

EMC TEST REPORT

Report Number: 102222335LAX-001
Project Number: G102222335

Report Issue Date: October 18, 2015

Model(s) Tested: TILT-ZWAVE2.5-ECO

Standards: **FCC CFR47 Part 15 Subpart C, October 2014**
Intentional Radiator
§15.249, *Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz*

FCC CFR47 Part 15 Subpart B, October 2014
Unintentional Radiator

Industry Canada RSS-210 Issue 8, December 2010
License-exempt Radio Apparatus (All Frequency Bands): Category I
Equipment
§A2.9, *Bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz*

Industry Canada ICES-003 Issue 5
Information Technology Equipment (ITE) - Limits and methods of
measurement

Tested by:
Intertek
25791 Commercentre Drive
Lake Forest, CA 92630
USA

Client:
Ecolink
2055 Corte Del Nogal
Carlsbad, CA 92011
USA

Report prepared by

Grace Lin
EMC Staff Engineer

Report reviewed by

Krishna Vemuri
EMC Senior Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	<i>Introduction and Conclusion</i>	3
2	<i>Test Summary</i>	3
3	<i>Client Information</i>	4
4	<i>Description of Equipment Under Test and Variant Models</i>	4
5	<i>System Setup and Method</i>	6
6	<i>Fundamental Field Strength</i>	7
7	<i>Occupied Bandwidth</i>	11
8	<i>Transmitter Radiated Spurious Emissions</i>	14
9	<i>Receiver Radiated Spurious Emissions</i>	21
10	<i>AC Mains Conducted Emissions</i>	25
11	<i>Revision History</i>	27

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested does not comply with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
6	Fundamental Field Strength (FCC §15.249(a), FCC §15.249(c); IC RSS-210 Issue 8 §A2.9)	Compliant
7	Occupied Bandwidth (FCC §15.215; IC RSS-Gen Issue 4 §6.6)	Compliant
8	Transmitter Radiated Spurious Emissions (FCC §15.249(a), FCC §15.249(c), FCC §15.249(d), FCC §15.209; IC RSS-210 Issue 8 §A2.9, IC RSS-Gen Issue 4 §8.9)	Compliant
9	Receiver Radiated Spurious Emissions (FCC §15.109; IC ICES-003 Issue 5 §6.2)	Compliant
10	AC Mains Conducted Emissions (FCC §15.207; IC RSS-Gen Issue 4 §8.8) (FCC §15.107; IC ICES-003 Issue 5 §6.1)	N/A*

*: EUT is battery powered

3 Client Information

This EUT was tested at the request of:

Client: Ecolink
2055 Corte Del Nogal
Carlsbad, CA 92011
USA

Contact: Mike Archbold
Telephone: (760) 431-8804
Fax:
Email: archbolm@discoverecolink.com

4 Description of Equipment Under Test and Variant Models

Equipment Under Test			
Description	Manufacturer	Model Number	Serial Number
Home Motion Sensor	Ecolink	TILT-ZWAVE2.5-ECO	908.42 MHz
Home Motion Sensor	Ecolink	TILT-ZWAVE2.5-ECO	916.00 MHz
Home Motion Sensor	Ecolink	TILT-ZWAVE2.5-ECO	Production Firmware

Receive Date:	07/30/2015, 09/16/2015
Received Condition:	Good
Type:	Production

Description of Equipment Under Test

The equipment under test (EUT) is a garage door tilt sensor operating at 908.42 MHz and/or 916.00 MHz. The EUT is battery powered and uses an integral antenna.

Equipment Under Test Power Configuration			
Rated Voltage	Rated Current	Rated Frequency	Number of Phases
3VDC	N/A	N/A	N/A

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	908.42 MHz, 9.6 kbps data rate, FSK Modulation
2	916.00 MHz, 100 kbps data rate, GFSK Modulation
3	Production Firmware

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Modes 1 and 2 were programmed to transmit continuously during testing. Mode 3 was configured as normal operation.

Radio/Receiver Characteristics	
Frequency Band(s)	908.4 MHz, 908.42 MHz; 916.00 MHz
Modulation Type(s)	FSK; GFSK
Test Channels	908.42 MHz, 916.00 MHz
Equipment Type	Standalone
Antenna Type and Gain	Integral

5 System Setup and Method

Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination
	None	N/A	N/A	N/A	N/A

Support Equipment			
Description	Manufacturer	Model Number	Serial Number
None	N/A	N/A	N/A

5.1 Method:

Configuration as required by ANSI C63.10-2013.

5.2 EUT Block Diagram:

6 Fundamental Field Strength

6.1 Performance Criterion

The field strength of emissions, measured at 3 meters, from intentional radiators operated within the frequency band shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500

6.2 Method

Tests are performed in accordance with ANSI C63.10-2013.

The EUT was placed on a non-conducting table 80 cm (below 1 GHz) or 1.5 meters (above 1 GHz) above the ground plane (turntable). The antenna to EUT distance was 3 meters.

The transmitter configured to transmit continuously. The turntable containing the EUT was rotated through 360 degrees and the receive antenna height was varied from 1 to 4 meters to locate the worst-case emissions levels. Measurements were made with the antenna in both the horizontal and vertical polarizations. EUT was tested at three orthogonal planes. The worst-case data is recorded in this report.

TEST SITE:

The test is performed in the 3 meter semi-anechoic chamber located at 25791 Commercentre Drive, Lake Forest, California 92630 USA. This test facility meets the requirements of CISPR 16-1-4 and has been accredited by A2LA.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 3m	30-1000 MHz	4.2	6.3 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB/m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V/m}$$

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

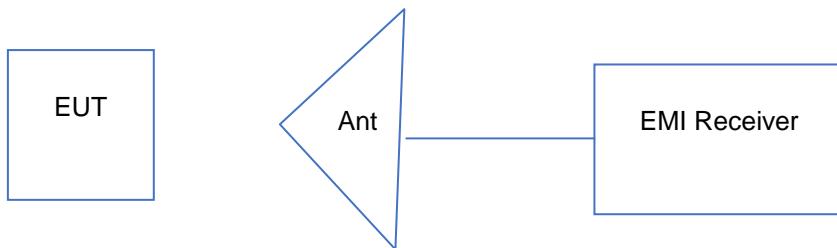
$$NF = \text{Net Reading in dB}\mu\text{V}$$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \mu\text{V/m}$$

6.3 Test Equipment Used:


Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
1140	EMI Test Receiver	Rohde & Schwarz	ESCI7	100825	02/04/2015	02/04/2016
1147	Bilog Antenna	TESEQ GmbH	CBL 6112D	32852	02/20/2015	02/20/2016
798	Cable	Insulated wire	Cable	00828	04/03/2015	04/02/2016
1002	Lab Monitor	Omega	iBTHX-W	0440776	06/26/2015	06/26/2016

Software Utilized:

Name	Manufacturer	Version	Profile
N/A	N/A	N/A	N/A

6.4 Results:

The sample tested was found to comply.

6.5 Setup Diagram:

6.6 Plots/Data:

Test Personnel: Grace Lin
 Product Standard: FCC 15.249, IC RSS-210
 Input Voltage: Battery
 Pretest Verification w/
 Ambient Signals or
 BB Source: Yes

Test Date: 8/15-16/2015, 8/30/2015,
 9/30/2015
 Limit Applied: FCC 15.249, IC RSS-210
 Ambient Temperature: 22.4 °C
 Relative Humidity: 55.9 %
 Atmospheric Pressure: 987.4 mbars

908.42 MHz

Antenna Polarization	Frequency (MHz)	EUT Orientation	Measured Data (dBuV/m)	Duty Cycle Correction Factor (dB)	Corrected Data	Limit (dBuV/m)	Margin (dB)	Turntable Degree	Antenna Height (cm)	Detector
H	908.42	XY	92.90	0.00	92.90	94.00	-1.10	253	100	QP

916 MHz

Antenna Polarization	Frequency (MHz)	EUT Orientation	Measured Data (dBuV/m)	Duty Cycle Correction Factor (dB)	Corrected Data	Limit (dBuV/m)	Margin (dB)	Turntable Degree	Antenna Height (cm)	Detector
H	916.00	XY	93.30	0.00	93.30	94.00	-0.70	338	143	QP

Deviations, Additions, or Exclusions: None

7 Occupied Bandwidth

7.1 Performance Criterion

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated. (FCC §15.215(c))

The transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured. (IC RSS-Gen Issue 4 §6.6)

7.2 Method

Tests are performed in accordance with ANSI C63.10-2013.

TEST SITE:

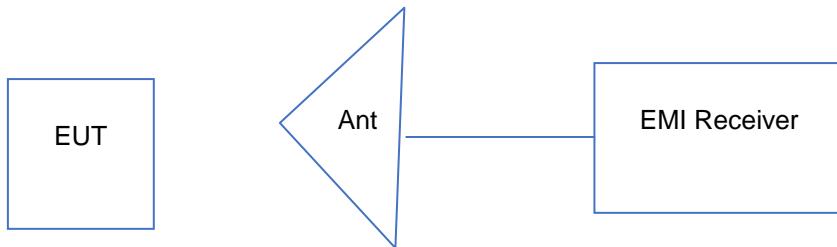
The test is performed in the 3 meter semi-anechoic chamber located at 25791 Commercentre Drive, Lake Forest, California 92630 USA. This test facility meets the requirements of CISPR 16-1-4 and has been accredited by A2LA.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 3m	30-1000 MHz	4.2	6.3 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

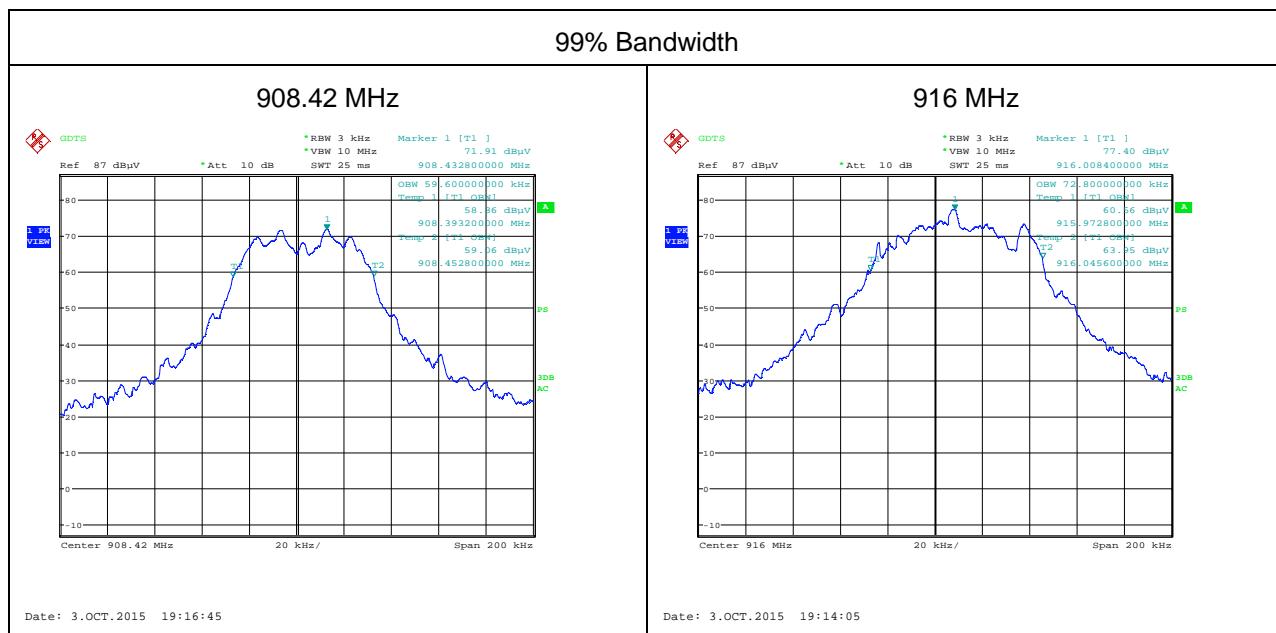
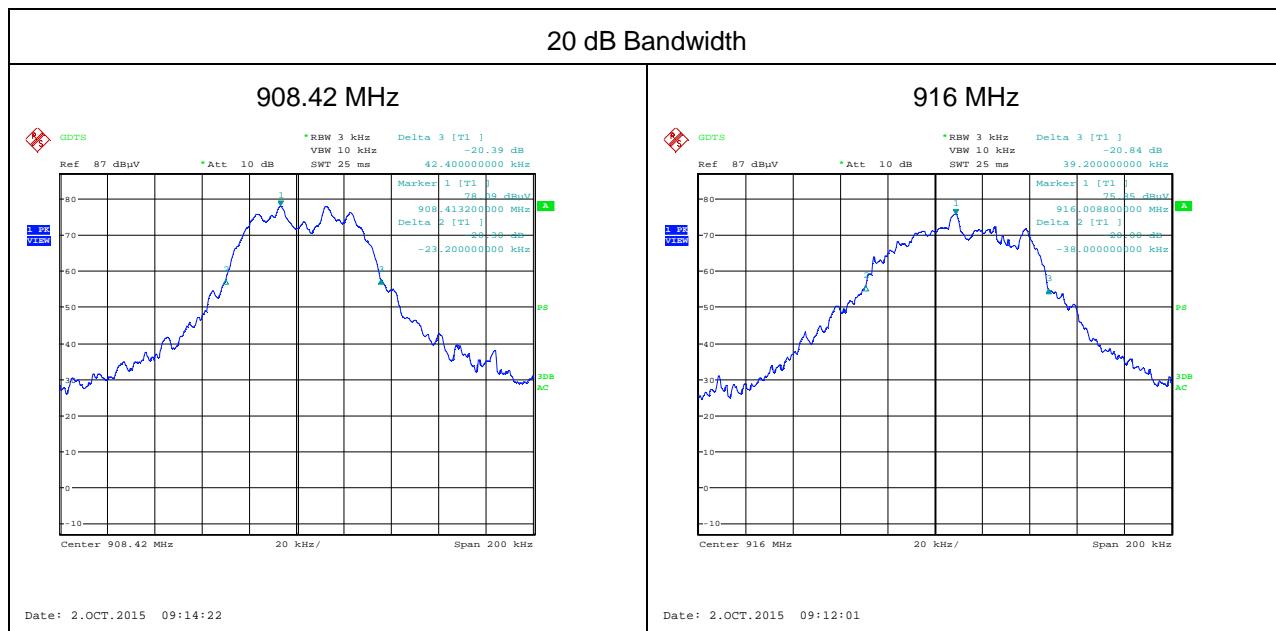
7.3 Test Equipment Used:


Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
1140	EMI Test Receiver	Rohde & Schwarz	ESCI7	100825	02/04/2015	02/04/2016
1147	Bilog Antenna	TESEQ GmbH	CBL 6112D	32852	02/20/2015	02/20/2016
798	Cable	Insulated wire	Cable	00828	04/03/2015	04/02/2016
1002	Lab Monitor	Omega	iBTHX-W	0440776	06/26/2015	06/26/2016

Software Utilized:

Name	Manufacturer	Version	Profile
N/A	N/A	N/A	N/A

7.4 Results:



The sample tested was found to comply. The 20 dB and 99% bandwidth of the fundamental frequency remain inside the band of operation of 902-928 MHz.

7.5 Setup Diagram:

7.6 Plots/Data:

Test Personnel: Grace Lin
 Product Standard: FCC 15.215, IC RSS-Gen
 Input Voltage: 3 Vdc Battery
 Pretest Verification w/
 Ambient Signals or
 BB Source: Yes

Test Date: 10/2-3/2015
 Limit Applied: FCC 15.215, IC RSS-Gen
 Ambient Temperature: 22.3 °C
 Relative Humidity: 63.2 %
 Atmospheric Pressure: 977.6 mbars

Deviations, Additions, or Exclusions: None

8 Transmitter Radiated Spurious Emissions

8.1 Performance Criterion

The field strength of emissions from intentional radiators operated within the frequency band shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500

Field strength limits are specified at a distance of 3 meters. Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in FCC § 15.209 and IC RSS-Gen, whichever is the lesser attenuation. The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

8.2 Method

Tests are performed in accordance with ANSI C63.10-2013.

The EUT was placed on a non-conducting table 80 cm (below 1 GHz) or 1.5 meters (above 1 GHz) above the ground plane (turntable). The antenna to EUT distance was 3 meters.

The spectrum from 30 MHz to the 10th harmonic was investigated with the transmitter configured to continuously transmit. The turntable containing the EUT was rotated through 360 degrees and the receive antenna height was varied from 1 to 4 meters to locate the worst-case emissions levels. Measurements were made with the antenna in both the horizontal and vertical polarizations. EUT was tested at three orthogonal planes. The worst-case data is recorded in this report.

TEST SITE:

The test is performed in the 3 meter semi-anechoic chamber located at 25791 Commercentre Drive, Lake Forest, California 92630 USA. This test facility meets the requirements of CISPR 16-1-4 and has been accredited by A2LA.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	U _{cispr}
Radiated Emissions, 3m	30-1000 MHz	4.2	6.3 dB
Radiated Emissions, 3m	1-10 GHz	4.4	5.2 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB/m}$$

$$CF = 1.6 \text{ dB}$$

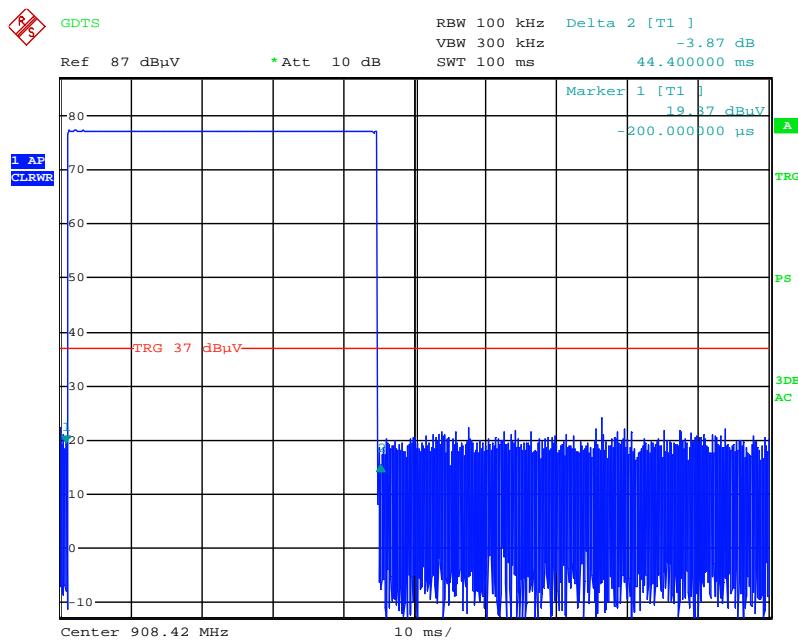
$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V/m}$$

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

$$NF = \text{Net Reading in dB}\mu\text{V}$$


Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \mu\text{V/m}$$

Duty Cycle Correction Factor Calculation

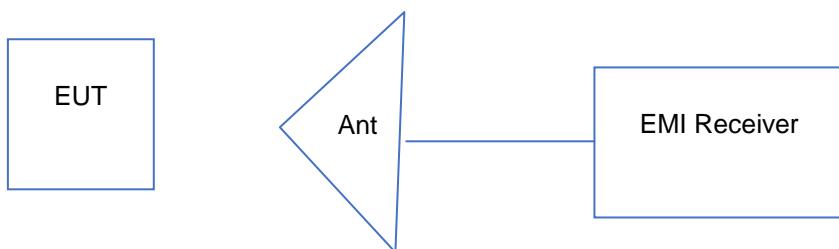
20 LOG (44.4/100) = -7.05 dB

Date: 30.AUG.2015 18:06:26

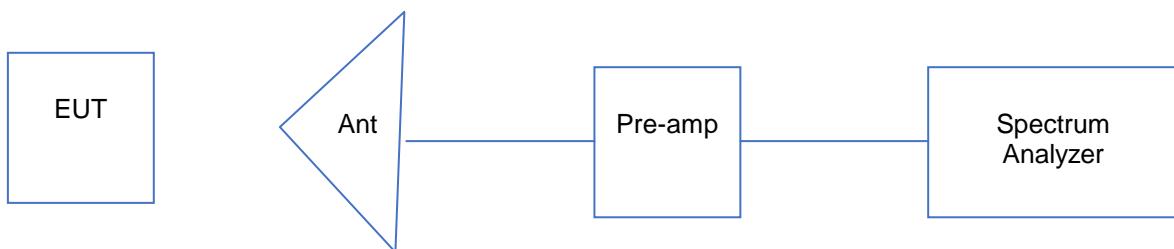
8.3 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
1140	EMI Test Receiver	Rohde & Schwarz	ESCI7	100825	02/04/2015	02/04/2016
690	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/06/2015	01/06/2016
1147	Bilog Antenna	TESEQ GmbH	CBL 6112D	32852	02/20/2015	02/20/2016
692	Horn Antenna	ETS-Lindgren	3115	00031626	05/06/2015	05/06/2016
1135	Preamplifier	Miteq	AMF-6D-00501800-24-10P	1685147	03/30/2015	03/30/2016
798	Cable	Insulated wire	Cable	00828	04/03/2015	04/02/2016
1517	Cable	Rohde & Schwarz	TSPR-B7	101528	06/23/2015	06/23/2016
1002	Lab Monitor	Omega	iBTHX-W	0440776	06/26/2015	06/26/2016

Software Utilized:


Name	Manufacturer	Version	Profile
Tile	Quantum Change	3.4.K.29	<ul style="list-style-type: none"> • ESCI_FCC_CISPR-RE-30MHz-1GHz_Bilog • FCC Part 15 FSP 1-10GHz

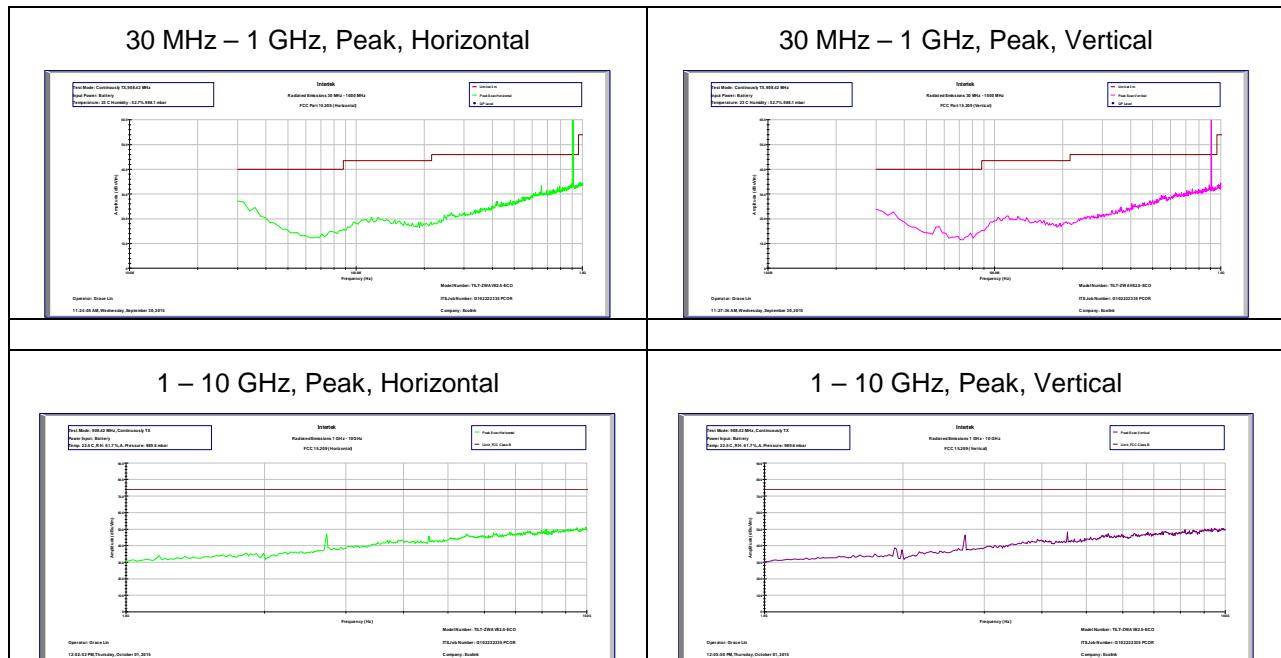
8.4 Results:


The sample tested was found to comply.

8.5 Setup Diagram:

Below 1 GHz:

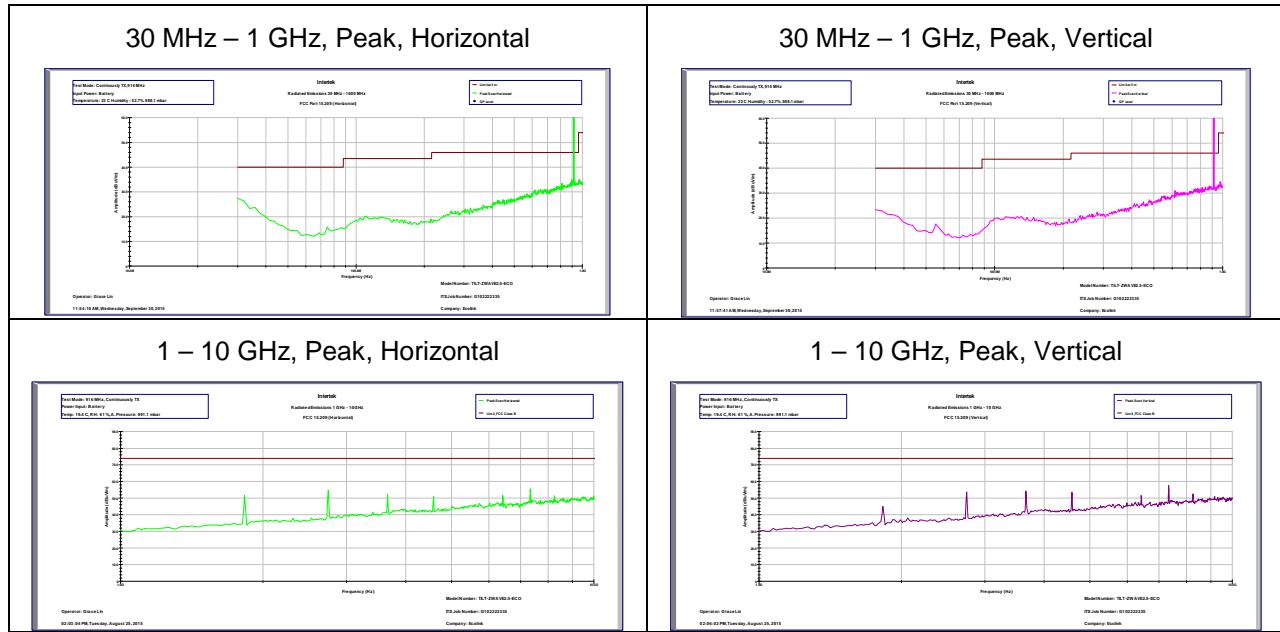
Above 1 GHz:



8.6 Plots/Data:

Test Personnel: Grace Lin
 Product Standard: FCC 15.249, IC RSS-210
 Input Voltage: 3Vdc Battery
 Pretest Verification w/
 Ambient Signals or
 BB Source: Yes

Test Date: 8/16/2015, 9/29-30/2015, 10/1-2/2015
 Limit Applied: FCC 15.249, FCC 15.209, IC RSS-210, IC RSS-Gen
 Ambient Temperature: 22.7 °C, 22.4 °C
 Relative Humidity: 58.8 %, 55.9 %
 Atmospheric Pressure: 988.5 mbars, 987.4 mbars


EUT Operating at 908.42 MHz

Antenna Polarization	Frequency (MHz)	EUT Orientation	Measured Data (dBuV/m)	Duty Cycle Correction Factor (dB)	Corrected Data	Limit (dBuV/m)	Margin (dB)	Turntable Degree	Antenna Height (cm)	Detector
H	2725.26	XY	49.94	7.05	42.89	54	-11.11	112.0	197.0	AVE
H	2725.26	XY	49.94	0	49.94	74	-24.06	112.0	197.0	PK
V	4542.10	XY	52.09	7.05	45.04	54	-8.96	10.0	168.0	AVE
V	4542.10	XY	52.09	0	52.09	74	-21.91	10.0	168.0	PK
V	6358.94	XY	53.31	7.05	46.26	54	-7.74	360.0	122.0	AVE
V	6358.94	XY	53.31	0	53.31	74	-20.69	360.0	122.0	PK
H	8175.78	XY	55.09	7.05	48.04	54	-5.96	118.0	124.0	AVE
H	8175.78	XY	55.09	0	55.09	74	-18.91	118.0	124.0	PK

Deviations, Additions, or Exclusions: None

EUT Operating at 916 MHz

Antenna Polarization	Frequency (MHz)	EUT Orientation	Measured Data (dBuV/m)	Duty Cycle Correction Factor (dB)	Corrected Data	Limit (dBuV/m)	Margin (dB)	Turntable Degree	Antenna Height (cm)	Detector
H	1832.00	XY	54.64	7.05	47.59	54	-6.41	261.0	172.0	AVE
H	1832.00	XY	54.64	0	54.64	74	-19.36	261.0	172.0	PK
H	2748.00	XY	57.23	7.05	50.18	54	-3.82	267.0	215.0	AVE
H	2748.00	XY	57.23	0	57.23	74	-16.77	267.0	215.0	PK
V	3664.00	XY	56.62	7.05	49.57	54	-4.43	182.0	199.0	AVE
V	3664.00	XY	56.62	0	56.62	74	-17.38	182.0	199.0	PK
V	4580.00	XY	58.69	7.05	51.64	54	-2.36	7.0	168.0	AVE
V	4580.00	XY	58.69	0	58.69	74	-15.31	7.0	168.0	PK
V	6412.00	XY	56.64	7.05	49.59	54	-4.41	5.0	117.0	AVE
V	6412.00	XY	56.64	0	56.64	74	-17.36	5.0	117.0	PK
V	7328.00	XY	60.78	7.05	53.73	54	-0.27	353.0	151.0	AVE
V	7328.00	XY	60.78	0	60.78	74	-13.22	353.0	151.0	PK

Deviations, Additions, or Exclusions: None

9 Receiver Radiated Spurious Emissions

9.1 Method

Tests are performed in accordance with ANSI C63.4-2014.

The EUT was placed on a non-conducting table 80 cm above the ground plane (turntable). The antenna to EUT distance was 3 meters.

The spectrum from 30 MHz to the 5th harmonic was investigated with the EUT configured to normal operation. The turntable containing the EUT was rotated through 360 degrees and the receive antenna height was varied from 1 to 4 meters to locate the worst-case emissions levels. Measurements were made with the antenna in both the horizontal and vertical polarizations. EUT was tested at three orthogonal planes. The worst-case data is recorded in this report.

TEST SITE:

The test is performed in the 3 meter semi-anechoic chamber located at 25791 Commercentre Drive, Lake Forest, California 92630 USA. This test facility meets the requirements of CISPR 16-1-4 and has been accredited by A2LA.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 3m	30-1000 MHz	4.2	6.3 dB
Radiated Emissions, 3m	1-10 GHz	4.4	5.2 dB

As shown in the table above our radiated emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}/\text{m}$$

CF = 1.6 dB
 AG = 29.0 dB
 FS = 32 dB μ V/m

To convert from dB μ V to μ V or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V
 NF = Net Reading in dB μ V

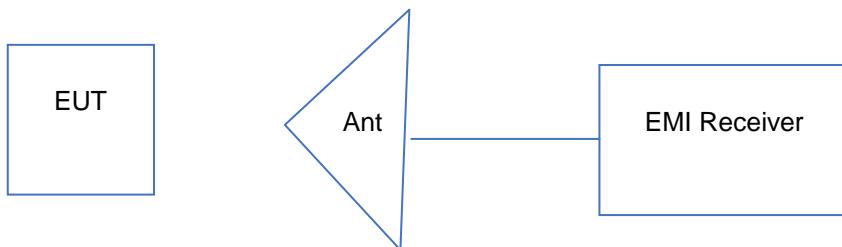
Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0
 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 μ V/m

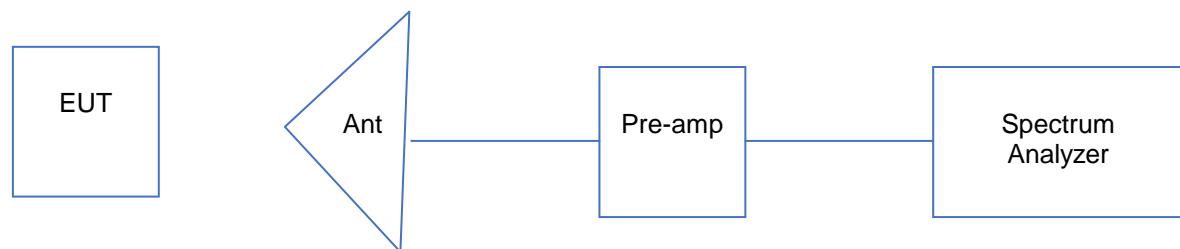
9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
1140	EMI Test Receiver	Rohde & Schwarz	ESCI7	100825	02/04/2015	02/04/2016
690	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/06/2015	01/06/2016
1147	Bilog Antenna	TESEQ GmbH	CBL 6112D	32852	02/20/2015	02/20/2016
692	Horn Antenna	ETS-Lindgren	3115	00031626	05/06/2015	05/06/2016
1135	Preamplifier	Miteq	AMF-6D-00501800-24-10P	1685147	03/30/2015	03/30/2016
798	Cable	Insulated wire	Cable	00828	04/03/2015	04/02/2016
1517	Cable	Rohde & Schwarz	TSPR-B7	101528	06/23/2015	06/23/2016
1002	Lab Monitor	Omega	iBTHX-W	0440776	06/26/2015	06/26/2016

Software Utilized:

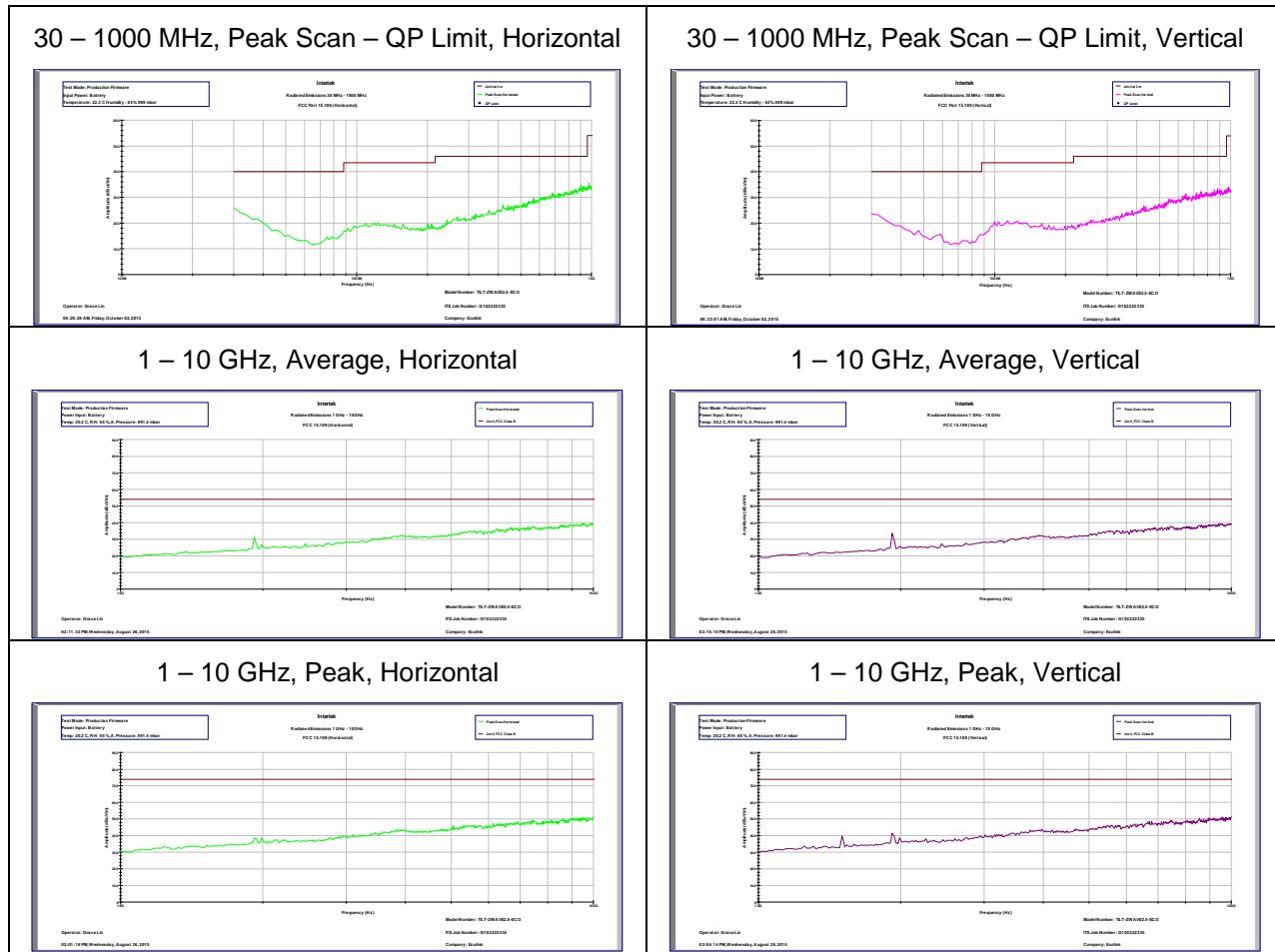

Name	Manufacturer	Version	Profile
Tile	Quantum Change	3.4.K.29	<ul style="list-style-type: none"> • ESCI_FCC_CISPR-RE-30MHz-1GHz_Bilog • FCC Part 15 FSP 1-10GHz

9.3 Results:


The sample tested was found to Comply.

9.4 Setup Diagram:

Below 1 GHz:


Above 1 GHz:

9.5 Plots/Data:

Test Personnel: Grace Lin
 Product Standard: FCC 15B, IC ICES-003
 Input Voltage: 3 Vdc Battery
 Pretest Verification w/
 Ambient Signals or
 BB Source: Yes

Test Date: 8/16/2015, 9/29/2015
 Limit Applied: FCC 15.109, IC ICES-003
 Ambient Temperature: 22.4 °C, 21.2 °C
 Relative Humidity: 55.9 %, 56.7 %
 Atmospheric Pressure: 987.4 mbars, 987.7 mbars

Deviations, Additions, or Exclusions: None

10 AC Mains Conducted Emissions

10.1 Method

Tests are performed in accordance with ANSI C63.4.

TEST SITE:

The test is performed in the 3 meter semi-anechoic chamber located at 25791 Commercentre Drive, Lake Forest, California 92630 USA. This test facility meets the requirements of CISPR 16-1-4 and has been accredited by A2LA.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
AC Line Conducted Emissions	150 kHz - 30 MHz	2.1 dB	3.4dB
Telco Port Emissions	150 kHz - 30 MHz	2.6 dB	5.0dB

As shown in the table above our conducted emissions U_{lab} is less than the corresponding U_{CISPR} reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

Sample Calculations

The following is how net line-conducted readings were determined:

$$NF = RF + LF + CF + AF$$

Where NF = Net Reading in dB μ V

RF = Reading from receiver in dB μ V

LF = LISN or ISN Correction Factor in dB

CF = Cable Correction Factor in dB

AF = Attenuator Loss Factor in dB

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

NF = Net Reading in dB μ V

Example:

$$NF = RF + LF + CF + AF = 28.5 + 0.2 + 0.4 + 20.0 = 49.1 \text{ dB}\mu\text{V}$$

$$UF = 10^{(49.1 \text{ dB}\mu\text{V} / 20)} = 285.1 \mu\text{V/m}$$

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Software Utilized:

Name	Manufacturer	Version	Profile
N/A	N/A	N/A	N/A

10.3 Results:

This test is not applicable as the EUT is battery powered.

11 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	10/18/2015	102222335LAX-001	GL	KV	Initial Release
1	01/05/2016	102222335LAX-001	GL	KV	Add 908.4 MHz to frequency band(s). Update the report to the latest ANSI C63.4 standard