Requirements	68
5. LIST OF MEASURING EQUIPMENTS	69
6. TEST LOCATION	71
APPENDIX A. TEST PHOTOS	A1 ~ A5
APPENDIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B3
APPENDIX C. CO-LOCATION REPORT	C1 ~ C3

History of This Test Report

Report No.: FR332117AB

Certificate No.: CB10204008

1. CERTIFICATE OF COMPLIANCE

Product Name : 1. AC1200 Dual Band Wireless Router
2. AC1200 Dual Band Wireless Media Bridge
Brand Name : TRENDnet
Model No. : TEW-811DRU, TEW-800MB
Applicant : TRENDnet, Inc.
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart E § 15.407

Sportun International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 21, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

A handwritten signature in blue ink that reads "Sam Chen". The signature is fluid and cursive, with a horizontal line underneath it.

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart E				
Part	Rule Section	Description of Test	Result	Under Limit
4.1	15.207	AC Power Line Conducted Emissions	Complies	7.60 dB
4.2	15.407(a)	26dB Spectrum Bandwidth	Complies	-
4.3	15.407(a)	Maximum Conducted Output Power	Complies	0.05 dB
4.4	15.407(a)	Power Spectral Density	Complies	0.02 dB
4.5	15.407(a)	Peak Excursion	Complies	2.86 dB
4.6	15.407(b)	Radiated Emissions	Complies	2.05 dB
4.7	15.407(b)	Band Edge Emissions	Complies	0.10 dB
4.8	15.407(g)	Frequency Stability	Complies	-
4.9	15.203	Antenna Requirements	Complies	-

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	±0.5dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
Peak Excursion	±0.5dB	Confidence levels of 95%
26dB Spectrum Bandwidth / Frequency Stability	$\pm 8.5 \times 10^{-8}$	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n/ac

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From Power Adapter
Modulation	see the below table for IEEE 802.11n/ac
Data Modulation	For 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM) For 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n/ac
Frequency Range	5150 ~ 5250MHz
Channel Number	4 for 20MHz bandwidth ; 2 for 40MHz bandwidth 1 for 80MHz bandwidth
Channel Band Width (99%)	802.11ac MCS0/Nss1 (20MHz): 18.08 MHz ; 802.11ac MCS0/Nss1 (40MHz): 36.16 MHz ; 802.11ac MCS0/Nss1 (80MHz): 76.16 MHz
Maximum Conducted Output Power	802.11ac MCS0/Nss1 (20MHz): 15.94 dBm ; 802.11ac MCS0/Nss1 (40MHz): 15.82 dBm ; 802.11ac MCS0/Nss1 (80MHz): 15.70 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

IEEE 802.11a

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From Power Adapter
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5150 ~ 5250MHz
Channel Number	11a: 4
Channel Band Width (99%)	11a: 17.12 MHz
Maximum Conducted Output Power	11a: 15.85 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

The product has beamforming function for 802.11ac VHT20/40/80 in 5150-5250MHz and 5725-5850MHz.

Antenna & Band width

Antenna	Two (TX)		
Band width Mode	20 MHz	40 MHz	80MHz
IEEE 802.11a	V	X	X
IEEE 802.11n	V	V	X
IEEE 802.11ac	V	V	V

Note : The beamforming function only support 802.11ac 20/40/80MHz.

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	2	M0-15
802.11n (HT40)	2	M0-15
802.11ac (VHT20)	2	MCS 0-9/Nss1-2
802.11ac (VHT40)	2	MCS 0-9/Nss1-2
802.11ac (VHT80)	2	MCS 0-9/Nss1-2

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration:
11a: IEEE 802.11a, HT20/HT40; IEEE 802.11n, VHT20/VHT40/VHT80; IEEE 802.11ac

3.2. Accessories

Power	Brand	Model	Rating
Adapter 1	HON-KWANG	HK-AX-120A200-US	INPUT: 100-240V ~ 50-60Hz 0.8A OUTPUT: 12V – 2.0A
Adapter 2	Ktec	KSASB0241200200HU	INPUT: 100-240V ~50/60Hz 0.6A OUTPUT: 12V – 2.0A
Other			
RJ-45 Cable: Non-Shielded, 1.5m			

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	
					2.4G	5G
1	Galtronics	02102140-05534-1	PIFA Antenna	I-PEX	4	4
2	Galtronics	02102140-05534-2	PIFA Antenna	I-PEX	1.9	4

Note:

There are two sets of antenna provided to this EUT and all of them can be used as transmitting and receiving antenna

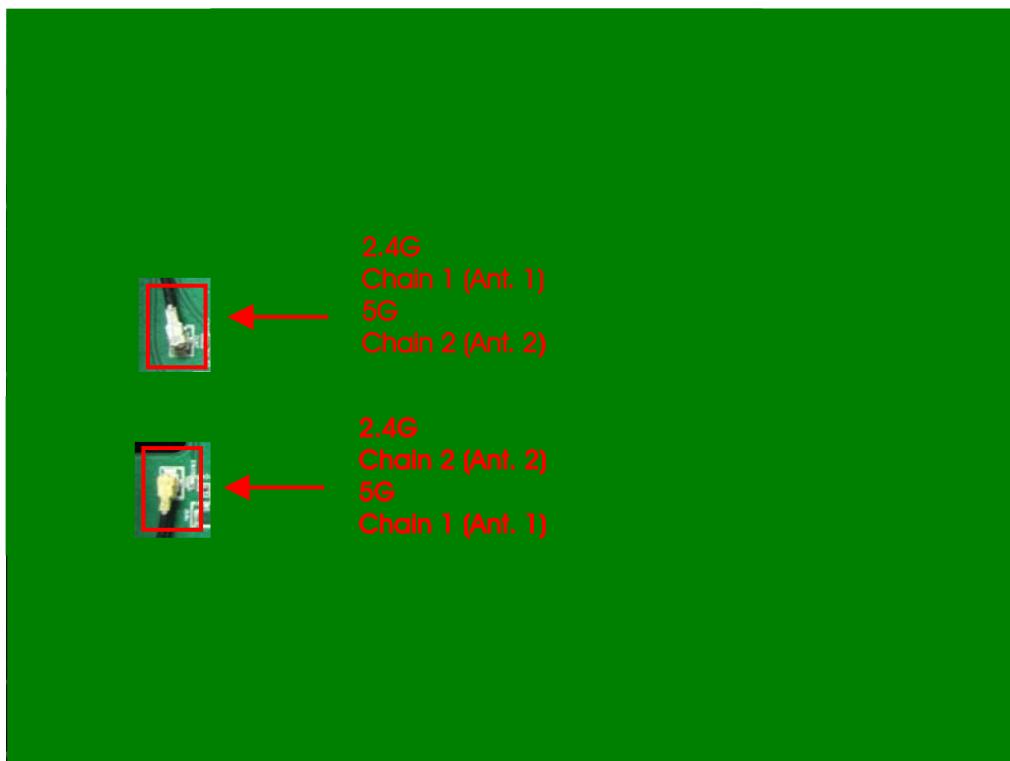
<For 2.4 GHz function >

For IEEE 802.11b mode (1TX/1RX)

Only Chain 1 can be use as transmit and receive antenna.

For IEEE 802.11n/g mode (2TX/2RX)

Chain 1 and Chain 2 can be used as transmitting/receiving antennas


Chain 1 and Chain 2 could transmit/receive simultaneously.

<For 5 GHz function >

For IEEE 802.11a/an/ac mode (2TX/2RX)

Chain 1 and Chain 2 can be used as transmitting/receiving antennas

Chain 1 and Chain 2 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

The EUT has three bandwidth system.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48.

For 40MHz bandwidth systems, use Channel 38, 46.

For 80MHz bandwidth systems, use Channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150~5250 MHz Band 1	36	5180 MHz	44	5220 MHz
	38	5190 MHz	46	5230 MHz
	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode		Data Rate	Channel	Antenna
AC Power Conducted Emission	Normal link		Auto	-	-
Max. Conducted Output Power	11ac 20MHz	Band 1	MCS0/Nss1	36/40/48	1+2
	11ac 40MHz	Band 1	MCS0/Nss1	38/46	1+2
	11ac 80MHz	Band 1	MCS0/Nss1	42	1+2
	11a	Band 1	6Mbps	36/40/48	1+2
Power Spectral Density	11ac 20MHz	Band 1	MCS0/Nss1	36/40/48	1+2
	11ac 40MHz	Band 1	MCS0/Nss1	38/46	1+2
	11ac 80MHz	Band 1	MCS0/Nss1	42	1+2
	11a	Band 1	6Mbps	36/40/48	1+2
26dB Spectrum Bandwidth	11ac 20MHz	Band 1	MCS0/Nss1	36/40/48	1+2
99% Occupied Bandwidth	11ac 40MHz	Band 1	MCS0/Nss1	38/46	1+2
Measurement	11ac 80MHz	Band 1	MCS0/Nss1	42	1+2
Peak Excursion	11a	Band 1	6Mbps	36/40/48	1+2
Radiated Emission Below 1GHz	Normal link		Auto	-	-
Radiated Emission Above 1GHz	11ac 20MHz	Band 1	MCS0/Nss1	36/40/48	1+2
	11ac 40MHz	Band 1	MCS0/Nss1	38/46	1+2
	11ac 80MHz	Band 1	MCS0/Nss1	42	1+2
	11a	Band 1	6Mbps	36/40/48	1+2
Band Edge Emission	11ac 20MHz	Band 1	MCS0/Nss1	36/40/48	1+2
	11ac 40MHz	Band 1	MCS0/Nss1	38/46	1+2
	11ac 80MHz	Band 1	MCS0/Nss1	42	1+2
	11a	Band 1	6Mbps	36/40/48	1+2
Frequency Stability	Un-modulation		-	40	N/A

There are two modes of EUT, one is beamforming mode, and the other is non-beamforming mode for 802.11ac 20/40/80, after evaluating, beamforming mode has been evaluated to be the worst case, so it was selected to record in this test report.

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1: Normal Link + Adapter 1

Mode 2. Normal Link + Adapter 2

Due to Mode 1 generated the worst test result, so it was recorded in this report.

For Radiated Emission test:

Mode 1: Normal Link + Adapter 1

Mode 2. Normal Link + Adapter 2

Due to Mode 1 generated the worst test result, it was recorded in this report.

<For MPE and Co-location Test>:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Maximum Permissible Exposure (Please refer to Appendix B) and Co-location (please refer to Appendix C) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Please refer section 6 for Test Site Address.

3.7. Table for Multiple List

1. The difference for each model is shown as below:

EUT	Model Name	Product Name	Description
EUT 1	TEW-811DRU	AC1200 Dual Band Wireless Router	-
EUT 2	TEW-800MB	AC1200 Dual Band Wireless Media Bridge	(1) Remove Ethernet WAN port, USB port (2) Lack of components: J10,T2,J7,J8,J13,J14,C123,C124,C160,C198 ,C546,C547,R9,C548,J43,D44,L2,C83,C90, R447,Q8,LED4,LED13,R121,R127,R106,C103, C115,Q4,R63,C91,R107

Note: assessed according to above, there are only EUT 1 were selected to test and record in the report as a result.

3.8. Table for Supporting Units

For non-beamforming mode

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	QDS-BRCM1049LE
Notebook	DELL	E6430	QDS-BRCM1049LE
Notebook	DELL	E6430	QDS-BRCM1049LE
Notebook	DELL	E6430	QDS-BRCM1049LE
Flash Disk	Silicon	D33B01	DoC

For beamforming mode

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	QDS-BRCM1049LE
Notebook	DELL	E6430	QDS-BRCM1049LE
Wifi Dongle	Netgear	A6200	PY312200200

3.9. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11ac MCS0/Nss1 20MHz

Test Software Version	Manual Tool 1.0.0.9		
Frequency	5180 MHz	5200 MHz	5240 MHz
MCS0 20MHz	58	58	58

Power Parameters of IEEE 802.11ac MCS0/Nss1 40MHz

Test Software Version	Manual Tool 1.0.0.9	
Frequency	5190 MHz	5230 MHz
MCS0 40MHz	48	48

Power Parameters of IEEE 802.11ac MCS0/Nss1 80MHz

Test Software Version	Manual Tool 1.0.0.9	
Frequency	5210 MHz	
MCS0 80MHz	50	

Power Parameters of IEEE 802.11a

Test Software Version	Manual Tool 1.0.0.9		
Frequency	5180 MHz	5200 MHz	5240 MHz
11a	52	50	52

3.10. EUT Operation during Test

For non-beamforming mode

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

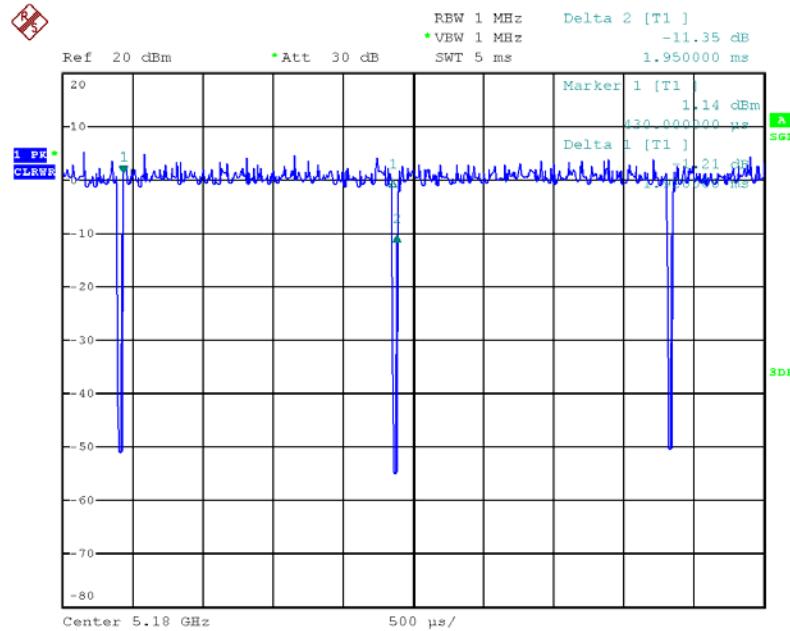
During the test, the following programs under WIN XP were executed.

The program was executed as follows:

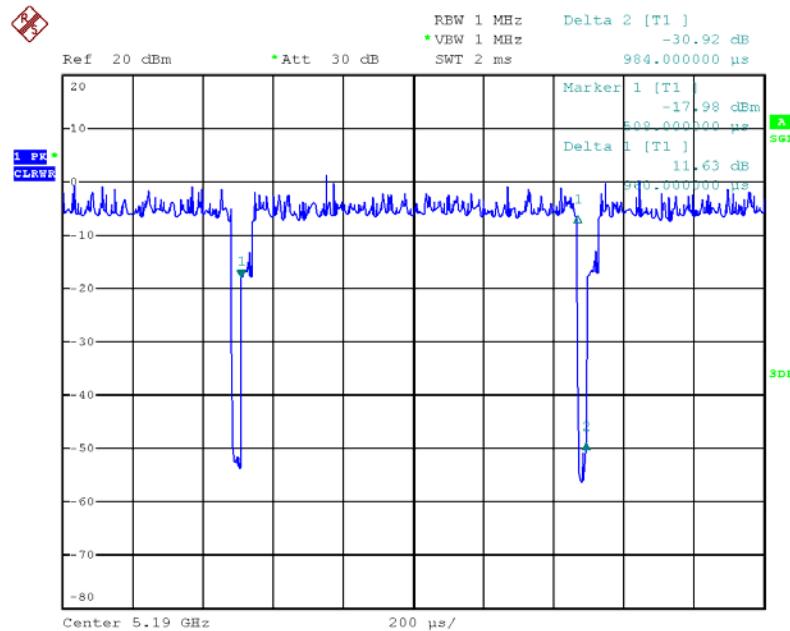
1. During the test, the EUT operation to normal function.
2. Executed command fixed test channel under DOS.
3. Executed "Lan test.exe" to link with the remote workstation to receive and transmit packet by Wireless AP and transmit duty cycle no less 98%.

3.11. Duty Cycle

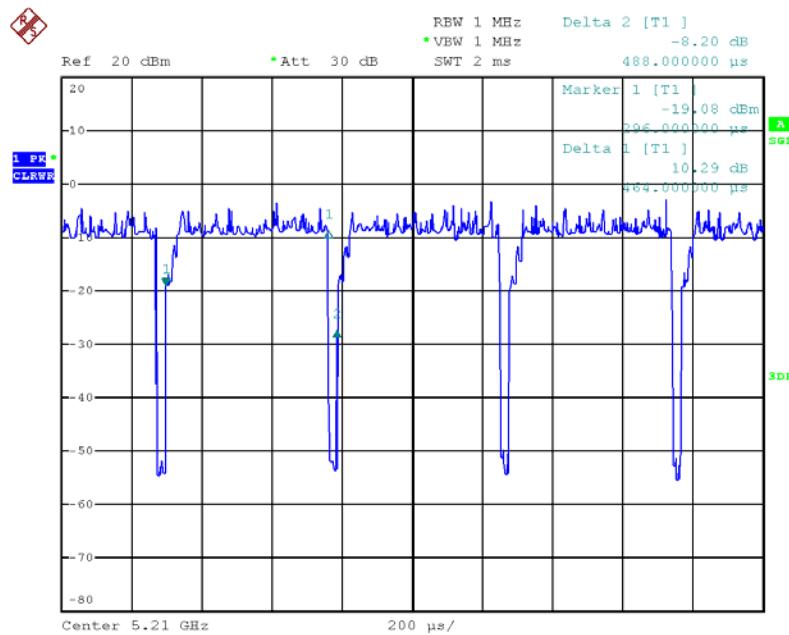
For non-beamforming mode


IEEE 802.11a

Date: 2.APR.2013 00:22:22


For beamforming mode

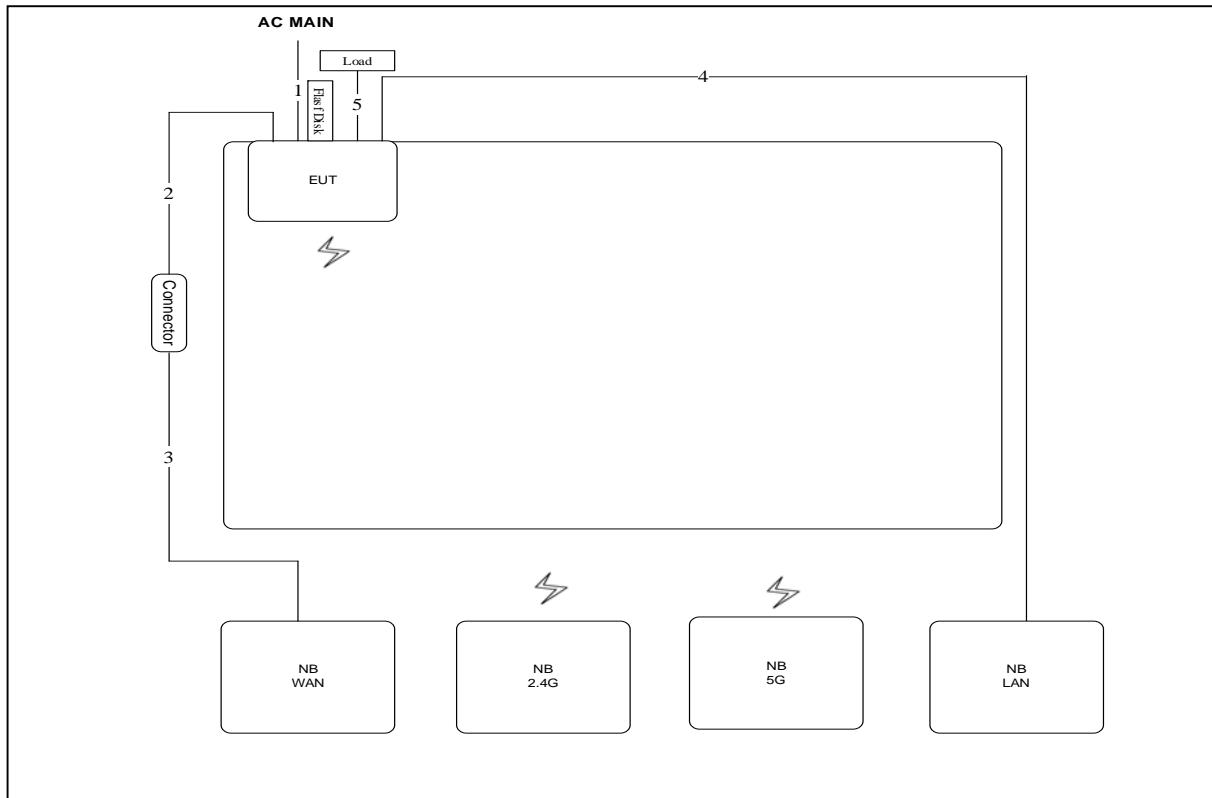
IEEE 802.11ac MCS0/Nss1 20MHz


Date: 2.APR.2013 00:21:28

IEEE 802.11ac MCS0/Nss1 40MHz

Date: 2.APR.2013 00:20:19

IEEE 802.11ac MCS0/Nss1 80MHz

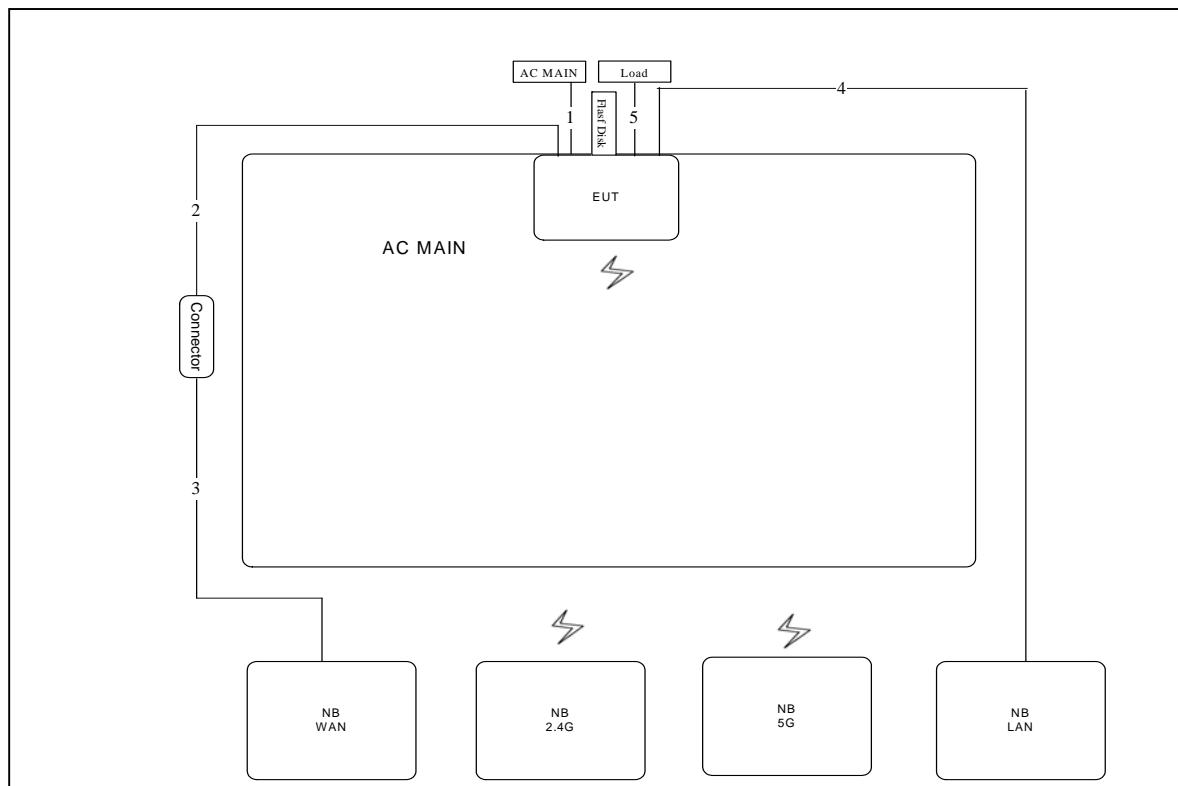


Date: 2.APR.2013 00:18:22

3.12. Test Configurations

3.12.1. AC Power Line Conduction Emissions Test Configuration

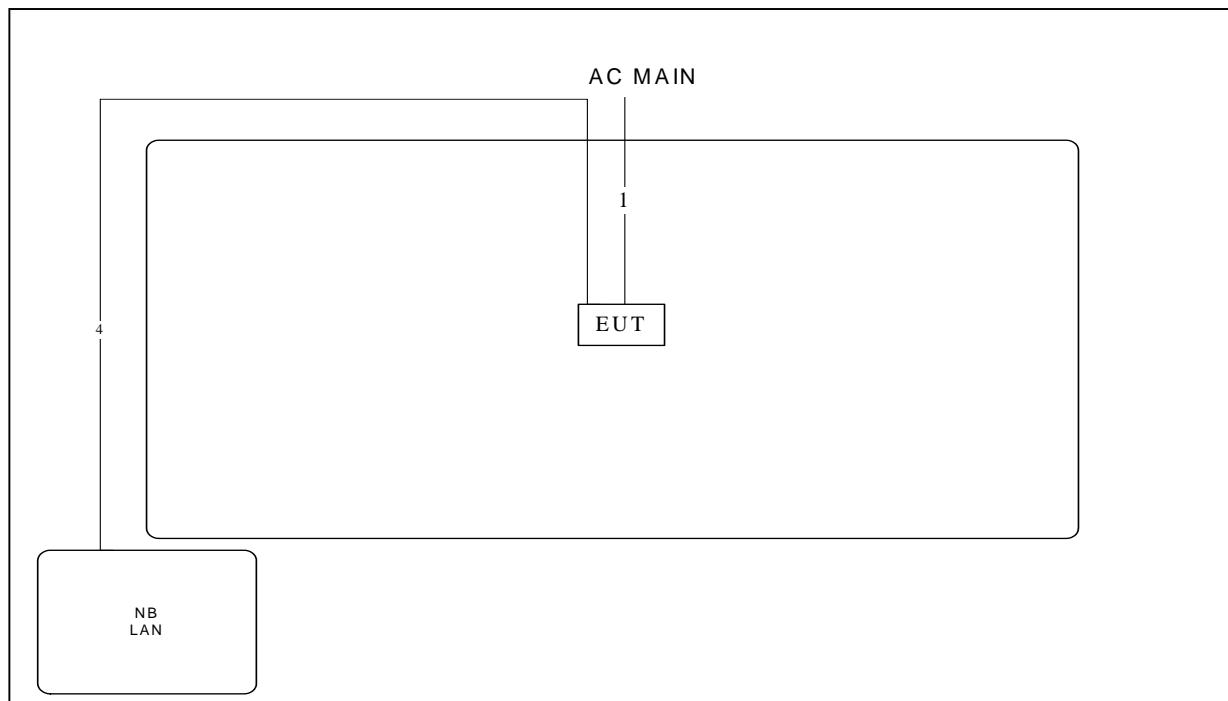
Test Mode: Mode 1



Item	Connection	Shield	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	1.5m
3	RJ-45 cable	No	10m
4	RJ-45 cable	No	10m
5	RJ-45 cable	No	0.7m

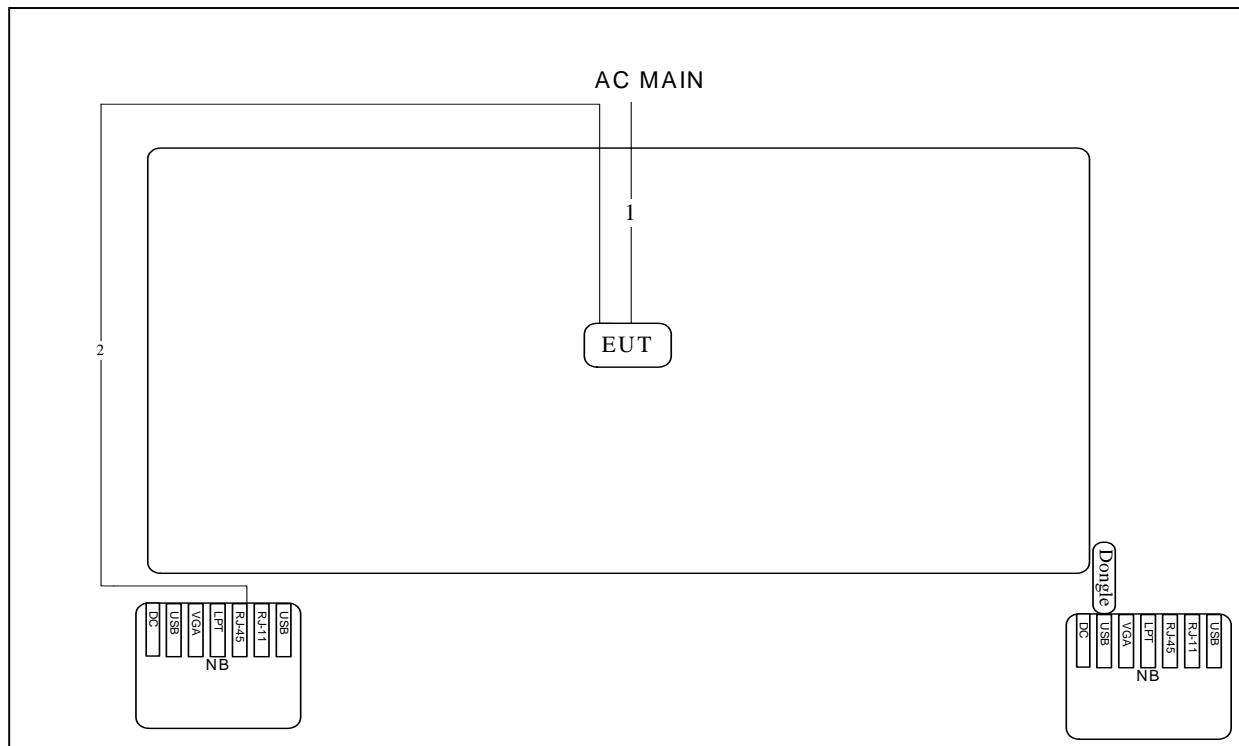
3.12.2. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz


Test Mode: Mode 1

Item	Connection	Shield	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	1.5m
3	RJ-45 cable	No	10m
4	RJ-45 cable	No	10m
5	RJ-45 cable	No	1.5m

Test Configuration: above 1GHz / For non-beamforming mode


Test Mode: Mode 1

Item	Connection	Shield	Length
1	Power cable	No	1.5m

Test Configuration: above 1GHz / For beamforming mode

Test Mode: Mode 1

Item	Connection	Shield	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

4. TEST RESULT

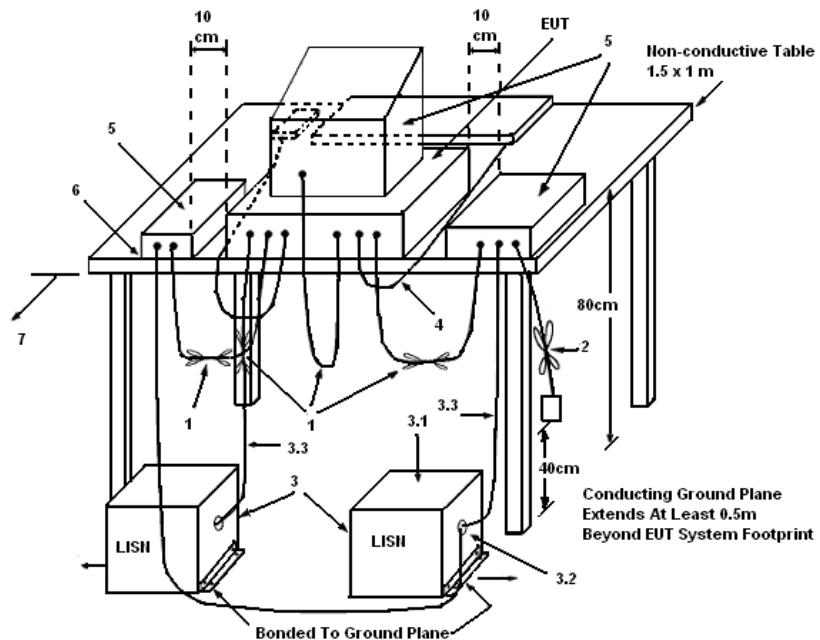
4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

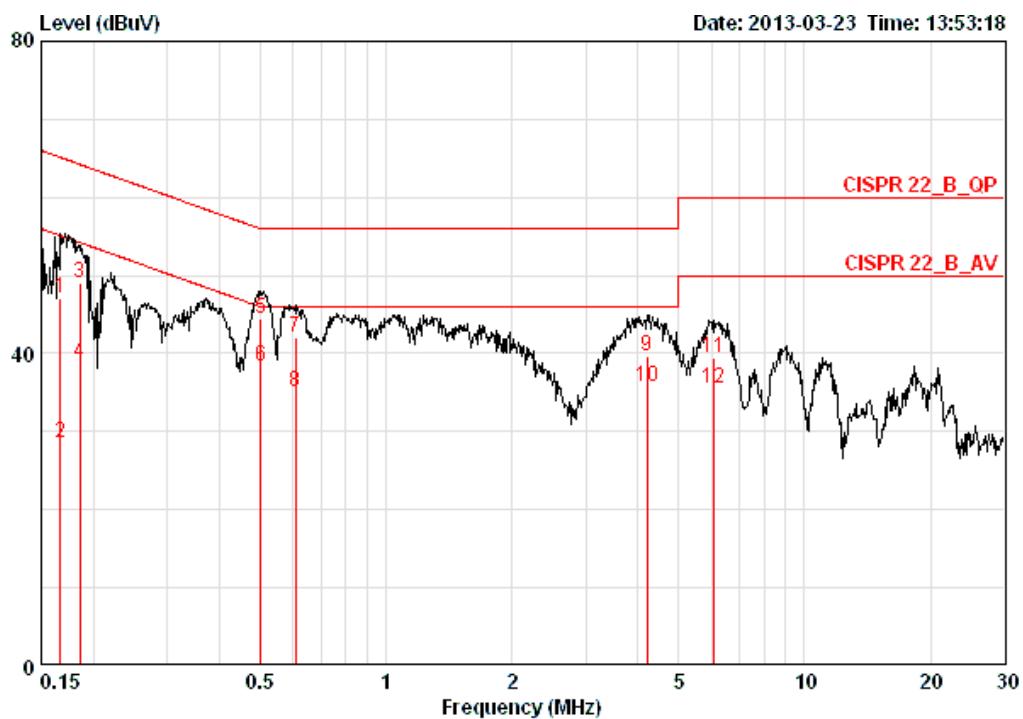
1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
4. The frequency range from 150 KHz to 30 MHz was searched.
5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

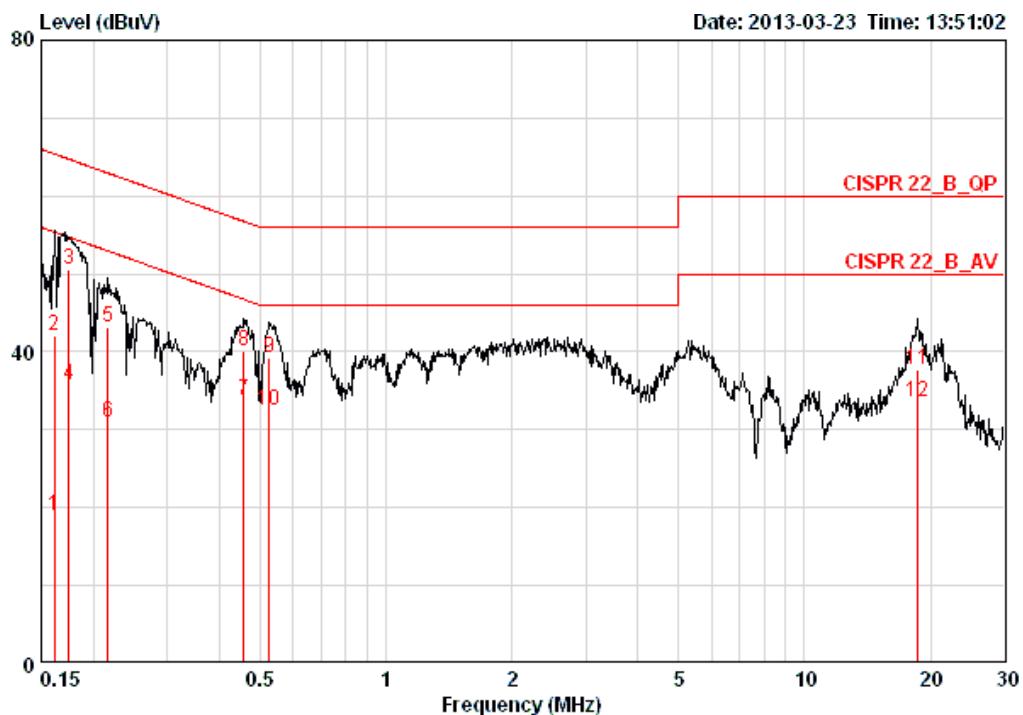
- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
 - (3.1) All other equipment powered from additional LISN(s).
 - (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
 - (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation


There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.


4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	24°C	Humidity	48%
Test Engineer	Simon Yang	Phase	Line
Configuration	Mode 1: Normal Link + Adapter 1		

Freq	Level	Over	Limit	Read	LISN	Cable	Remark	
		Limit	Line	Level	Factor	Loss		
	MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.16677	46.99	-18.13	65.12	46.64	0.16	0.19 QP
2		0.16677	28.56	-26.56	55.12	28.21	0.16	0.19 AVERAGE
3 @		0.18541	49.01	-15.23	64.24	48.67	0.15	0.19 QP
4 @		0.18541	38.84	-15.40	54.24	38.50	0.15	0.19 AVERAGE
5 @		0.50203	44.44	-11.56	56.00	44.09	0.15	0.20 QP
6 @		0.50203	38.40	-7.60	46.00	38.05	0.15	0.20 AVERAGE
7 @		0.60752	41.97	-14.03	56.00	41.61	0.16	0.20 QP
8 @		0.60752	35.11	-10.89	46.00	34.75	0.16	0.20 AVERAGE
9 @		4.202	39.78	-16.22	56.00	39.25	0.22	0.30 QP
10 @		4.202	35.72	-10.28	46.00	35.19	0.22	0.30 AVERAGE
11		6.089	39.54	-20.46	60.00	38.95	0.26	0.33 QP
12 @		6.089	35.45	-14.55	50.00	34.86	0.26	0.33 AVERAGE

Temperature	24°C	Humidity	48%
Test Engineer	Simon Yang	Phase	Neutral
Configuration	Mode 1: Normal Link + Adapter 1		

Freq	Over Limit		Read Line Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV				
1	0.16155	19.02	-36.36	55.38	18.76	0.08 0.18 AVERAGE
2	0.16155	42.00	-23.38	65.38	41.74	0.08 0.18 QP
3 @	0.17491	50.67	-14.05	64.72	50.40	0.08 0.19 QP
4	0.17491	35.83	-18.89	54.72	35.56	0.08 0.19 AVERAGE
5	0.21620	43.25	-19.71	62.96	42.97	0.08 0.20 QP
6	0.21620	30.99	-21.97	52.96	30.71	0.08 0.20 AVERAGE
7 @	0.45636	33.79	-12.97	46.76	33.51	0.08 0.20 AVERAGE
8 @	0.45636	40.15	-16.61	56.76	39.87	0.08 0.20 QP
9 @	0.52655	39.33	-16.67	56.00	39.05	0.08 0.20 QP
10 @	0.52655	32.46	-13.54	46.00	32.18	0.08 0.20 AVERAGE
11	18.622	37.79	-22.21	60.00	36.93	0.37 0.49 QP
12 @	18.622	33.53	-16.47	50.00	32.67	0.37 0.49 AVERAGE

Note:

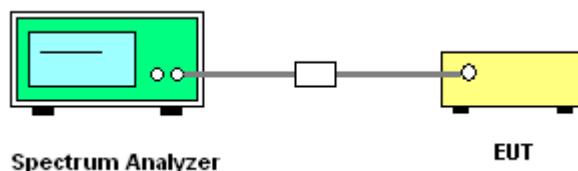
Level = Read Level + LISN Factor + Cable Loss

4.2. 26dB Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 26dB Bandwidth
RB	Approximately 1% of the emission bandwidth
VB	VBW > RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.2.3. Test Procedures

1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
2. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of 26 dB Bandwidth Plot

Temperature	25°C	Humidity	56%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac

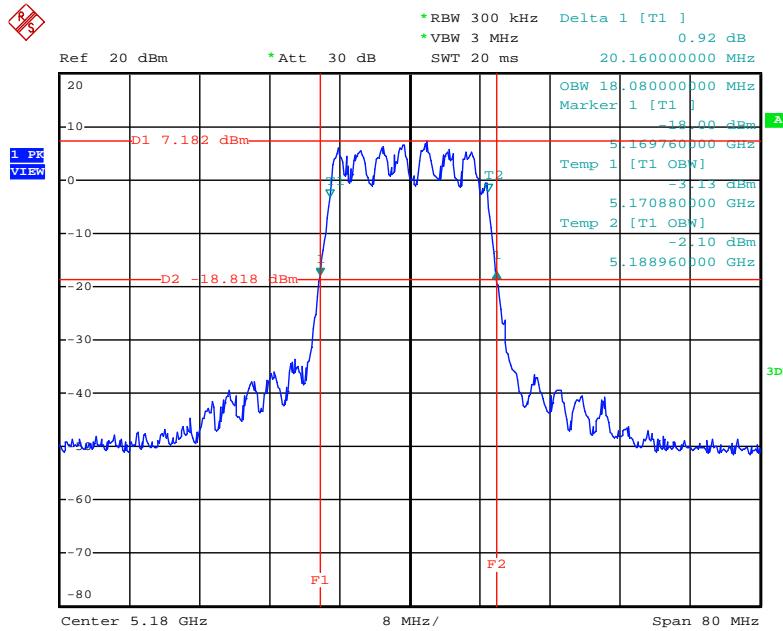
Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	20.16	18.08
40	5200 MHz	20.32	18.08
48	5240 MHz	20.48	17.92

Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Chain 1 + Chain 2

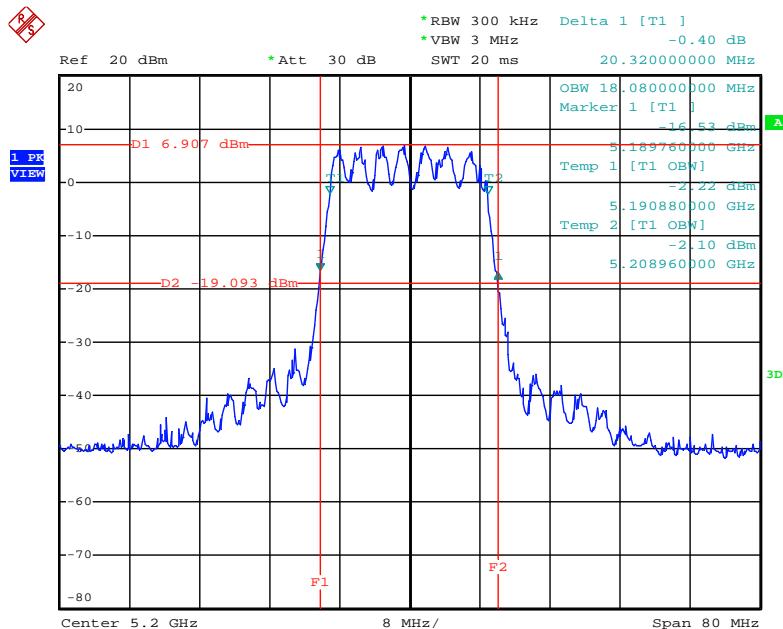
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	38.72	36.16
46	5230 MHz	38.72	36.16

Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1 + Chain 2

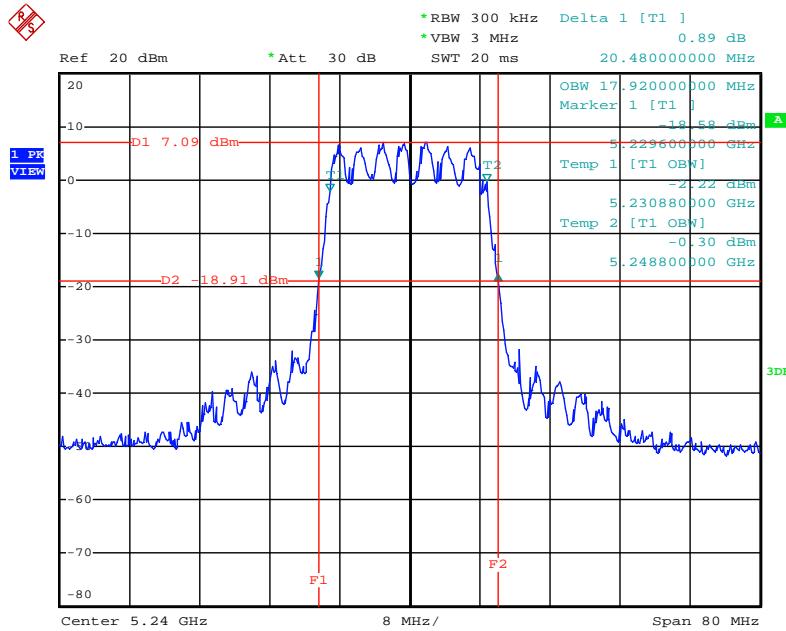

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
42	5210 MHz	80.00	76.16

Temperature	25°C	Humidity	56%
Test Engineer	Denis Su	Configurations	IEEE 802.11a

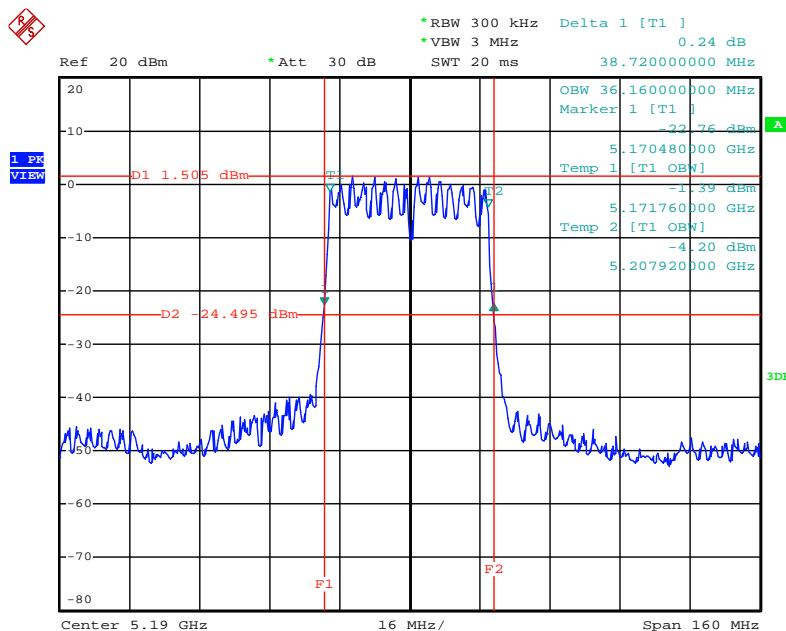
Configuration IEEE 802.11a / Chain 1 + Chain 2


Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	20.00	16.96
40	5200 MHz	20.16	17.12
48	5240 MHz	20.16	16.96

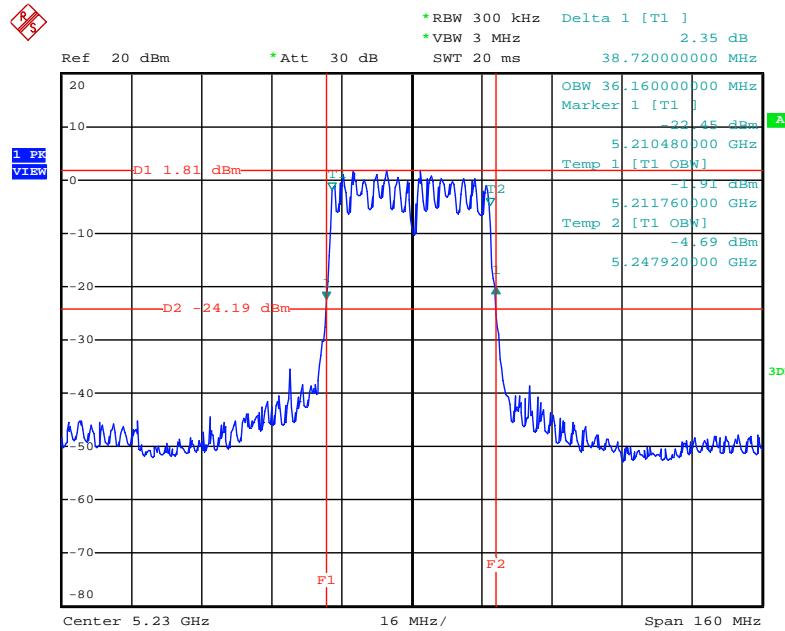
26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 1 + Chain 2 / 5180 MHz


Date: 1.APR.2013 22:45:56

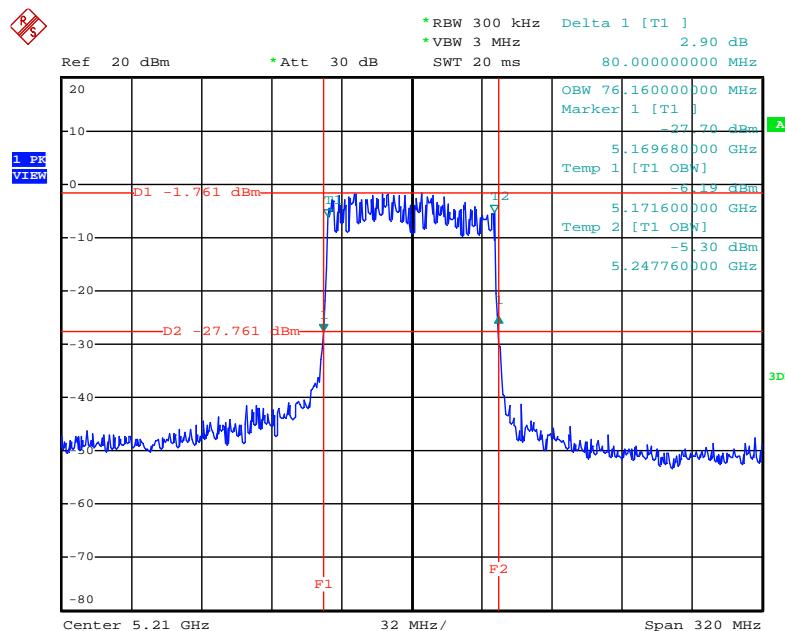
26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 1 + Chain 2 / 5200 MHz


Date: 1.APR.2013 22:46:29

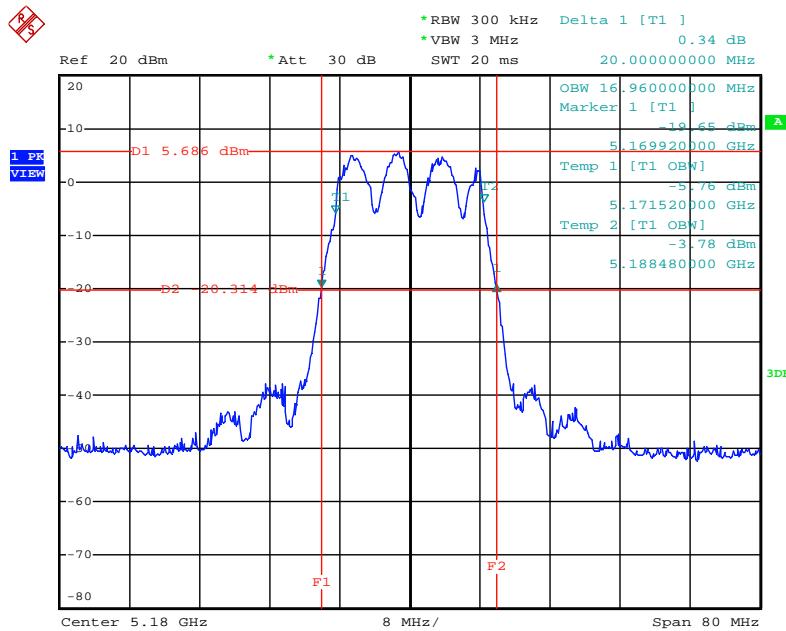
26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 1 + Chain 2 / 5240 MHz


Date: 1.APR.2013 22:47:03

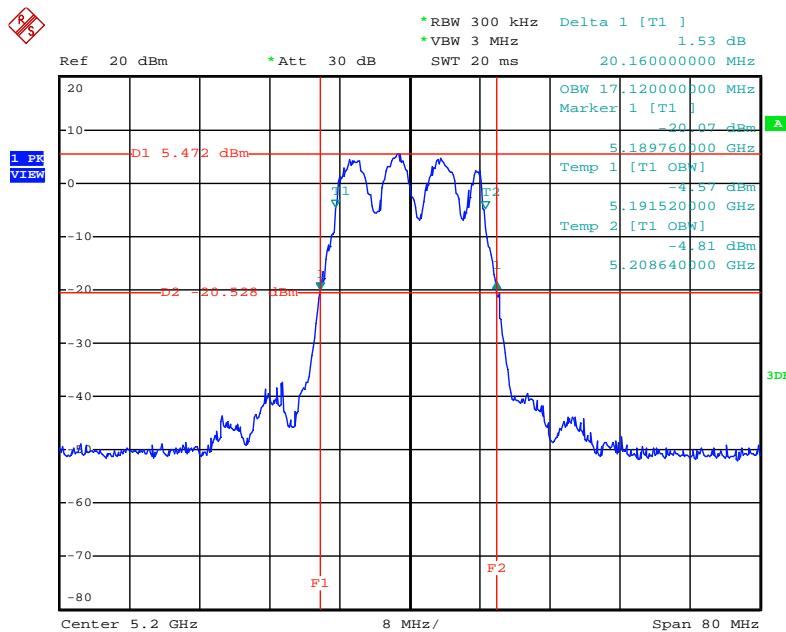
26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Chain 1 + Chain 2 / 5190 MHz


Date: 1.APR.2013 22:49:55

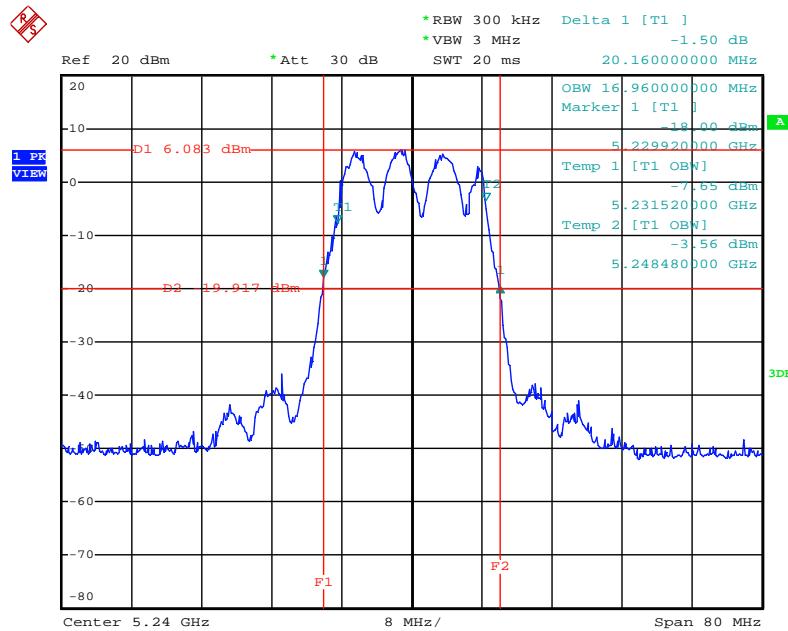
26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Chain 1 + Chain 2 / 5230 MHz


Date: 1.APR.2013 22:50:27

26 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1 + Chain 2 / 5210 MHz


Date: 1.APR.2013 23:05:53

26 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5180 MHz


Date: 1.APR.2013 22:42:05

26 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5200 MHz

Date: 1.APR.2013 22:42:35

26 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5240 MHz

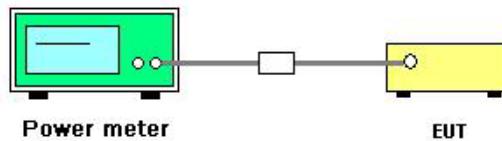
Date: 1.APR.2013 22:43:00

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2. Measuring Instruments and Setting


The following table is the setting of the peak power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.3.3. Test Procedures

3. The transmitter output (antenna port) was connected to the power meter.
4. Test was performed in accordance with KDB 789033 Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, section (C) Maximum conducted output power =>(4) Method PM (Measurement using an RF average power meter) Multiple antenna systems was performed in accordance with KDB 662911 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
5. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	56%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac
Test Date	Apr. 04, 2013		

Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 1 + Chain 2

Channel	Frequency	Conducted Power (dBm)		Total Conducted Output Power (dBm)	Max. Limit (dBm)	Result
		Chain 1	Chain 2			
36	5180 MHz	12.60	12.56	15.59	15.99	Complies
40	5200 MHz	12.75	12.85	15.81	15.99	Complies
48	5240 MHz	12.81	13.04	15.94	15.99	Complies

Note: $Directional\ gain = G_{ANT} + 10 \log(N_{ANT}/N_{SS}) = 7.01\text{dBi} > 6\text{dBi}$, So Band1

Limit = $17 - (7.01 - 6) = -15.99\text{dBm}$

Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Chain 1 + Chain 2

Channel	Frequency	Conducted Power (dBm)		Total Conducted Output Power (dBm)	Max. Limit (dBm)	Result
		Chain 1	Chain 2			
38	5190 MHz	12.33	12.84	15.60	15.99	Complies
46	5230 MHz	12.51	13.09	15.82	15.99	Complies

Note: $Directional\ gain = G_{ANT} + 10 \log(N_{ANT}/N_{SS}) = 7.01\text{dBi} > 6\text{dBi}$, So Band1

Limit = $17 - (7.01 - 6) = -15.99\text{dBm}$

Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1 + Chain 2

Channel	Frequency	Conducted Power (dBm)		Total Conducted Output Power (dBm)	Max. Limit (dBm)	Result
		Chain 1	Chain 2			
42	5210 MHz	12.37	12.98	15.70	15.99	Complies

Note: $Directional\ gain = G_{ANT} + 10 \log(N_{ANT}/N_{SS}) = 7.01\text{dBi} > 6\text{dBi}$, So Band1

Limit = $17 - (7.01 - 6) = -15.99\text{dBm}$

Temperature	25°C	Humidity	56%
Test Engineer	Denis Su	Configurations	IEEE 802.11a
Test Date	Apr. 04, 2013		

Configuration IEEE 802.11a / Chain 1 + Chain 2

Channel	Frequency	Conducted Power (dBm)		Total Conducted Output Power (dBm)	Max. Limit (dBm)	Result
		Chain 1	Chain 2			
36	5180 MHz	12.83	12.84	15.85	17.00	Complies
40	5200 MHz	12.23	12.58	15.42	17.00	Complies
48	5240 MHz	12.43	12.78	15.62	17.00	Complies

4.4. Power Spectral Density Measurement

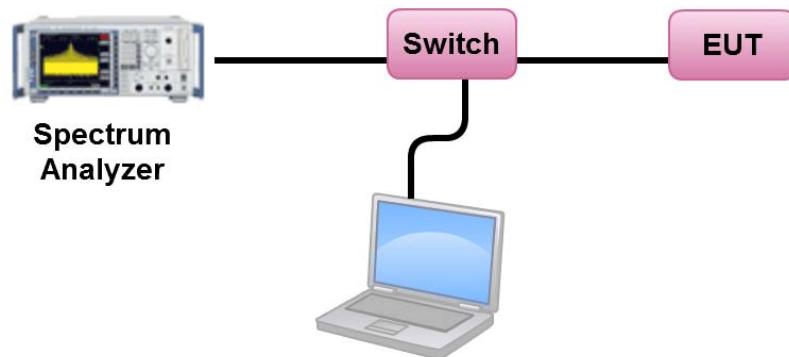
4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)
5.15~5.25 GHz	4

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz
VB	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

4.4.3. Test Procedures

1. Trace A, Set RBW = 1MHz, VBW = 3MHz, Span >26dB bandwidth, Max. hold.
2. Delta Mark trace A Maximum frequency and trace B same frequency.
3. Repeat the above procedure until measurements for all frequencies were complete.
4. Procedures refer KDB 662911: Measure and sum the spectra across the outputs.

The first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way. This will likely require transferring the measured spectra to a computer, where the bin-by-bin summing can be performed.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	25°C	Humidity	56%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac
Test Date	Apr. 04, 2013		

Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	2.22	2.99	Complies
40	5200 MHz	2.57	2.99	Complies
48	5240 MHz	2.97	2.99	Complies

Note: $Directional\ gain = G_{ANT} + 10 \log(N_{ANT}/N_{SS}) = 7.01\text{dBi} > 6\text{dBi}$, So Band1

Limit = $4 - (7.01 - 6) = -2.99\text{dBm/MHz}$

Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-0.77	2.99	Complies
46	5230 MHz	-0.29	2.99	Complies

Note: $Directional\ gain = G_{ANT} + 10 \log(N_{ANT}/N_{SS}) = 7.01\text{dBi} > 6\text{dBi}$, So Band1

Limit = $4 - (7.01 - 6) = -2.99\text{dBm/MHz}$

Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
42	5210 MHz	-3.62	2.99	Complies

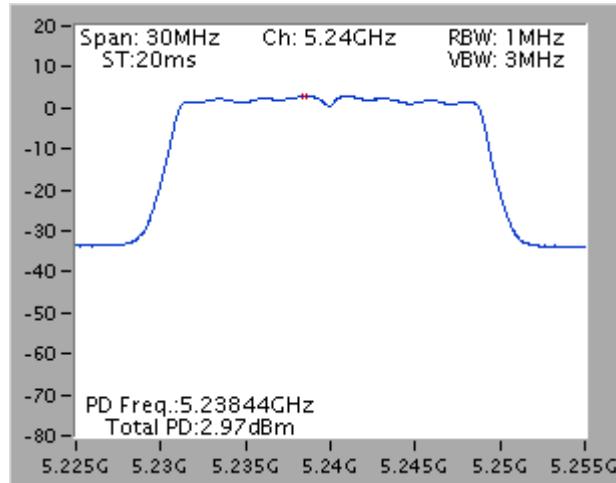
Note: $Directional\ gain = G_{ANT} + 10 \log(N_{ANT}/N_{SS}) = 7.01\text{dBi} > 6\text{dBi}$, So Band1

Limit = $4 - (7.01 - 6) = -2.99\text{dBm/MHz}$

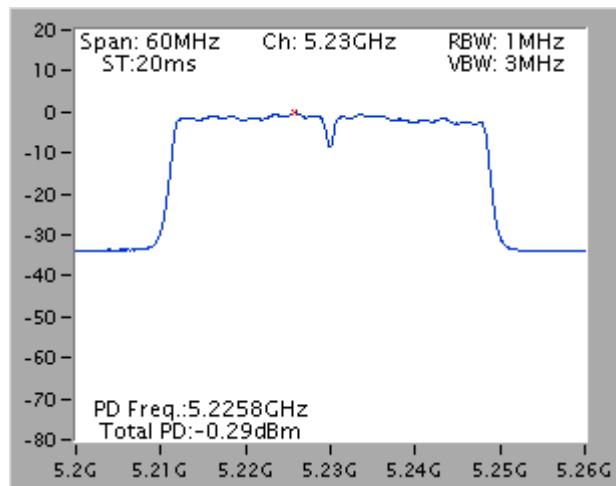
Temperature	25°C	Humidity	56%
Test Engineer	Denis Su	Configurations	IEEE 802.11a
Test Date	Apr. 04, 2013		

Configuration IEEE 802.11a / Chain 1 + Chain 2

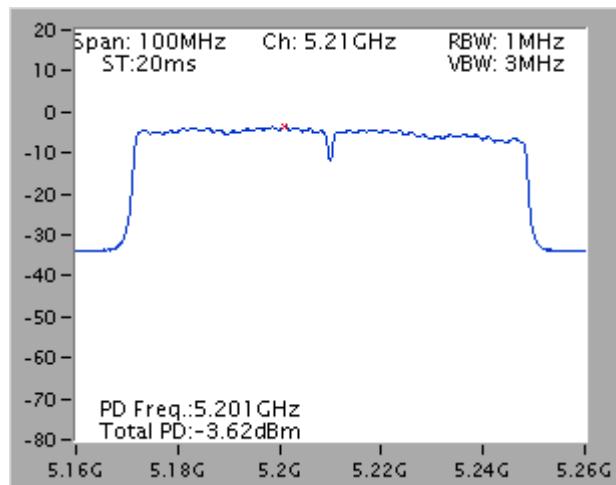
Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	2.80	2.99	Complies
40	5200 MHz	2.48	2.99	Complies
48	5240 MHz	2.68	2.99	Complies

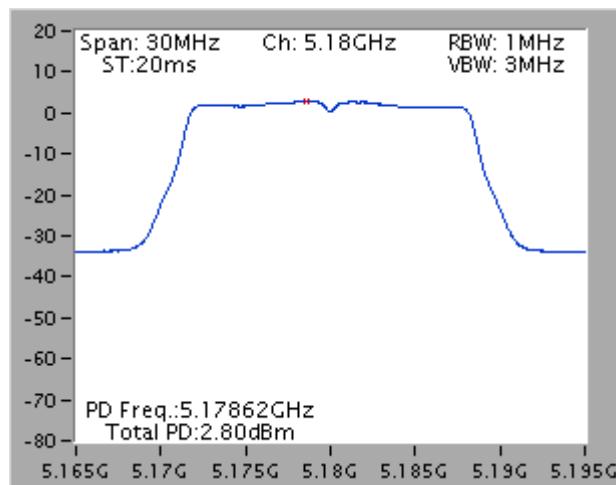

Note: $Directional\ gain = G_{ANT} + 10 \log(N_{ANT}/N_{SS}) = 7.01\text{dBi} > 6\text{dBi}$, So Band1

Limit = $4 - (7.01 - 6) = -2.99\text{dBm/MHz}$


Note: All the test values were listed in the report.

For plots, only the channel with maximum results was shown.


Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 1 + Chain 2 /
5240 MHz


Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Chain 1 + Chain 2 /
5230 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT 80MHz / Chain 1 + Chain 2 / 5210 MHz

Power Density Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5180 MHz

4.5. Peak Excursion Measurement

4.5.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1MHz (Peak Trace) / 1MHz (Average Trace)
VB	3MHz (Peak Trace) / 3MHz (Average Trace)
Detector	Peak (Peak Trace) / RMS (Average Trace)
Trace	Peak : Trace :Max hold/Average: Trace Average Sweep Count 100
Sweep Time	AUTO

4.5.3. Test Procedures

1. The test procedure is the same as section 4.6.3.
2. Trace A, Set RBW = 1MHz, VBW = 3MHz, Span > 26dB bandwidth, Max. hold.
3. Delta Mark trace A Maximum frequency and trace B same frequency.
4. Repeat the above procedure until measurements for all frequencies were complete.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Peak Excursion

Temperature	25°C	Humidity	56%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac

Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 1 + Chain 2

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
48	5240 MHz	8.52	13	Complies

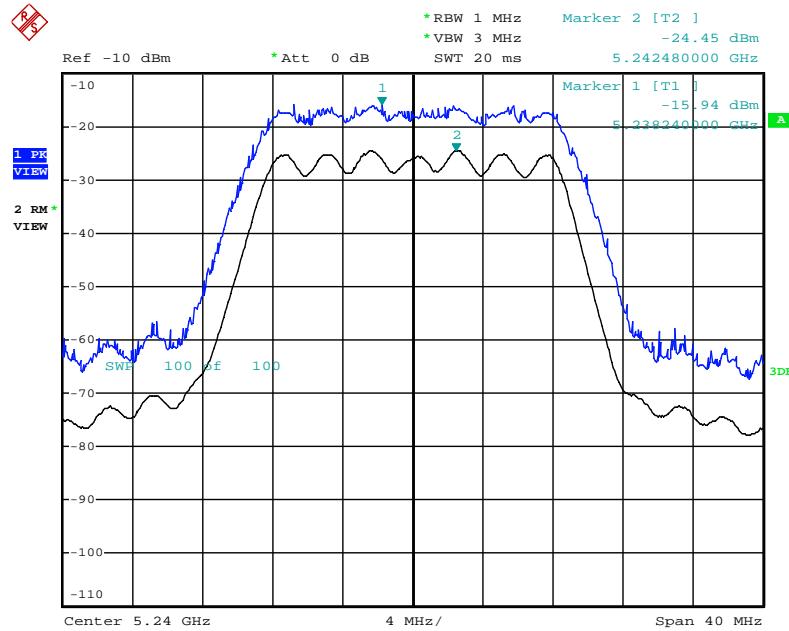
Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Chain 1 + Chain 2

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
46	5230 MHz	10.14	13	Complies

Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1 + Chain 2

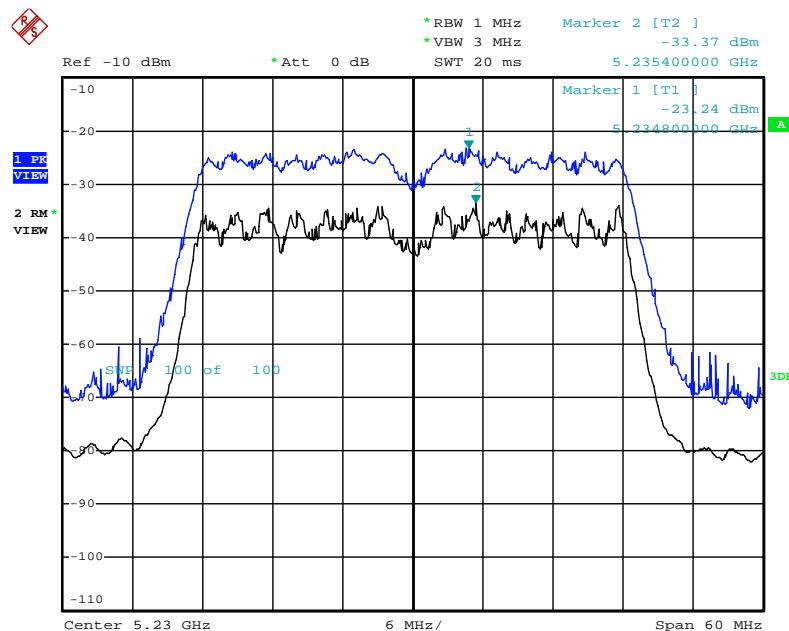
Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
42	5210 MHz	9.26	13	Complies

Temperature	25°C	Humidity	56%
Test Engineer	Denis Su	Configurations	IEEE 802.11a

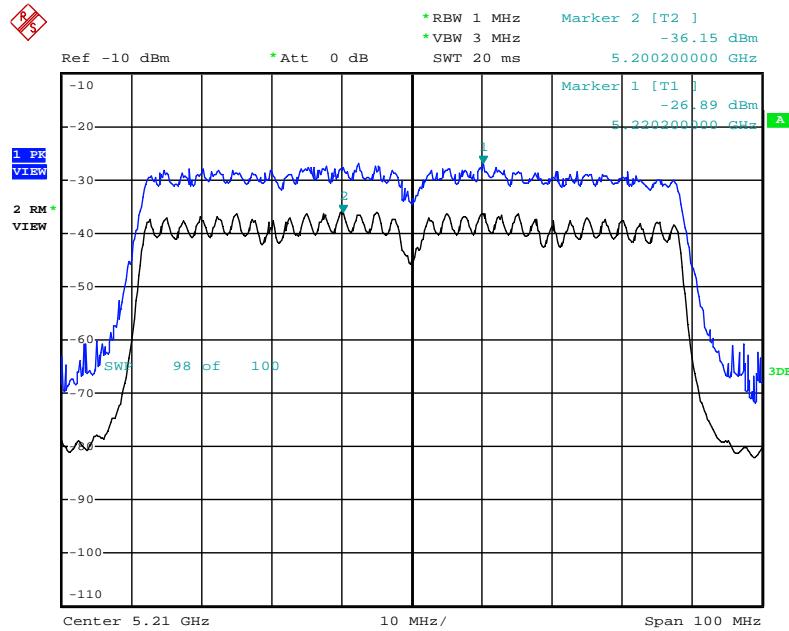

Configuration IEEE 802.11a / Chain 1 + Chain 2

Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
36	5180 MHz	8.98	13	Complies

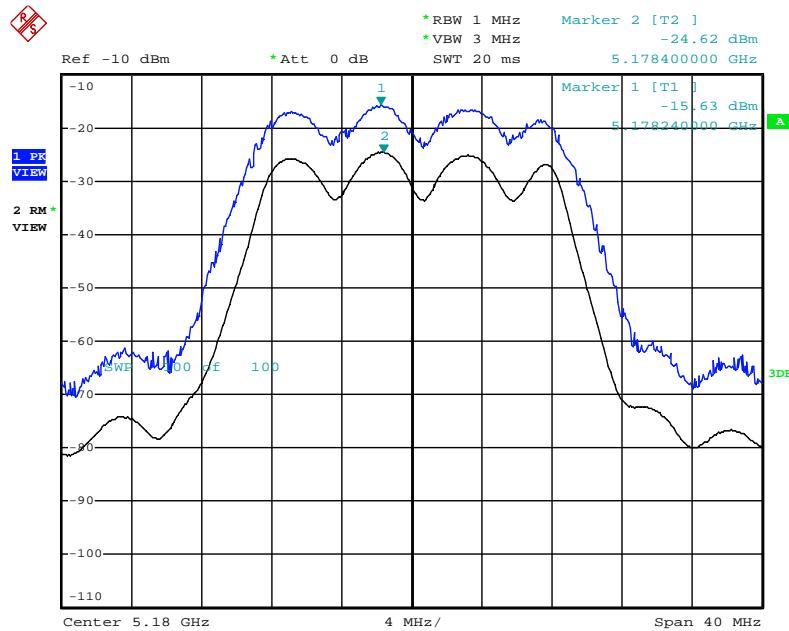
Note: All the test values were listed in the report.


For plots, only the channel with maximum results was shown.

Peak Excursion Plot on Configuration IEEE 802.11ac MCS0/Nss1 20MHz / Chain 1 + Chain 2 / 5240 MHz


Date: 2.APR.2013 00:10:38

Peak Excursion Plot on Configuration IEEE 802.11ac MCS0/Nss1 40MHz / Chain 1 + Chain 2 / 5230 MHz


Date: 2.APR.2013 00:11:29

Peak Excursion Plot on Configuration IEEE 802.11ac MCS0/Nss1 80MHz / Chain 1 + Chain 2 / 5210 MHz

Date: 2.APR.2013 00:12:44

Peak Excursion Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5180 MHz

Date: 2.APR.2013 00:09:15

4.6. Radiated Emissions Measurement

4.6.1. Limit

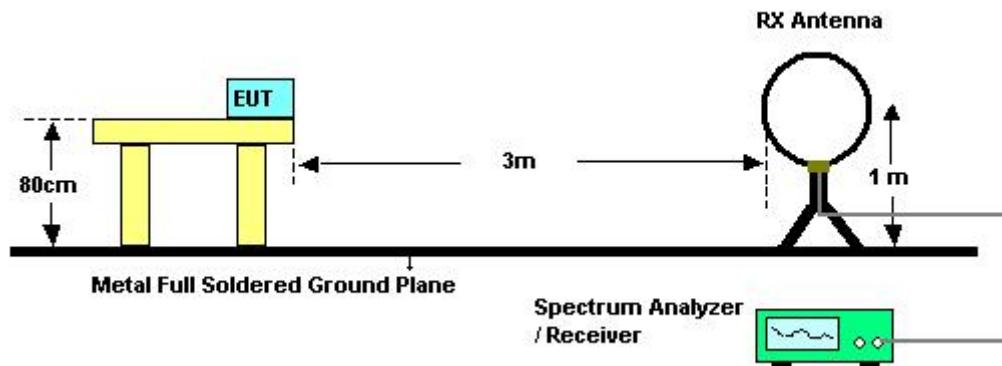
For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed a -27dBm peak limit or average and peak limits of 15.209. For transmitters operating in the In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

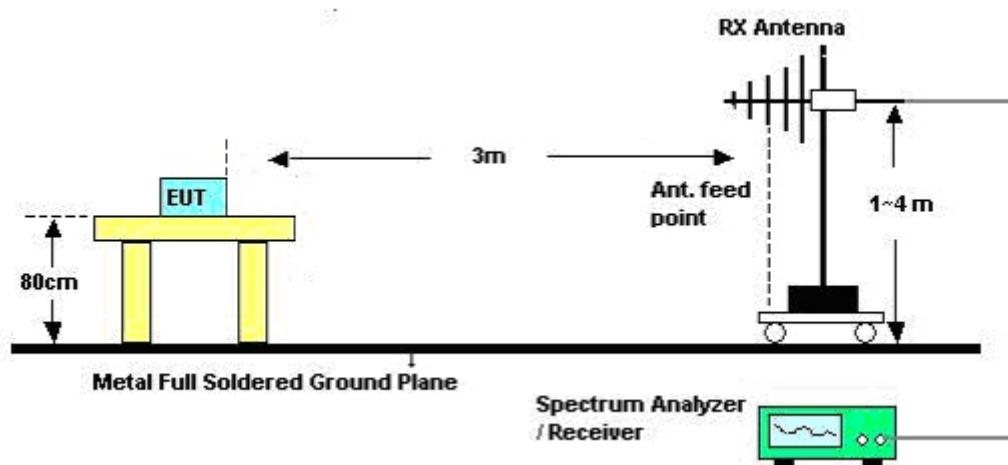
4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for peak


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.6.3. Test Procedures


1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.6.4. Test Setup Layout

For radiated emissions below 1GHz

For radiated emissions above 1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

For Non-beamforming mode

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode

The EUT was programmed to be in beamforming transmitting mode.

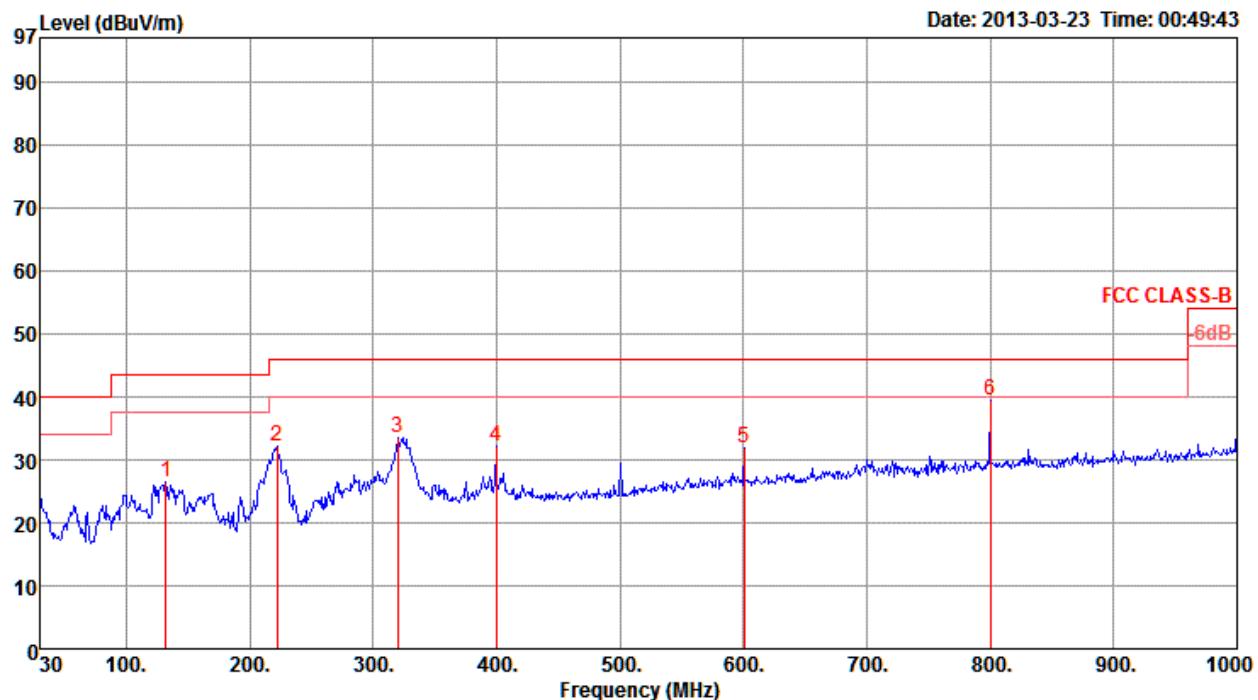
4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	22°C	Humidity	60%
Test Engineer	Denis Su	Configurations	Normal Link
Test Date	Mar. 23, 2013		

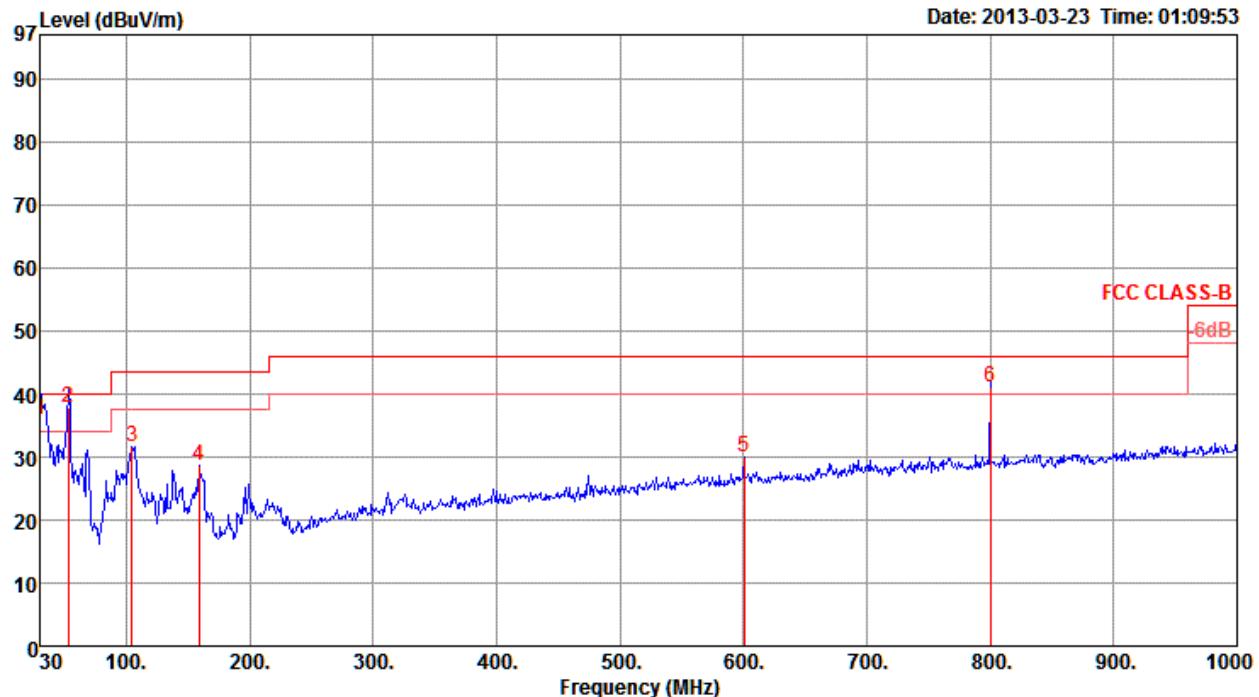
Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	22°C	Humidity	60%
Test Engineer	Denis Su	Configurations	Mode 1: Normal Link + Adapter 1

Horizontal

Freq	Level	Limit	Over	Read	Cable			Antenna	T/Pos	A/Pos	Pol/Phase
					Line	Limit	Level				
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB/m		deg	cm
1	131.85	26.52	43.50	-16.98	39.80	1.68	27.62	12.66	Peak	0	100 HORIZONTAL
2	222.06	32.27	46.00	-13.73	46.36	2.26	27.09	10.74	Peak	0	100 HORIZONTAL
3	320.03	33.62	46.00	-12.38	43.49	2.63	26.91	14.41	Peak	0	100 HORIZONTAL
4	399.57	32.26	46.00	-13.74	40.23	2.99	27.46	16.50	Peak	0	100 HORIZONTAL
5	600.36	32.02	46.00	-13.98	36.59	3.73	27.60	19.30	Peak	0	100 HORIZONTAL
6 p	800.18	39.38	46.00	-6.62	41.11	4.36	26.89	20.80	Peak	0	100 HORIZONTAL

Vertical

Freq MHz	Level dBuV/m	Limit		Over Limit	Read Level dBuV	Cable Loss dB	Preamp Factor dB	Antenna Factor dB/m	Remark	T/Pos deg	A/Pos cm	Pol/Phase
		Line dBuV/m	Line dB									
1 l	30.00	36.06	40.00	-3.94	43.30	0.83	27.97	19.90	QP	314	100	VERTICAL
2 q	53.28	37.95	40.00	-2.05	56.60	1.10	27.91	8.16	QP	2	100	VERTICAL
3	104.69	31.58	43.50	-11.92	45.82	1.53	27.77	12.00	Peak	0	400	VERTICAL
4	159.01	28.76	43.50	-14.74	43.65	1.87	27.42	10.66	Peak	0	400	VERTICAL
5	600.36	30.03	46.00	-15.97	34.60	3.73	27.60	19.30	Peak	0	400	VERTICAL
6 p	800.18	40.95	46.00	-5.05	42.68	4.36	26.89	20.80	Peak	0	400	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

For beamforming mode

Temperature	24.5°C	Humidity	57%
Test Engineer	Denis Su	Configurations	IEEE 802.1ac MCS0/Nss1 20MHz Ch 36 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable		Antenna Factor	Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		MHz	dBuV/m	Line	dBuV/m	dB	dBuV	dB	dB/m	dB			
1	15540.00	47.46	54.00	-6.54	28.90	16.03	38.12	35.59	Average	8270	112	HORIZONTAL	
2	15540.00	58.13	74.00	-15.87	39.57	16.03	38.12	35.59	Peak	100	112	HORIZONTAL	

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable		Antenna Factor	Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		MHz	dBuV/m	Line	dBuV/m	dB	dBuV	dB	dB/m	dB			
1	15540.00	47.67	54.00	-6.33	29.11	16.03	38.12	35.59	Average	100	138	VERTICAL	
2	15540.00	57.78	74.00	-16.22	39.22	16.03	38.12	35.59	Peak	100	138	VERTICAL	

For beamforming mode

Temperature	24.5°C	Humidity	57%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac MCS0/Nss1 20MHz Ch 40 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Horizontal

Freq	Level	Limit		Over Line	Read Level	Cable Antenna Preamp			A/Pos	T/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		
1	15600.00	47.85	54.00	-6.15	29.08	16.31	38.04	35.58	Average	100	180 HORIZONTAL
2	15600.00	58.07	74.00	-15.93	39.30	16.31	38.04	35.58	Peak	100	180 HORIZONTAL

Vertical

Freq	Level	Limit		Over Line	Read Level	Cable Antenna Preamp			A/Pos	T/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		
1	15600.00	48.24	54.00	-5.76	29.47	16.31	38.04	35.58	Average	100	215 VERTICAL
2	15600.00	58.47	74.00	-15.53	39.70	16.31	38.04	35.58	Peak	100	215 VERTICAL

For beamforming mode

Temperature	24.5°C	Humidity	57%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac MCS0/Nss1 20MHz Ch 48 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable			Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		Line	dBuV/m			dB	dBuV	dB					
1	15720.00	49.41	54.00	-4.59	30.32	16.80	37.85	35.56	Average	100	253	HORIZONTAL	
2	15720.00	60.27	74.00	-13.73	41.18	16.80	37.85	35.56	Peak	100	253	HORIZONTAL	

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable			Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		Line	dBuV/m			dB	dBuV	dB					
1	15720.00	49.61	54.00	-4.39	30.52	16.80	37.85	35.56	Average	100	294	VERTICAL	
2	15720.00	60.02	74.00	-13.98	40.93	16.80	37.85	35.56	Peak	100	294	VERTICAL	

For beamforming mode

Temperature	24.5°C	Humidity	57%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac MCS0/Nss1 40MHz Ch 38 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Horizontal

Freq	Level	Limit		Over Line	Read Level	Cable Antenna Preamp			A/Pos	T/Pos	Pol/Phase	
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	15570.00	47.83	54.00	-6.17	29.15	16.17	38.09	35.58	Average	100	261	HORIZONTAL
2	15570.00	57.53	74.00	-16.47	38.85	16.17	38.09	35.58	Peak	100	261	HORIZONTAL

Vertical

Freq	Level	Limit		Over Line	Read Level	Cable Antenna Preamp			A/Pos	T/Pos	Pol/Phase	
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	15570.00	48.06	54.00	-5.92	29.40	16.17	38.09	35.58	Average	100	213	VERTICAL
2	15570.00	57.42	74.00	-16.58	38.74	16.17	38.09	35.58	Peak	100	213	VERTICAL

For beamforming mode

Temperature	24.5°C	Humidity	57%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac MCS0/Nss1 40MHz Ch 46 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Horizontal

Freq	Level	Limit		Read	Cable		Antenna	Preamp	A/Pos	T/Pos	Pol/Phase
		Line	Over		Loss	Factor					
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	15690.00	48.61	54.00	-5.39	29.60	16.66	37.91	35.56	Average	100	179 HORIZONTAL
2	15690.00	59.16	74.00	-14.84	40.15	16.66	37.91	35.56	Peak	100	179 HORIZONTAL

Vertical

Freq	Level	Limit		Read	Cable		Antenna	Preamp	A/Pos	T/Pos	Pol/Phase
		Line	Over		Loss	Factor					
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	15690.00	48.91	54.00	-5.09	29.90	16.66	37.91	35.56	Average	100	142 VERTICAL
2	15690.00	58.86	74.00	-15.14	39.85	16.66	37.91	35.56	Peak	100	142 VERTICAL

For beamforming mode

Temperature	24.5°C	Humidity	57%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac MCS0/Nss1 80MHz Ch 42 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable			A/Pos	T/Pos	Pol/Phase
		Line	dBuV/m			Antenna	Preamp	Factor			
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 15630.00	48.23	54.00	-5.77	29.36	16.45	37.99	35.57	Average	100	101	HORIZONTAL
2 15630.00	58.15	74.00	-15.85	39.28	16.45	37.99	35.57	Peak	100	101	HORIZONTAL

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable			A/Pos	T/Pos	Pol/Phase
		Line	dBuV/m			Antenna	Preamp	Factor			
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 15630.00	48.55	54.00	-5.45	29.68	16.45	37.99	35.57	Average	100	68	VERTICAL
2 15630.00	58.24	74.00	-15.76	39.37	16.45	37.99	35.57	Peak	100	68	VERTICAL

Temperature	24.5°C	Humidity	57%
Test Engineer	Denis Su	Configurations	IEEE 802.11a Ch 36 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Horizontal

Freq	Level	Limit		Over Line	Read Level	Cable Antenna Preamp			A/Pos	T/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		
1	15540.00	45.92	54.00	-8.08	27.36	16.03	38.12	35.59	Average	100	189 HORIZONTAL
2	15540.00	56.36	74.00	-17.64	37.80	16.03	38.12	35.59	Peak	100	189 HORIZONTAL

Vertical

Freq	Level	Limit		Over Line	Read Level	Cable Antenna Preamp			A/Pos	T/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		
1	15540.00	46.47	54.00	-7.53	27.91	16.03	38.12	35.59	Average	100	235 VERTICAL
2	15540.00	56.76	74.00	-17.24	38.20	16.03	38.12	35.59	Peak	100	235 VERTICAL

Temperature	22°C	Humidity	61%
Test Engineer	Denis Su	Configurations	IEEE 802.11a Ch 40 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Horizontal

Freq	Level	Limit		Over Line	Read Level	Cable			Antenna Factor	Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB					
1	15600.00	46.14	54.00	-7.86	27.37	16.31	38.04	35.58	Average	100	157	HORIZONTAL		
2	15600.00	56.07	74.00	-17.93	37.30	16.31	38.04	35.58	Peak	100	157	HORIZONTAL		

Vertical

Freq	Level	Limit		Over Line	Read Level	Cable			Antenna Factor	Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB					
1	15600.00	46.36	54.00	-7.64	27.59	16.31	38.04	35.58	Average	100	108	VERTICAL		
2	15600.00	57.96	74.00	-16.02	39.21	16.31	38.04	35.58	Peak	100	108	VERTICAL		

Temperature	22°C	Humidity	61%
Test Engineer	Denis Su	Configurations	IEEE 802.11a Ch 48 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Horizontal

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	Remark	A/Pos	T/Pos	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor				
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1 15720.00	46.89	54.00	-7.11	27.80	16.80	37.85	35.56	Average	127	24	HORIZONTAL
2 15720.00	58.21	74.00	-15.79	39.12	16.80	37.85	35.56	Peak	127	24	HORIZONTAL

Vertical

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	Remark	A/Pos	T/Pos	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor				
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1 15720.00	46.57	54.00	-7.43	27.48	16.80	37.85	35.56	Average	100	52	VERTICAL
2 15720.00	57.58	74.00	-16.42	38.49	16.80	37.85	35.56	Peak	100	52	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed a -27dBm peak limit or average and peak limits of 15.209. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for peak

4.7.3. Test Procedures

1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.
2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

For Non-beamforming mode

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode

The EUT was programmed to be in beamforming transmitting mode.

4.7.7. Test Result of Band Edge and Fundamental Emissions

For beamforming mode

Temperature	22°C	Humidity	61%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac MCS0/Nss1 20MHz Ch 36, 40, 48 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Channel 36

Freq	Level	Limit		Over Limit	Read Level	Cable			Antenna Factor	Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		Line	dB			dBuV	dB	dB/m						
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m	dB	cm	deg				
1	5091.00	53.83	54.00	-0.17	14.04	5.92	33.87	0.00	Average	129	1	VERTICAL		
2	5139.00	67.89	74.00	-6.11	27.96	5.95	33.98	0.00	Peak	129	1	VERTICAL		
3	5172.00	105.78	54.00			5.97	34.04	0.00	Average	129	1	VERTICAL		
4	5172.00	114.86	74.00			5.97	34.04	0.00	Peak	129	1	VERTICAL		

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

Freq	Level	Limit		Over Limit	Read Level	Cable			Antenna Factor	Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		Line	dB			dBuV	dB	dB/m						
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m	dB	cm	deg				
1	5037.00	53.75	54.00	-0.25	14.11	5.87	33.77	0.00	Average	128	8	VERTICAL		
2	5117.00	63.43	74.00	-10.57	23.55	5.94	33.94	0.00	Peak	128	8	VERTICAL		
3	5197.00	103.47	54.00			6.00	34.11	0.00	Average	128	8	VERTICAL		
4	5197.00	112.81	74.00			6.00	34.11	0.00	Peak	128	8	VERTICAL		

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

Freq	Level	Limit		Over Limit	Read Level	Cable			Antenna Factor	Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		Line	dB			dBuV	dB	dB/m						
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m	dB	cm	deg				
1	5072.00	53.41	54.00	-0.59	13.66	5.91	33.84	0.00	Average	127	18	VERTICAL		
2	5072.00	63.65	74.00	-10.35	23.90	5.91	33.84	0.00	Peak	127	18	VERTICAL		
3	5232.00	116.93	74.00			6.02	34.18	0.00	Peak	127	18	VERTICAL		
4	5233.00	106.01	54.00			6.02	34.18	0.00	Average	127	18	VERTICAL		
5	5392.00	50.18	54.00	-3.82	9.56	6.13	34.49	0.00	Average	127	18	VERTICAL		
6	5393.00	60.35	74.00	-13.65	19.73	6.13	34.49	0.00	Peak	127	18	VERTICAL		

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

For beamforming mode

Temperature	22°C	Humidity	61%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac MCS0/Nss1 40MHz Ch 38, 46 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Channel 38

Freq	Level	Limit		Over Limit	Read Level	Cable			Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		Line	dB			dBuV	dB	dB/m					
1	5115.00	53.90	54.00	-0.10	14.02	5.94	33.94	0.00	Average	116	2	VERTICAL	
2	5116.00	64.30	74.00	-9.70	24.42	5.94	33.94	0.00	Peak	116	2	VERTICAL	
3	5195.00	103.69	54.00			6.00	34.11	0.00	Average	116	2	VERTICAL	
4	5195.00	113.09	74.00			6.00	34.11	0.00	Peak	116	2	VERTICAL	

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

Freq	Level	Limit		Over Limit	Read Level	Cable			Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
		Line	dB			dBuV	dB	dB/m					
1	5138.00	53.61	54.00	-0.39	13.68	5.95	33.98	0.00	Average	156	2	VERTICAL	
2	5138.00	62.54	74.00	-11.46	22.61	5.95	33.98	0.00	Peak	156	2	VERTICAL	
3	5217.00	103.51	54.00			6.01	34.15	0.00	Average	156	2	VERTICAL	
4	5218.00	112.67	74.00			6.01	34.15	0.00	Peak	156	2	VERTICAL	

Item 3, 4 are the fundamental frequency at 5230 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

For beamforming mode

Temperature	22°C	Humidity	61%
Test Engineer	Denis Su	Configurations	IEEE 802.11ac MCS0/Nss1 80MHz Ch 42 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Channel 42

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	Remark	A/Pos	T/Pos	Pol/Phase
		Line	Limit	Level	Cable	Antenna	Preamp		cm	deg	
MHz	dBuV/m	dBuV/m		dB	dBuV	dB	dB/m	dB			
1	5139.00	53.64	54.00	-0.36	13.71	5.95	33.98	0.00	Average	128	1 VERTICAL
2	5150.00	68.59	74.00	-5.41	28.62	5.96	34.01	0.00	Peak	128	1 VERTICAL
3	5219.00	101.77	54.00			6.01	34.15	0.00	Average	128	1 VERTICAL
4	5219.00	111.43	74.00			6.01	34.15	0.00	Peak	128	1 VERTICAL

Item 3, 4 are the fundamental frequency at 5210 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Temperature	22°C	Humidity	61%
Test Engineer	Denis Su	Configurations	IEEE 802.11a Ch 36, 40, 48 / Chain 1 + Chain 2
Test Date	Mar. 28, 2013		

Channel 36

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	Remark	A/Pos	T/Pos	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor		cm	deg	
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			
1	5100.80	64.47	74.00	-9.53	24.64	5.92	33.91	0.00 Peak	129	39	VERTICAL
2	5101.20	53.62	54.00	-0.38	13.79	5.92	33.91	0.00 Average	129	39	VERTICAL
3	5176.80	114.32	74.00			5.99	34.04	0.00 Peak	129	39	VERTICAL
4	5177.20	103.09	54.00			5.99	34.04	0.00 Average	129	39	VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	Remark	A/Pos	T/Pos	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor		cm	deg	
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			
1	5040.00	53.90	54.00	-0.10	14.24	5.89	33.77	0.00 Average	101	275	HORIZONTAL
2	5040.00	63.10	74.00	-10.90	23.44	5.89	33.77	0.00 Peak	101	275	HORIZONTAL
3	5201.00	98.12	54.00			6.00	34.11	0.00 Average	101	275	HORIZONTAL
4	5202.00	108.02	74.00			6.00	34.11	0.00 Peak	101	275	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	Remark	A/Pos	T/Pos	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor		cm	deg	
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			
1	5080.00	53.53	54.00	-0.47	13.75	5.91	33.87	0.00 Average	100	317	VERTICAL
2	5080.00	61.83	74.00	-12.17	22.05	5.91	33.87	0.00 Peak	100	317	VERTICAL
3	5241.00	105.07	54.00		7	6.02	34.18	0.00 Average	100	317	VERTICAL
4	5241.00	115.20	74.00		0	6.02	34.18	0.00 Peak	100	317	VERTICAL
5	5401.00	49.14	54.00	-4.86	8.46	6.15	34.53	0.00 Average	100	317	VERTICAL
6	5401.00	59.11	74.00	-14.89	18.43	6.15	34.53	0.00 Peak	100	317	VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

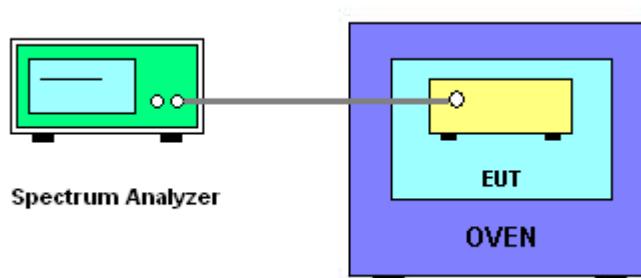
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.8. Frequency Stability Measurement

4.8.1. Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emissions is maintained within the band of operation under all conditions of normal operation as specified in the user's manual or ± 20 ppm (IEEE 802.11n specification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	10 kHz
VB	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

1. The transmitter output (antenna port) was connected to the spectrum analyzer.
2. EUT have transmitted absence of modulation signal and fixed channelize.
3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11n specification).
6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
7. Extreme temperature rule is $-30^{\circ}\text{C} \sim 50^{\circ}\text{C}$.

4.8.4. Test Setup Layout

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5200
126.50	5199.9760
110.00	5199.9540
93.50	5199.9766
Max. Deviation (MHz)	0.046000
Max. Deviation (ppm)	8.85

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	5200
-30	5199.9580
-20	5200.0020
-10	5199.9760
0	5200.0130
10	5200.0130
20	5199.9540
30	5199.9540
40	5199.9766
50	5200.0240
Max. Deviation (MHz)	0.046000
Max. Deviation (ppm)	8.85

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Oct. 23, 2012	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Nov. 26, 2012	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9kHz ~ 30MHz	Jun. 22, 2012	Conduction (CO01-CB)
Impulsbegrenzer Pulse Limiter	Rohde&Schwarz	ESH3-Z2	100430	9kHz~30MHz	Feb. 21, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 04, 2012	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	-	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Jan. 11, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 27, 2012	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 23, 2012	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Jul. 31, 2012	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100056	9KHz~40GHz	Nov. 16, 2012	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Mar. 20, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz - 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz - 26.5 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 18, 2012	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Oct. 08, 2012	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 05, 2012	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 18, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz - 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 28, 2012	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 27, 2012	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

** Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

6. TEST LOCATION

SHIJR	ADD : 6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255
HWA YA	ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL : 886-3-327-3456 FAX : 886-3-318-0055
LINKOU	ADD : No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C TEL : 886-2-2601-1640 FAX : 886-2-2601-1695
DUNGHU	ADD : No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. TEL : 886-2-2631-4739 FAX : 886-2-2631-9740
JUNGHE	ADD : 7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. TEL : 886-2-8227-2020 FAX : 886-2-8227-2626
NEIHU	ADD : 4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C. TEL : 886-2-2794-8886 FAX : 886-2-2794-9777
JHUBEI	ADD : No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C. TEL : 886-3-656-9065 FAX : 886-3-656-9085