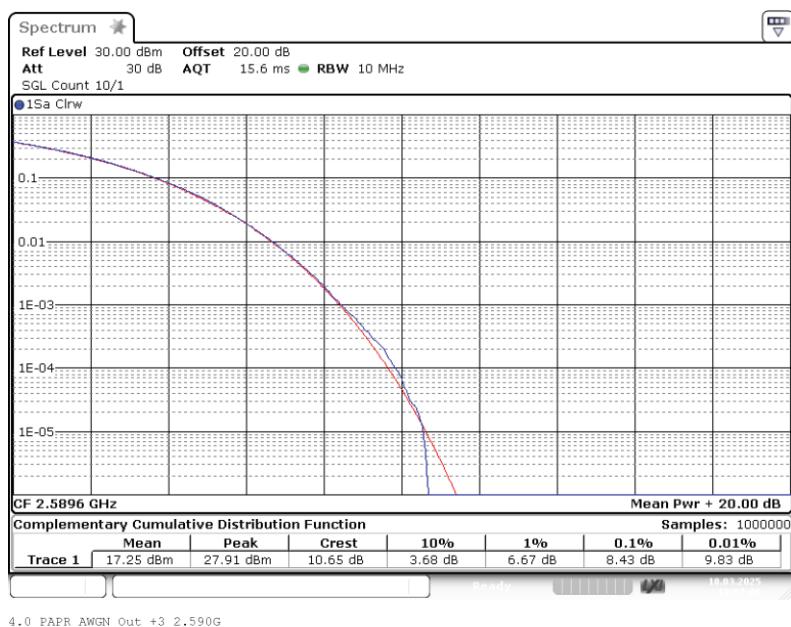
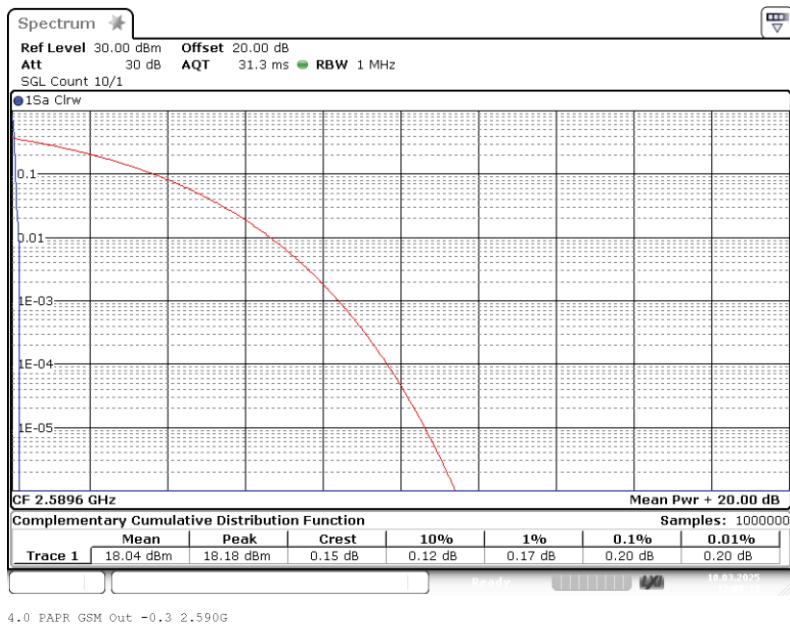
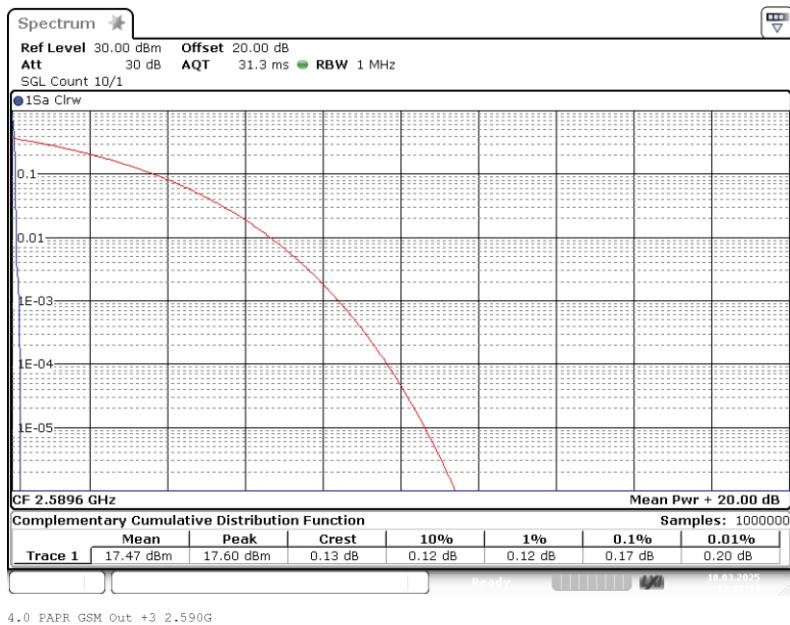
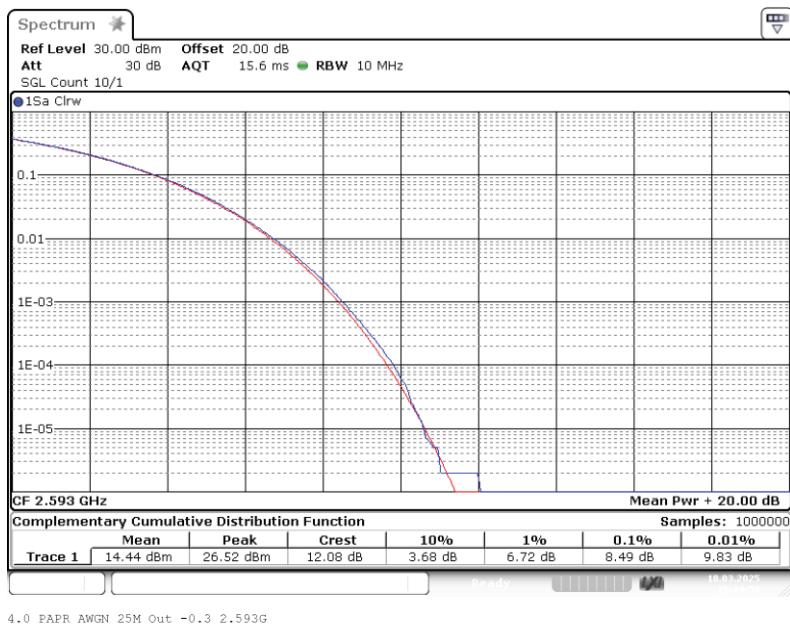
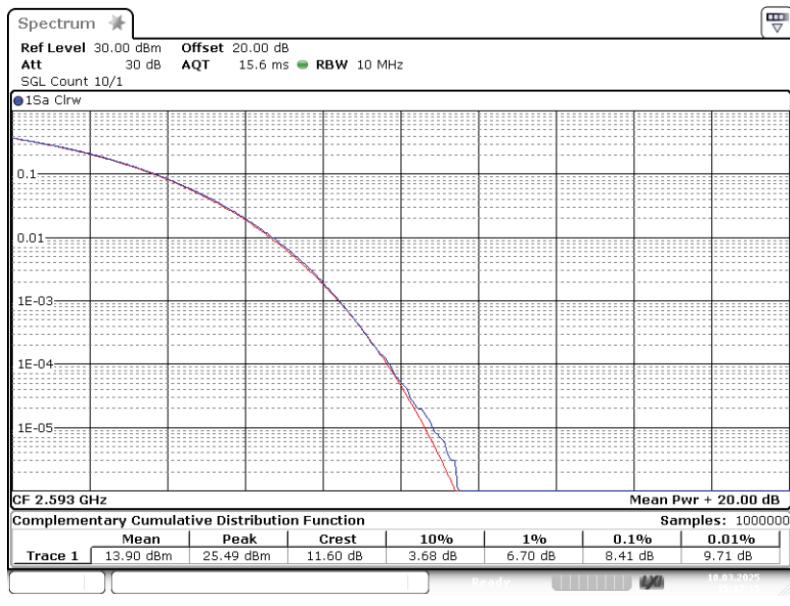

Band: BRS LBS; Frequency: 2,5320 GHz; Band edge: mid; Mod: AWGN 45M; PAPR 0,3 dB < AGC

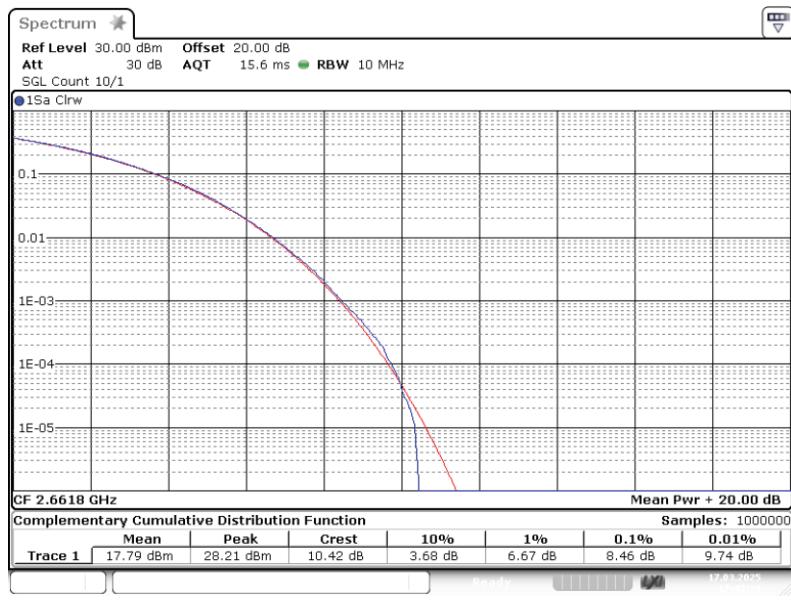

Band: BRS LBS; Frequency: 2,5320 GHz; Band edge: mid; Mod: AWGN 45M; PAPR 3 dB > AGC

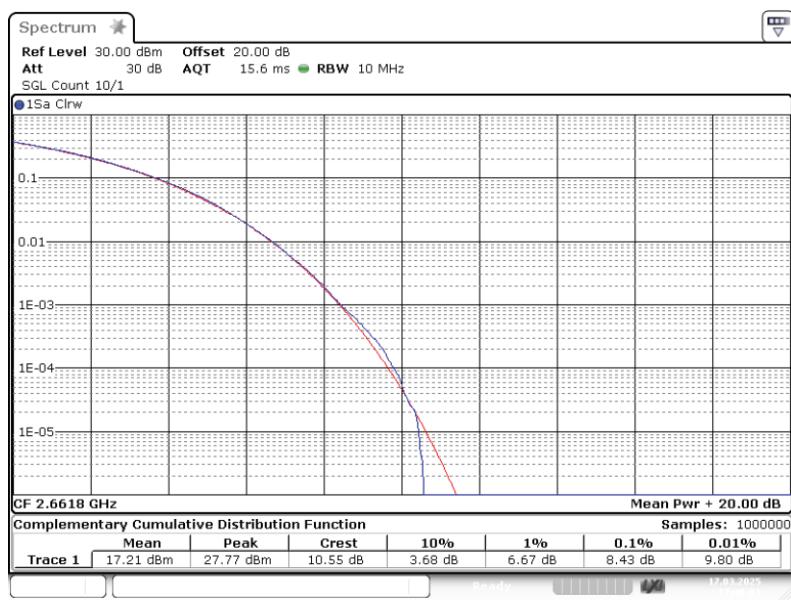

Band: BRS MBS; Frequency: 2,5896 GHz; Band edge: f0; Mod: AWGN; PAPR 0,3 dB < AGC


Band: BRS MBS; Frequency: 2,5896 GHz; Band edge: f0; Mod: AWGN; PAPR 3 dB > AGC


Band: BRS MBS; Frequency: 2,5896 GHz; Band edge: f0; Mod: GSM; PAPR 0,3 dB < AGC

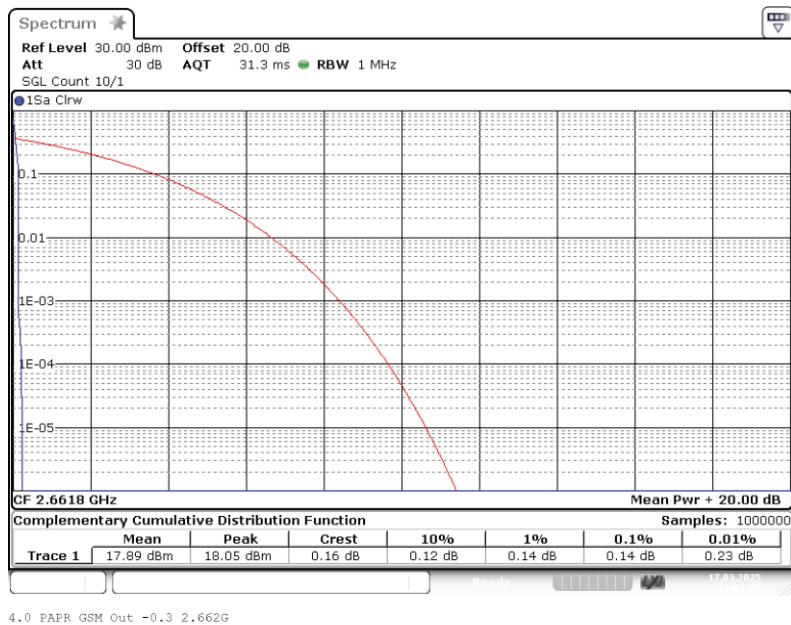

Band: BRS MBS; Frequency: 2,5896 GHz; Band edge: f0; Mod: GSM; PAPR 3 dB > AGC


Band: BRS MBS; Frequency: 2,5930 GHz; Band edge: mid; Mod: AWGN 25M; PAPR 0,3 dB < AGC


Band: BRS MBS; Frequency: 2,5930 GHz; Band edge: mid; Mod: AWGN 25M; PAPR 3 dB > AGC

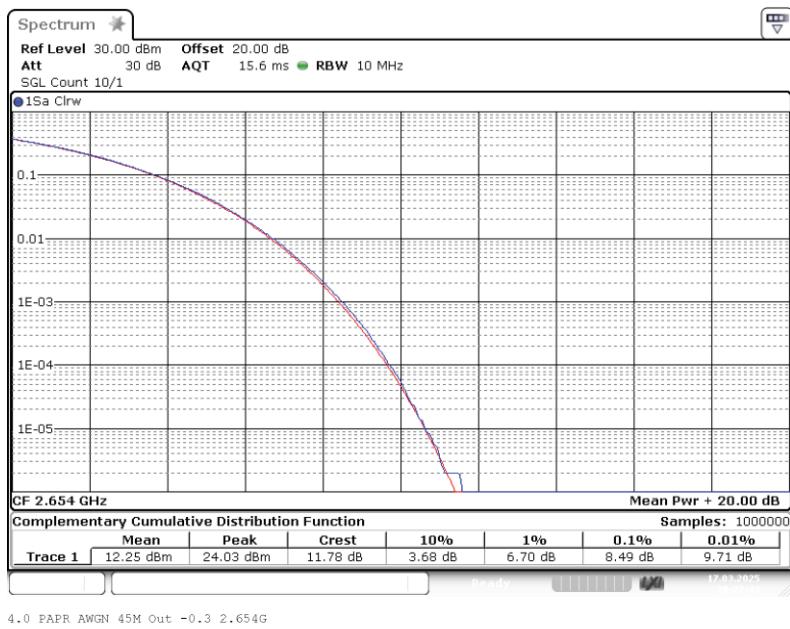
Band: BRS UBS; Frequency: 2,6618 GHz; Band edge: f0; Mod: AWGN; PAPR 0,3 dB < AGC

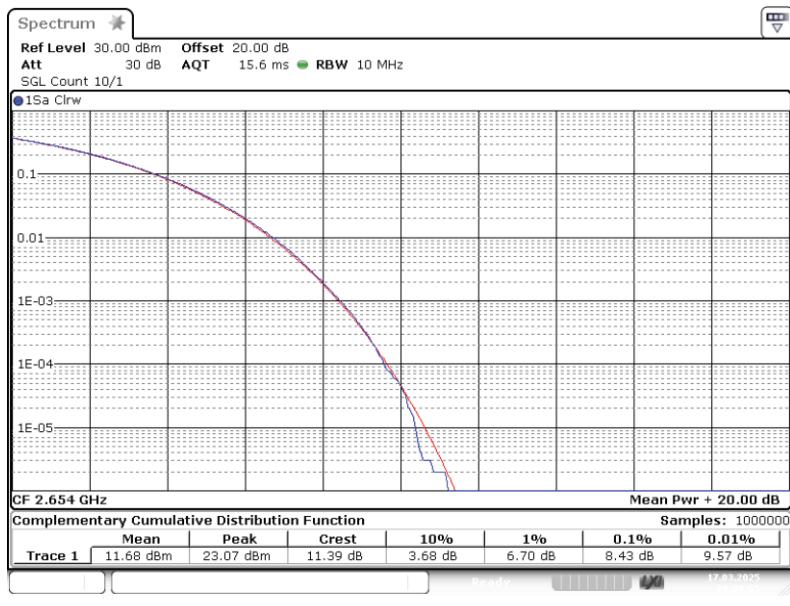
Band: BRS UBS; Frequency: 2,6618 GHz; Band edge: f0; Mod: AWGN; PAPR 3 dB > AGC




BUREAU
VERITAS

Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]


Band: BRS UBS; Frequency: 2,6618 GHz; Band edge: f0; Mod: GSM; PAPR 0,3 dB < AGC


Band: BRS UBS; Frequency: 2,6618 GHz; Band edge: f0; Mod: GSM; PAPR 3 dB > AGC

Band: BRS UBS; Frequency: 2,6540 GHz; Band edge: mid; Mod: AWGN 45M; PAPR 0,3 dB < AGC

Band: BRS UBS; Frequency: 2,6540 GHz; Band edge: mid; Mod: AWGN 45M; PAPR 3 dB > AGC

BUREAU
VERITAS

Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

5.2.5 TEST EQUIPMENT USED

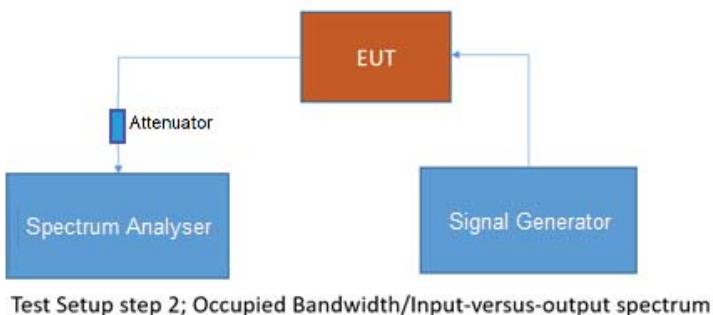
- Conducted

5.3 OCCUPIED BANDWIDTH/INPUT-VERSUS-OUTPUT SPECTRUM

Standard FCC Part 2.1049; Occupied bandwidth

The test was performed according to:
ANSI C63.26, KDB 935210 D05 v01r04: 3.4

Test date: 2025-03-17 – 2025-03-18


Environmental conditions: 22.8 °C; 26 % r. H./23.5 °C; 23 % r. H.

Test engineer: Thomas Hufnagel

5.3.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission limits per FCC §2.1049, RSS-GEN 6.4 and RSS-131-5.2.2

The EUT was connected to the test setups according to the following diagram:

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

BUREAU
VERITAS

5.3.2 TEST REQUIREMENTS/LIMITS

Abstract from FCC Part 2:

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 41 BRS (LBS/UBS)

(m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.

(1) Prior to the transition, and thereafter, solely within the MBS, for analog operations with an EIRP in excess of -9 dBW, the signal shall be attenuated at the channel edges by at least 38 dB relative to the peak visual carrier, then linearly sloping from that level to at least 60 dB of attenuation at 1 MHz below the lower band edge and 0.5 MHz above the upper band edge, and attenuated at least 60 dB at all other frequencies.

(2) For digital base stations, the attenuation shall be not less than $43 + 10 \log (P)$ dB, unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS No. 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

BUREAU
VERITAS

Abstract from ISED RSS-199:

RSS-199; 5.6 Unwanted emission limits

Unwanted emissions shall be measured in terms of average values when the transmitter is operating at the manufacturer's rated power and modulated as specified in RSS-Gen. Equipment shall meet the unwanted emission limits, specified below, outside each frequency block group. For each channel bandwidth supported by the equipment under test, the unwanted emissions shall be measured and reported for two channel frequencies: one located as close as possible to the low end and one located as close as possible to the high end of the equipment's operating frequency range.

For the unwanted emission limits, in the 1 MHz band immediately outside and adjacent to the frequency block group, the power shall be measured with a resolution bandwidth of at least 1% of the occupied bandwidth for fixed stations, base stations, and fixed subscriber equipment, and 2% for subscriber equipment other than fixed subscriber equipment. Beyond this 1 MHz band, a resolution bandwidth of 1 MHz shall be used. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz, or 1% or 2% of the occupied bandwidth, as applicable.

For all equipment, the TRP or total conducted power (sum of conducted power across all antenna connectors), where applicable, of the unwanted emissions outside the frequency block or frequency block group shall not exceed the limits shown in the tables below.

Table 4: Unwanted emission limits for fixed station, base station and fixed subscriber equipment

Offset from the edge of the frequency block or frequency block group (MHz)	Unwanted emission limits
≤ 1	-13 dBm/(1% of OB*)
> 1	-13 dBm/MHz

*OB is the occupied bandwidth

BUREAU
VERITAS

Abstract from FCC Part 2:

FCC Part 2.1049; Occupied bandwidth:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.3 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

- (h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.
- (i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

Abstract from ISED RSS-131:

RSS-131; 92 Input-versus-output spectrum

The spectral growth of the 26 dB bandwidth of the output signal shall be less than 5% of the input signal spectrum.

BUREAU
VERITAS

Test Report No.: 25-0072

Tests performed on UAP-XR [BRS]

5.3.3 TEST PROTOCOL

Band 41 BRS (LBS), downlink

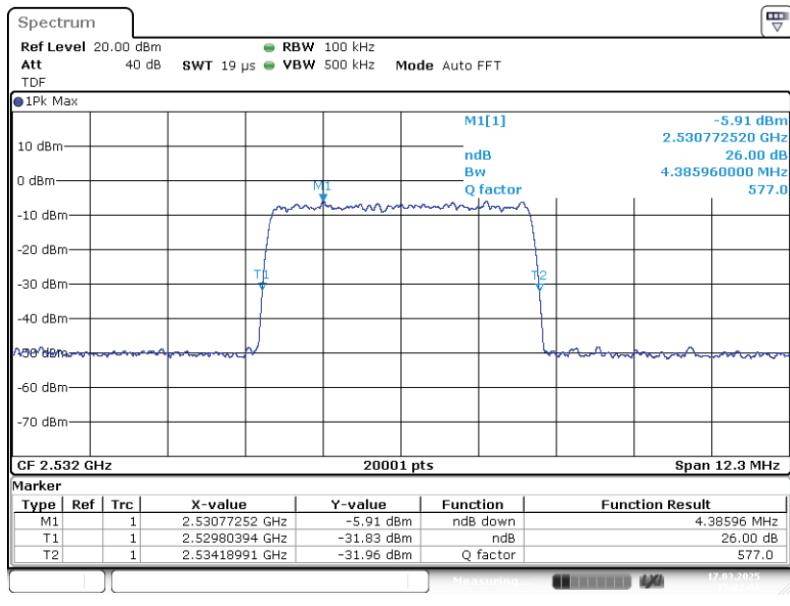
Signal Type	Input Power	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Limit Delta Occupied Bandwidth [kHz]	Margin to Limit [kHz]
Wideband	0.3 dB < AGC	2532.0	4386.0	4388.4	2.5	205.0	202.5
Wideband	3 dB > AGC	2532.0	4390.3	4389.0	1.2	205.0	203.8
Narrowband	0.3 dB < AGC	2532.0	317.7	316.9	0.8	10.0	9.2
Narrowband	3 dB > AGC	2532.0	320.0	313.2	6.8	10.0	3.2
Wideband 5G	0.3 dB < AGC	2532.0	46066	45972	94	2180	2086
Wideband 5G	3 dB > AGC	2532.0	45979	46060	81	2180	2099

Band 41 BRS (MBS), downlink

Signal Type	Input Power	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Limit Delta Occupied Bandwidth [kHz]	Margin to Limit [kHz]
Wideband	0.3 dB < AGC	2593,0	4389.0	4390.3	1.2	205.0	203.8
Wideband	3 dB > AGC	2593,0	4387.2	4392.1	4.9	205.0	200.1
Narrowband	0.3 dB < AGC	2593,0	315.8	314.7	1.1	10.0	8.9
Narrowband	3 dB > AGC	2593,0	316.7	314.5	2.2	10.0	7.8
Wideband 5G	0.3 dB < AGC	2593,0	25176	25150	26	1195	1169
Wideband 5G	3 dB > AGC	2593,0	25161	25161	0	1195	1195

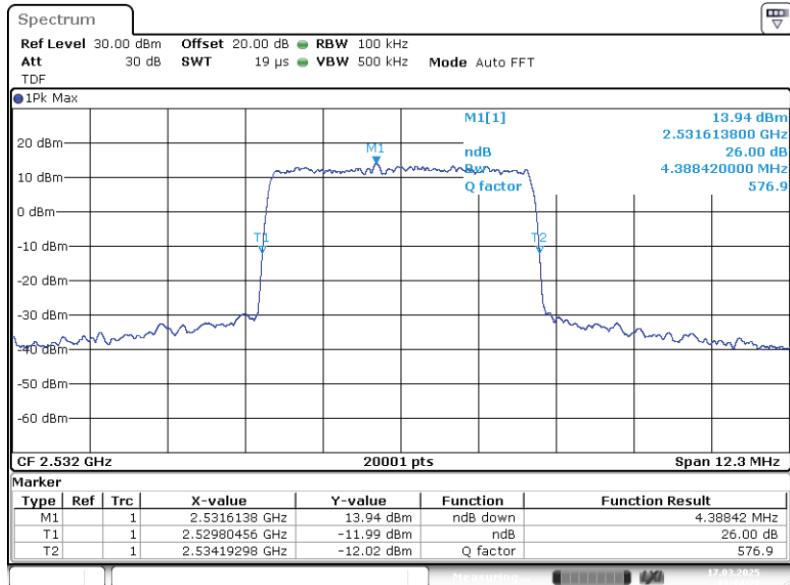
Band 41 BRS (UBS), downlink

Signal Type	Input Power	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Limit Delta Occupied Bandwidth [kHz]	Margin to Limit [kHz]
Wideband	0.3 dB < AGC	2654,0	4390.9	4390.9	0.0	205.0	205.0
Wideband	3 dB > AGC	2654,0	4389.7	4394.0	4.3	205.0	200.7
Narrowband	0.3 dB < AGC	2654,0	317.1	315.0	2.0	10.0	8.0
Narrowband	3 dB > AGC	2654,0	320.4	314.5	5.9	10.0	4.1
Wideband 5G	0.3 dB < AGC	2654,0	46026	45986	40	2180	2140
Wideband 5G	3 dB > AGC	2654,0	46141	45992	149	2180	2032


Remark: Please see next sub-clause for the measurement plot.

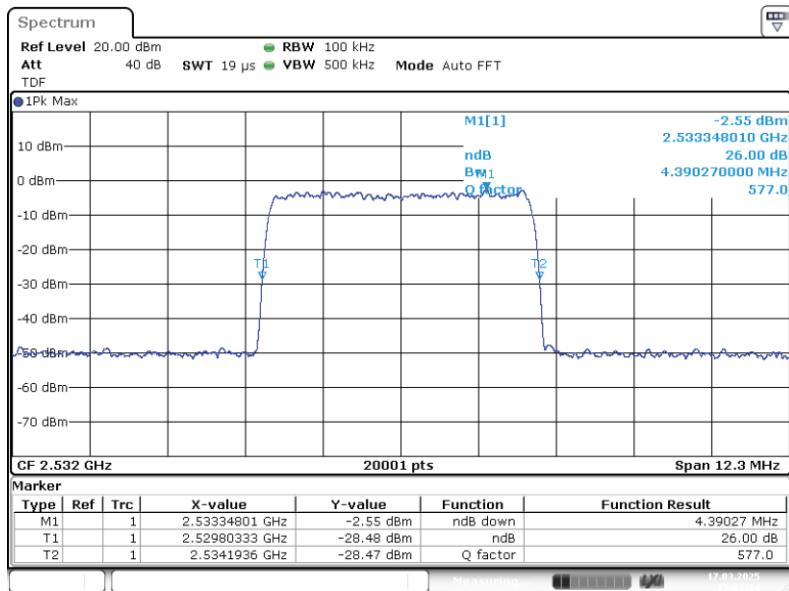
The test results relate only to the tested item. The sample has been provided by the client.

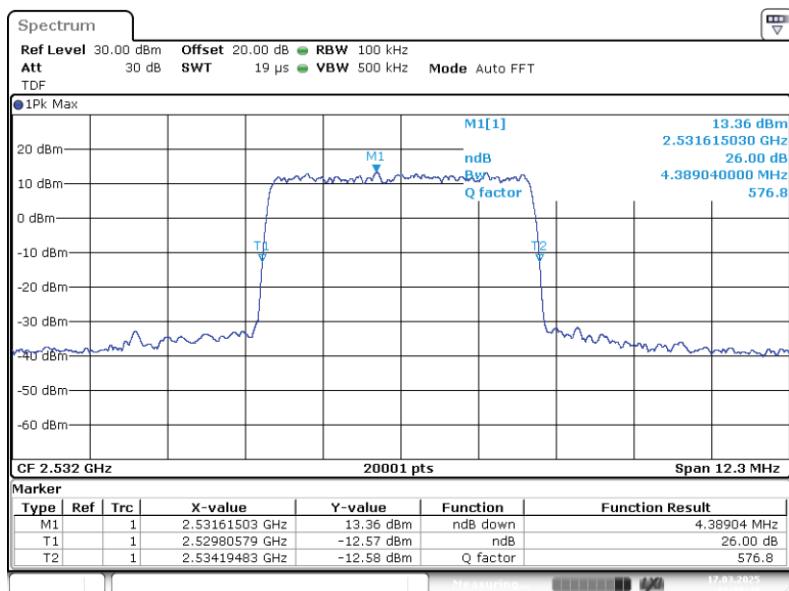
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.


5.3.4 MEASUREMENT PLOT

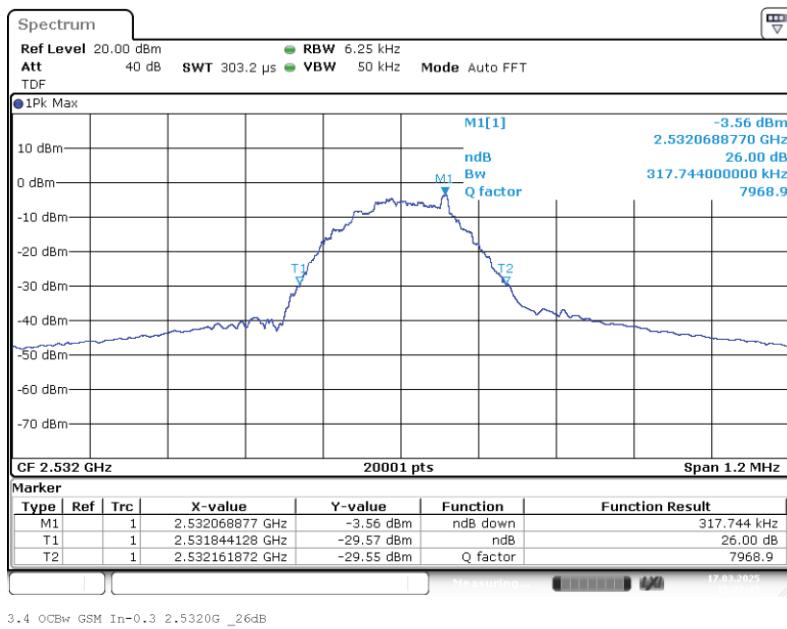
Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: AWGN;
Input OCBw 0.3 dB < AGC

3.4 OCBw AWGN In=0.3 2.5320G _26dB

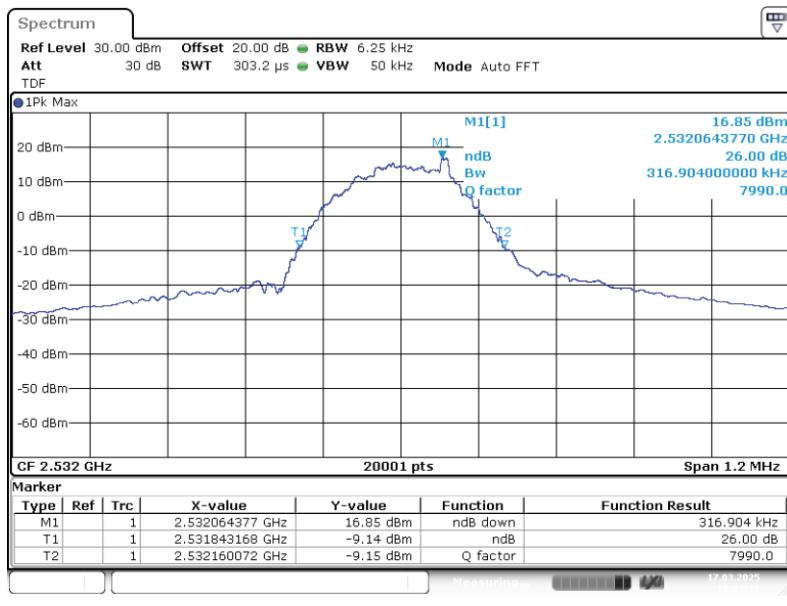

Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: AWGN;
Output OCBw 0.3 dB < AGC


3.4 OCBw AWGN Out =0.3 2.5320G _26dB

Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: AWGN;
Input OCBw 3 dB > AGC



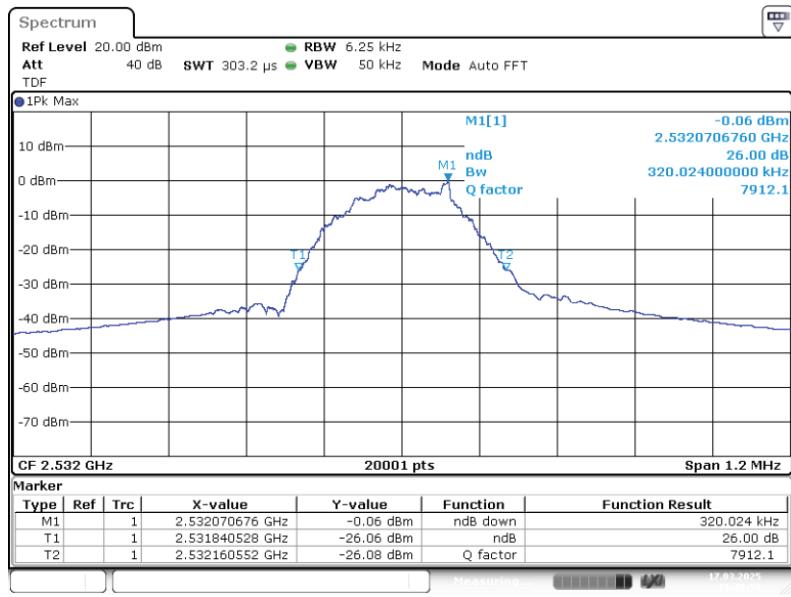
Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: AWGN;
Output OCBw 3 dB > AGC



Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

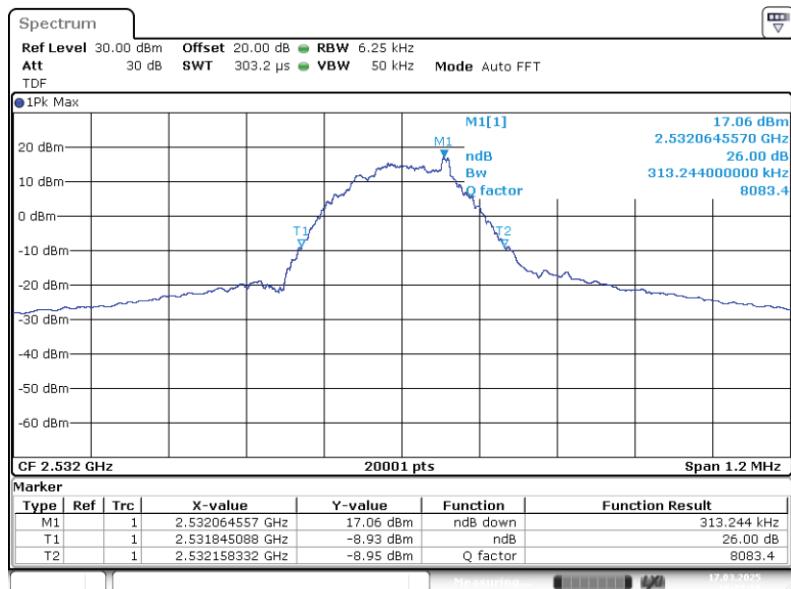
Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: GSM;
Input OCBw 0.3 dB < AGC

Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: GSM;
Output OCBw 0.3 dB < AGC



BUREAU
VERITAS

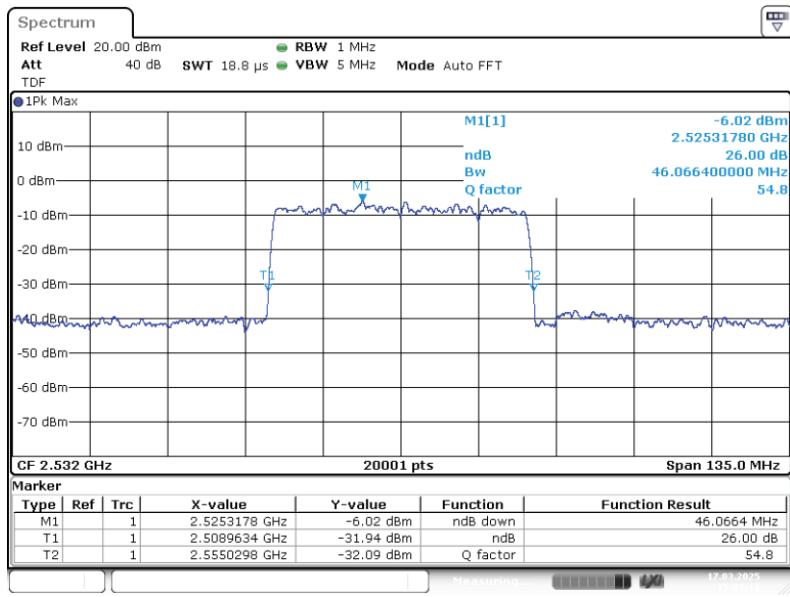
Test Report No.: 25-0072


Tests performed on UAP-XR [BRS]

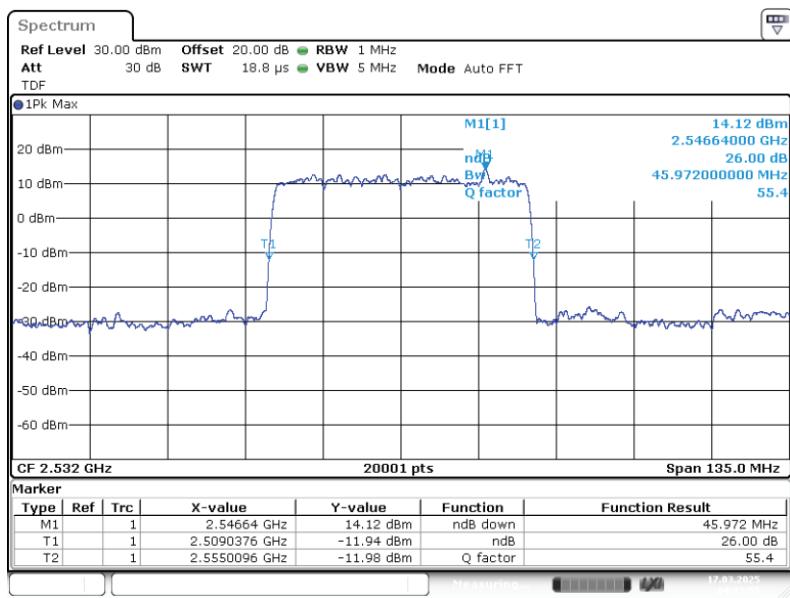
Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: GSM;
Input OCBw 3 dB > AGC

3.4 OCBw GSM In+3 2.5320G _26dB

Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: GSM;
Output OCBw 3 dB > AGC



3.4 OCBw GSM Out +3 2.5320G _26dB


The test results relate only to the tested item. The sample has been provided by the client.

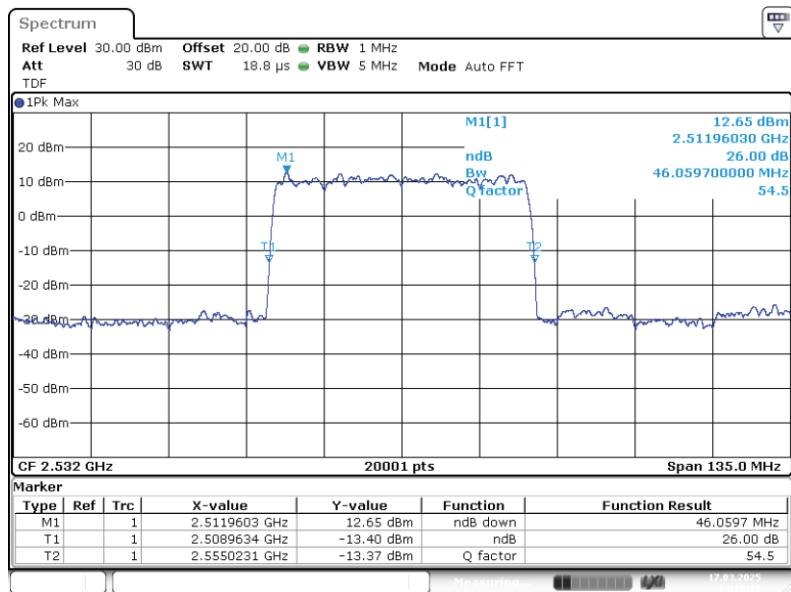
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: AWGN 45M;
 Input OCBw 0.3 dB < AGC

Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: AWGN 45M;
 Output OCBw 0.3 dB < AGC



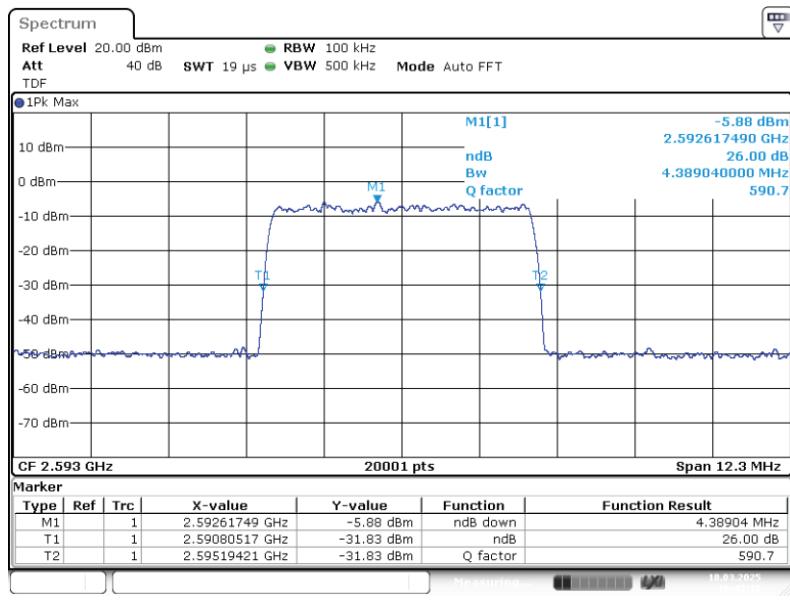
BUREAU
VERITAS


Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

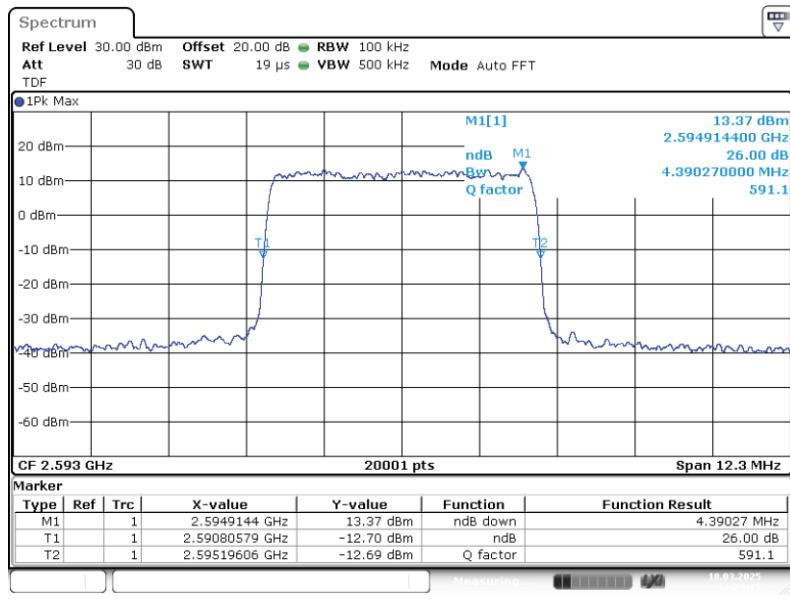
Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: AWGN 45M;
Input OCBw 3 dB > AGC

3.4 OCBw AWGN 45M In+3 2.5320G _26dB

Band: BRS LBS; Frequency: 2.5320 GHz; Band edge: mid; Mod: AWGN 45M;
Output OCBw 3 dB > AGC



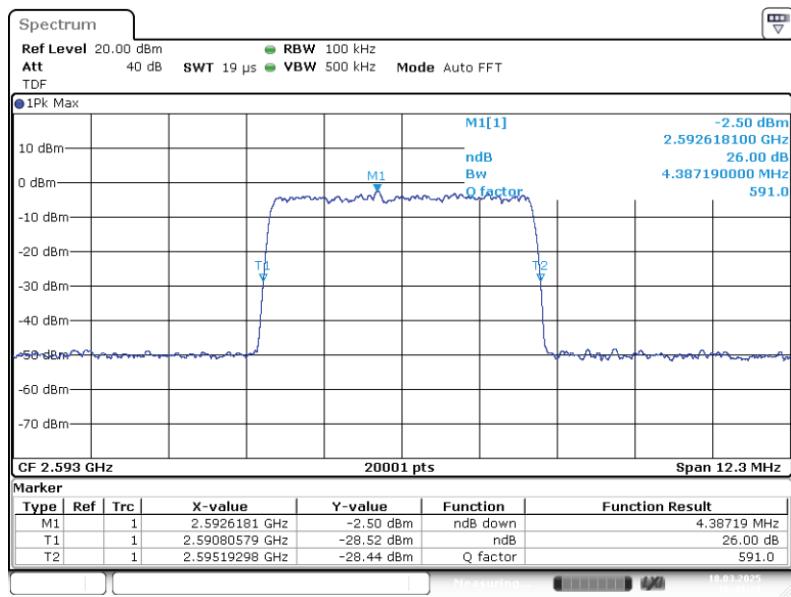
3.4 OCBw AWGN 45M Out +3 2.5320G _26dB


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

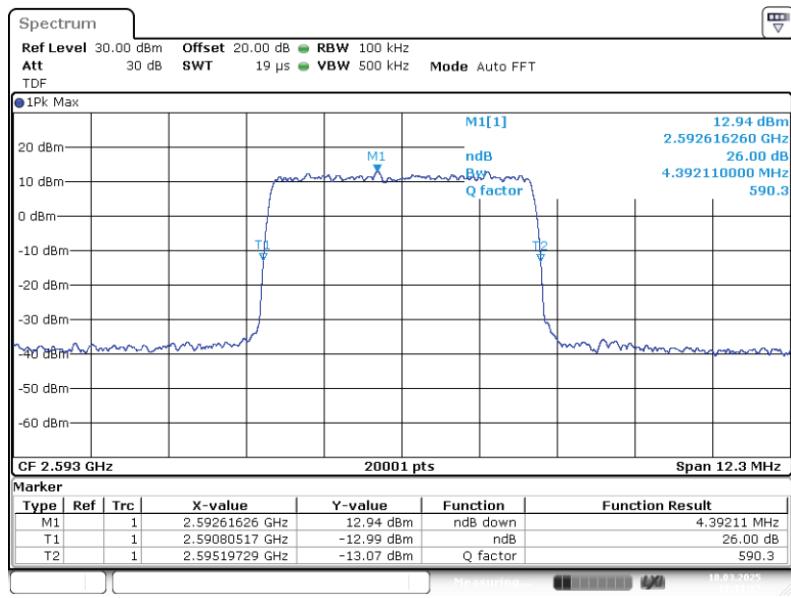
Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: AWGN;
 Input OCBw 0.3 dB < AGC

Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: AWGN;
 Output OCBw 0.3 dB < AGC



BUREAU
VERITAS

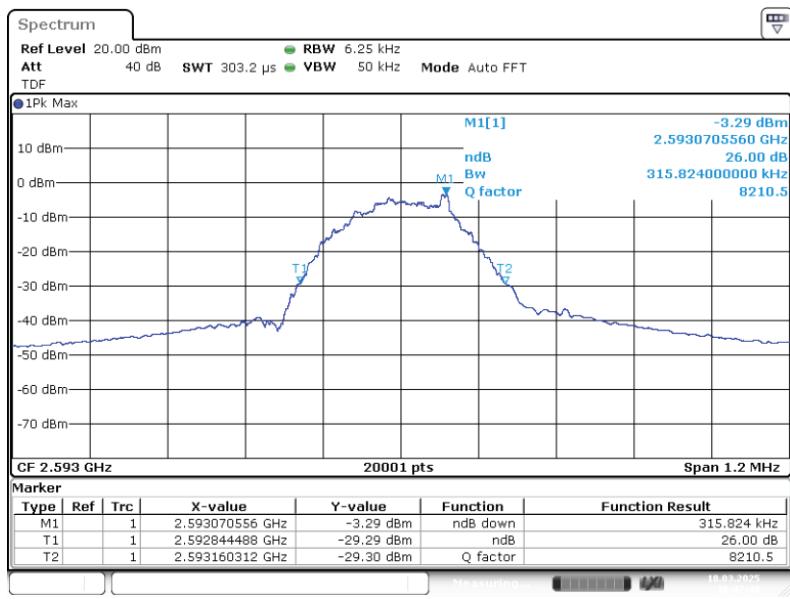
Test Report No.: 25-0072


Tests performed on UAP-XR [BRS]

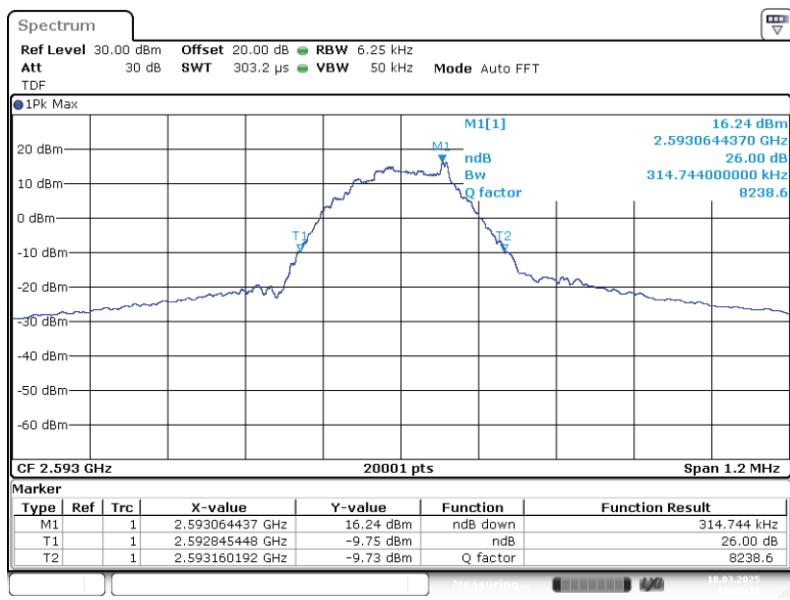
Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: AWGN;
Input OCBw 3 dB > AGC

3.4 OCBw AWGN In+3 2.5930G _26dB

Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: AWGN;
Output OCBw 3 dB > AGC



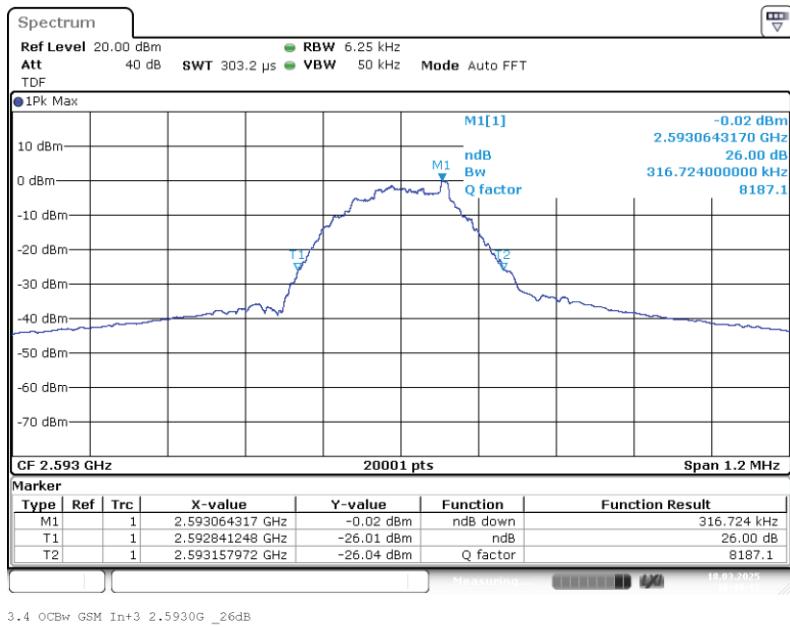
3.4 OCBw AWGN Out +3 2.5930G _26dB

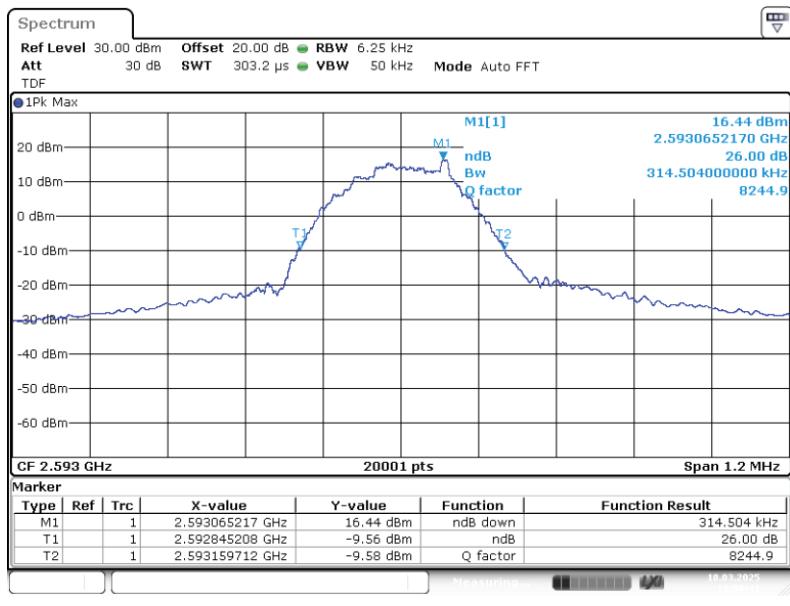

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: GSM;
 Input OCBw 0.3 dB < AGC

Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: GSM;
 Output OCBw 0.3 dB < AGC

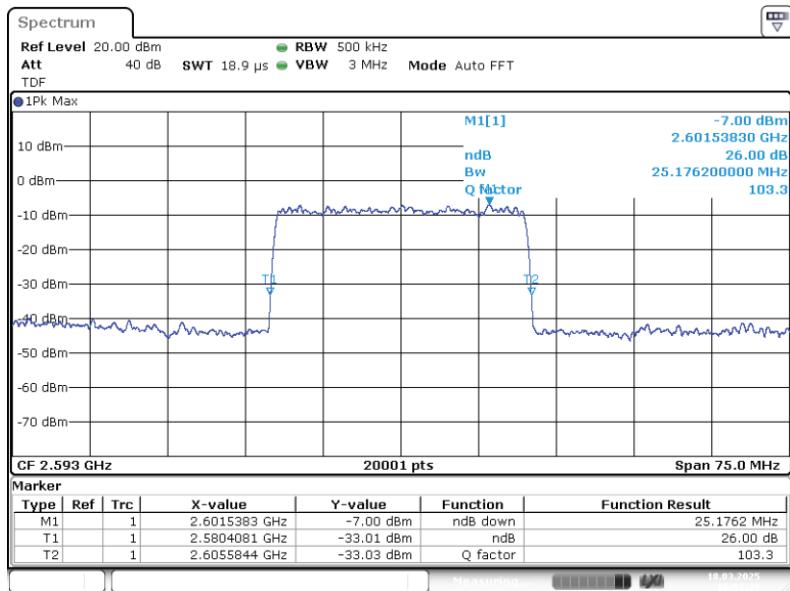



BUREAU
VERITAS

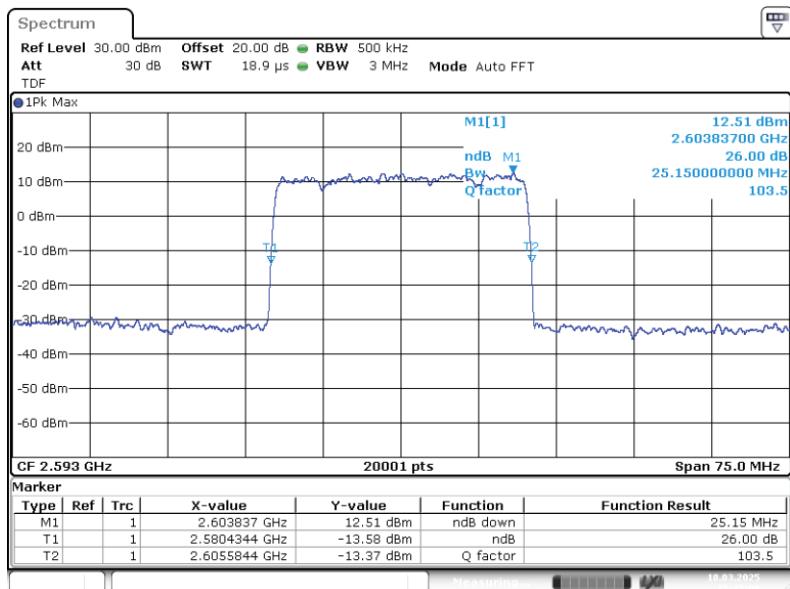
Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: GSM;
Input OCBw 3 dB > AGC

Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: GSM;
Output OCBw 3 dB > AGC



BUREAU
VERITAS


Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

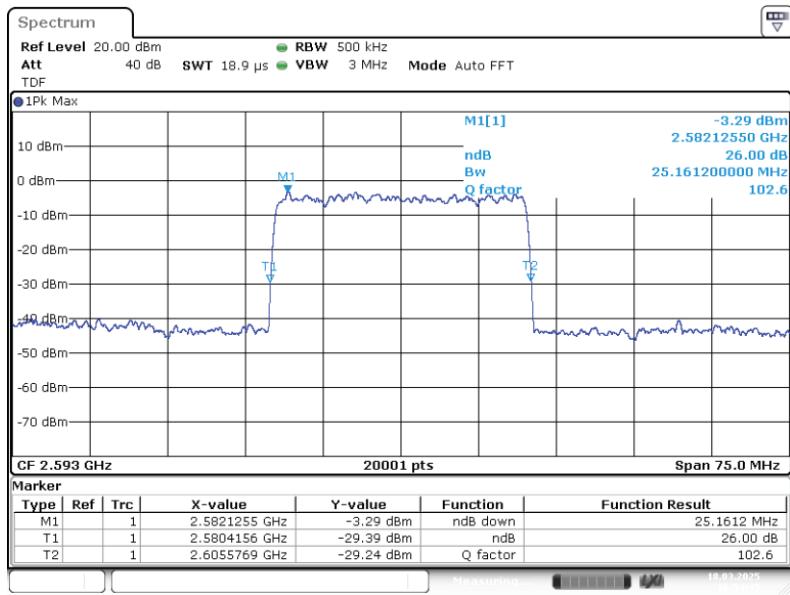
Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: AWGN 25M;
Input OCBw 0.3 dB < AGC

3.4 OCBw AWGN 25M In=0.3 2.5930G _26dB

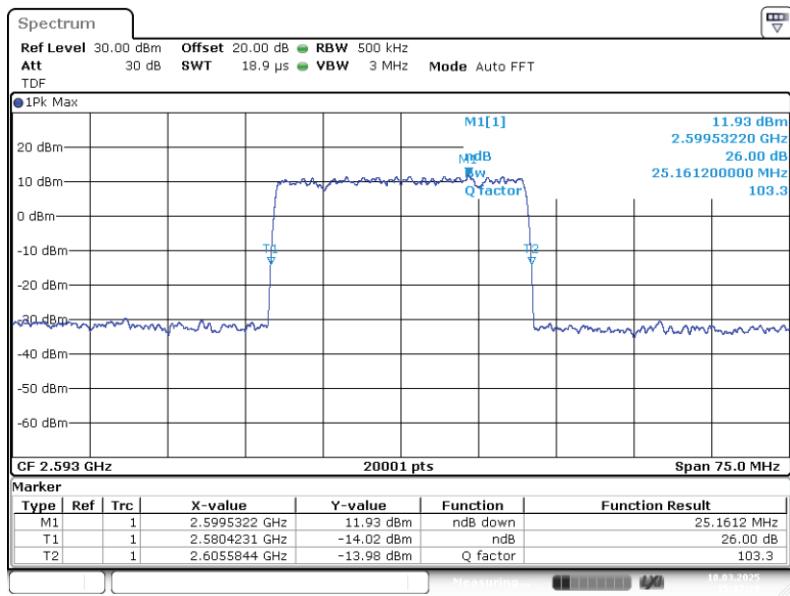
Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: AWGN 25M;
Output OCBw 0.3 dB < AGC

3.4 OCBw AWGN 25M Out =0.3 2.5930G _26dB

The test results relate only to the tested item. The sample has been provided by the client.


Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

BUREAU
VERITAS


Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: AWGN 25M;
Input OCBw 3 dB > AGC

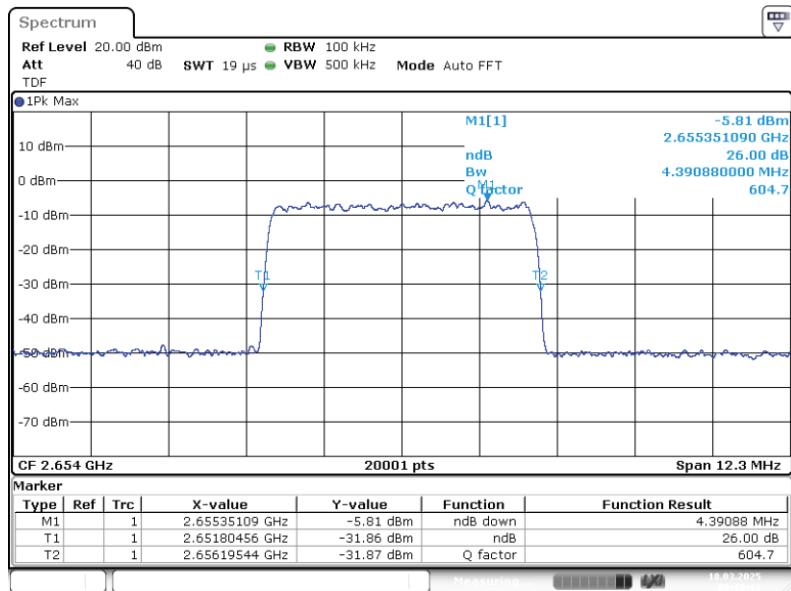
3.4 OCBw AWGN 25M In+3 2.5930G _26dB

Band: BRS MBS; Frequency: 2.5930 GHz; Band edge: mid; Mod: AWGN 25M;
Output OCBw 3 dB > AGC

3.4 OCBw AWGN 25M Out +3 2.5930G _26dB

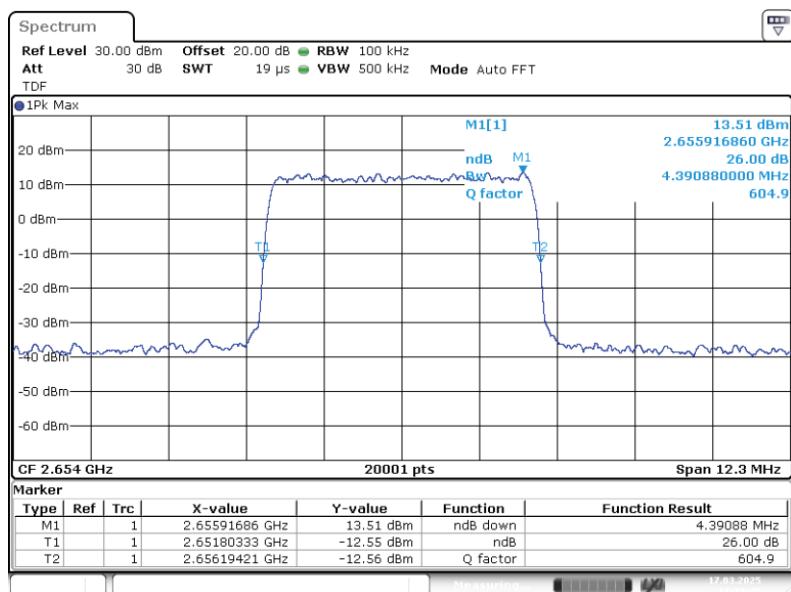
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU
VERITAS

Test Report No.: 25-0072


Tests performed on UAP-XR [BRS]

Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: AWGN;
Input OCBw 0.3 dB < AGC

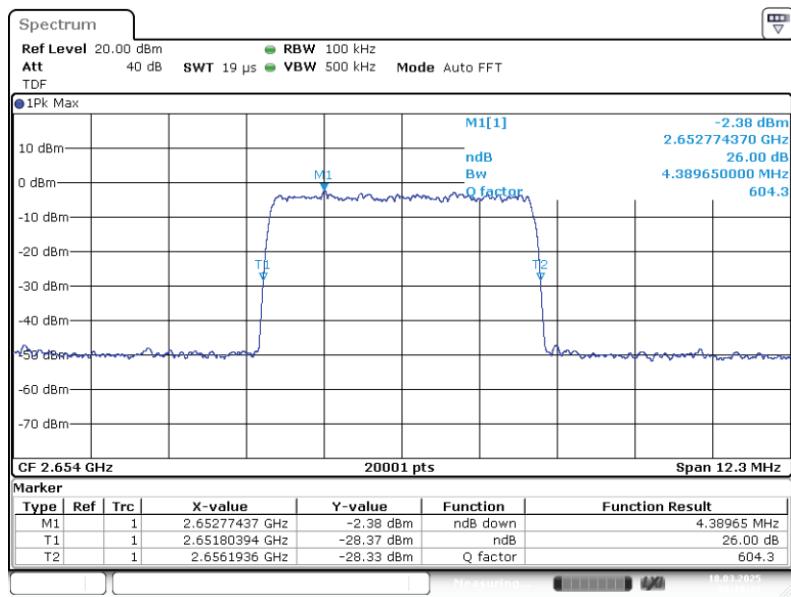
3.4 OCBw AWGN In=0.3 2.6540G _26dB

Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: AWGN;
Output OCBw 0.3 dB < AGC

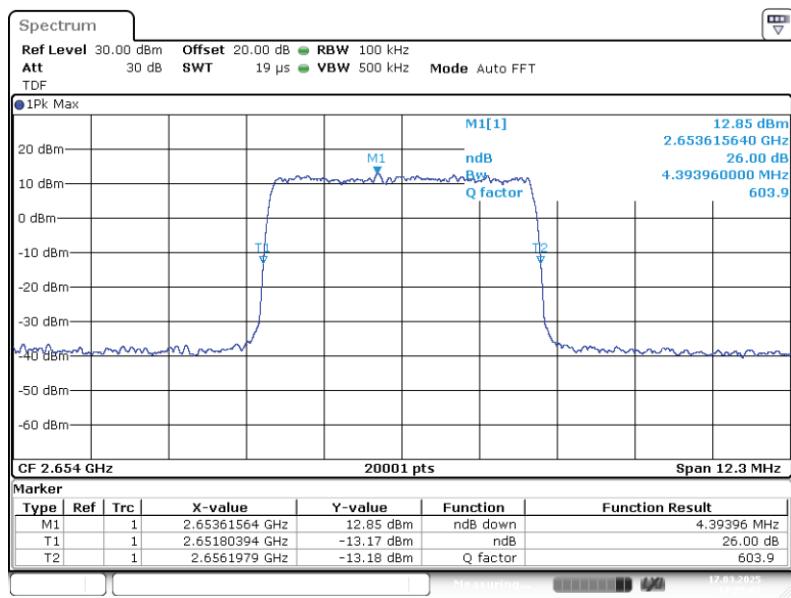
3.4 OCBw AWGN Out -0.3 2.6540G _26dB

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU
VERITAS


Test Report No.: 25-0072

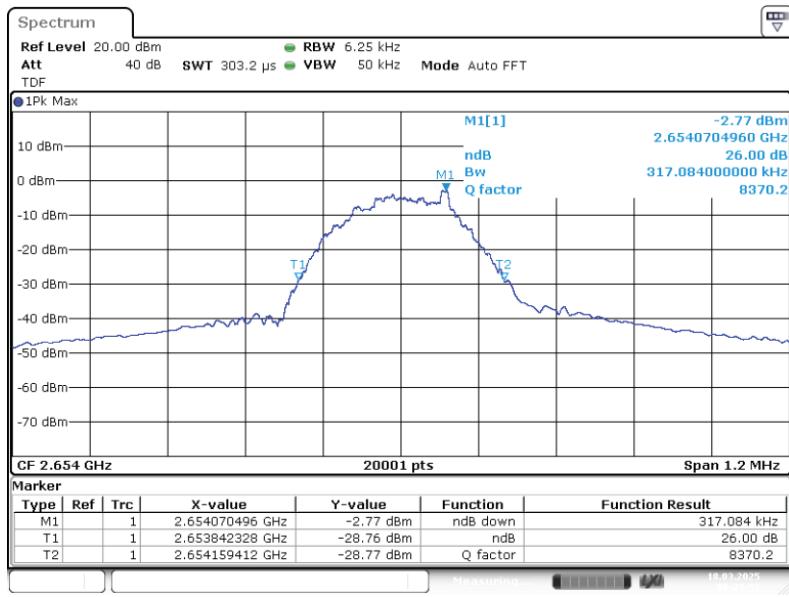
Tests performed on UAP-XR [BRS]

Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: AWGN;
Input OCBw 3 dB > AGC

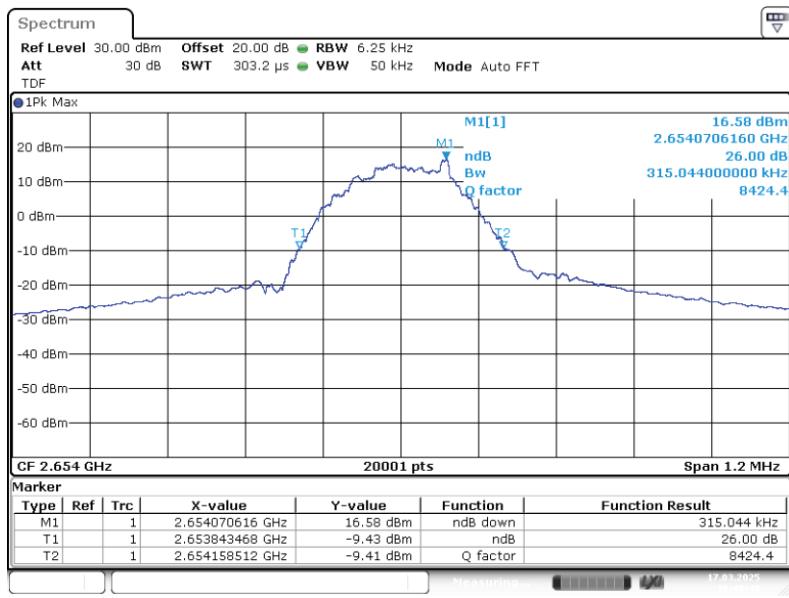
Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: AWGN;
Output OCBw 3 dB > AGC

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU
VERITAS

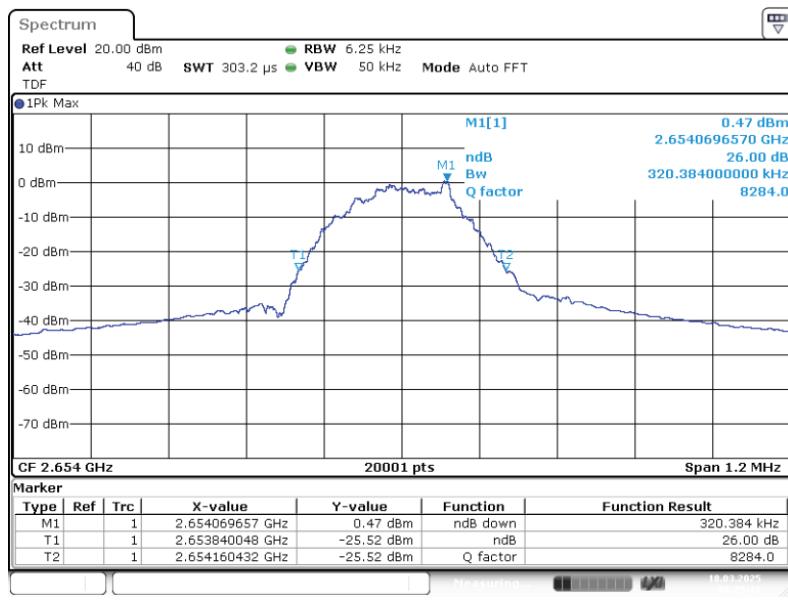

Test Report No.: 25-0072

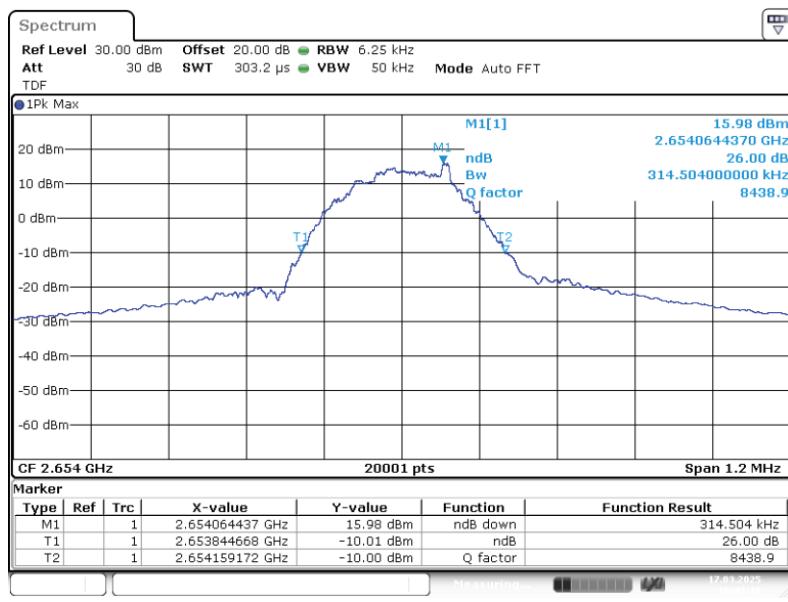
Tests performed on UAP-XR [BRS]

Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: GSM;
Input OCBw 0.3 dB < AGC

Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: GSM;
Output OCBw 0.3 dB < AGC

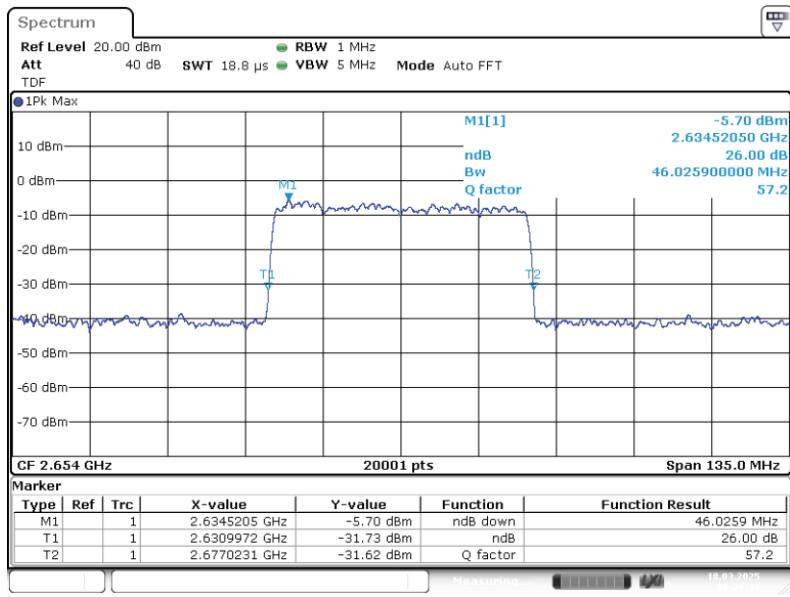
The test results relate only to the tested item. The sample has been provided by the client.


Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

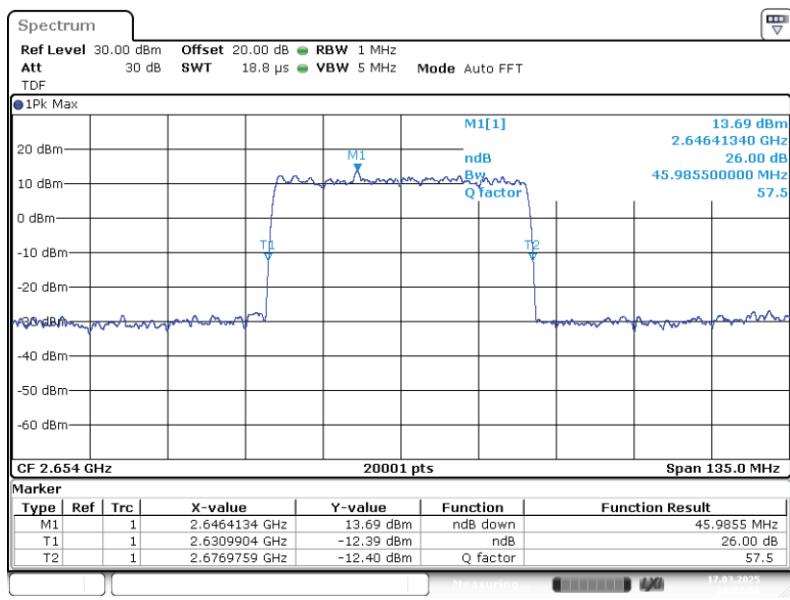

BUREAU
VERITAS

Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: GSM;
Input OCBw 3 dB > AGC

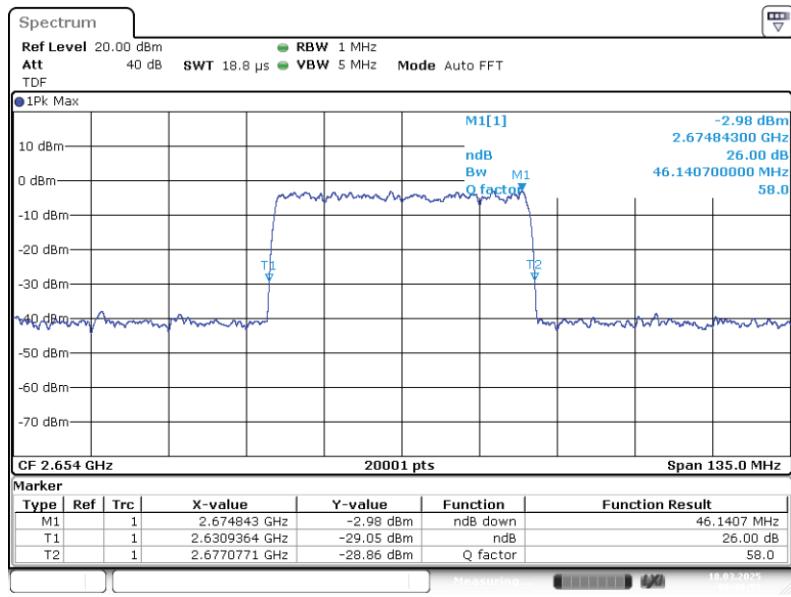


Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: GSM;
Output OCBw 3 dB > AGC

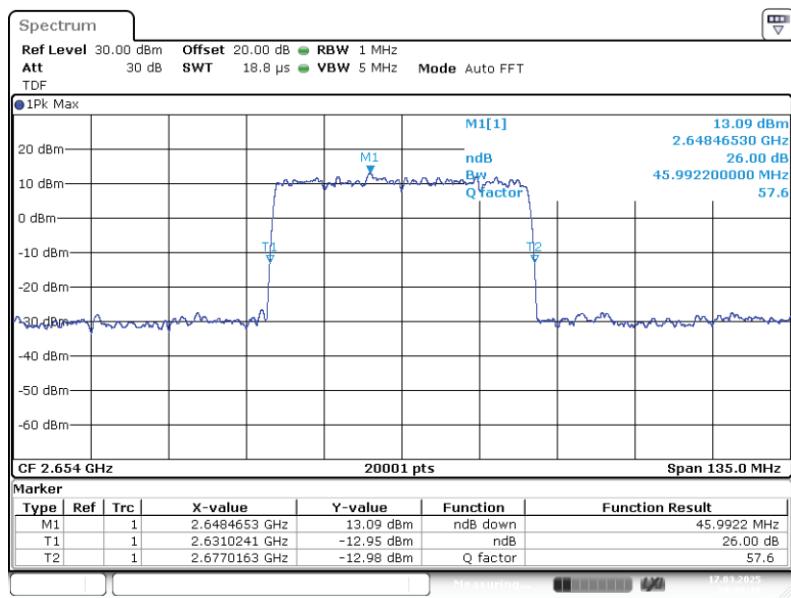


Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: AWGN 45M;
Input OCBw 0.3 dB < AGC



Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: AWGN 45M;
Output OCBw 0.3 dB < AGC



Test Report No.: 25-0072
 Tests performed on UAP-XR [BRS]

Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: AWGN 45M;
 Input OCBw 3 dB > AGC

Band: BRS UBS; Frequency: 2.6540 GHz; Band edge: mid; Mod: AWGN 45M;
 Output OCBw 3 dB > AGC

BUREAU
VERITAS

Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

5.3.5 TEST EQUIPMENT USED

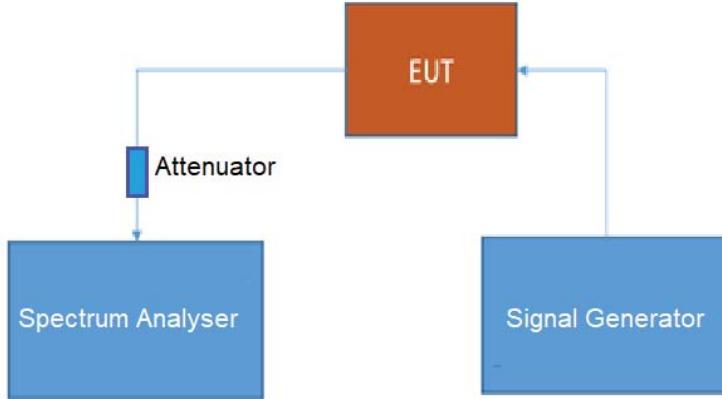
- Conducted

5.4 CONDUCTED SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Standard FCC Part §2.1051, §27.53

The test was performed according to:
ANSI C63.26

Test date: 2025-03-17 – 2025-03-18


Environmental conditions: 22.8 °C; 26 % r. H./23.5 °C; 23 % r. H.

Test engineer: Thomas Hufnagel

5.4.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the occupied bandwidth in comparison between the input and output signal of a booster.

The EUT was connected to the test setup according to the following diagram:

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

BUREAU
VERITAS

Test Report No.: 25-0072
Tests performed on UAP-XR [BRS]

5.4.2 TEST REQUIREMENTS/LIMITS

Abstract from FCC Part 2:

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 – Emission limits

Band 41 BRS (LBS/UBS)

(m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.

(1) Prior to the transition, and thereafter, solely within the MBS, for analog operations with an EIRP in excess of -9 dBW, the signal shall be attenuated at the channel edges by at least 38 dB relative to the peak visual carrier, then linearly sloping from that level to at least 60 dB of attenuation at 1 MHz below the lower band edge and 0.5 MHz above the upper band edge, and attenuated at least 60 dB at all other frequencies.

(2) For digital base stations, the attenuation shall be not less than $43 + 10 \log (P)$ dB, unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS No. 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

BUREAU
VERITAS

Abstract from ISED RSS-199:

RSS-199; 5.6 Unwanted emission limits

Unwanted emissions shall be measured in terms of average values when the transmitter is operating at the manufacturer's rated power and modulated as specified in RSS-Gen. Equipment shall meet the unwanted emission limits, specified below, outside each frequency block group. For each channel bandwidth supported by the equipment under test, the unwanted emissions shall be measured and reported for two channel frequencies: one located as close as possible to the low end and one located as close as possible to the high end of the equipment's operating frequency range.

For the unwanted emission limits, in the 1 MHz band immediately outside and adjacent to the frequency block group, the power shall be measured with a resolution bandwidth of at least 1% of the occupied bandwidth for fixed stations, base stations, and fixed subscriber equipment, and 2% for subscriber equipment other than fixed subscriber equipment. Beyond this 1 MHz band, a resolution bandwidth of 1 MHz shall be used. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz, or 1% or 2% of the occupied bandwidth, as applicable.

For all equipment, the TRP or total conducted power (sum of conducted power across all antenna connectors), where applicable, of the unwanted emissions outside the frequency block or frequency block group shall not exceed the limits shown in the tables below.

Table 4: Unwanted emission limits for fixed station, base station and fixed subscriber equipment

Offset from the edge of the frequency block or frequency block group (MHz)	Unwanted emission limits
≤ 1	-13 dBm/(1% of OB*)
> 1	-13 dBm/MHz

*OB is the occupied bandwidth

BUREAU
VERITAS

5.4.3 TEST PROTOCOL

General considerations concerning the limits:

The measuring bandwidth of 1 MHz was chosen according the test requirements except at the band edges: At the band edges reducing of measurement bandwidth was necessary to prevent overlaying the RF-signal over the spurious emissions.

Also outside the Downlink frequency band at lower frequencies the measurement bandwidths were reduced to have the possibility to record the spurious emissions at these lower frequencies.

At frequencies where measuring bandwidths were reduced also the limit lines were reduced according the given formula:

$$p \text{ RBW reduced } [dBm] = 10 * \log\left(\frac{\text{RBW reduced } [kHz]}{1000 \text{ kHz}}\right) + p \text{ RBW } 1 \text{ MHz } [dBm]$$

Hereby "p" are the limit lines' values.

Band 41. BRS (LBS). downlink

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Wideband	0.01586	-74.5	RMS	1	-43.0	31.5
low	Wideband	0.14748	-65.4	RMS	10	-33.0	32.4
low	Wideband	949.5	-64.3	RMS	100	-23.0	41.3
low	Wideband	1600.0	-53.1	RMS	1000	-13.0	40.1
low	Wideband	2494.6	-51.5	RMS	100	-23.0	28.5
low	Wideband	2570.0	-40.4	RMS	100	-23.0	17.4
low	Wideband	2641.7	-23.5	RMS	1000	-13.0	10.5
low	Wideband	6861.1	-50.9	RMS	1000	-13.0	37.9
low	Wideband	19942.8	-50.9	RMS	1000	-13.0	37.9
low	Wideband	20319.7	-50.5	RMS	1000	-13.0	37.5
low	Wideband	30268.5	-51.2	RMS	1000	-13.0	38.2
low	Wideband	39982.3	-52.3	RMS	1000	-13.0	39.3
mid	Wideband	0.07750	-73.5	RMS	1	-43.0	30.5
mid	Wideband	796.8	-65.0	RMS	10	-33.0	32.0
mid	Wideband	1600.5	-63.5	RMS	100	-23.0	40.5
mid	Wideband	2494.4	-52.9	RMS	1000	-13.0	39.9
mid	Wideband	2570.0	-60.9	RMS	100	-23.0	37.9
mid	Wideband	2607.7	-40.3	RMS	100	-23.0	17.3
mid	Wideband	6994.1	-26.1	RMS	1000	-13.0	13.1
mid	Wideband	19526.8	-50.6	RMS	1000	-13.0	37.6
mid	Wideband	20281.2	-51.2	RMS	1000	-13.0	38.2
mid	Wideband	30319.5	-50.5	RMS	1000	-13.0	37.5
mid	Wideband	39964.3	-51.3	RMS	1000	-13.0	38.3
mid	Wideband	39978.7	-52.8	RMS	1000	-13.0	39.8
high	Wideband	0.01418	-74.0	RMS	1	-43.0	31.0
high	Wideband	0.08249	-65.4	RMS	10	-33.0	32.4
high	Wideband	948.9	-63.0	RMS	100	-23.0	40.0
high	Wideband	1600.0	-52.6	RMS	1000	-13.0	39.6
high	Wideband	2489.1	-65.5	RMS	100	-23.0	42.5
high	Wideband	2570.0	-38.8	RMS	100	-23.0	15.8
high	Wideband	2577.3	-42.0	RMS	1000	-13.0	29.0
high	Wideband	6849.6	-50.6	RMS	1000	-13.0	37.6
high	Wideband	19559.3	-51.3	RMS	1000	-13.0	38.3
high	Wideband	20305.7	-50.8	RMS	1000	-13.0	37.8
high	Wideband	30326.0	-51.4	RMS	1000	-13.0	38.4
high	Wideband	39984.8	-52.6	RMS	1000	-13.0	39.6

Band 41. BRS (LBS). downlink

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Narrowband	0.01480	-80.1	RMS	1	-43.0	37.1
low	Narrowband	0.05750	-74.9	RMS	10	-33.0	41.9
low	Narrowband	952.0	-63.8	RMS	100	-23.0	40.8
low	Narrowband	2422.8	-50.9	RMS	1000	-13.0	37.9
low	Narrowband	2481.3	-57.0	RMS	1000	-13.0	44.0
low	Narrowband	2570.0	-39.6	RMS	100	-23.0	16.6
low	Narrowband	2644.2	-18.8	RMS	1000	-13.0	5.8
low	Narrowband	6947.1	-50.9	RMS	1000	-13.0	37.9
low	Narrowband	19868.8	-51.3	RMS	1000	-13.0	38.3
low	Narrowband	20259.2	-50.7	RMS	1000	-13.0	37.7
low	Narrowband	30040.0	-51.2	RMS	1000	-13.0	38.2
low	Narrowband	39926.8	-52.7	RMS	1000	-13.0	39.7
mid	Narrowband	0.01455	-81.4	RMS	1	-43.0	38.4
mid	Narrowband	0.07250	-75.2	RMS	10	-33.0	42.2
mid	Narrowband	950.0	-64.0	RMS	100	-23.0	41.0
mid	Narrowband	1600.0	-53.6	RMS	1000	-13.0	40.6
mid	Narrowband	2493.9	-53.2	RMS	100	-23.0	30.2
mid	Narrowband	2570.0	-40.5	RMS	100	-23.0	17.5
mid	Narrowband	2608.2	-22.0	RMS	1000	-13.0	9.0
mid	Narrowband	6851.1	-50.7	RMS	1000	-13.0	37.7
mid	Narrowband	19873.8	-50.9	RMS	1000	-13.0	37.9
mid	Narrowband	20296.2	-50.8	RMS	1000	-13.0	37.8
mid	Narrowband	30347.0	-51.4	RMS	1000	-13.0	38.4
mid	Narrowband	39952.3	-53.0	RMS	1000	-13.0	40.0
high	Narrowband	0.01811	-80.7	RMS	1	-43.0	37.7
high	Narrowband	0.05750	-73.3	RMS	10	-33.0	40.3
high	Narrowband	952.0	-63.9	RMS	100	-23.0	40.9
high	Narrowband	1600.5	-53.3	RMS	1000	-13.0	40.3
high	Narrowband	2490.4	-65.3	RMS	100	-23.0	42.3
high	Narrowband	2572.2	-31.7	RMS	100	-23.0	8.7
high	Narrowband	2882.2	-48.9	RMS	1000	-13.0	35.9
high	Narrowband	6880.1	-50.8	RMS	1000	-13.0	37.8
high	Narrowband	19864.8	-51.3	RMS	1000	-13.0	38.3
high	Narrowband	20278.2	-50.5	RMS	1000	-13.0	37.5
high	Narrowband	30312.5	-51.3	RMS	1000	-13.0	38.3
high	Narrowband	39984.3	-52.4	RMS	1000	-13.0	39.4

Band 41. BRS (LBS). downlink

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Wideband 5G	0.01082	-79.0	RMS	1	-43.0	36.0
low	Wideband 5G	0.15248	-72.6	RMS	10	-33.0	39.6
low	Wideband 5G	950.8	-64.1	RMS	100	-23.0	41.1
low	Wideband 5G	2484.3	-49.0	RMS	1000	-13.0	36.0
low	Wideband 5G	2493.8	-56.3	RMS	100	-23.0	33.3
low	Wideband 5G	2570.0	-40.9	RMS	100	-23.0	17.9
low	Wideband 5G	2641.7	-33.9	RMS	1000	-13.0	20.9
low	Wideband 5G	6869.1	-51.0	RMS	1000	-13.0	38.0
low	Wideband 5G	19519.8	-51.2	RMS	1000	-13.0	38.2
low	Wideband 5G	20298.2	-50.6	RMS	1000	-13.0	37.6
low	Wideband 5G	30301.0	-51.3	RMS	1000	-13.0	38.3
low	Wideband 5G	39983.8	-52.3	RMS	1000	-13.0	39.3
mid	Wideband 5G	0.00992	-80.0	RMS	1	-43.0	37.0
mid	Wideband 5G	0.05750	-72.4	RMS	10	-33.0	39.4
mid	Wideband 5G	950.2	-64.0	RMS	100	-23.0	41.0
mid	Wideband 5G	1600.0	-52.3	RMS	1000	-13.0	39.3
mid	Wideband 5G	2494.0	-59.7	RMS	100	-23.0	36.7
mid	Wideband 5G	2570.0	-41.1	RMS	100	-23.0	18.1
mid	Wideband 5G	2628.2	-34.7	RMS	1000	-13.0	21.7
mid	Wideband 5G	6913.6	-50.8	RMS	1000	-13.0	37.8
mid	Wideband 5G	19996.3	-50.7	RMS	1000	-13.0	37.7
mid	Wideband 5G	19996.3	-50.7	RMS	1000	-13.0	37.7
mid	Wideband 5G	30250.0	-51.8	RMS	1000	-13.0	38.8
mid	Wideband 5G	39964.3	-52.7	RMS	1000	-13.0	39.7
high	Wideband 5G	0.01922	-80.8	RMS	1	-43.0	37.8
high	Wideband 5G	0.09249	-73.2	RMS	10	-33.0	40.2
high	Wideband 5G	951.7	-64.0	RMS	100	-23.0	41.0
high	Wideband 5G	1600.0	-52.4	RMS	1000	-13.0	39.4
high	Wideband 5G	2493.2	-63.1	RMS	100	-23.0	40.1
high	Wideband 5G	2570.0	-40.2	RMS	100	-23.0	17.2
high	Wideband 5G	2616.2	-35.8	RMS	1000	-13.0	22.8
high	Wideband 5G	6830.1	-51.1	RMS	1000	-13.0	38.1
high	Wideband 5G	19990.2	-50.9	RMS	1000	-13.0	37.9
high	Wideband 5G	20285.7	-50.7	RMS	1000	-13.0	37.7
high	Wideband 5G	30024.5	-51.3	RMS	1000	-13.0	38.3
high	Wideband 5G	39967.8	-52.7	RMS	1000	-13.0	39.7

Test Report No.: 25-0072

Tests performed on UAP-XR [BRS]

**BUREAU
VERITAS****Band 41. BRS (MBS). downlink**

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Wideband	0.03552	-74.7	RMS	1	-43.0	31.7
low	Wideband	0.07750	-65.5	RMS	10	-33.0	32.5
low	Wideband	952.2	-64.0	RMS	100	-23.0	41.0
low	Wideband	1600.1	-52.0	RMS	1000	-13.0	39.0
low	Wideband	2570.9	-53.2	RMS	100	-23.0	30.2
low	Wideband	2615.0	-51.4	RMS	100	-23.0	28.4
low	Wideband	2654.7	-34.6	RMS	1000	-13.0	21.6
low	Wideband	6998.6	-50.8	RMS	1000	-13.0	37.8
low	Wideband	19978.8	-51.3	RMS	1000	-13.0	38.3
low	Wideband	20323.7	-50.5	RMS	1000	-13.0	37.5
low	Wideband	30297.5	-51.2	RMS	1000	-13.0	38.2
low	Wideband	39967.3	-53.0	RMS	1000	-13.0	40.0
mid	Wideband	0.03618	-74.2	RMS	1	-43.0	31.2
mid	Wideband	0.15248	-65.8	RMS	10	-33.0	32.8
mid	Wideband	814.8	-63.4	RMS	100	-23.0	40.4
mid	Wideband	1600.1	-52.6	RMS	1000	-13.0	39.6
mid	Wideband	2571.0	-59.3	RMS	100	-23.0	36.3
mid	Wideband	2615.0	-48.8	RMS	100	-23.0	25.8
mid	Wideband	2637.2	-36.9	RMS	1000	-13.0	23.9
mid	Wideband	6806.6	-50.6	RMS	1000	-13.0	37.6
mid	Wideband	19976.3	-51.3	RMS	1000	-13.0	38.3
mid	Wideband	20303.7	-50.6	RMS	1000	-13.0	37.6
mid	Wideband	30351.0	-51.6	RMS	1000	-13.0	38.6
mid	Wideband	39985.3	-52.7	RMS	1000	-13.0	39.7
high	Wideband	0.00959	-75.3	RMS	1	-43.0	32.3
high	Wideband	0.25247	-67.1	RMS	10	-33.0	34.1
high	Wideband	949.0	-63.7	RMS	100	-23.0	40.7
high	Wideband	1600.1	-51.8	RMS	1000	-13.0	38.8
high	Wideband	2566.8	-64.0	RMS	100	-23.0	41.0
high	Wideband	2615.0	-42.8	RMS	100	-23.0	19.8
high	Wideband	2943.2	-49.7	RMS	1000	-13.0	36.7
high	Wideband	6954.1	-50.4	RMS	1000	-13.0	37.4
high	Wideband	19888.8	-51.1	RMS	1000	-13.0	38.1
high	Wideband	20286.2	-50.2	RMS	1000	-13.0	37.2
high	Wideband	30260.5	-51.6	RMS	1000	-13.0	38.6
high	Wideband	39972.3	-52.7	RMS	1000	-13.0	39.7

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Band 41. BRS (MBS). downlink

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Narrowband	0.00976	-81.7	RMS	1	-43.0	38.7
low	Narrowband	0.07750	-73.4	RMS	10	-33.0	40.4
low	Narrowband	948.5	-63.5	RMS	100	-23.0	40.5
low	Narrowband	1600.1	-52.0	RMS	1000	-13.0	39.0
low	Narrowband	2570.9	-59.5	RMS	100	-23.0	36.5
low	Narrowband	2615.0	-52.3	RMS	100	-23.0	29.3
low	Narrowband	2658.2	-30.1	RMS	1000	-13.0	17.1
low	Narrowband	6947.6	-50.5	RMS	1000	-13.0	37.5
low	Narrowband	19980.8	-50.8	RMS	1000	-13.0	37.8
low	Narrowband	20306.2	-50.5	RMS	1000	-13.0	37.5
low	Narrowband	30318.0	-51.2	RMS	1000	-13.0	38.2
low	Narrowband	39993.7	-52.6	RMS	1000	-13.0	39.6
mid	Narrowband	0.01287	-81.7	RMS	1	-43.0	38.7
mid	Narrowband	0.05250	-73.7	RMS	10	-33.0	40.7
mid	Narrowband	796.3	-63.9	RMS	100	-23.0	40.9
mid	Narrowband	1600.6	-51.3	RMS	1000	-13.0	38.3
mid	Narrowband	2571.0	-53.1	RMS	100	-23.0	30.1
mid	Narrowband	2637.2	-32.5	RMS	1000	-13.0	19.5
mid	Narrowband	6887.1	-50.7	RMS	1000	-13.0	37.7
mid	Narrowband	19978.8	-51.2	RMS	1000	-13.0	38.2
mid	Narrowband	20311.2	-50.5	RMS	1000	-13.0	37.5
mid	Narrowband	30013.0	-51.8	RMS	1000	-13.0	38.8
mid	Narrowband	39958.3	-53.2	RMS	1000	-13.0	40.2
high	Narrowband	0.01287	-80.7	RMS	1	-43.0	37.7
high	Narrowband	0.05750	-74.1	RMS	10	-33.0	41.1
high	Narrowband	795.9	-64.0	RMS	100	-23.0	41.0
high	Narrowband	1600.6	-52.0	RMS	1000	-13.0	39.0
high	Narrowband	2571.0	-63.1	RMS	100	-23.0	40.1
high	Narrowband	2615.0	-35.0	RMS	100	-23.0	12.0
high	Narrowband	2943.2	-50.1	RMS	1000	-13.0	37.1
high	Narrowband	6851.1	-50.8	RMS	1000	-13.0	37.8
high	Narrowband	19994.8	-50.9	RMS	1000	-13.0	37.9
high	Narrowband	20298.7	-50.7	RMS	1000	-13.0	37.7
high	Narrowband	30339.5	-51.5	RMS	1000	-13.0	38.5
high	Narrowband	39938.3	-53.0	RMS	1000	-13.0	40.0

Test Report No.: 25-0072

Tests performed on UAP-XR [BRS]

**BUREAU
VERITAS****Band 41. BRS (MBS). downlink**

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Wideband 5G	0.01226	-78.8	RMS	1	-43.0	35.8
low	Wideband 5G	0.09249	-71.7	RMS	10	-33.0	38.7
low	Wideband 5G	950.8	-64.0	RMS	100	-23.0	41.0
low	Wideband 5G	2560.3	-51.9	RMS	1000	-13.0	38.9
low	Wideband 5G	2569.5	-58.3	RMS	100	-23.0	35.3
low	Wideband 5G	2615.0	-50.9	RMS	100	-23.0	27.9
low	Wideband 5G	2651.7	-43.0	RMS	1000	-13.0	30.0
low	Wideband 5G	6856.6	-50.8	RMS	1000	-13.0	37.8
low	Wideband 5G	19582.3	-51.1	RMS	1000	-13.0	38.1
low	Wideband 5G	20290.2	-50.8	RMS	1000	-13.0	37.8
low	Wideband 5G	30281.0	-51.3	RMS	1000	-13.0	38.3
low	Wideband 5G	39984.8	-52.6	RMS	1000	-13.0	39.6
mid	Wideband 5G	0.02921	-79.5	RMS	1	-43.0	36.5
mid	Wideband 5G	0.05750	-71.3	RMS	10	-33.0	38.3
mid	Wideband 5G	950.8	-63.9	RMS	100	-23.0	40.9
mid	Wideband 5G	1600.6	-52.7	RMS	1000	-13.0	39.7
mid	Wideband 5G	2569.9	-60.5	RMS	100	-23.0	37.5
mid	Wideband 5G	2615.0	-49.2	RMS	100	-23.0	26.2
mid	Wideband 5G	2646.2	-44.1	RMS	1000	-13.0	31.1
mid	Wideband 5G	6984.6	-50.6	RMS	1000	-13.0	37.6
mid	Wideband 5G	19610.3	-51.3	RMS	1000	-13.0	38.3
mid	Wideband 5G	20301.2	-50.7	RMS	1000	-13.0	37.7
mid	Wideband 5G	30274.5	-51.3	RMS	1000	-13.0	38.3
mid	Wideband 5G	39979.8	-52.6	RMS	1000	-13.0	39.6
high	Wideband 5G	0.00902	-78.9	RMS	1	-43.0	35.9
high	Wideband 5G	0.07250	-71.7	RMS	10	-33.0	38.7
high	Wideband 5G	950.5	-64.0	RMS	100	-23.0	41.0
high	Wideband 5G	1600.1	-52.1	RMS	1000	-13.0	39.1
high	Wideband 5G	2570.8	-62.6	RMS	100	-23.0	39.6
high	Wideband 5G	2630.7	-45.0	RMS	1000	-13.0	32.0
high	Wideband 5G	6898.6	-50.7	RMS	1000	-13.0	37.7
high	Wideband 5G	19522.3	-51.4	RMS	1000	-13.0	38.4
high	Wideband 5G	20330.7	-50.8	RMS	1000	-13.0	37.8
high	Wideband 5G	30329.5	-51.1	RMS	1000	-13.0	38.1
high	Wideband 5G	39976.3	-52.9	RMS	1000	-13.0	39.9

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Test Report No.: 25-0072

Tests performed on UAP-XR [BRS]

**BUREAU
VERITAS****Band 41. BRS (UBS). downlink**

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Wideband	0.01181	-73.7	RMS	1	-43.0	30.7
low	Wideband	0.22247	-65.4	RMS	10	-33.0	32.4
low	Wideband	953.6	-63.3	RMS	100	-23.0	40.3
low	Wideband	1600.1	-50.3	RMS	1000	-13.0	37.3
low	Wideband	2617.0	-53.2	RMS	100	-23.0	30.2
low	Wideband	2691.4	-63.1	RMS	100	-23.0	40.1
low	Wideband	2761.2	-27.3	RMS	1000	-13.0	14.3
low	Wideband	6834.6	-50.9	RMS	1000	-13.0	37.9
low	Wideband	19570.8	-50.5	RMS	1000	-13.0	37.5
low	Wideband	20294.2	-50.5	RMS	1000	-13.0	37.5
low	Wideband	30302.0	-51.5	RMS	1000	-13.0	38.5
low	Wideband	39997.3	-52.2	RMS	1000	-13.0	39.2
mid	Wideband	0.00943	-74.6	RMS	1	-43.0	31.6
mid	Wideband	0.11749	-67.1	RMS	10	-33.0	34.1
mid	Wideband	949.7	-63.3	RMS	100	-23.0	40.3
mid	Wideband	1600.6	-51.1	RMS	1000	-13.0	38.1
mid	Wideband	2616.7	-61.9	RMS	100	-23.0	38.9
mid	Wideband	2691.9	-62.9	RMS	100	-23.0	39.9
mid	Wideband	2726.7	-30.4	RMS	1000	-13.0	17.4
mid	Wideband	6917.1	-50.1	RMS	1000	-13.0	37.1
mid	Wideband	19565.3	-51.1	RMS	1000	-13.0	38.1
mid	Wideband	20281.7	-50.7	RMS	1000	-13.0	37.7
mid	Wideband	30253.5	-51.8	RMS	1000	-13.0	38.8
mid	Wideband	39980.3	-52.6	RMS	1000	-13.0	39.6
high	Wideband	0.00943	-76.9	RMS	1	-43.0	33.9
high	Wideband	0.13749	-67.9	RMS	10	-33.0	34.9
high	Wideband	810.8	-64.0	RMS	100	-23.0	41.0
high	Wideband	1600.1	-51.3	RMS	1000	-13.0	38.3
high	Wideband	2615.7	-65.5	RMS	100	-23.0	42.5
high	Wideband	2694.0	-45.2	RMS	100	-23.0	22.2
high	Wideband	3004.2	-47.7	RMS	1000	-13.0	34.7
high	Wideband	6884.1	-50.7	RMS	1000	-13.0	37.7
high	Wideband	19528.3	-51.2	RMS	1000	-13.0	38.2
high	Wideband	20296.2	-50.9	RMS	1000	-13.0	37.9
high	Wideband	30284.5	-51.6	RMS	1000	-13.0	38.6
high	Wideband	39985.3	-52.4	RMS	1000	-13.0	39.4

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Test Report No.: 25-0072

Tests performed on UAP-XR [BRS]

**BUREAU
VERITAS****Band 41. BRS (UBS). downlink**

Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Narrowband	0.00959	-79.8	RMS	1	-43.0	36.8
low	Narrowband	0.10749	-74.6	RMS	10	-33.0	41.6
low	Narrowband	710.9	-64.2	RMS	100	-23.0	41.2
low	Narrowband	1600.1	-51.1	RMS	1000	-13.0	38.1
low	Narrowband	2616.9	-59.3	RMS	100	-23.0	36.3
low	Narrowband	2694.4	-65.3	RMS	100	-23.0	42.3
low	Narrowband	2762.2	-22.4	RMS	1000	-13.0	9.4
low	Narrowband	6886.1	-50.8	RMS	1000	-13.0	37.8
low	Narrowband	19885.8	-51.0	RMS	1000	-13.0	38.0
low	Narrowband	20298.2	-50.0	RMS	1000	-13.0	37.0
low	Narrowband	30308.5	-51.5	RMS	1000	-13.0	38.5
low	Narrowband	39957.3	-52.8	RMS	1000	-13.0	39.8
mid	Narrowband	0.01226	-81.7	RMS	1	-43.0	38.7
mid	Narrowband	0.15748	-74.0	RMS	10	-33.0	41.0
mid	Narrowband	810.2	-64.0	RMS	100	-23.0	41.0
mid	Narrowband	1600.6	-50.7	RMS	1000	-13.0	37.7
mid	Narrowband	2616.8	-65.0	RMS	100	-23.0	42.0
mid	Narrowband	2691.1	-64.5	RMS	100	-23.0	41.5
mid	Narrowband	2726.2	-25.5	RMS	1000	-13.0	12.5
mid	Narrowband	6828.6	-50.7	RMS	1000	-13.0	37.7
mid	Narrowband	19534.8	-51.2	RMS	1000	-13.0	38.2
mid	Narrowband	20303.7	-50.5	RMS	1000	-13.0	37.5
mid	Narrowband	30314.0	-51.2	RMS	1000	-13.0	38.2
mid	Narrowband	39977.8	-52.7	RMS	1000	-13.0	39.7
high	Narrowband	0,00959	-80,8	RMS	1	-43,0	37,8
high	Narrowband	0,15248	-73,3	RMS	10	-33,0	40,3
high	Narrowband	811,4	-63,7	RMS	100	-23,0	40,7
high	Narrowband	1600,1	-51,3	RMS	1000	-13,0	38,3
high	Narrowband	2614,5	-65,5	RMS	100	-23,0	42,5
high	Narrowband	2691,1	-58,3	RMS	100	-23,0	35,3
high	Narrowband	3004,2	-47,9	RMS	1000	-13,0	34,9
high	Narrowband	6835,1	-50,9	RMS	1000	-13,0	37,9
high	Narrowband	19564,3	-51,1	RMS	1000	-13,0	38,1
high	Narrowband	20333,7	-50,2	RMS	1000	-13,0	37,2
high	Narrowband	30333,0	-51,2	RMS	1000	-13,0	38,2
high	Narrowband	39966,3	-52,4	RMS	1000	-13,0	39,4

The test results relate only to the tested item. The sample has been provided by the client.

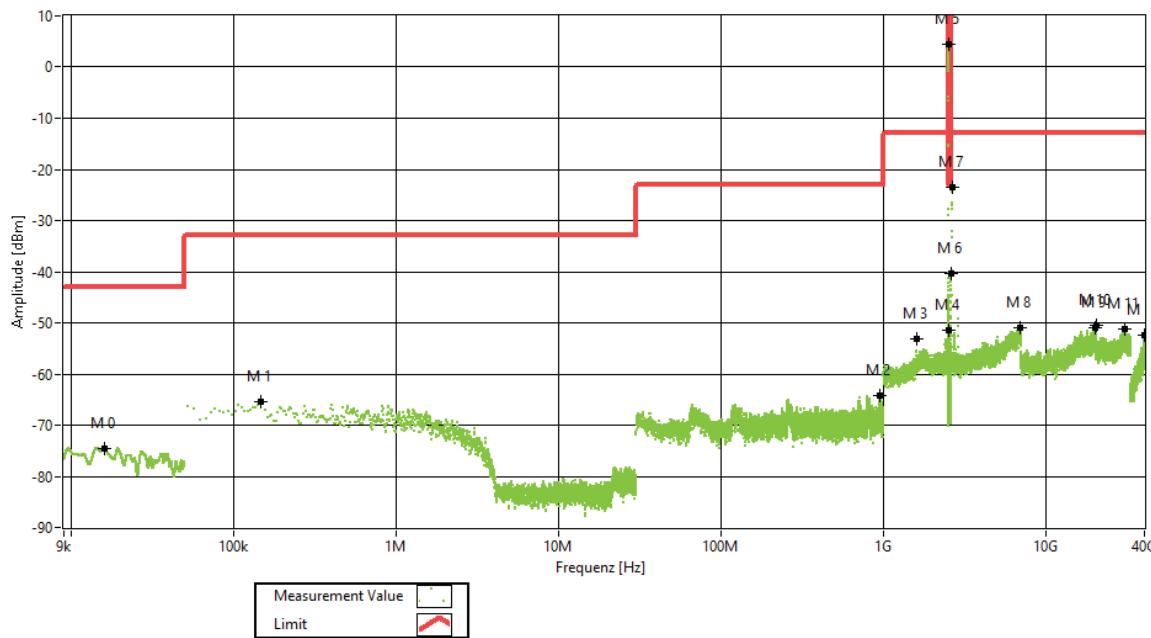
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Test Report No.: 25-0072

Tests performed on UAP-XR [BRS]

**BUREAU
VERITAS****Band 41. BRS (UBS). downlink**

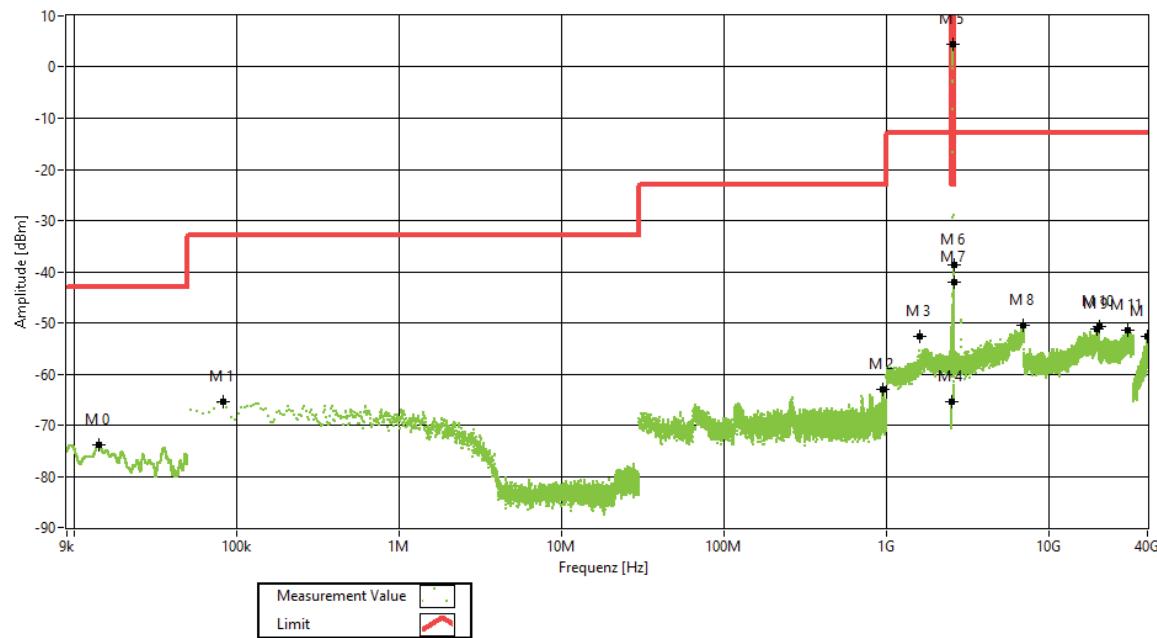
Test Frequency	Signal Type	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
low	Wideband 5G	0.00910	-79.8	RMS	1	-43.0	36.8
low	Wideband 5G	0.10749	-72.4	RMS	10	-33.0	39.4
low	Wideband 5G	793.8	-64.3	RMS	100	-23.0	41.3
low	Wideband 5G	2598.8	-50.6	RMS	1000	-13.0	37.6
low	Wideband 5G	2616.0	-60.6	RMS	100	-23.0	37.6
low	Wideband 5G	2692.5	-64.1	RMS	100	-23.0	41.1
low	Wideband 5G	2759.7	-36.7	RMS	1000	-13.0	23.7
low	Wideband 5G	6881.6	-50.5	RMS	1000	-13.0	37.5
low	Wideband 5G	19531.8	-51.3	RMS	1000	-13.0	38.3
low	Wideband 5G	20280.7	-50.6	RMS	1000	-13.0	37.6
low	Wideband 5G	30305.0	-51.5	RMS	1000	-13.0	38.5
low	Wideband 5G	39983.8	-52.7	RMS	1000	-13.0	39.7
mid	Wideband 5G	0.01140	-79.5	RMS	1	-43.0	36.5
mid	Wideband 5G	0.11249	-73.4	RMS	10	-33.0	40.4
mid	Wideband 5G	951.5	-63.9	RMS	100	-23.0	40.9
mid	Wideband 5G	1600.1	-50.8	RMS	1000	-13.0	37.8
mid	Wideband 5G	2610.6	-62.6	RMS	100	-23.0	39.6
mid	Wideband 5G	2694.9	-63.6	RMS	100	-23.0	40.6
mid	Wideband 5G	2744.7	-38.7	RMS	1000	-13.0	25.7
mid	Wideband 5G	6923.6	-50.7	RMS	1000	-13.0	37.7
mid	Wideband 5G	19977.8	-51.0	RMS	1000	-13.0	38.0
mid	Wideband 5G	20297.7	-50.6	RMS	1000	-13.0	37.6
mid	Wideband 5G	30301.5	-51.6	RMS	1000	-13.0	38.6
mid	Wideband 5G	39992.8	-52.4	RMS	1000	-13.0	39.4
high	Wideband 5G	0.00902	-80.3	RMS	1	-43.0	37.3
high	Wideband 5G	0.07750	-72.7	RMS	10	-33.0	39.7
high	Wideband 5G	950.9	-63.6	RMS	100	-23.0	40.6
high	Wideband 5G	1600.1	-51.5	RMS	1000	-13.0	38.5
high	Wideband 5G	2613.7	-64.3	RMS	100	-23.0	41.3
high	Wideband 5G	2730.7	-39.1	RMS	1000	-13.0	26.1
high	Wideband 5G	6938.6	-50.8	RMS	1000	-13.0	37.8
high	Wideband 5G	19558.3	-50.8	RMS	1000	-13.0	37.8
high	Wideband 5G	20276.7	-50.8	RMS	1000	-13.0	37.8
high	Wideband 5G	30296.5	-51.0	RMS	1000	-13.0	38.0
high	Wideband 5G	39987.7	-53.0	RMS	1000	-13.0	40.0

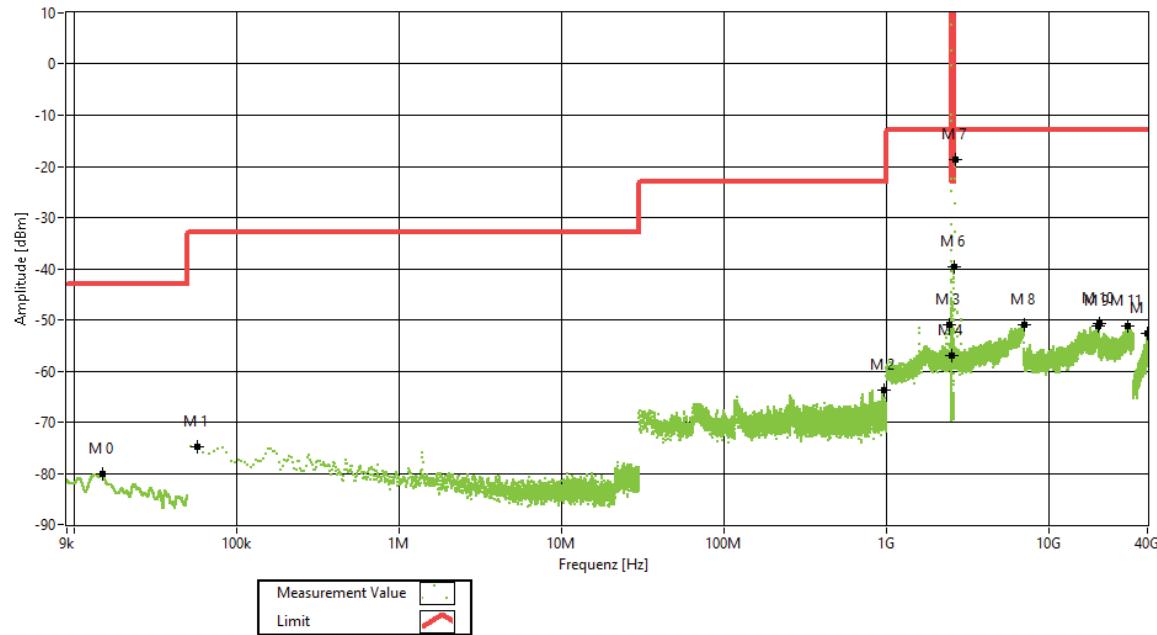

Remark: Please see next sub-clause for the measurement plot.

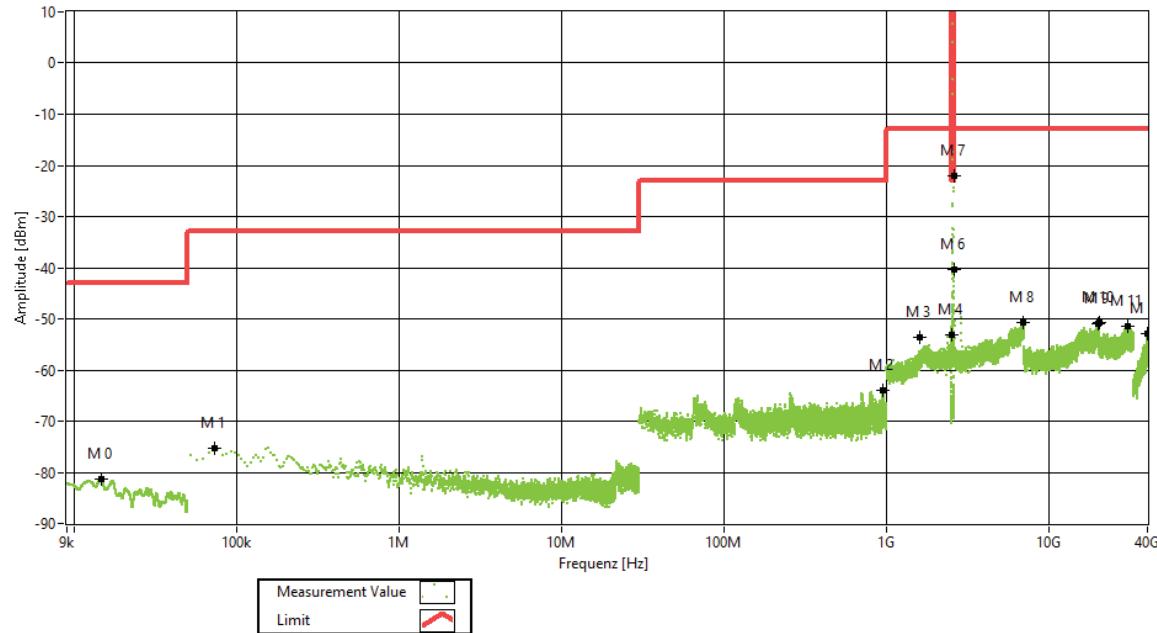
The test results relate only to the tested item. The sample has been provided by the client.

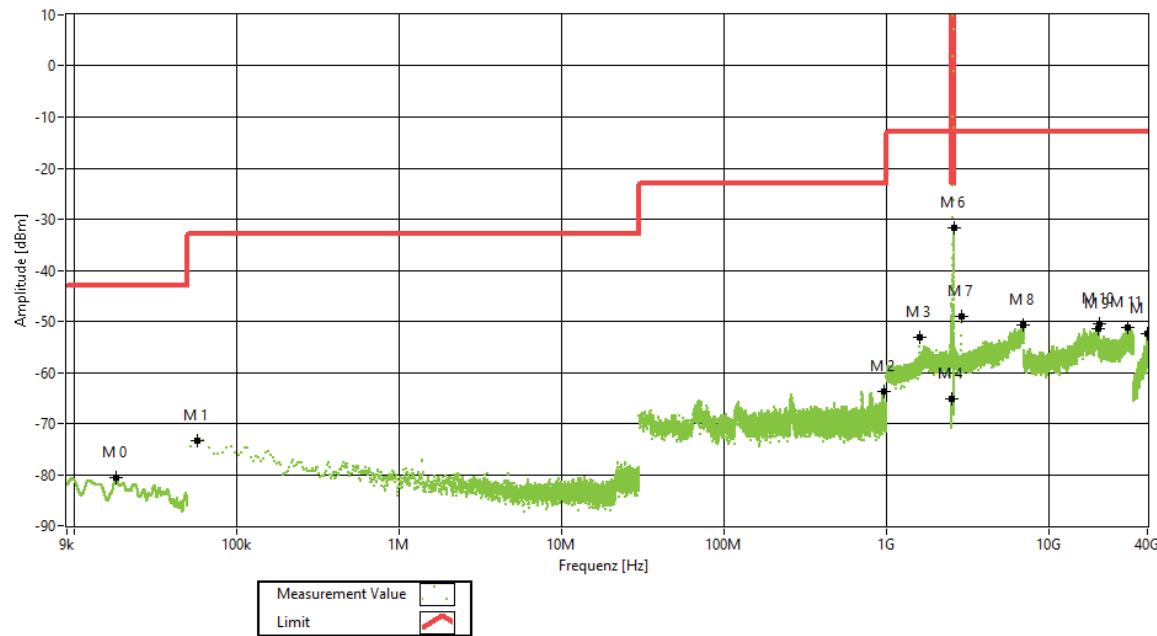
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

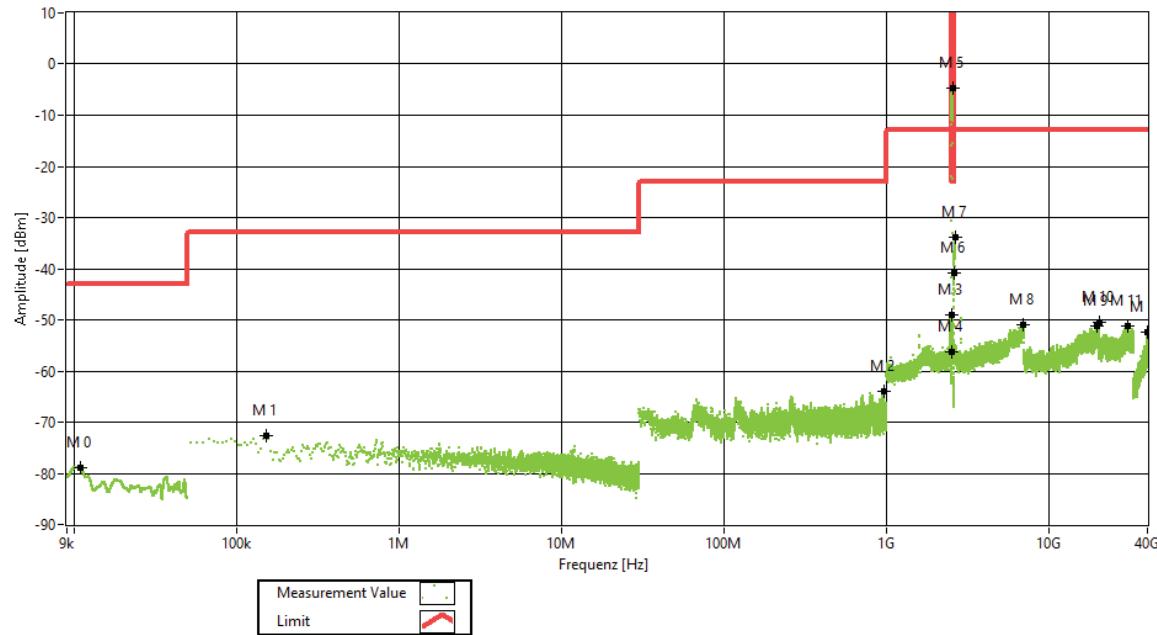
5.4.4 MEASUREMENT PLOT

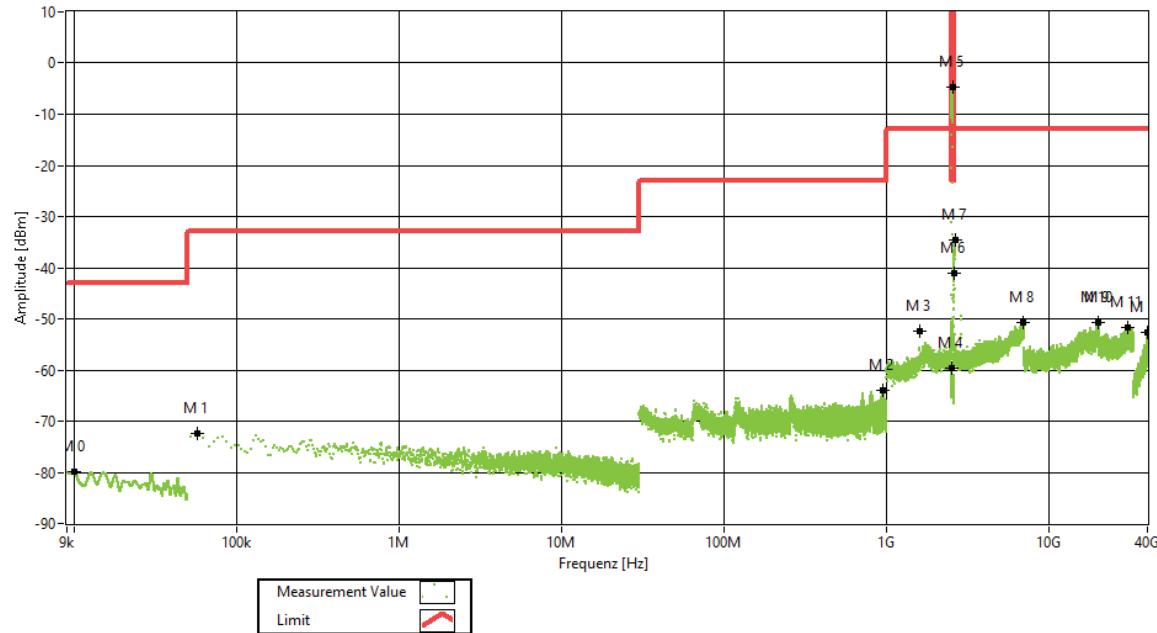

Frequency band = Band 41 BRS (LBS), Test frequency = low, Direction = RF downlink,
Signal type = AWGN

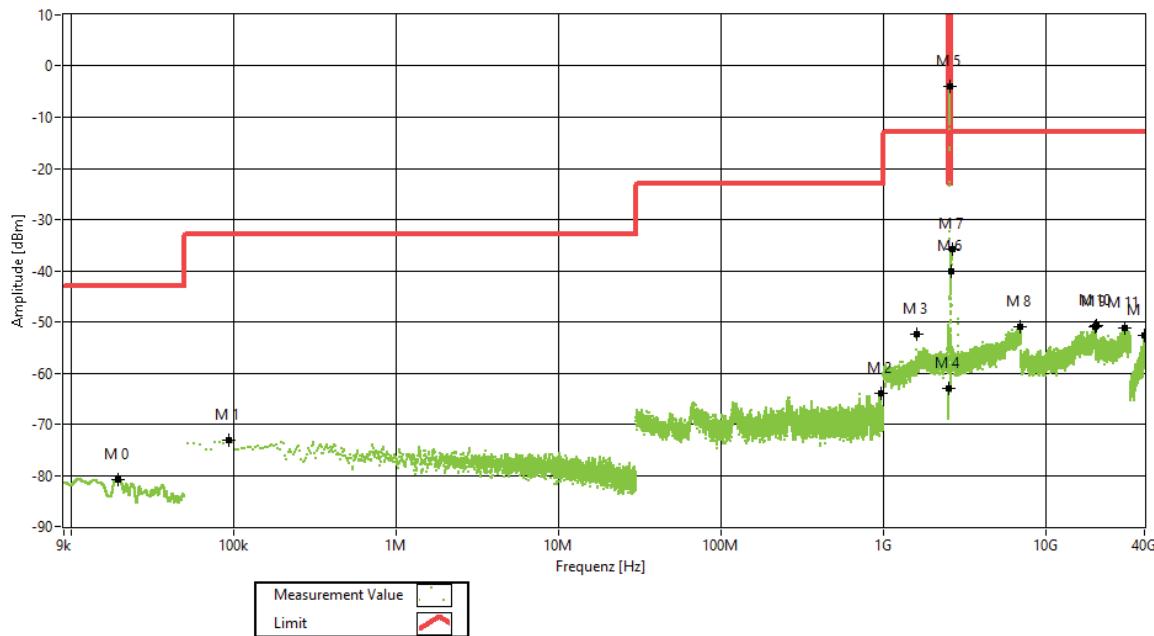

Frequency band = Band 41 BRS (LBS), Test frequency = mid, Direction = RF downlink,
Signal type = AWGN

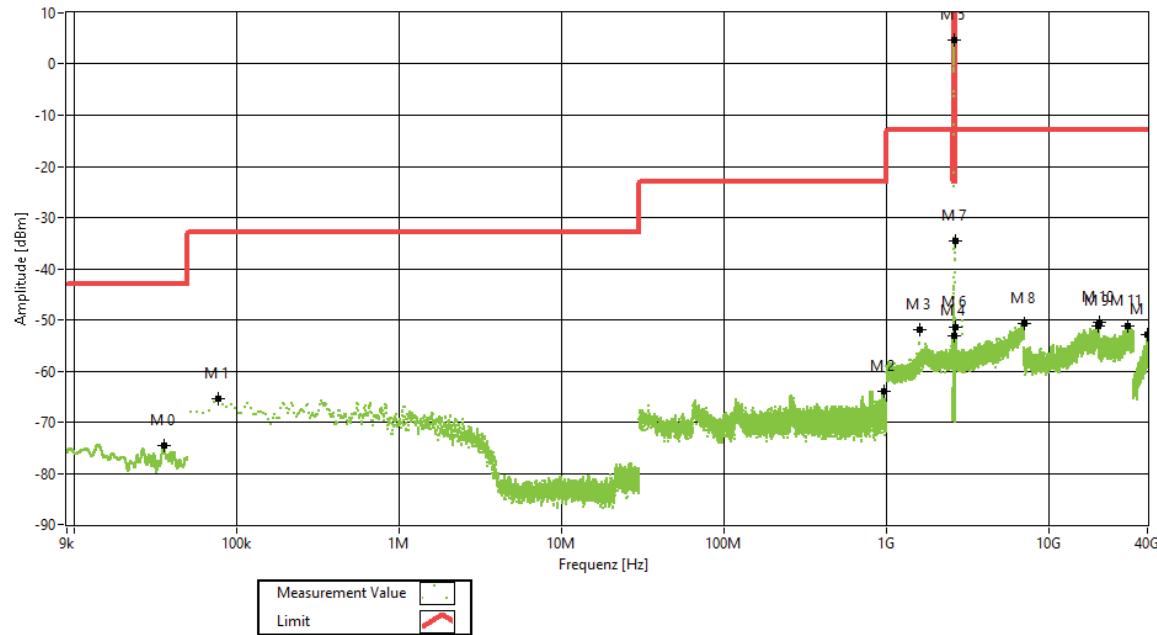

Frequency band = Band 41 BRS (LBS), Test frequency = high,
Direction = RF downlink, Signal type = AWGN

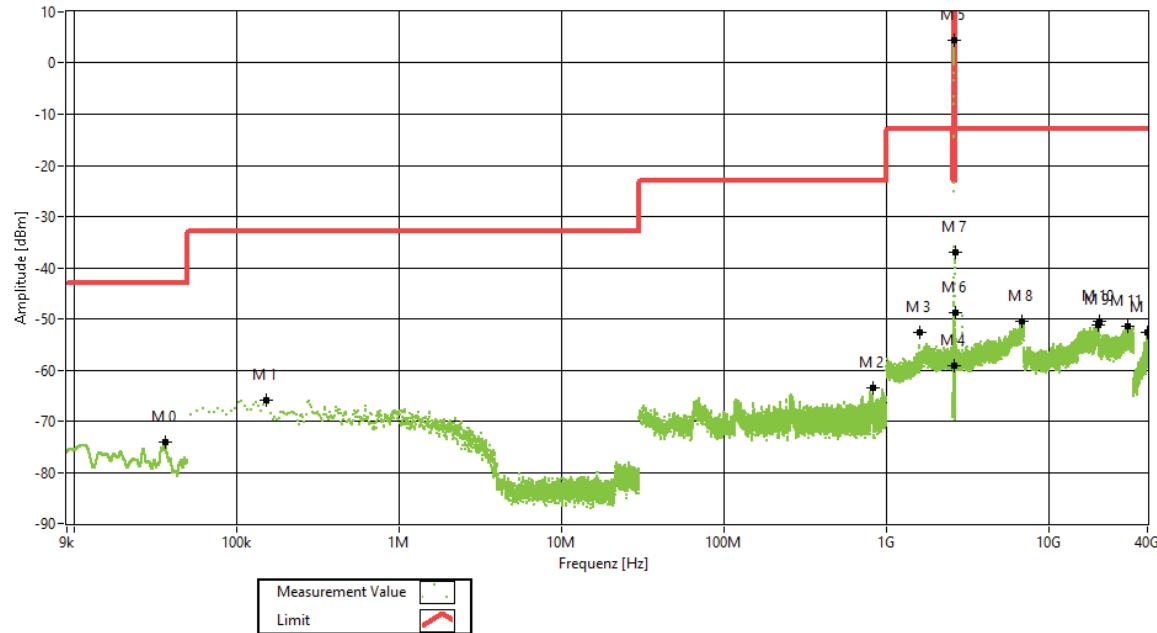

Frequency band = Band 41 BRS (LBS), Test frequency = low, Direction = RF downlink,
 Signal type = Narrowband

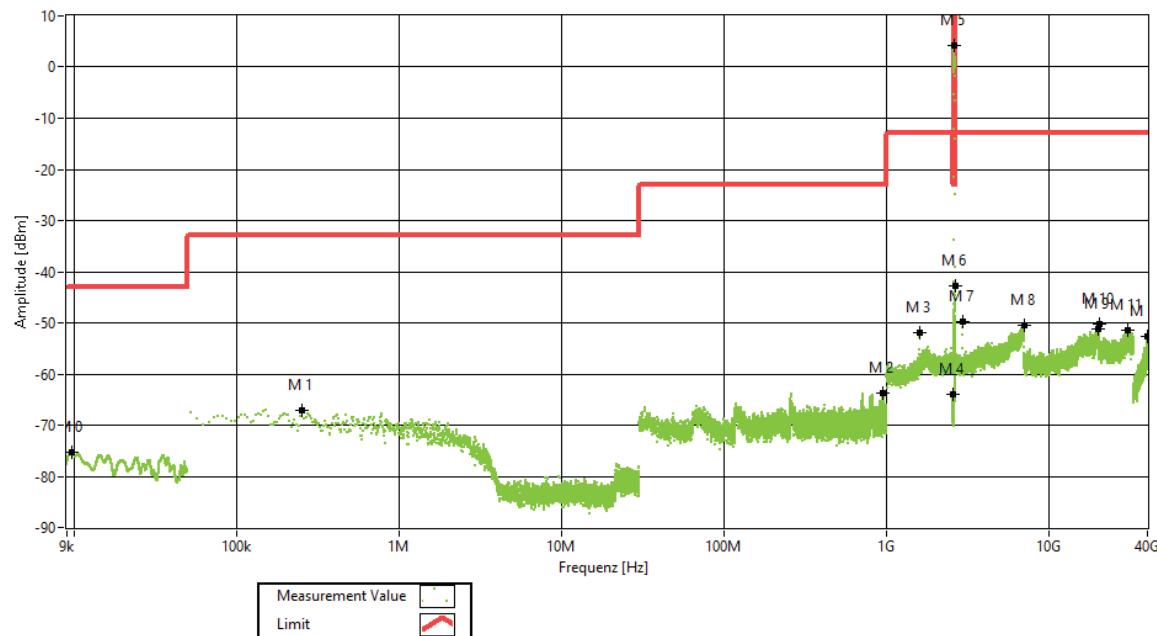

Frequency band = Band 41 BRS (LBS), Test frequency = mid, Direction = RF downlink,
 Signal type = Narrowband

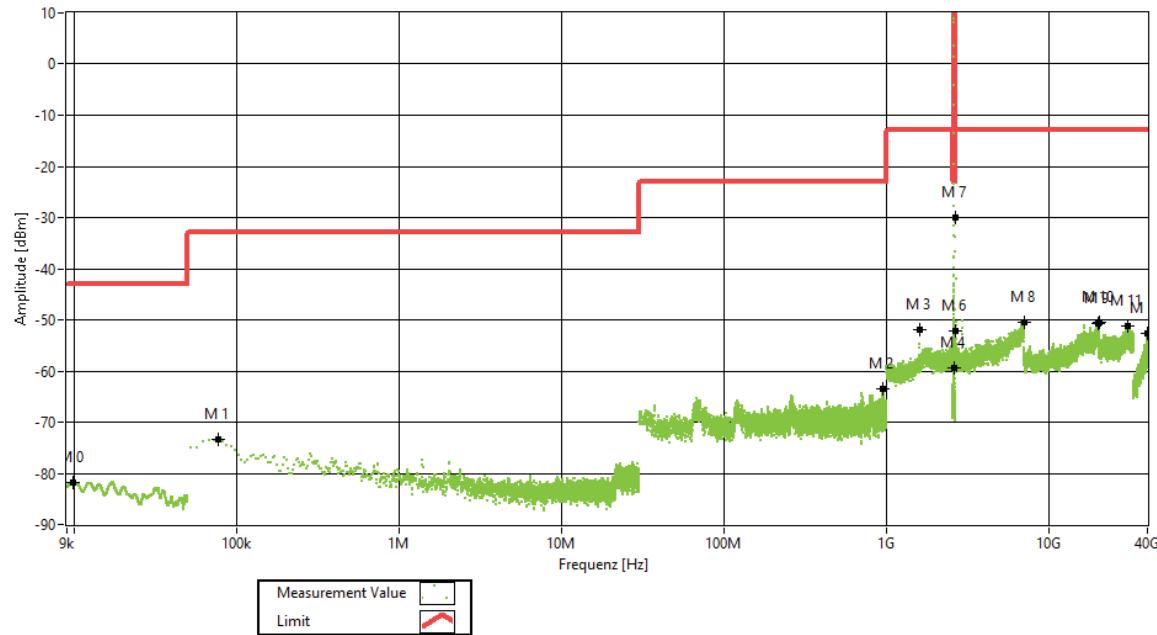

Frequency band = Band 41 BRS (LBS), Test frequency = high, Direction = RF downlink,
Signal type = Narrowband

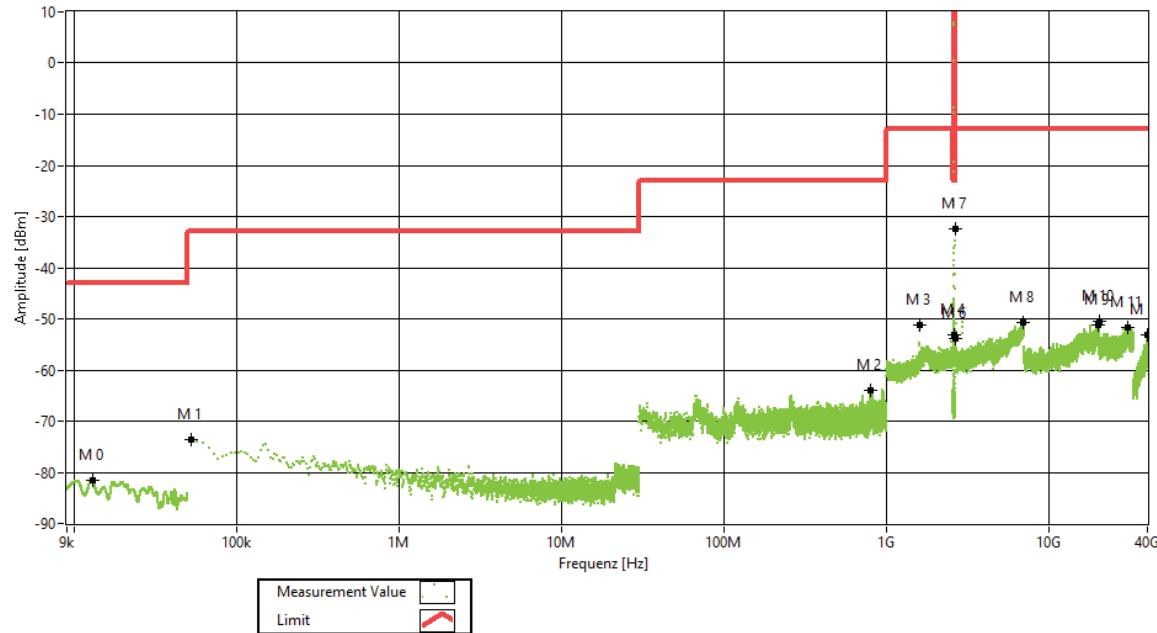

Frequency band = Band 41 BRS (LBS), Test frequency = low, Direction = RF downlink,
 Signal type = AWGN 45M

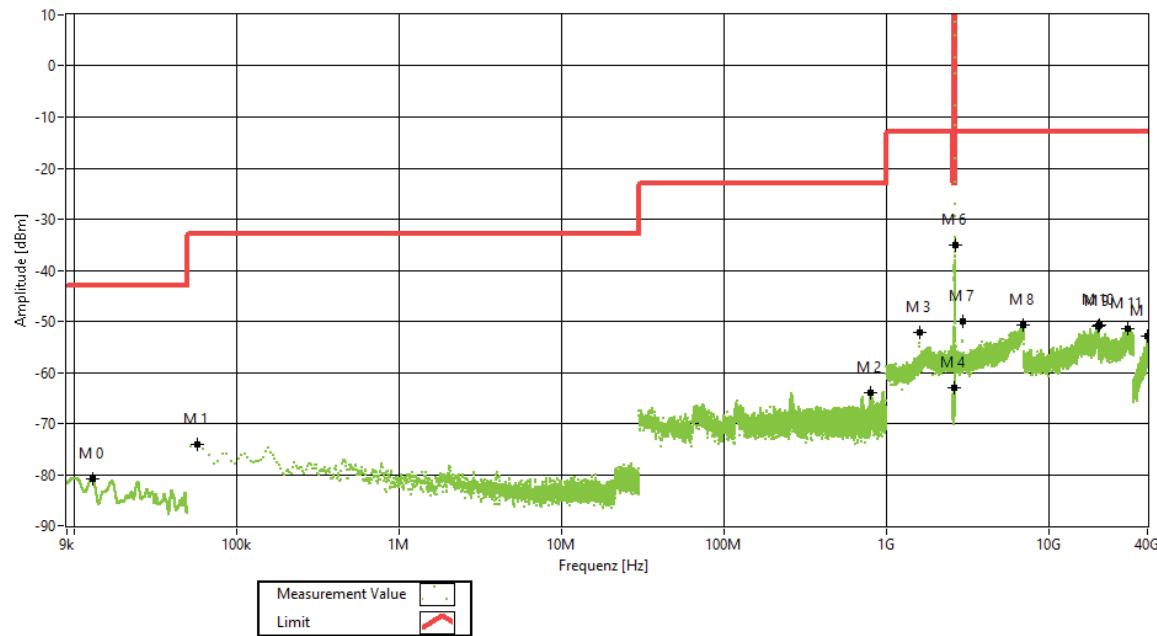

Frequency band = Band 41 BRS (LBS), Test frequency = mid, Direction = RF downlink,
 Signal type = AWGN 45M

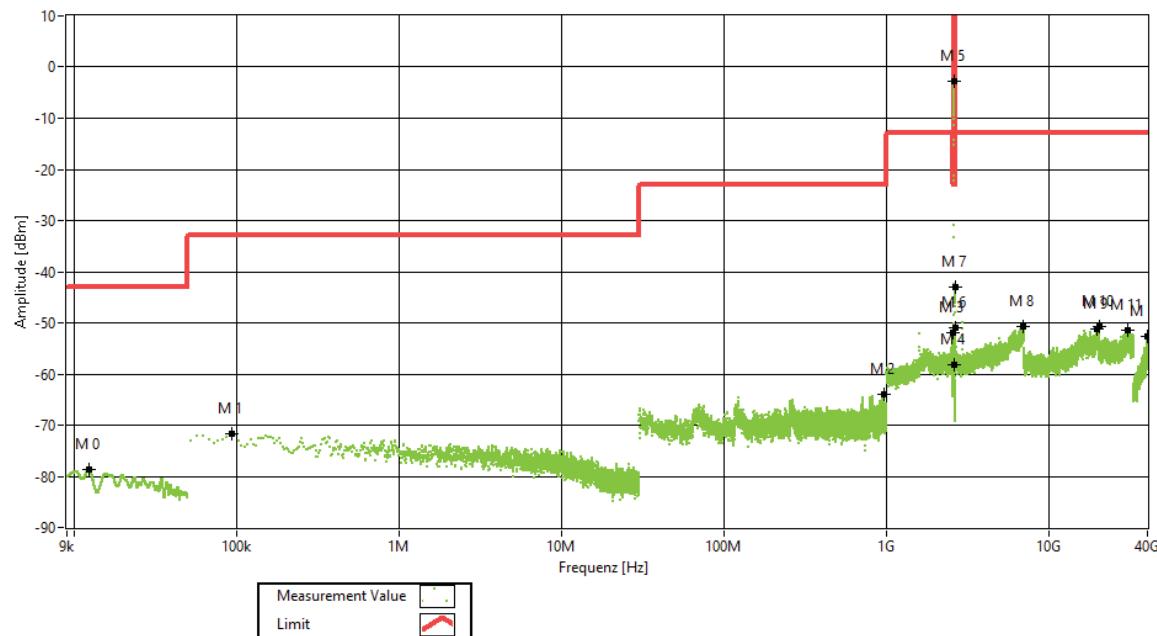

Frequency band = Band 41 BRS (LBS), Test frequency = high, Direction = RF downlink,
Signal type = AWGN 45M

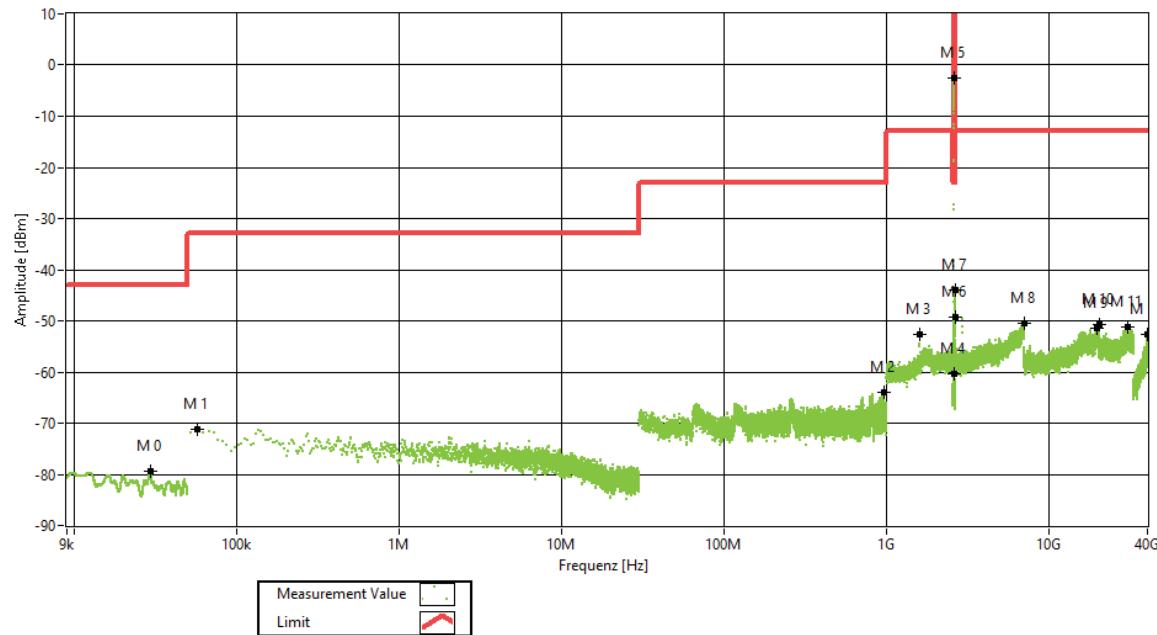

Frequency band = Band 41 BRS (MBS), Test frequency = low, Direction = RF downlink,
 Signal type = AWGN

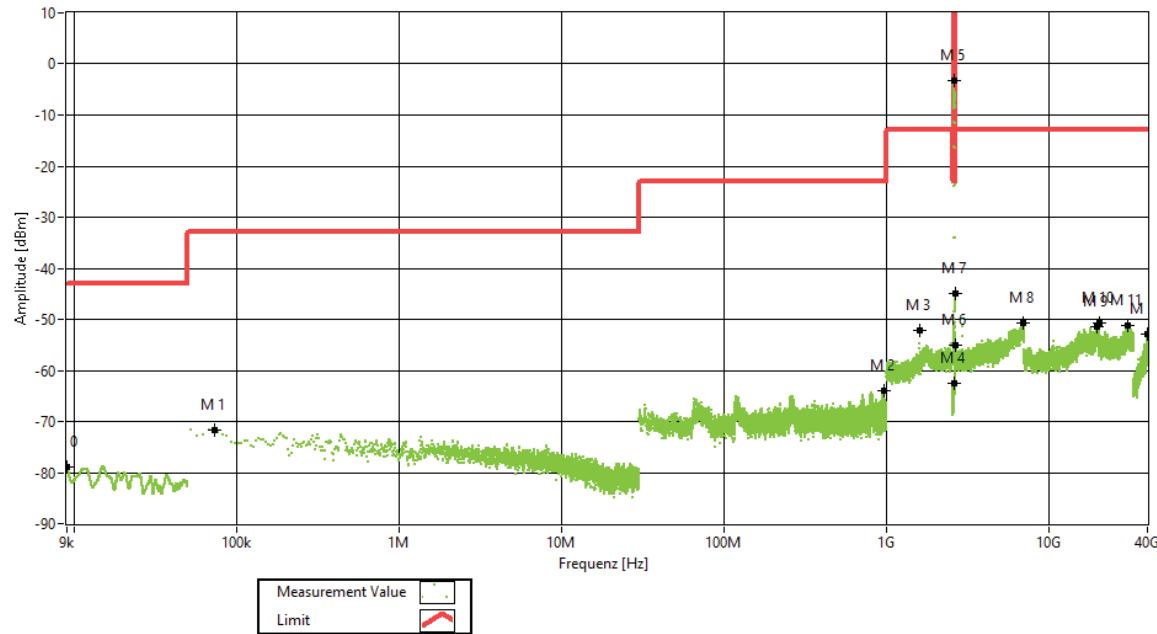

Frequency band = Band 41 BRS (MBS), Test frequency = mid, Direction = RF downlink,
 Signal type = AWGN

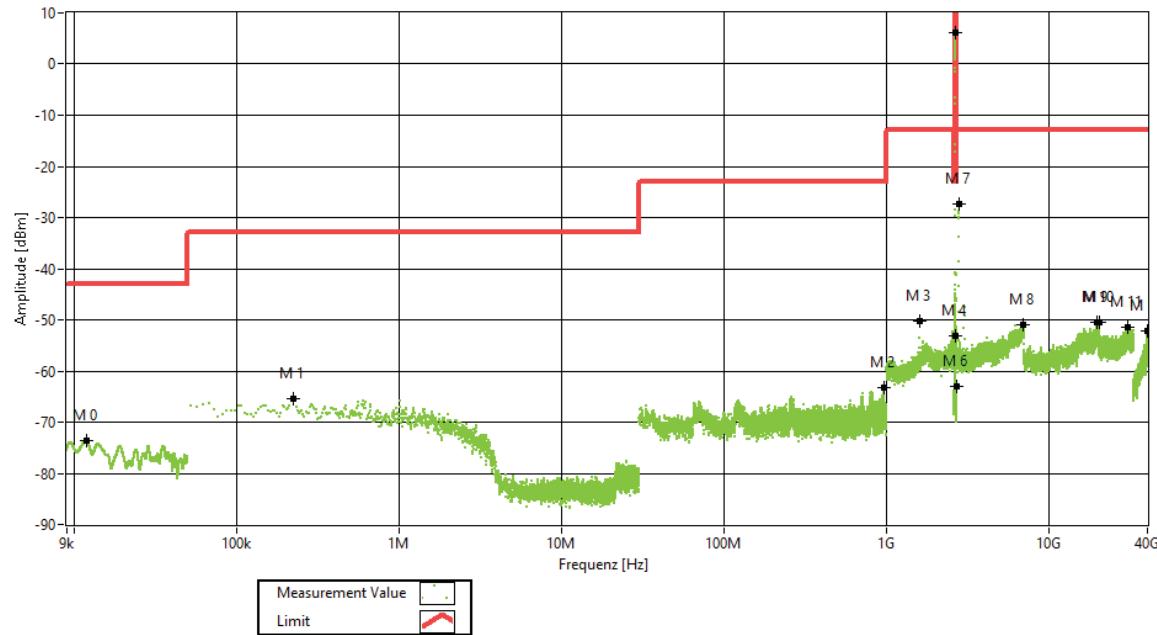

Frequency band = Band 41 BRS (MBS), Test frequency = high, Direction = RF downlink,
Signal type = AWGN

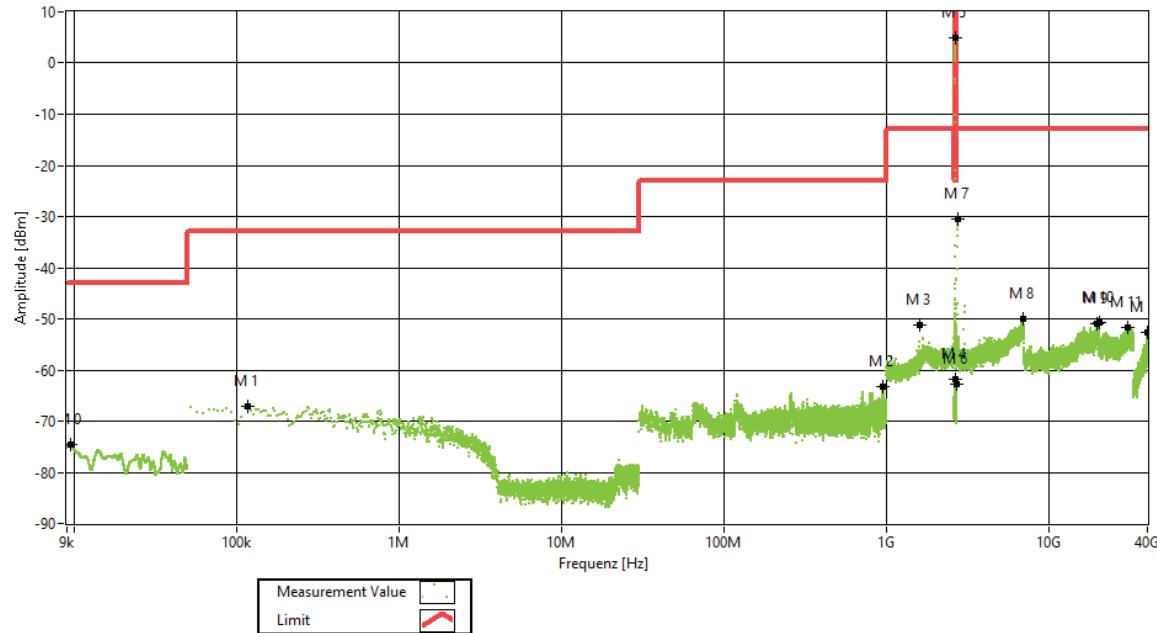

Frequency band = Band 41 BRS (MBS), Test frequency = low, Direction = RF downlink,
 Signal type = Narrowband

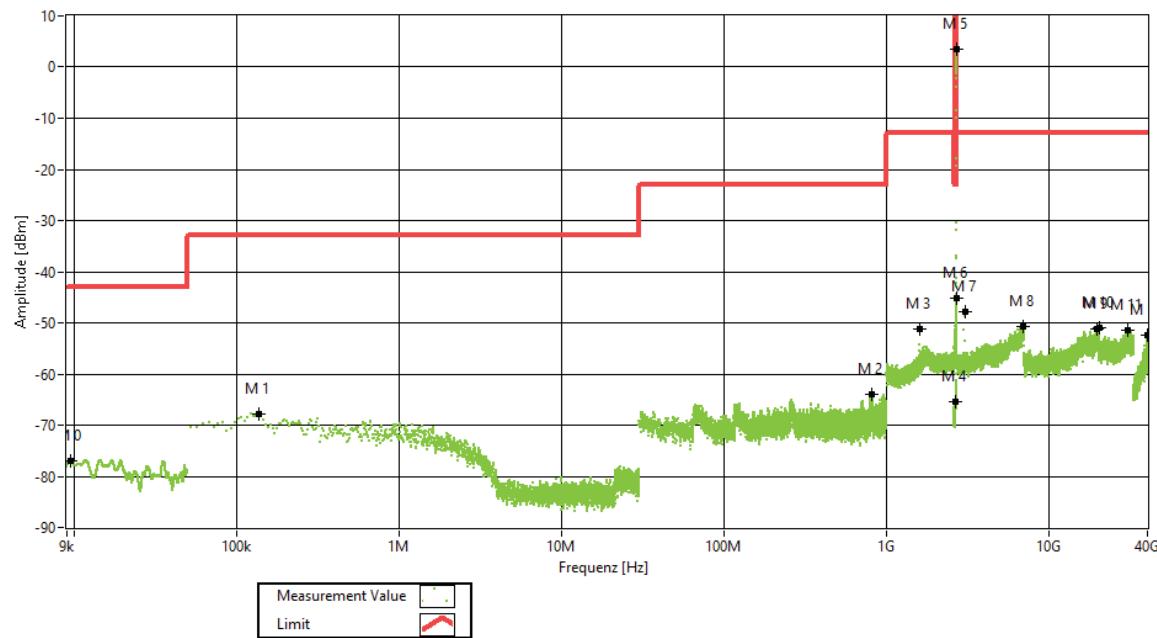

Frequency band = Band 41 BRS (MBS), Test frequency = mid, Direction = RF downlink,
 Signal type = Narrowband

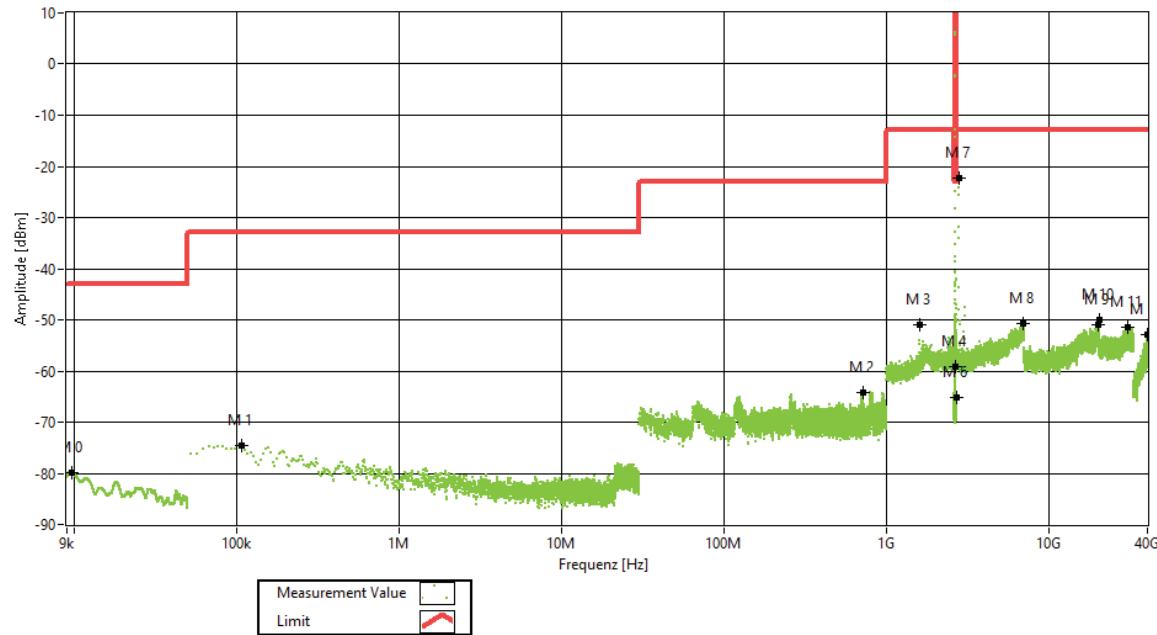

Frequency band = Band 41 BRS (MBS), Test frequency = high, Direction = RF downlink,
Signal type = Narrowband

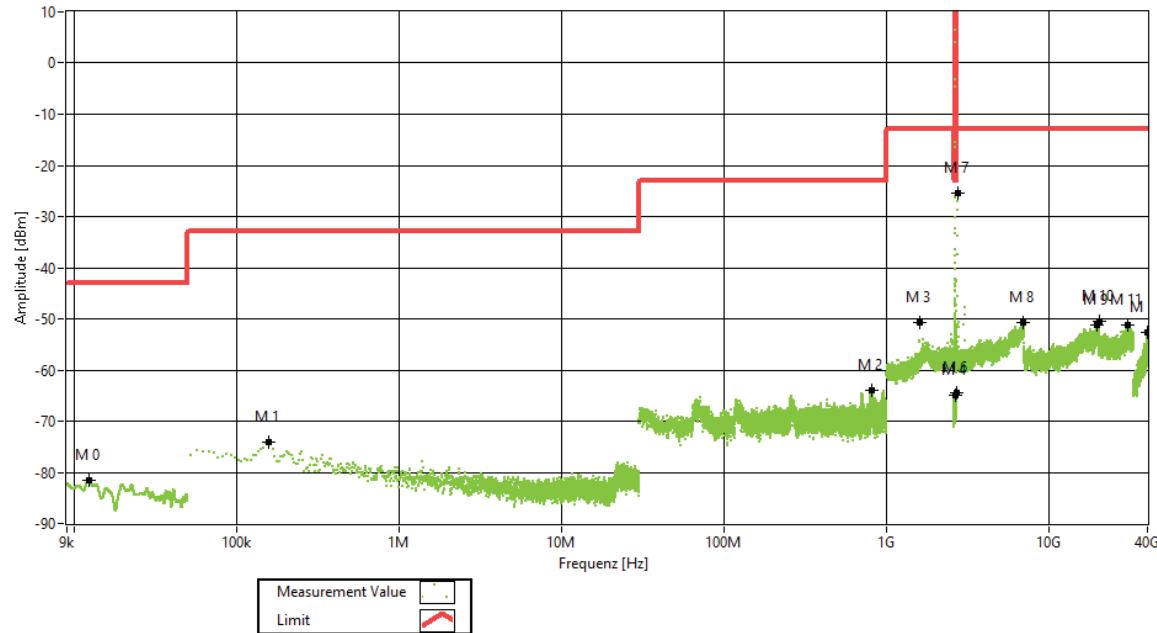

Frequency band = Band 41 BRS (MBS), Test frequency = low, Direction = RF downlink,
 Signal type = AWGN 25M


Frequency band = Band 41 BRS (MBS), Test frequency = mid, Direction = RF downlink,
 Signal type = AWGN 25M


Frequency band = Band 41 BRS (MBS), Test frequency = high, Direction = RF downlink,
Signal type = AWGN 25M


Frequency band = Band 41 BRS (UBS), Test frequency = low, Direction = RF downlink,
 Signal type = AWGN


Frequency band = Band 41 BRS (UBS), Test frequency = mid, Direction = RF downlink,
 Signal type = AWGN


Frequency band = Band 41 BRS (UBS), Test frequency = high, Direction = RF downlink,
Signal type = AWGN

Frequency band = Band 41 BRS (UBS), Test frequency = low, Direction = RF downlink,
 Signal type = Narrowband

Frequency band = Band 41 BRS (UBS), Test frequency = mid, Direction = RF downlink,
 Signal type = Narrowband

